EDB

EDB .NET Connector

Version 10.0.1.1

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. Built at 2026-02-19T13:46:37

EDB .NET Connector

1 EDB .NET Connector 3
2 Release notes 4
2.1 Version 10.0.1.1 5
2.2 Version 9.0.3.1 6
2.3 Version 8.0.5.1 7
2.4 Version 8.0.2.1 8
2.5 Version 7.0.6.2 9
2.6 Version 7.0.6.1 10
2.7 Version 7.0.4.1 11
2.8 Version 6.0.2.1 12
2.9 Version 5.0.7.1 13
2.10 Version 4.1.6.1 14
2.11 Version 4.1.5.1 15
2.12 Version 4.1.3.1 16
2.13 Version 4.0.10.2 17
2.14 Version 4.0.10.1 18
2.15 Version 4.0.6.1 19
3 Product compatibility 20
4 EDB .NET Connector overview 22
5 Installing and configuring the .NET Connector 23
6 Opening a database connection 34
7 Retrieving database records 38
8 Parameterized queries 43
9 Inserting records in a database 45
10 Deleting records in a database 48
11 Using SPL stored procedures in your .NET application 50
12 Using advanced queueing 62
13 Using a ref cursor in a .NET application 75
14 Using plugins 79
15 Using object types in .NET 82
16 Using nested tables 91
17 Scram compatibility 98
18 EDB .NET Connector logging 99
19 API reference 104

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 2

EDB .NET Connector

1 EDB .NET Connector

The EDB .NET Connector distributed with EDB Postgres Advanced Server provides connectivity between a .NET client application and an EDB Postgres
Advanced Server database server. You can:

e Connect to an instance of EDB Postgres Advanced Server.
e Retrieve information from an EDB Postgres Advanced Server database.
e Update information stored on an EDB Postgres Advanced Server database.

To understand these examples, you need a solid working knowledge of C# and .NET. The EDB .NET Connector functionality is built on the core
functionality of the Npgsql open source project. For details, see the Npgsql User Guide.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved.

http://www.npgsql.org/doc/index.html

2

The EDB .NET connector documentation describes the latest version of EDB .NET connector.

Release notes

EDB .NET Connector

These release notes describe what's new in each release, and highlights differences with the community version. When a minor or patch release

introduces new functionality, indicators in the content identify the version that introduced the new feature.

Version
10.0.1.1
9.0.3.1
8.0.5.1
8.0.2.1
7.0.6.2
7.0.6.1
7.0.4.1
6.0.2.1
5.0.7.1
4.1.6.1
4151
4.1.3.1
4.0.10.2
4.0.10.1

4.0.6.1

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved.

Release Date
19 Feb 2026
21 May 2025
22 Nov 2024
15 May 2024
15 Feb 2024
25 Oct 2023

07 Jul 2023

25 Jul 2022

06 Aug 2021
17 Dec 2020
11 Nov 2020
27 Aug 2020
12 Mar 2020
26 Sep 2019
01 Aug 2019

EDB .NET Connector

21 Version 10.0.1.1

Released: 19 Feb 2026

The EDB .NET Connector provides connectivity between a .NET client application and an EDB Postgres Advanced Server database server.

Note

Unlike the upstream Npgsql community driver, the EDB .NET Connector retains full support for .NET Framework 4.7.2+.

New features, enhancements, bug fixes, and other changes in the EDB .NET Connector 10.0.1.1 include:

Type Description Addresses
Upstream Merged with community .NET driver version 10.0.1. See release notes for more information about merge
merge updates.
Deprecation Removed .NET5, .NET6, and .NET7 targets as they have reached end of support.
Enhancement Added support for EDB Postgres Advanced Server 18.
Note

In version 10, Npgsql introduced a breaking change regarding DateOnly and TimeOnly set as default mappings. EDB .NET Connector
doesn't contain this breaking change, and DateTime and TimeSpan are still the default mappings to their PostgreSQL date/time
counterparts.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 5

https://www.npgsql.org/doc/release-notes/10.0.html
https://www.npgsql.org/doc/release-notes/10.0.html#date-and-time-are-now-mapped-to-dateonly-and-timeonly

EDB .NET Connector

2.2 Version 9.0.3.1

Released: 21 May 2025

Release notes updated: 25 Nov 2025, 23 Jan 2026

The EDB .NET Connector provides connectivity between a .NET client application and an EDB Postgres Advanced Server database server.

Note

Unlike the upstream Npgsql community driver, the EDB .NET Connector retains full support for .NET Framework 4.7.2+.

New features, enhancements, bug fixes, and other changes in the EDB .NET Connector 9.0.3.1 include:

Addres
Type Description
yp p ses
Upstream
merge Merged with community .NET driver version 9.0.3. See release notes for more information about merge updates.
Populated the EDBAQMessage.MessageId property with a string uniquely identifying the message, instead of
Bug fix P Q g geld property g uniquely fying g #41979

the previously used bytel[] .
Deprecation Removed .NET5, .NET6, and .NET7 targets as they have reached end of support.

Enhancement Added support for EDB Postgres Advanced Server 18.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 6

https://www.npgsql.org/doc/release-notes/9.0.html

EDB .NET Connector

2.3 Version 8.0.5.1

Released: 22 Nov 2024

The EDB .NET Connector provides connectivity between a .NET client application and an EDB Postgres Advanced Server database server.

New features, enhancements, bug fixes, and other changes in the EDB .NET Connector 8.0.5.1 include:

Add
Type Description ress
es
Upstream Merged with community .NET driver version 8.0.5 and EF Core Driver 8.0.10. See release notes for more information
merge about merge updates.
Bug fix Fixed a performance issue. Performance is now improved when reading data while targeting .NET Framework 4.7.2, 4.8, #41
and 4.8.1. 979

Enhancement Added support for EDB Postgres Advanced Server 17.2.

Added support for IS TABLE OF . EDB Postgres Advanced Server supports Oracle nested table collection types

Enhancement . . . :
created with CREATE TYPE ... AS TABLE OF statements. See Using nested tables for more information.

Deprecation Removed .NET5 and .NET7 targets as they have reached end of support.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 7

https://www.npgsql.org/doc/release-notes/8.0.html

2.4

EDB .NET Connector

Version 8.0.2.1

Released: 15 May 2024

The EDB .NET Connector provides connectivity between a .NET client application and an EDB Postgres Advanced Server database server.

New features, enhancements, bug fixes, and other changes in the EDB .NET Connector 8.0.2.1 include:

Type

Upstream
merge

Security fix

Bug fix

Bug fix

Description
Merged with community .NET driver version 8.0.2. See release notes for more information about merge updates.
Fixed a security issue CVE-2024-32655. This security fix fixes the Npgsql that was vulnerable to SQL injection via protocol

message size overflow.

Fixed an issue for SPL CALLS. SPL CALLs with output parameters are now returning DataReader with a row of parameters on the
batch commands.

EnableErrorBarriers is now functional on the batch commands. See the EnableErrorBarriers documentation for more
information.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 8

https://www.npgsql.org/doc/release-notes/8.0.html
https://github.com/advisories/GHSA-x9vc-6hfv-hg8c
https://www.npgsql.org/doc/api/Npgsql.NpgsqlBatchCommand.html#Npgsql_NpgsqlBatchCommand_AppendErrorBarrier

EDB .NET Connector

2.5 Version 7.0.6.2

Released: 15 Feb 2024

The EDB .NET Connector provides connectivity between a .NET client application and an EDB Postgres Advanced Server database server.

New features, enhancements, bug fixes, and other changes in the EDB .NET Connector 7.0.6.2 include:

Type Description

Enhancement .NET packages are now available on nuget.org.

Fixed an issue while any attempt to connect synchronously hung indefinitely, referencing the .Net Framework assembly using

Bug fi
Hg X non-ASYNC code.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 9

https://www.nuget.org/

EDB .NET Connector

2.6 Version 7.0.6.1

Released: 25 Oct 2023

The EDB .NET Connector provides connectivity between a .NET client application and an EDB Postgres Advanced Server database server.

New features, enhancements, bug fixes, and other changes in the EDB .NET Connector 7.0.6. 1 include:

Deprecation

This release removes support for .NET 5 and .NET Core 3.1.

Type Description

Merged with community .NET driver version 7.0.6. For more information about the merge updates, seecommunity release

Upstream merge
P g notes.

Enhancement Added support for .NET 4.7.2, .NET 4.8, .NET 4.8.1

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 10

https://www.npgsql.org/doc/release-notes/7.0.html

EDB .NET Connector

2.7 Version 7.0.4.1

Released: 07 Jul 2023

The EDB .NET Connector provides connectivity between a .NET client application and an EDB Postgres Advanced Server database server.

New features, enhancements, bug fixes, and other changes in the EDB .NET Connector 7.0.4. 1 include:

Type Description
Upstream Merged with community .NET driver version 7.0.4. For more information about the merge updates, see
merge https://www.npgsql.org/doc/release-notes/7.0.html.

Enhancement Added support for .NET 7.0.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 11

https://www.npgsql.org/doc/release-notes/7.0.html

EDB .NET Connector

2.8 Version 6.0.2.1

Released: 25 Jul 2022

The EDB .NET Connector provides connectivity between a .NET client application and an EDB Postgres Advanced Server database server.

New features, enhancements, bug fixes, and other changes in the EDB .NET Connector 6.0.2. 1 include:

Type Description
Upstream Merged with community .NET driver version 6.0.2. For more information about the merge updates, see
merge https://www.npgsql.org/doc/release-notes/6.0.html.

Enhancement Support for .NET 6.0 is added.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 12

https://www.npgsql.org/doc/release-notes/6.0.html

EDB .NET Connector

2.9 Version 5.0.7.1

Released: 06 Aug 2021

The EDB .NET Connector provides connectivity between a .NET client application and an EDB Postgres Advanced Server database server.

New features, enhancements, bug fixes, and other changes in the EDB .NET Connector 5.0.7. 1 include:

Type Description
Upstream Merged with the upstream Npgsql driver version 5.0.7. For more information about the merge updates, see
merge https://www.nuget.org/packages/Npgsql/5.0.7.

Enhancement Support for .NET 5.0 and .NET Core 3.1 (earlier available as .NET Core 3.0).

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 13

https://www.nuget.org/packages/Npgsql/5.0.7

EDB .NET Connector

2.10 Version 4.1.6.1

Released: 17 Dec 2020

The EDB .NET Connector provides connectivity between a .NET client application and an Advanced Server database server.

New features, enhancements, bug fixes, and other changes in the EDB .NET Connector 4.1.6.1 include:

Type Description
Upstream Merged with the upstream Npgsql driver version 4.1.6. For more information about the merge updates, see
Merge https://www.nuget.org/packages/Npgsql/4.1.6.

Enhancement Support for .NET Framework 4.7.2 and .NET Framework 4.8.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 14

https://www.nuget.org/packages/Npgsql/4.1.6

EDB .NET Connector

2.11 Version 4.1.5.1

Released: 11 Nov 2020

The EDB .NET Connector provides connectivity between a .NET client application and an EDB Postgres Advanced Server database server.

New features, enhancements, bug fixes, and other changes in the EDB .NET Connector 4.1.5.1 include:

Type Description
Upstream Merged with the upstream Npgsql driver version 4.1.5. For more information about the merge updates, see
merge https://www.nuget.org/packages/Npgsql/4.1.5.

Enhancement Support for EDB Postgres Advanced Server 13.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 15

https://www.nuget.org/packages/Npgsql/4.1.5

EDB .NET Connector

2.12 Version 4.1.3.1

Released: 27 Aug 2020

The EDB .NET Connector provides connectivity between a .NET client application and an EDB Postgres Advanced Server database server.

New features, enhancements, bug fixes, and other changes in the EDB .NET Connector 4.1.3.1 include:

Type Description
Upstream Merged with the upstream Npgsql driver version 4.1.3. For more information about the merge updates, see
merge https://www.nuget.org/packages/Npgsql/4.1.3.

Enhancement Support for .NET Framework 4.6.1, .NET Core 3.0 and .NET Standard 2.1.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 16

https://www.nuget.org/packages/Npgsql/4.1.3

EDB .NET Connector

2.13 Version 4.0.10.2

Released: 12 Mar 2020

The EDB .NET Connector provides connectivity between a .NET client application and an EDB Postgres Advanced Server database server.

New features, enhancements, bug fixes, and other changes in the EDB .NET Connector 4.0.10.2 include:

Type Description

Added connection parameter, Load Role Based

Enhancement
Tables.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 17

EDB .NET Connector

2.14 Version 4.0.10.1

Released: 26 Sep 2019

The EDB .NET Connector provides connectivity between a .NET client application and an EDB Postgres Advanced Server database server.

New features, enhancements, bug fixes, and other changes in the EDB .NET Connector 4.0.10.1 include:
Type Description
Upstream merge Merged with the upstream community driver version 4.0.10.

Enhancement Added support for Windows Server 2019 platform.
Enhancement Added support for VSIX for Visual Studio 2019.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 18

EDB .NET Connector

2.15 Version 4.0.6.1

Released: 01 Aug 2019

The EDB .NET Connector provides connectivity between a .NET client application and an EDB Postgres Advanced Server database server.

New features, enhancements, bug fixes, and other changes in the EDB .NET Connector 4.0.6.1 include:

Type Description
Upst
pstream Merged with the upstream community driver version 4.0.6.
merge
Enhancement Added Advanced Queueing feature that provides message queueing and message processing support for the EDB Advanced

Server database.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 19

EDB .NET Connector
3 Product compatibility

The following sections detail the supported platforms and database versions for the EDB .NET Connector.

Supported .NET versions

The .NET Connector supports the following runtime environments:

o .NET Framework 4.7.2, 4.8 and 4.8.1
e .NET S8, .NET9and.NET10
e NET Standard 2.1 and .NET Standard 2.0

Version compatibility for Entity Framework Core is strictly mapped to the EDB .NET Connector major version. Make sure that both components share
the same major version (9., etc.) for supported operation.

Note

Unlike the upstream Npgsql community driver, the EDB .NET Connector retains full support for .NET Framework 4.7.2+.

Supported platforms
The EDB .NET Connector graphical installers are supported on the following Windows platforms:
64-bit Windows:

o Windows Server 2019 and 2022
o Windows 10 and 11

32-bit Windows:

e Windows 10

Supported database server versions

This table lists the latest EDB .NET Connector versions and their supported corresponding EDB Postgres Advanced Server (EPAS) versions.

EDB .NET Connector EPAS18 EPAS17 EPAS16 EPAS15 EPAS14 EPAS13

10.0.1.1 Y Y Y Y Y Y
9.0.3.1 Y Y Y Y Y Y
8.0.5.1 N Y Y Y Y Y
8.0.2.1 N N Y Y Y Y
7.0.6.2 N N Y Y Y Y
7.0.6.1 N N Y Y Y Y
7.0.4.1 N N N Y Y Y
6.0.2.1 N N N N Y Y

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 20

EDB .NET Connector

EDB .NET Connector EPAS18 EPAS17 EPAS16 EPAS15 EPAS14 EPAS13
5.0.7.1
4.1.6.1
4151
4131
4.0.10.2

4.0.10.1

z =z =2 Z2 Z2 Z2 =2
z =z =z =z =z Z =2
z =Z2 =2 =2 Z2 Z2 Z2
z =2 =2 =z Z2 Z2 Z2
z =z =2 Z2 Z2 Z2 Z2

Y
Y
Y
Y
N
N
N

4.0.6.1

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 21

EDB .NET Connector

4 EDB .NET Connector overview

EDB .NET Connector is a .NET data provider that allows a client application to connect to a database stored on an EDB Postgres Advanced Server host.
The .NET Connector accesses the data directly, allowing the client application optimal performance, a broad spectrum of functionality, and access to
EDB Postgres Advanced Server features.

The .NET class hierarchy

The .NET class hierarchy contains classes that you can use to create objects that control a connection to the EDB Postgres Advanced Server database
and manipulate the data stored on the server. The following are a few of the most commonly used object classes.

EDBDataSource

EDBDataSource isthe entry point for all the connections made to the database. It's responsible for issuing connections to the server and
efficiently managing them. Starting with EDB .NET Connector 7.0.4.1, you no longer need direct instantiation of EDBConnection . Instantiate
EDBDataSource and use the method provided to create commands or execute queries.

EDBConnection

The EDBConnection class represents a connection to EDB Postgres Advanced Server. An EDBConnection object contains a
ConnectionString that tells the .NET client how to connect to an EDB Postgres Advanced Server database. Obtain EDBConnection froman
EDBDataSource instance, and use it directly only in specific scenarios, such as transactions.

EDBCommand

An EDBCommand object contains a SQL command that the client executes against EDB Postgres Advanced Server. Before you can execute an
EDBCommand object, you must link it to an EDBConnection object.

EDBDataReader

An EDBDataReader object provides a way to read an EDB Postgres Advanced Server result set. You can use an EDBDataReader object to step
through one row at a time, forward only.

EDBDataAdapter

An EDBDataAdapter object links a result set to the EDB Postgres Advanced Server database. You can modify values and use the
EDBDataAdapter class to update the data stored in an EDB Postgres Advanced Server database.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 22

EDB .NET Connector

5 Installing and configuring the .NET Connector

Installing the .NET Connector

You can install the EDB .NET Connector using either the EDB installer or the installer from NuGet.org.

Installing and configuring the .NET Connector from NuGet.org

Install NuGet package via command line

Launch a terminal from your solution folder and run:
dotnet add package EnterpriseDB.EDBClient

This command downloads and installs the EDB .NET Connector matching your .NET version. Your project is then ready to import the EDB .NET
Connector namespace:

using EnterpriseDB.EDBClient;

You can find all the EDB .NET Connector satellite packages atNuGet.org.

For more information, see the EDB .NET Connector Now Published on NuGet blog post.

Install NuGet package via Visual Studio interface

. Right-click your project or solution and select Manage NuGet package.

. Search the package using enterprisedb.edbclient asthe search text.
. Select the EnterpriseDB.EDBClient package.

. Select Install to proceed to package download and installation.

S NN e

This command downloads and installs the EDB .NET Connector matching your .NET version. Your project is then ready to import the EDB .NET
Connector namespace:

using EnterpriseDB.EDBClient;

For more information, see the EDB .NET Connector Now Published on NuGet blog post.

Installing the .NET Connector using EDB installer

You can use the EDB .NET Connector installer to add the .NET Connector to your system. The installer is available fromthe EDB website.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 23

https://www.nuget.org/profiles/EnterpriseDB
https://www.enterprisedb.com/blog/improving-developer-experience-updated-edb-net-connector-now-published-nuget
https://www.enterprisedb.com/blog/improving-developer-experience-updated-edb-net-connector-now-published-nuget
https://www.enterprisedb.com/software-downloads-postgres

EDB .NET Connector

1. After downloading the installer, right-click the installer icon, and selectRun As Administrator. When prompted, select an installation language
and select OK to continue to the Setup window.

w Setup =

@ epB

Setup Dothet

Welcome to the EDE Postares Dotiet Setup.

EDB Postgres
Advanced Server

= Back Mext = Cancel

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 24

EDB .NET Connector

2. Select Next.

Installation Directory
Flease spedify the directory where DotiMet will be installed.
Installation Directory |C:"|Frngram Files\edb'dotnet| | [E]
InstallBuilder
<Back | [Next> | [Concel |

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 25

EDB .NET Connector

3. Use the Installation Directory dialog box to specify the directory in which to install the connector. SelectNext.

E Setup

Ready to Install

===

T

Setup is now ready to begin installing DotMet on your computer.

InstallBuilder

< Back][Mext =][Cancel

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved.

26

EDB .NET Connector

4. To start the installation, on the Ready to Install dialog box, selectNext. Popups confirm the progress of the installation wizard.

oo :
®ebB

Completing the Dothet Setup Wizard

EnterpriseDE is the leading provider of value-added products and
services for the Postgres community,

Please visit our website at www.enterprisedb.com

EDB Postgres
Advanced Server

= Back Finish Cancel

5. When the wizard informs you that it has completed the setup, selectFinish.

You can also use StackBuilder Plus to add or update the connector on an existing EDB Postgres Advanced Server installation.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 27

EDB .NET Connector

1. To open StackBuilder Plus, from the Windows Apps menu, select StackBuilder Plus.

. EDB Postgres 13
New

Documentation - 13
New
EDB-PSQL - 13
New
Edit pg_hba.conf - 13
New

Edit pg_ident.conf - 13
New

Edit postgresql.conf - 13
New

pgAdmin4 - v4 - 13

New

Reload Configuration - 13
New

StackBuilder Plus - 13
NEY,

2. When StackBuilder Plus opens, follow the onscreen instructions.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 28

EDB .NET Connector

3. From the Database Drivers node of the tree control, select theEnterpriseDB.Net Connector option.

S

Please select the applications you would like to install.

® E D B EIF- Categories

(- Add-ons, tools and utilities
Ell" Database Drivers

----- [EnterprizeDB .Net Connector
o EnterpriseDB IDBC Connector
[T EnterpriseDB OCI Connector

=
=l

- EnterpriseDB Tools
- Web Development

=+l

EDB Postgres
Advanced Server

Client connector &Pls for Met.
Dretails

< Back Mext = Cancel

4. Follow the directions of the onscreen wizard to add or update an installation of an EDB Connector.

Configuring the .NET Connector

For information about configuring the .NET Connector in each environment, see:

Referencing the Library Files. General configuration information applicable to all components.
.NET 10 Instructions for configuring for use with .NET 10.

.NET Framework 4.7.2 Instructions for configuring for use with .NET framework 4.7.2.

.NET Framework 4.8 Instructions for configuring for use with .NET Framework 4.8.

.NET Framework 4.8.1 Instructions for configuring for use with .NET Framework 4.8.1.

.NET Standard 2.0 Instructions for configuring for use with .NET Standard 2.0.

.NET Standard 2.1 Instructions for configuring for use with .NET Standard 2.1.

.NET EntityFramework Core Instructions for configuring for use with .NET EntityFramework Core.

Referencing the library files

To reference library files with Microsoft Visual Studio:

1. Inthe Solution Explorer, select the project.
2. Select Project > Add Reference.
3. Inthe Add Reference dialog box, browse to select the appropriate library files.

Optionally, you can copy the library files to the specified location.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 29

EDB .NET Connector

Before you can use an EDB .NET class, you must import the namespace into your program. Importing a namespace makes the compiler aware of the
classes available in the namespace. The namespace is EnterpriseDB.EDBClient .

The method you use to include the namespace varies by the type of application you're writing. For example, the following command imports a
namespace intoan ASP.NET page:

<% import namespace="EnterpriseDB.EDBClient" %>

To import a namespace into a C# application, use:

using EnterpriseDB.EDBClient;

.NET framework setup

Each .NET version has specific setup instructions.

.NET 10

For .NET 10, the data provider installation path is:

C:\Program Files\edb\dotnet\net10.0\

You must add the following dependencies to your project:

EnterpriseDB.EDBClient.dll

Depending upon the type of application you use, you may be required to import the namespace into the source code. SeeReferencing the library files
for this and other information about referencing library files.

.NET Framework 4.7.2

For .NET Framework 4.7.2, the data provider installation path is:

C:\Program Files\edb\dotnet\net472\ .

You must add the following dependency to your project. You may also need to add other dependencies from the same directory:

e EnterpriseDB.EDBClient.dll

Depending on your application type, you might need to import the namespace into the source code. See Referencing the library files for this and the
other information about referencing the library files.

.NET Framework 4.8

For .NET Framework 4.8, the data provider installation path is:

C:\Program Files\edb\dotnet\net48\ .

You must add the following dependency to your project. You may also need to add other dependencies from the same directory:

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 30

EDB .NET Connector

e EnterpriseDB.EDBClient.dll

Depending on your application type, you might need to import the namespace into the source code. See Referencing the library files for this and the
other information about referencing the library files.

.NET Framework 4.8.1

For .NET Framework 4.8.1, the data provider installation path is:

C:\Program Files\edb\dotnet\net481\ .

You must add the following dependency to your project. You may also need to add other dependencies from the same directory:

e EnterpriseDB.EDBClient.dll

Depending on your application type, you might need to import the namespace into the source code. See Referencing the library files for this and the
other information about referencing the library files.

.NET Standard 2.0

For .NET Standard Framework 2.0, the data provider installation path is:

C:\Program Files\edb\dotnet\netstandard2.0\ .

You must add the following dependencies to your project:

EnterpriseDB.EDBClient.dll

e System.Threading.Tasks.Extensions.dll

e System.Runtime.CompilerServices.Unsafe.dll

e System.ValueTuple.dll

Depending on your application type, you might need to import the namespace into the source code. See Referencing the library files for this and the
other information about referencing the library files.

.NET Standard 2.1

For .NET Standard Framework 2.1, the data provider installation pathis C:\Program Files\edb\dotnet\netstandard2.1\ .

The following shared library files are required:

e EnterpriseDB.EDBClient.dll

® System.Memory.dll

e System.Runtime.CompilerServices.Unsafe.dll

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved.

31

EDB .NET Connector

e System.Text.Json.dll

e System.Threading.Tasks.Extensions.dll

e System.ValueTuple.dll

Depending on your application type, you might need to import the namespace into the source code. See Referencing the library files for this and the
other information about referencing the library files.

.NET Entity Framework Core

To configure the .NET Connector for use with Entity Framework Core, the data provider installation path is:

C:\Program Files\edb\dotnet\EF.Core\EFCore.PG\netl0.0 The following shared library file is required:

e EnterpriseDB.EDBClient.EntityFrameworkCore.PostgreSQL.dll

See Referencing the library files for information about referencing the library files.

The following NuGet packages are required:

® Microsoft.EntityFrameworkCore.Design

e Microsoft.EntityFrameworkCore.Relational

® Microsoft.EntityFrameworkCore.Abstractions

For usage information about Entity Framework Core, see the Microsoft documentation.

Prerequisite

To open a command prompt:

Select Tools > Command Line > Developer Command Prompt.

Install dotnet-ef (using the command prompt),

dotnet tool install --global dotnet-ef

Sample project

Create a new Console Application based on .NET 10.0.

Add Reference to the following EDB assemblies:

e EnterpriseDB.EDBClient.EntityFrameworkCore.PostgreSQL.dll

e EnterpriseDB.EDBClient.dll

Add the following NuGet packages:

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved.

32

https://learn.microsoft.com/en-us/ef/core/

EDB .NET Connector

® Microsoft.EntityFrameworkCore.Design

® Microsoft.EntityFrameworkCore.Relational

® Microsoft.EntityFrameworkCore.Abstractions

Database-first scenario

Issue the following command to create model classes corresponding to all objects in the specified database:

dotnet ef dbcontext scaffold Host=<HOST>;Database=<DATABASE>;Username=<USER>;Password=<PASSWORD> ;Port=
<PORT> EnterpriseDB.EDBClient.EntityFrameworkCore.PostgreSQL -o Models

Code-first scenario

Add code for defining a DbContext and create, read, update, and delete operations.

For more details, see the Microsoft documentation.

Issue the following commands to create the initial database and tables:

dotnet ef migrations add InitialCreate --context BloggingContext

dotnet ef database update --context BloggingContext

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 33

EDB .NET Connector

6 Opening a database connection

An EDBConnection object is responsible for handling the communication between an instance of EDB Postgres Advanced Server and a .NET
application. Before you can access data stored in an EDB Postgres Advanced Server database, you must create and open an EDBConnection
object.

Creating an EDBConnection object

Once you have installed and configured the .NET Connector, you can open a connection using one of the following approaches. In either case, you
must import the namespace EnterpriseDB.EDBClient .

Connection with a data source

1. Create aninstance of the EDBDataSource object using a connection string as a parameter to the create method of the EDBDataSource
class.

2. To open a connection, call the OpenConnection method of the EDBDataSource object.

This example shows how to open a connection using a data source:

// EDBDataSource should be long lived through your
application
await using var dataSource = EDBDataSource.Create(connectionString);

await using var connection = await dataSource.OpenConnectionAsync();

// your code here
await connection.CloseAsync();

// EDBDataSource should be long lived through your
application
using (var dataSource = EDBDataSource.Create(connectionString))

{
using (var connection = await dataSource.OpenConnectionAsync())
{
// your code here
await connection.CloseAsync();
}
}

Connection without a data source

1. Create aninstance of the EDBConnection object using a connection string as a parameter to the constructor of the EDBConnection
class.

2. Callthe Open method of the EDBConnection object to open the connection.
Note
For EnterpriseDB.EDBClient 8.0.4 and later, we recommend EDBDataSource to connectto EDB Postgres Advanced Server

database or execute SQL directly against it. For more information on the data source, see the Npgsql documentation.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 34

https://www.npgsql.org/doc/basic-usage.html

EDB .NET Connector

This example shows how to open a connection without a data source:

await using var connection = new EDBConnection(connectionString);
await connection.OpenAsync();

// your code here

await connection.CloseAsync();

using (var connection = new EDBConnection(ConnectionString))

{
await connection.OpenAsync();
// your code here
await connection.CloseAsync();
}

Connection string parameters

A valid connection string specifies location and authentication information for an EDB Postgres Advanced Server instance. You must provide the
connection string before opening the connection. A connection string must contain:

The name or IP address of the server

The name of the EDB Postgres Advanced Server database
The name of an EDB Postgres Advanced Server user

The password associated with that user

You can include the following parameters in the connection string:

Parameter Description Default
Host or .
The name or IP address of the EDB Postgres Advanced Server host Required
Server
Port The TCP port of the EDB Postgres Advanced Server host 5444
Databas name of
B The name of the database to connect to. connected
user
User
Id or
The username to connect with. 05
UserNam username
e
Authentic
Passwor
q Password associated to the user to establish a connection with the server ation
dependent
Command . . : . - . . .
p . Specifies the length of time (in seconds) to wait for a command to finish executing before throwing an exception. 30
imeou
Pooling Specify avalue of false to disable connection pooling true
No
Reset When Pooling is enabled and the connection is closed, reopened, and the underlying connection is reused, then some
N operations are executed to discard the previous connection resources. You can override this behavior by enabling No false
n Reset On Close.
Close

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 35

EDB .NET Connector

Parameter Description Default

Controls whether SSL is used, depending on server support.

Prefer — Use SSL if possible. This is the default behavior.

Require — Throw an exception if an SSL connection can't be established.
SSL Allow — Connect without SSL unless server requires it
Mode Disable — Don't attempt an SSL connection.

VerifyCA — SSL with certificate validation

VerifyFull — SSL with certificate validation and host name validation

See Npgsql docs for possible values and more info.

Prefer

For other parameters please refer to the community documentation.

Example: Opening a database connection

This example shows how to open a connection to an instance of EDB Postgres Advanced Server and then close the connection.

using EnterpriseDB.EDBClient; // Add NuGet package
EnterpriseDB. EDBClient

namespace OpeningDatabaseConnection;

internal class Program

{
static async Task Main(string[] args)
{
// NOT FOR PRODUCTION Consider moving the connection string in a configuration
file
var connectionString = "Server=127.0.0.1;Port=5444;User
Id=enterprisedb;Password=enterprisedb;Database=edb";
try
{

await using var dataSource = EDBDataSource.Create(connectionString);
await using var conn = await dataSource.OpenConnectionAsync();

Console.WriteLine("Connection opened
successfully");

await conn.CloseAsync();

}

catch (EDBException
exp)

{

Console.Write($"Error:

{exp}");

}

}

}

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 36

https://www.npgsql.org/doc/connection-string-parameters.html

using

System;

using

System.Threading.Tasks;

using EnterpriseDB.EDBClient; // Add NuGet package
EnterpriseDB. EDBClient

namespace OpeningDatabaseConnection

{
internal class Program
{
static async Task Main(string[] args)
{
// NOT FOR PRODUCTION Consider moving the connection string in a configuration
file
var connectionString = "Server=127.0.0.1;Port=5444;User
Id=enterprisedb;Password=enterprisedb;Database=edb";
try
{
using (var dataSource = EDBDataSource.Create(connectionString))
{
var conn = await dataSource.OpenConnectionAsync();
Console.WritelLine("Connection opened
successfully");
await conn.CloseAsync();
}
}
catch (EDBException
exp)
{
Console.Write($"Error:
{exp}");
}
}
}
}

EDB .NET Connector

In a production application, connection strings should be moved outside of the code, using configuration files for example. See official Microsoft .NET

documentation.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved.

37

https://learn.microsoft.com/en-us/dotnet/core/extensions/configuration

EDB .NET Connector
7 Retrieving database records

Youcanusea SELECT statement to retrieve records from the database usinga SELECT command. To execute a SELECT statement you must:

Create and open a database connection.
Create an EDBCommand object that represents the SELECT statement.
Execute the command with the ExecuteReader () method of the EDBCommand object returning EDBDataReader .

AW N R

Loop through the EDBDataReader , displaying the results or binding the EDBDataReader to some control.

An EDBDataReader object represents a forward-only and read-only stream of database records, presented one record at a time. To view a
subsequent record in the stream, you must call the Read () method of the EDBDataReader object.

The example that follows:

Imports the EDB Postgres Advanced Server namespace EnterpriseDB.EDBCLlient .

Initializes an EDBCommand object witha SELECT statement.

Opens a connection to the database.

Executes the EDBCommand by calling the ExecuteReader method of the EDBCommand object.

Rl A

The results of the SQL statement are retrieved into an EDBDataReader object.

Loop through the contents of the EDBDataReader object to display the records returned by the queryina WHILE loop.

The Read () method advances to the next record (if there is one) and returns true if arecord exists. It returns false if EDBDataReader has
reached the end of the result set.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 38

EDB .NET Connector

using
System.Data;
using EnterpriseDB.EDBClient;

namespace RetrievingDatabaseRecords;

internal class Program

{
static async Task Main(string[] args)
{
try
{
// NOT FOR PRODUCTION, consider moving the connection string in a configuration
file

var connectionString = "Server=127.0.0.1;Port=5444;User
Id=enterprisedb;Password=edb;Database=edb";

await using var dataSource = EDBDataSource.Create(connectionString);
await using var conn = await dataSource.OpenConnectionAsync();
await using var selectCommand = new EDBCommand("SELECT * FROM dept",
conn) ;
selectCommand.CommandType =
CommandType.Text;

await using var reader = await
selectCommand.ExecuteReaderAsync() ;

while (await
reader.ReadAsync())

{
Console.Write($"Department Number: {reader["deptno"]}");
Console.Write($"\tDepartment Name: {reader["dname"]}");
Console.Write($"\tDepartment Location: {reader["loc"]}");
Console.WriteLine();

}

await

reader.CloseAsync();
await conn.CloseAsync();

}

catch (Exception
exp)

{

Console.WriteLine($"An error occured:

{exp}");

}

}

}

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 39

EDB .NET Connector

using

System;

using

System.Threading.Tasks;

using EnterpriseDB.EDBClient;

namespace RetrievingDatabaseRecords

{
internal class Program
{
static async Task Main(string[] args)
{
// NOT FOR PRODUCTION, consider moving the connection string in a configuration
file
var connectionString = "Server=localhost;Port=5444;User
Id=enterprisedb;Password=edb;Database=edb";
try
{

using (var dataSource = EDBDataSource.Create(connectionString))
using (var conn = await dataSource.OpenConnectionAsync())
{

using (var selectCommand = new EDBCommand("SELECT % FROM dept",
conn))

selectCommand.CommandType =
CommandType.Text;

using (var reader = await
selectCommand.ExecuteReaderAsync())

{
while (await
reader.ReadAsync())
{
Console.Write($"Department Number: {reader["deptno"]}");
Console.Write($"\tDepartment Name: {reader["dname"]}");
Console.Write($"\tDepartment Location: {reader["loc"]}");
Console.WriteLine();
}
await
reader.CloseAsync();
}
}
await conn.CloseAsync();
}
}
catch (Exception
exp)
{
Console.WriteLine($"An error occured:
{exp}");
}
}
}
}

This program should output the following text on the console :

Department Number: 10 Department Name: ACCOUNTING Department Location: NEW YORK
Department Number: 20 Department Name: RESEARCH Department Location: DALLAS
Department Number: 30 Department Name: SALES Department Location: CHICAGO
Department Number: 40 Department Name: OPERATIONS Department Location: BOSTON

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 40

EDB .NET Connector
Retrieving a single database record

To retrieve a single result from a query, use the ExecuteScalar () method of the EDBCommand object. The ExecuteScalar () method
returns the first value of the first column of the first row of the result set generated by the specified query.

static async Task Main(string[] args)
{

// NOT FOR PRODUCTION, consider moving the connection string in a configuration
file

var connectionString = "Server=127.0.0.1;Port=5444;User
Id=enterprisedb;Password=edb;Database=edb";

try

{

await using var dataSource = EDBDataSource.Create(connectionString);
await using var connection = await dataSource.OpenConnectionAsync();

await using var command = new EDBCommand("SELECT MAX(sal) FROM emp",
connection);

command.CommandType =
CommandType.Text;

var maxSalObject = await command.ExecuteScalarAsync();
if (maxSalObject is decimal

maxSal)
{
Console.WritelLine($"Max Salary: {maxSal}");
}
await connection.CloseAsync();
}
catch (Exception
exp)
{
Console.WriteLine($"An error occured:
{exp}");
}
}

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 41

EDB .NET Connector

static async Task Main(string[] args)
{
// NOT FOR PRODUCTION, consider moving the connection string in a configuration
file
var connectionString = "Server=127.0.0.1;Port=5444;User
Id=enterprisedb;Password=edb;Database=edb";
try
{
using (var dataSource = EDBDataSource.Create(connectionString))
using (var connection = await dataSource.OpenConnectionAsync())
{

using (var command = new EDBCommand("SELECT MAX(sal) FROM emp'",
connection))

{
command.CommandType =
CommandType.Text;
var maxSalObject = await command.ExecuteScalarAsync();
if (maxSalObject is decimal
maxSal)
{
Console.WriteLine($'"Max Salary: {maxSal}'");
}
}
await connection.CloseAsync();
}
}
catch (Exception
exp)
{
Console.WriteLine($"An error occured:
{exp}");
}
}

This program should output the following text on the console :
Max Salary: 5000.00

The sample includes an explicit conversion of the value returned by the ExecuteScalar() method. The ExecuteScalar() method returns an object (it’s a
decimal value boxed into an object). You can access the native value by using an explicit cast to a nullable decimal value.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 42

EDB .NET Connector

8 Parameterized queries

A parameterized queryis a query with one or more parameter markers embedded in the SQL statement. Before executing a parameterized query, you
must supply a value for each marker found in the text of the SQL statement.

Parameterized queries are useful when you need to supply values dynamically (from user input or from other data in memory, for example).
Parameterized queries are also great to prevent SQL injection and for performance, as a query plan can be reused.

As shown in the following example, you must declare the data type of each parameter specified in the parameterized query by creating an
EDBParameter object and adding that object to the command's parameter collection. Then, you must specify a value for each parameter by calling
the parameter's Value property.

The example shows using a parameterized query with an UPDATE statement that increases an employee salary:
using EnterpriseDB.EDBClient;

namespace ParameterizedQueries;

internal static class Program

{
static async Task Main(string[] args)
{
try
{
// NOT FOR PRODUCTION, consider moving the connection string in a configuration
file

var connectionString = "Server=127.0.0.1;Port=5444;User
Id=enterprisedb;Password=edb;Database=edb";

var updateQuery = "UPDATE emp SET sal = sal+500 where empno =
gapWe

await using var dataSource = EDBDataSource.Create(connectionString);
await using var connection = await dataSource.OpenConnectionAsync();
await using var updateCommand = new EDBCommand(updateQuery, connection);

var idParameter = updateCommand.Parameters.Add(new EDBParameter (":ID",
EDBTypes.EDBDbType.Integer));

idParameter.Value =
7788,

var numRowsUpdated = await
updateCommand.ExecuteNonQueryAsync() ;

Console.WriteLine($"{numRowsUpdated} record(s)

updated");
await connection.CloseAsync();
}
catch (Exception
exp)
{
Console.WriteLine($"An error occured:
{exp}");
}
}
}

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 43

EDB .NET Connector

using

System;

using

System.Threading.Tasks;

using EnterpriseDB.EDBClient;

namespace ParameterizedQueries

{
internal static class Program
{
static async Task Main(string[] args)
{
try
{
// NOT FOR PRODUCTION, consider moving the connection string in a configuration
file

var connectionString = "Server=127.0.0.1;Port=5444;User
Id=enterprisedb;Password=edb;Database=edb";

var updateQuery = "UPDATE emp SET sal = sal+500 where empno =
e

using (var dataSource = EDBDataSource.Create(connectionString))
using (var connection = await dataSource.OpenConnectionAsync())
{
using (var updateCommand = new EDBCommand(updateQuery, connection))

{

var idParameter = updateCommand.Parameters.Add(new EDBParameter (":ID",
EDBTypes.EDBDbType.Integer));

idParameter.Value =
7788,

var numRowsUpdated = await
updateCommand.ExecuteNonQueryAsync () ;

Console.WriteLine($"{numRowsUpdated} record(s)

updated");
}
await connection.CloseAsync();
}
}
catch (Exception
exp)
{
Console.WriteLine($"An error occured:
{exp}");
}
}
}
}

This program should show the following output in the Console:

1 record(s) updated

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 44

9 Inserting records in a database

You can use the ExecuteNonQuery () method of EDBCommand to add records to a database stored on an EDB Postgres Advanced Server host

withan INSERT command.

In the example that follows, the INSERT command is stored in the variable insertCommand . The values prefixed with a colon (:) are
placeholders for EDBParameters that are instantiated, assigned values, and then added to the INSERT command's parameter collection in the
statements that follow. The INSERT command is executed by the ExecuteNonQuery () method of the insertCommand object.

EDB .NET Connector

Note that ExecuteNonQuery () method returns the number of rows affected by the command. It is usually a good practice to check the number of

affected rows matches your expectations (1 in this example).

The example adds an employee to the emp table:

using EnterpriseDB.EDBClient;

namespace
InsertingRecords;

internal static class Program

{
static async Task Main(string[] args)
{
// NOT FOR PRODUCTION, consider moving the connection string in a configuration
file
var connectionString = "Server=127.0.0.1;Port=5444;User
Id=enterprisedb;Password=edb;Database=edb";
try
{

await using var dataSource = EDBDataSource.Create(connectionString);

await using var conn = await dataSource.OpenConnectionAsync();

var query = "INSERT INTO emp(empno,ename) VALUES(:EmpNo,
:EName)";
using var insertCommand = new EDBCommand(query, conn);

var empNo = insertCommand.Parameters.Add(new EDBParameter ("EmpNo",
EDBTypes.EDBDbType.Integer));

var empName = +insertCommand.Parameters.Add(new EDBParameter ("EName",

EDBTypes.EDBDbType.Text));
empNo.Value = 1234;
empName.Value = "Lola";

var numRows = await insertCommand.ExecuteNonQueryAsync();

Console.WriteLine($"{numRows} record(s) inserted
successfully");

await conn.CloseAsync();

}

catch (Exception
exp)

{

Console.WriteLine($"An error occured:

{exp}");

}

}

}

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved.

45

using

System;

using

System.Threading.Tasks;

using EnterpriseDB.EDBClient;

namespace
InsertingRecords
{
internal static class Program
{
static async Task Main(string[] args)
{
// NOT FOR PRODUCTION, consider moving the connection string in a configuration
file
var connectionString = "Server=127.0.0.1;Port=5444;User
Id=enterprisedb;Password=edb;Database=edb";
try
{

using (var dataSource = EDBDataSource.Create(connectionString))
using (var conn = await dataSource.OpenConnectionAsync())

{

var query = "INSERT INTO emp(empno,ename) VALUES(:EmpNo,
:EName)";

using (var tinsertCommand = new EDBCommand(query, conn))

{

var empNo = insertCommand.Parameters.Add(new EDBParameter ("EmpNo",
EDBTypes.EDBDbType.Integer));

var empName = +insertCommand.Parameters.Add(new EDBParameter ("EName",

EDBTypes.EDBDbType.Text));
empNo.Value = 1234;
empName.Value = "Lola";

var numRows = await insertCommand.ExecuteNonQueryAsync();

Console.WriteLine($"{numRows} record(s) 1inserted
successfully");

}
await conn.CloseAsync();
}
}
catch (Exception
exp)
{
Console.WriteLine($"An error occured:
{exp}");
}
}
}
}

This program should show the following output in the Console:

1 record(s) 1inserted successfully

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved.

EDB .NET Connector

46

EDB .NET Connector

Note

There are several ways to declare parameters and assign their values. Here are some examples :

// One-liners (parameter types are induced from their
value)

insertCommand.Parameters.AddWithValue("EmpNo", 1234);
insertCommand.Parameters.AddWithValue("EName", "Lola");

// Using the parameter variable to set its value, instead of getting it via the
command

var empParam = +insertCommand.Parameters.Add(new EDBParameter ("EmpNo",
EDBTypes.EDBDbType.Integer));

empParam.Value = 1234;

var nameParam = insertCommand.Parameters.Add(new EDBParameter ("EName",
EDBTypes.EDBDbType.Text)) ;

nameParam.Value = "Lola";

insertCommand.Parameters[0].Value = 1234; // works but not recommended: access by index is error-
prone

insertCommand.Parameters["EmpNo"].Value = 1234; // works but any parameter name change will break
here

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 47

EDB .NET Connector

10 Deleting records in a database

You can use the ExecuteNonQuery () method of EDBCommand to delete records from a database stored on an EDB Postgres Advanced Server
host witha DELETE statement.

In the example that follows, the DELETE command is stored in the variable deleteCommand . The values prefixed with a colon (:) are
placeholders for EDBParameters.

The EDBParameter forthe employee ID is created and assigned at the same time using command’s parameter collection
EDBParameterCollection.AddWithValue(string parameterName, object value) method.

The DELETE command is then executed by the ExecuteNonQuery () method of the deleteCommand object.

Note that ExecuteNonQuery () method returns the number of rows affected by the command. It is usually a good practice to check that the
number of affected rows matches your expectations (0 or 1 in this example).

The example deletes an employee having the 1234 ID from the emp table:

using EnterpriseDB.EDBClient;
namespace DeletingRecords;

internal static class Program
{
static async Task Main(string[] args)

{
// NOT FOR PRODUCTION, consider moving the connection string in a configuration
file
var connectionString = "Server=127.0.0.1;Port=5444;User
Id=enterprisedb;Password=edb;Database=edb";
try
{
await using var dataSource = EDBDataSource.Create(connectionString);
await using var conn = await dataSource.OpenConnectionAsync();

await using var deleteCommand = new EDBCommand("DELETE FROM emp WHERE empno = :ID",
conn) ;
deleteCommand.Parameters.AddWithValue(":ID", 1234);
var numRows = await deleteCommand.ExecuteNonQueryAsync();
Console.WriteLine($"{numRows} record(s) deleted successfully");
await conn.CloseAsync();
}
catch (Exception
exp)
{
Console.WriteLine($"An error occured:
{exp}");
}
}
}

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 48

using

System;

using

System.Threading.Tasks;

using EnterpriseDB.EDBClient;

namespace DeletingRecords

{
internal static class Program
{
static async Task Main(string[] args)
{
// NOT FOR PRODUCTION, consider moving the connection string in a configuration
file
var connectionString = "Server=127.0.0.1;Port=5444;User
Id=enterprisedb;Password=edb;Database=edb";
try
{
using (var dataSource = EDBDataSource.Create(connectionString))
using (var conn = await dataSource.OpenConnectionAsync())
{
using (var deleteCommand = new EDBCommand("DELETE FROM emp WHERE empno =
conn))
{
deleteCommand.Parameters.AddWithValue(":ID", 1234);
var numRows = await deleteCommand.ExecuteNonQueryAsync();
Console.WriteLine($"{numRows} record(s) deleted successfully");
}
await conn.CloseAsync();
}
}
catch (Exception
exp)
{
Console.WriteLine($"An error occured:
{exp}");
}
}
}
}

This program should show the following output in the Console:

1 record(s) deleted successfully

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved.

EDB .NET Connector

gaipW

49

EDB .NET Connector
11 Using SPL stored procedures in your .NET application

You can include SQL statements in an application in two ways:

e By adding the SQL statements directly in the .NET application code
e By packaging the SQL statements in a stored procedure and executing the stored procedure from the .NET application

In some cases, a stored procedure can provide advantages over embedded SQL statements. Stored procedures support complex conditional and
looping constructs that are difficult to duplicate with SQL statements embedded directly in an application.

You can also see an improvement in performance by using stored procedures. A stored procedure needs to be parsed, compiled, and optimized only
once on the server side. A SQL statement that's included in an application might be parsed, compiled, and optimized each time it's executed from a
.NET application.

To use a stored procedure in your .NET application you must:

Create an SPL stored procedure on the EDB Postgres Advanced Server host.

Import the EnterpriseDB.EDBCLlient namespace.

Pass the name of the stored procedure to the instance of the EDBCommand .

Change the EDBCommand.CommandType to CommandType.StoredProcedure .
Prepare() thecommand.

Execute the command.

(& IS S N NV

Example: Executing a stored procedure without parameters

This sample procedure prints the name of department 10. The procedure takes no parameters and returns no parameters. To create the sample
procedure, invoke EDB-PSQL and connect to the EDB Postgres Advanced Server host database. Enter the following SPL code at the command line:

CREATE OR REPLACE PROCEDURE
list_deptlo
IS

v_deptname VARCHAR2(30);
BEGIN

DBMS_OUTPUT.PUT_LINE('Dept No:
10');

SELECT dname INTO v_deptname FROM dept WHERE deptno =
10;

DBMS_OUTPUT.PUT_LINE('Dept Name: ' ||
v_deptname) ;

END;

When EDB Postgres Advanced Server validates the stored procedure, it echoes CREATE PROCEDURE .

Using the EDBCommand object to execute a stored procedure

The CommandType property of the EDBCommand object indicates the type of command being executed. The CommandType property is set to
one of three possible CommandType enumeration values:

e Use the default Text value when passing a SQL string for execution.
e Usethe StoredProcedure value, passing the name of a stored procedure for execution.
e Usethe TableDirect value when passing a table name. This value passes back all records in the specified table.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 50

EDB .NET Connector

The CommandText property must contain a SQL string, stored procedure name, or table name, depending on the value of the CommandType
property.

This example :

e Createsan EDBDataSource andissuesanopened EDBConnection.

e Registers a handler (a local function) to connection’s Notice event, thus listening to server side notices, raised by
DBMS_OUTPUT.PUT_LINE . The handler will display the notice text to the Console.

e Unregisters the handler to free up the connection.

using
System.Data;
using EnterpriseDB.EDBClient;

namespace
UsingSPLStoredProcedures_Basics;

internal static class Program

{
static async Task Main(string[] args)
{

// NOT FOR PRODUCTION, consider moving the connection string in a configuration
file

var connectionString = "Server=127.0.0.1;Port=5444;User
Id=enterprisedb;Password=edb;Database=edb";

await using var dataSource = EDBDataSource.Create(connectionString);

await using var conn = await dataSource.OpenConnectionAsync();

// register event
handler

conn.Notice += Connection_Notice;

await using var storedProcCommand = new EDBCommand("list_deptl0", conn);

storedProcCommand.CommandType =
CommandType.StoredProcedure;

await storedProcCommand.PrepareAsync();
await storedProcCommand.ExecuteNonQueryAsync();

Console.WriteLine("Stored Procedure executed
successfully.");

// unregister event handler
conn.Notice —-= Connection_Notice;

await conn.CloseAsync();

// Handles notices from server (eg: output messages, errors and
warnings)

void Connection_Notice(object sender, EDBNoticeEventArgs e)
=> Console.WriteLine($"Notice received: {e.Notice.MessageText}");

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 51

EDB .NET Connector

using

System;

using

System.Data;

using

System.Threading.Tasks;

using EnterpriseDB.EDBClient;

namespace
UsingSPLStoredProcedures_Basics

{
internal static class Program
{
static async Task Main(string[] args)
{
// NOT FOR PRODUCTION, consider moving the connection string in a configuration
file
var connectionString = "Server=127.0.0.1;Port=5444;User
Id=enterprisedb;Password=edb;Database=edb";
using (var dataSource = EDBDataSource.Create(connectionString))
using (var conn = await dataSource.OpenConnectionAsync())
{

// register event
handler

conn.Notice += Connection_Notice;

using (var storedProcCommand = new EDBCommand("list_deptl@", conn))

{

storedProcCommand.CommandType =
CommandType.StoredProcedure;

await storedProcCommand.PrepareAsync();
await storedProcCommand.ExecuteNonQueryAsync();

Console.WriteLine("Stored Procedure executed
successfully.");

}

// unregister event handler
conn.Notice —= Connection_Notice;

await conn.CloseAsync();

}

// Handles notices from server (eg: output messages, errors and
warnings)

void Connection_Notice(object sender, EDBNoticeEventArgs e)

=> Console.WriteLine($"Notice received: {e.Notice.MessageText}");
}
}

}

This program should display the following result in the Console:

Notice received: Dept No: 10
Notice received: Dept Name: ACCOUNTING
Stored Procedure executed successfully.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 52

EDB .NET Connector

Example: Executing a stored procedure with IN parameters

This example calls a stored procedure that includes IN parameters. To create the sample procedure, invoke EDB-PSQL and connect to the EDB
Postgres Advanced Server host database. Enter the following SPL code at the command line:

CREATE OR REPLACE PROCEDURE

EMP_INSERT

(
pENAME IN

VARCHAR,
pJOB IN VARCHAR,
pSAL IN FLOAT4,
pCOMM IN FLOAT4,
pDEPTNO IN INTEGER,
pMgr IN INTEGER

)

AS

DECLARE

CURSOR TESTCUR IS SELECT MAX(EMPNO) FROM EMP;
MAX_EMPNO INTEGER := 10;
BEGIN

OPEN
TESTCUR;

FETCH TESTCUR INTO MAX_EMPNO;
INSERT INTO EMP(EMPNO,ENAME,JOB,SAL,COMM,DEPTNO,MGR)
VALUES (MAX_EMPNO+1, pENAME , pJOB, pSAL , pCOMM , pDEPTNO , pMgr) ;

CLOSE
testcur;

END;

When EDB Postgres Advanced Server validates the stored procedure, it echoes CREATE PROCEDURE .

Passing input values to a stored procedure

In the example below, the body of the Main method declares and instantiates an EDBConnection object. The sample then creates an
EDBCommand object with the properties needed to execute the stored procedure.

The example then uses the AddwithValue method of the EDBCommand 's parameter collection to add six input parameters. It assigns a value to
each parameter before passing them to the EMP_INSERT stored procedure.

The Prepare() method prepares the statement before calling the ExecuteNonQuery () method. Note that the Prepare() method is
mandatory for SPL procedures.

The ExecuteNonQuery () method of the EDBCommand object executes the stored procedure.

using

System.Data;

using

EDBTypes;

using EnterpriseDB.EDBClient;

namespace
UsingSPLStoredProcedures_INParameters;

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 53

EDB .NET Connector

internal static class Program

{
static async Task Main(string[] args)
{
// NOT FOR PRODUCTION, consider moving the connection string in a configuration
file
var connectionString = "Server=127.0.0.1;Port=5444;User
Id=enterprisedb;Password=edb;Database=edb";

var empName = "EDB";

var empJob =
"Manager";

var salary

1000.0;
var commission = 0.0;
var deptno =

20;
var manager = 7839;
try

await using var dataSource = EDBDataSource.Create(connectionString);
await using var conn = await dataSource.OpenConnectionAsync();

await using var cmdStoredProc = new
EDBCommand ("EMP_INSERT (:EmpName, : Job, :Salary, :Commission, :DeptNo, :Manager)", conn);

cmdStoredProc.CommandType =
CommandType.StoredProcedure;

// AddwWithValue allows to create parameter, specify its type and value,
// and add it to the command's parameter collection at

once
cmdStoredProc.Parameters.AddWithValue("EmpName'", EDBDbType.Varchar, empName) ;
cmdStoredProc.Parameters.AddWithValue("Job", EDBDbType.Varchar,
empJob) ;
cmdStoredProc.Parameters.AddWithValue("Salary", EDBDbType.Real,
salary);
cmdStoredProc.Parameters.AddWithValue("Commission'", EDBDbType.Real, commission);
cmdStoredProc.Parameters.AddWithValue("DeptNo'", EDBDbType.Integer,
deptno) ;
cmdStoredProc.Parameters.AddWithValue(""Manager'", EDBDbType.Integer, manager);
await cmdStoredProc.PrepareAsync();
await cmdStoredProc.ExecuteNonQueryAsync();
Console.WriteLine(s"""
Following information inserted
successfully:
Employee Name:
{empName}
Job:
{empJob}
Salary:
{salary}
Commission: {commission}
Manager: {manager}
DR
await conn.CloseAsync();
}
catch (Exception
exp)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 54

Console.WriteLine($"An error occured:
{exp}");
}

using

System;

using

System.Data;

using

System.Threading.Tasks;

using

EDBTypes;

using EnterpriseDB.EDBClient;

namespace
UsingSPLStoredProcedures_INParameters

{

internal static class Program

{

static async Task Main(string[] args)

{

// NOT FOR PRODUCTION, consider moving the connection string in a configuration

file
var connectionString = "Server=127.0.0.1;Port=5444;User
Id=enterprisedb;Password=edb;Database=edb";

var empName = "EDB";

var empJob =
"Manager";

var salary
1000.0;
var commission = 0.0;
var deptno =
20;
var manager = 7839;

try

using (var dataSource = EDBDataSource.Create(connectionString))
using (var conn = await dataSource.OpenConnectionAsync())

{

using (var cmdStoredProc = new
EDBCommand ("EMP_INSERT (:EmpName, : Job, :Salary, :Commission, :DeptNo, :Manager)", conn))

{

cmdStoredProc.CommandType =
CommandType.StoredProcedure;

EDB .NET Connector

// AddWithValue allows to create parameter, specify its type and value,

// and add it to the command's parameter collection at

once
cmdStoredProc.Parameters.AddWithValue("EmpName'", EDBDbType.Varchar, empName);
cmdStoredProc.Parameters.AddWithValue("Job", EDBDbType.Varchar,

empJob) ;
cmdStoredProc.Parameters.AddWithValue("Salary", EDBDbType.Real,

salary);
cmdStoredProc.Parameters.AddWithValue("Commission'", EDBDbType.Real, commission);
cmdStoredProc.Parameters.AddWithValue("DeptNo'", EDBDbType.Integer,

deptno) ;

cmdStoredProc.Parameters.AddWithValue(""Manager'", EDBDbType.Integer, manager);

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved.

55

EDB .NET Connector

await cmdStoredProc.PrepareAsync();
await cmdStoredProc.ExecuteNonQueryAsync();

Console.WriteLine("Following information inserted
successfully:");

Console.WriteLine($"Employee Name: {empNamel}");

Console.WriteLine($"Job: {empJobl}'");

Console.WriteLine($"Salary: {salary}");

Console.WriteLine($"Commission: {commission}");

Console.WriteLine($"Manager: {manager}");

}
await conn.CloseAsync();
}
}
catch (Exception
exp)
{
Console.WriteLine($"An error occured:
{exp}");
}
}
}
}

After the stored procedure executes, a test record is inserted into the emp table, and the values inserted are displayed in the Console:

Following information inserted successfully:
Employee Name: EDB

Job: Manager

Salary: 1000

Commission: 0O

Manager: 7839

Example: Executing a stored procedure with IN, OUT, and INOUT parameters
The previous example showed how to pass IN parameters to a stored procedure. The following examples show how to pass IN values and return

OUT values from a stored procedure.

Creating the stored procedure

The following stored procedure passes the department number and returns the corresponding location and department name. To create the sample
procedure, invoke EDB-PSQL and connect to the EDB Postgres Advanced Server host database. Enter the following SPL code at the command line:

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved.

56

EDB .NET Connector

CREATE OR REPLACE PROCEDURE

DEPT_SELECT

pDEPTNO IN INTEGER,

pDNAME OUT
VARCHAR,

pLOC OUT VARCHAR

)
AS
DECLARE
CURSOR TESTCUR IS SELECT DNAME,LOC FROM DEPT;

REC
RECORD;

BEGIN

OPEN
TESTCUR;

FETCH TESTCUR INTO REC;

pDNAME :=
REC.DNAME;

pLOC =
REC.LOC;

CLOSE
testcur;

END;

When EDB Postgres Advanced Server validates the stored procedure, it echoes CREATE PROCEDURE .

Receiving output values from a stored procedure

When retrieving values from INOUT or OUT parameters, you must explicitly specify the direction of those parameters respectively as
ParameterDirection.InputOutput and ParameterDirection.Output .You can retrieve the values from these parameters in two
ways:

Callthe ExecuteReader method of the EDBCommand and explicitly loop through the returned EDBDataReader . The reader will contain one
row where columns reflect INOUT or OUT parameters returned. Note that this behavior is legacy and should no longer be used.

Call the ExecuteNonQuery method of EDBCommand and explicitly get the value of a declared INOUT or OUT parameter by calling
EDBParameter.Value property.

In each method, you must declare each parameter, indicating the direction of the parameter (ParameterDirection.Input,
ParameterDirection.Output,or ParameterDirection.InputOutput).Valuesare mandatory for IN and INOUT parameters, and
does not need to be provided for OUT parameters.

After the procedure returns, you can retrieve the OUT and INOUT parameter values from the command.Parameters[] array, or from the
EDBParameter itselfif you have backed its instance.

This code shows using the ExecuteReader method to retrieve a result set:

using
System.Data;
using
EDBTypes;

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 57

EDB .NET Connector

using EnterpriseDB.EDBClient;
namespace UsingSPLStoredProcedures_INOUTParameters;

internal static class Program
{
static async Task Main(string[] args)

{
// NOT FOR PRODUCTION, consider moving the connection string in a configuration
file
var connectionString = "Server=127.0.0.1;Port=5444;User
Id=enterprisedb;Password=edb;Database=edb";

try
{
await using var dataSource = EDBDataSource.Create(connectionString);
await using var conn = await dataSource.OpenConnectionAsync();
await using var command = new EDBCommand("DEPT_SELECT (:pDEPTNO, :pDNAME, :pLOC)", conn);

command.CommandType =
CommandType.StoredProcedure;

var depNoParam = command.Parameters.Add(new EDBParameter ("pDEPTNO", EDBDbType.Integer) {
Direction = ParameterDirection.Input });

var nameParam = command.Parameters.Add(new EDBParameter ("pDNAME", EDBDbType.Varchar) {
Direction = ParameterDirection.Output });

var locParam = command.Parameters.Add(new EDBParameter ("pLOC", EDBDbType.Varchar) { Direction
= ParameterDirection.Output });

await command.PrepareAsync();

// set input parameter value before
executing

// out parameters don't need a value to be
set

depNoParam.Value = 10;

await using var reader = await
command . ExecuteReaderAsync() ;

// Getting OUT parameters values in the first

row
Console.WriteLine("Retrieve OUT parameters values 1in the first returned
row.");
// only one row 7s returned, no need for a while
loop
if (await
reader.ReadAsync())
{
for (var i = 0; i < reader.FieldCount;
i++)
{
Console.WriteLine($"reader[{i}]={Convert.ToString(reader[i])}");
}
}
await

reader.CloseAsync();

// Getting OUT parameters values
directly

// EDBCommand. ExecuteNonQuery () would also work here

Console.WriteLine("Retrieve OUT parameters values
directly.");

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 58

EDB .NET Connector

Console.WriteLine($"{nameof (nameParam)}={nameParam.Valuel}");
Console.WriteLine($"{nameof(locParam)}={1locParam.Value}");

await conn.CloseAsync();
}
catch (Exception
exp)

Console.WriteLine($"An error occured:
{exp}");
}

using

System;

using

System.Data;

using

System.Threading.Tasks;

using

EDBTypes;

using EnterpriseDB.EDBClient;

namespace UsingSPLStoredProcedures_INOUTParameters

{
internal static class Program
{
static async Task Main(string[] args)
{
// NOT FOR PRODUCTION, consider moving the connection string in a configuration
file

var connectionString = "Server=127.0.0.1;Port=5444;User
Id=enterprisedb;Password=edb;Database=edb";

try
{
using (var dataSource = EDBDataSource.Create(connectionString))
using (var conn = await dataSource.OpenConnectionAsync())
{
using (var command = new EDBCommand("DEPT_SELECT (:pDEPTNO, :pDNAME, :pLOC)", conn))
{

command.CommandType =
CommandType.StoredProcedure;

var depNoParam = command.Parameters.Add(new EDBParameter ("pDEPTNO",
EDBDbType.Integer) { Direction = ParameterDirection.Input });

var nameParam = command.Parameters.Add(new EDBParameter ("pDNAME",
EDBDbType.Varchar) { Direction = ParameterDirection.Output });

var locParam = command.Parameters.Add(new EDBParameter ("pLOC", EDBDbType.Varchar)
{ Direction = ParameterDirection.Output });

await command.PrepareAsync();

// set input parameter value before

executing

// out parameters don't need a value to be
set

depNoParam.Value = 10;

// Getting OUT parameters values in the first
row

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 59

EDB .NET Connector

Console.WriteLine("Retrieve OUT parameters values in the first returned
row.");

using (var reader = await
command . ExecuteReaderAsync())

{
// only one row 7s returned, no need for a while
loop
if (await
reader.ReadAsync())
{
for (var i = 0; i < reader.FieldCount;
i++)
{
Console.WriteLine($"reader[{i}]={Convert.ToString(reader[i])}");
}
}
await
reader.CloseAsync();
}

// Getting OUT parameters values
directly
// EDBCommand.ExecuteNonQuery () would also work here
Console.WriteLine("Retrieve OUT parameters values
directly.");
Console.WriteLine($"{nameof (nameParam)}={nameParam.Value}");
Console.WriteLine($"{nameof (locParam)}={locParam.Value}");

}
await conn.CloseAsync();
}
}
catch (Exception
exp)
{
Console.WriteLine($"An error occured:
{exp}");
}
}
}
}

This program should display the following result in the Console:

Retrieve OUT parameters values 1in the first returned row.
reader [0]=ACCOUNTING

reader [1]=NEW YORK

Retrieve OUT parameters values directly.
pDNAME=ACCOUNTING

pLOC=NEW YORK

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 60

EDB .NET Connector

Note

The preferred method (less error-prone) to retrieve OUT parameter values is by using EDBCommand . ExecuteNonQuery () . In that
case, EDBParameter.Value will hold the output value and can be accessed directly without going through a data row. This is the
preferred method, less error-prone, as the value is held by the parameter itself.

// Assign OUT parameters to local
variables

var deptNameParam = command.Parameters.Add(new EDBParameter ("pDNAME", EDBDbType.Varchar) {
Direction = ParameterDirection.Output });

var locParam = command.Parameters.Add(new EDBParameter ("pLOC", EDBDbType.Varchar) { Direction =
ParameterDirection.Output });

// Prepare, ExecuteNonQuery
await command.PrepareAsync();
await command.ExecuteNonQueryAsync();

// Parameter values are fed!

Console.WriteLine($"pDNAME={deptNameParam.Value}");
Console.WriteLine($"pLOC={locParam.Value}");

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 61

EDB .NET Connector

12 Using advanced queueing

EDB Postgres Advanced Server advanced queueing provides message queueing and message processing for the EDB Postgres Advanced Server
database. User-defined messages are stored in a queue. A collection of queues is stored in a queue table. Create a queue table before creating a
queue that depends on it.

On the server side, procedures in the DBMS_AQADM package create and manage message queues and queue tables. Use the DBMS_AQ package to
add messages to or remove messages from a queue or register or unregister a PL/SQL callback procedure. For more information about DBMS_AQ and
DBMS_AQADM , see DBMS_AQ.

On the client side, the application uses the EDB .NET Connector driver to enqueue and dequeue messages.

Enqueueing or dequeueing a message

For more information about using EDB Postgres Advanced Server's advanced queueing functionality, seeBuilt-in packages.

Server-side setup
To use advanced queueing functionality on your .NET application, you must first create a user-defined type, queue table, and queue, and then start the

queue on the database server. Invoke EDB-PSQL and connect to the EDB Postgres Advanced Server host database. Use the following SPL commands
at the command line.

Creating a user-defined type

To specify a RAW data type, create a user-defined type. This example shows creating a user-defined type named myxm1 :

CREATE TYPE myxml AS (value
XML) 3

Creating the queue table

A queue table can hold multiple queues with the same payload type. This example shows creating a table named MSG_QUEUE_TABLE :

EXEC
DBMS_AQADM.CREATE_QUEUE_TABLE

(queue_table => 'MSG_QUEUE_TABLE',
queue_payload_type => 'myxml',
comment => 'Message queue
table');
END;

Creating the queue

This example shows creating a queue named MSG_QUEUE in the table MSG_QUEUE_TABLE :

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 62

https://www.enterprisedb.com/docs/epas/latest/reference/oracle_compatibility_reference/epas_compat_bip_guide/03_built-in_packages/02_dbms_aq/
https://www.enterprisedb.com/docs/epas/latest/reference/oracle_compatibility_reference/epas_compat_bip_guide/

EDB .NET Connector

BEGIN

DBMS_AQADM.CREATE_QUEUE (queue_name => 'MSG_QUEUE', queue_table => 'MSG_QUEUE_TABLE', comment => 'This
queue contains pending messages.');

END;

Starting the queue

Once the queue is created, invoke the following SPL code at the command line to start a queue in the EDB database:

BEGIN
DBMS_AQADM.START_QUEUE
(queue_name => 'MSG_QUEUE');
END;

Client-side example

Once you've created a user-defined type, the queue table, and the queue, start the queue. Then, you can enqueue or dequeue a message using EDB
.Net drivers.

Enqueue a message

To enqueue a message on your .NET application, you must:

. Importthe EnterpriseDB.EDBClient namespace.

. Pass the name of the queue and create the instance of the EDBAQQueue .
. Create an EDBAQMessage message set its payload.

. Callthe EDBAQQueue.Enqueue method.

a H W NN -

. The EDBAQMessage.MessageID property will be populated with a string uniquely identifying your message.

The following code shows how to use EDBAQQueue.Enqueue method. A custom message payload is created and then enqueued.

Note

As an example, we are using the ambient Connection via EDBAQQueue.Connection to begin a transaction, so that if anything goes
wrong the queue won't be polluted.

using EnterpriseDB.EDBClient;
namespace EnterpriseDB;

internal static class Program

{
// Sample message
payload
class MyXML
{
public string Value { get; set; }
}
public static async Task Main(string[] args)
{
// not for production, move connection string to app
settings

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 63

string connectionString = "Server=127.0.0.1;Port=5444;User
Id=enterprisedb;Password=edb;Database=edb";

// Note registration of MyXml type
var dataSourceBuilder = new EDBDataSourceBuilder(connectionString);
dataSourceBuilder

.MapComposite<MyXML>("enterprisedb.myxml");

await using var dataSource = dataSourceBuilder.Build();
await using var connection = await dataSource.OpenConnectionAsync();
using var queue = CreateQueue("MSG_QUEUE'", connection);

// Enqueue 5
messages

int messagesToSend =

55
for (int i = 0; i < messagesToSend;
i++)
{
var payload = new MyXML()
{
Value = $'"(<Message><MessageText>Test message: {i}</MessageText>
</Message>)"
15
if (TryEnqueueMessage(queue, payload, out var
)
{
// Messageld is populated with a unique
identifier
Console.WriteLine($"Message {i} ({message.MessageId})
enqueued") ;
}
else
{
Console.WriteLine($"Message {i} enqueue
failed");
}
}
}

// Creates and returns a queue ready for use in our
sample

private static EDBAQQueue CreateQueue(string queueName, EDBConnection connection)
{

var queue = new EDBAQQueue(queueName, connection);

queue.MessageType =
EDBAQMessageType.Udt;

queue.EnqueueOptions.Visibility = EDBAQVisibility.ON_COMMIT;
queue.UdtTypeName = "myxml'";

return queue;

// Enqueues the
payload

EDB .NET Connector

// If the enqueuing was successfull, message variable receives the queue message and the function

returns true

// otherwise message is null and the function returns
false

private static bool TryEnqueueMessage<T>(EDBAQQueue queue, T payload, out EDBAQMessage

message)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved.

64

using EDBTransaction transaction =
queue.Connection.BeginTransaction();

try

{
message = new EDBAQMessage() { Payload = payload };
queue.Enqueue (message) ;

transaction.Commit();

return true;
}
catch (Exception ex)

{

Console.WriteLine($"Error while enqueing message:
{ex.Messagel}");

transaction?.Rollback();

message = null;
return false;

using

System;

using

System.Threading.Tasks;

using EnterpriseDB.EDBClient;

namespace EnterpriseDB

{
internal static class Program
{
// Sample message
payload
class MyXML
{
public string Value { get; set; }
}
public static async Task Main(string[] args)
{
// not for production, move connection string to app
settings

string connectionString = "Server=127.0.0.1;Port=5444;User

Id=enterprisedb;Password=edb;Database=edb";

// Note registration of MyXml type

var dataSourceBuilder = new EDBDataSourceBuilder(connectionString);

dataSourceBuilder
.MapComposite<MyXML>("enterprisedb.myxml");

using (var dataSource = dataSourceBuilder.Build())

using (var connection = await dataSource.OpenConnectionAsync())
using (var queue = CreateQueue("MSG_QUEUE'", connection))

{
// Enqueue 5
messages

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved.

EDB .NET Connector

65

EDB .NET Connector

int messagesToSend =

53
for (int i = 0; i < messagesToSend;
i++)
{
var payload = new MyXML()
{
Value = $"(<Message><MessageText>Test message: {il}</MessageText>
</Message>)"
};
if (TryEnqueueMessage(queue, payload, out var
)
{
// MessageId is populated with a unique
identifier
Console.WriteLine($"Message {i} ({message.MessageId})
enqueued");
}
else
{
Console.WriteLine($"Message {1} enqueue
failed");
}
}
}
}

// Creates and returns a queue ready for use in our
sample

private static EDBAQQueue CreateQueue(string queueName, EDBConnection connection)
{
var queue = new EDBAQQueue(queueName, connection);

queue.MessageType =
EDBAQMessageType.Udt;

queue.EnqueueOptions.Visibility = EDBAQVisibility.ON_COMMIT;
queue.UdtTypeName = "myxml'";

return queue;

// Enqueues the
payload

// If the enqueuing was successfull, message variable receives the queue message and the
function returns true

// otherwise message is null and the function returns
false

private static bool TryEnqueueMessage<T>(EDBAQQueue queue, T payload, out EDBAQMessage
message)

{

using (EDBTransaction transaction =
queue.Connection.BeginTransaction())

{
try

{
message = new EDBAQMessage() { Payload = payload };
queue.Enqueue (message) ;

transaction.Commit();
return true;

}

catch (Exception ex)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 66

Console.WriteLine($"Error while enqueing message:

{ex.Message}");

transaction?.Rollback();

message = null;
return false;

Dequeue a message

To dequeue a message on your .NET application, you must:

1. Importthe EnterpriseDB.EDBCLlient namespace.

2. Pass the name of the queue and create the instance of the EDBAQQueue .

3. Callthe EDBAQQueue.Dequeue () method.

Note

EDB .NET Connector

The following code shows how to use the EDBAQQueue.Dequeue method. A queue is retrieved by its name, and a attempt is made to

dequeue a message.

Ifa PostgresException with SqlState setto POOO2 israised, then the queue is empty or the wait time (set with
queue.DequeueOptions.Wait) has expired, and the code gracefully returnsa null message.

using EnterpriseDB.EDBClient;

namespace EnterpriseDB;
internal static class Program

{
// Sample message
payload
class MyXML
{
public string Value { get; set; }
}
public static async Task Main(string[] args)
{
// not for production, move connection string to app
settings

string connectionString = "Server=127.0.0.1;Port=5444;User

Id=enterprisedb;Password=edb;Database=edb";

// Note registration of MyXml type

var dataSourceBuilder = new EDBDataSourceBuilder(connectionString);

dataSourceBuilder

.MapComposite<MyXML>("enterprisedb.myxml") ;

await using var dataSource

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved.

dataSourceBuilder.Build();
await using var connection = await dataSource.OpenConnectionAsync();
using var queue = CreateQueue("MSG_QUEUE'", connection);

67

EDB .NET Connector

// Dequeue 5
messages

int messagesToDequeue = 5;

for (int i = 0; i < messagesToDequeue;
j++)

if (TryDequeueMessage(queue, out var message))

{

Console.WriteLine($"Message {message.Messageld}
dequeued");

if (message?.Payload is MyXML myXML)
{

Console.WritelLine($"MyXML Message received:
{myXML.Valuel}");

}
else
{
Console.WriteLine($"Other message received");
}
}
else
{
Console.WriteLine($'"No
message");
}

// Creates and returns a queue ready for use in our
sample

private static EDBAQQueue CreateQueue(string queueName, EDBConnection connection)
{
var queue = new EDBAQQueue(queueName, connection);

queue.MessageType =
EDBAQMessageType.Udt;

queue.DequeueOptions.Navigation =
EDBAQNavigationMode.FIRST_MESSAGE;

queue.DequeueOptions.Visibility = EDBAQVisibility.ON_COMMIT;

queue.DequeueOptions.Wait = 1; // wait for 1
seconds

queue.UdtTypeName = "myxml";

return queue;

// Dequeues a
payload

// If the dequeuing was successfull, message variable receives the queue message and the function
returns true

// otherwise message is null and the function returns
false

private static bool TryDequeueMessage (EDBAQQueue queue, out EDBAQMessage message)

{

using EDBTransaction transaction =
queue.Connection.BeginTransaction();

try
{

message = queue.Dequeue();

transaction.Commit();

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 68

return true;

}
catch (PostgresException pgException) when (pgException.SqlState ==
"POOO2")

{
// Queue empty or time
out

transaction.Commit();

message = null;
return false;

}

catch (Exception ex)

{
Console.WriteLine($"Error while dequeuing message:
{ex.Messagel}l");

transaction?.Rollback();

message = null;
return false;

using

System;

using

System.Threading.Tasks;

using EnterpriseDB.EDBClient;

namespace EnterpriseDB

{
internal static class Program
{
// Sample message
payload
class MyXML
{
public string Value { get; set; }
}
public static async Task Main(string[] args)
{
// not for production, move connection string to app
settings

string connectionString = "Server=127.0.0.1;Port=5444;User
Id=enterprisedb;Password=edb;Database=edb";

// Note registration of MyXml type
var dataSourceBuilder = new EDBDataSourceBuilder(connectionString);
dataSourceBuilder

.MapComposite<MyXML>("enterprisedb.myxml'");

dataSourceBuilder.Build())
using (var connection = await dataSource.OpenConnectionAsync())

using (var dataSource

using (var queue = CreateQueue("MSG_QUEUE'", connection))

{
// Dequeue 5
messages

int messagesToDequeue = 5;

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved.

EDB .NET Connector

69

EDB .NET Connector

for (int i = 0; i < messagesToDequeue;

i++)
{
if (TryDequeueMessage(queue, out var message))
{
Console.WriteLine($"Message {message.Messageld}
dequeued");
if (message?.Payload is MyXML myXML)
{
Console.WriteLine($"MyXML Message received:
{myXML.Valuel}");
}
else
{
Console.WriteLine($"Other message received");
}
}
else
{
Console.WriteLine($'"No
message") ;
}

// Creates and returns a queue ready for use in our
sample

private static EDBAQQueue CreateQueue(string queueName, EDBConnection connection)
{
var queue = new EDBAQQueue(queueName, connection);

queue.MessageType =
EDBAQMessageType.Udt;

queue.DequeueOptions.Navigation
EDBAQNavigationMode.FIRST_MESSAGE;

queue.DequeueOptions.Visibility = EDBAQVisibility.ON_COMMIT;
queue.DequeueOptions.Wait = 1; // wait for 1

seconds
queue.UdtTypeName = "myxml'";

return queue;

// Dequeues a
payload

// If the dequeuing was successfull, message variable receives the queue message and the
function returns true

// otherwise message is null and the function returns
false

private static bool TryDequeueMessage (EDBAQQueue queue, out EDBAQMessage message)

{

using (EDBTransaction transaction =
queue.Connection.BeginTransaction())

{
try
{

message = queue.Dequeue();

transaction.Commit();

return true;

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved.

70

EDB .NET Connector

catch (PostgresException pgException) when (pgException.SqlState ==
"POOO2")

// Queue empty or time
out

transaction.Commit();

message = null;
return false;

}

catch (Exception ex)

{
Console.WriteLine($"Error while dequeuing message:
{ex.Messagel}");

transaction?.Rollback();

message = null;
return false;

EDBAQ classes

The following EDBAQ classes are used in this application.

EDBAQDequeueMode

The EDBAQDequeueMode class lists all the dequeuer modes available.

Value Description

Browse Reads the message without locking.

Locked Reads and gets a write lock on the message.

Remove Deletes the message after reading. This is the default value.

Remove_NoData Confirms receipt of the message.

EDBAQDequeueOptions

The EDBAQDequeueOptions class lists the options available when dequeuing a message.

Property Description

ConsumerName The name of the consumer for which to dequeue the message.

DequeueMode Set from EDBAQDequeueMode . It represents the locking behavior linked with the dequeue option.
Navigation Set from EDBAQNavigationMode . It represents the position of the message to fetch.

Visibility Set from EDBAQVisibility .Itrepresents whether the new message is dequeued as part of the current transaction.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 71

Property

Wait

Msgid
Correlation
DeqgCondition
Transformation

DeliveryMode

Description

The wait time for a message as per the search criteria.

The message identifier.

The correlation identifier.

The dequeuer condition. It's a Boolean expression.

The transformation to apply before dequeuing the message.

The delivery mode of the dequeued message.

EDBAQEnqueueOptions

The EDBAQEnqueueOptions class lists the options available when enqueuing a message.

Property

Visibility
RelativeMsgid
SequenceDeviation
Transformation

DeliveryMode

EDBAQMessage

Description

EDB .NET Connector

Set from EDBAQVisibility .Itrepresents whether the new message is enqueued as part of the current transaction.

The relative message identifier.
The sequence when to dequeue the message.
The transformation to apply before enqueuing the message.

The delivery mode of the enqueued message.

The EDBAQMessage class lists a message to enqueue/dequeue.

Property Description

Payload The actual message to queue.

Messageld The ID of the queued message.

EDBAQMessageProperties

The EDBAQMessageProperties lists the message properties available.

Property

Priority
Delay

Expiration
Correlation
Attempts
RecipientList
ExceptionQueue
EnqueueTime
State

OriginalMsgid

Description
The priority of the message.

The duration after which the message is available for dequeuing, in
seconds.

The duration for which the message is available for dequeuing, in seconds.

The correlation identifier.

The number of attempts taken to dequeue the message.

The recipients list that overthrows the default queue subscribers.
The name of the queue to move the unprocessed messages to.
The time when the message was enqueued.

The state of the message while dequeued.

The message identifier in the last queue.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved.

72

EDB .NET Connector

Property Description
TransactionGroup The transaction group for the dequeued messages.

DeliveryMode The delivery mode of the dequeued message.

EDBAQMessageState

The EDBAQMessageState class represents the state of the message during dequeue.

Value Description
Expired The message is moved to the exception queue.

Processed The message is processed and kept.

Ready The message is ready to be processed.
Waiting The message is in waiting state. The delay isn't reached.
EDBAQMessageType

The EDBAQMessageType class represents the types for payload.

Value Description

The raw message type.
Raw
Note: Currently, this payload type isn't supported.

uDnT The user-defined type message.

The XML type message.
XML
Note: Currently, this payload type isn't supported.

EDBAQNavigationMode

The EDBAQNavigationMode class represents the different types of navigation modes available.

Value Description
First_Message Returns the first available message that matches the search terms.
Next_Message Returns the next available message that matches the search items.

Next_Transaction Returns the first message of next transaction group.

EDBAQQueue

The EDBAQQueue class represents a SQL statement to execute DMBS_AQ functionality on a PostgreSQL database.

Property Description
Connection The connection to use.
Name The name of the queue.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 73

EDB .NET Connector

Property Description

MessageType The message type that's enqueued/dequeued from this queue, for example EDBAQMessageType.Udt .
UdtTypeName The user-defined type name of the message type.

EnqueueOptions The enqueue options to use.

DequeuOptions The dequeue options to use.

MessageProperties The message properties to use.

EDBAQVisibility

The EDBAQVisibility classrepresents the visibility options available.

Value Description
Immediate The enqueue/dequeue isn't part of the ongoing transaction.

On_Commit The enqueue/dequeue is part of the current transaction.

Note

o To review the default options for these parameters, see DBMS_AQ.
e EDB advanced queueing functionality uses user-defined types for calling enqueue/dequeue operations. Server Compatibility
Mode=NoTypelLoading can't be used with advanced queueing because NoTypelLoading doesn't load any user-defined types.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved.

74

https://www.enterprisedb.com/docs/epas/latest/reference/oracle_compatibility_reference/epas_compat_bip_guide/03_built-in_packages/02_dbms_aq/

EDB .NET Connector
13 Using a ref cursorin a .NET application

A ref cursor isacursorvariable that contains a pointer to a query result set. The result set is determined by executing the OPEN FOR
statement using the cursor variable. A cursor variable isn't tied to a particular query like a static cursor. You can open the same cursor variable a
number of times with the OPEN FOR statement containing different queries each time. A new result set is created for that query and made available
by way of the cursor variable. You can declare a cursor variable in two ways:

e Usethe SYS_REFCURSOR built-in data type to declare a weakly typed ref cursor.
e Define a strongly typed ref cursor that declares a variable of that type.

SYS_REFCURSOR is a ref cursor type that allows any result set to be associated with it. This is known as a weakly typed ref cursor. The following
example is a declaration of a weakly typed ref cursor:

name
SYS_REFCURSOR;

Following is an example of a strongly typed ref cursor:

TYPE <cursor_type_name> IS REF CURSOR RETURN
emp%ROWTYPE ;

Creating the stored procedure

This sample code creates a stored procedure called refcur_inout_callee. It specifies the data type of the ref cursor being passed as an OUT
parameter. To create the sample procedure, invoke EDB-PSQL and connect to the EDB Postgres Advanced Server host database. Enter the following
SPL code at the command line:

CREATE OR REPLACE PROCEDURE

refcur_inout_callee(v_refcur OUT
SYS_REFCURSOR)

IS
BEGIN
OPEN v_refcur FOR SELECT ename FROM
emp;
END;

This C# code uses the stored procedure to retrieve employee names from the emp table.
Note

Ref cursors live only within the current scope of the caller/callee. The sample below creates an ambient transaction to leave the cursor
variable alive and ready to fetch.

using
System.Data;
using EnterpriseDB.EDBClient;

namespace
UsingRefCursor

{

internal static class Program

{

static async Task Main(string[] args)

{

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 75

EDB .NET Connector

// NOT FOR PRODUCTION, consider moving the connection string in a configuration

file

var connectionString = "Server=127.0.0.1;Port=5444;User
Id=enterprisedb;Password=edb;Database=edb";

try

{

await using var dataSource = EDBDataSource.Create(connectionString);

await using var connection = await dataSource.OpenConnectionAsync();

await using var tran = await connection.BeginTransactionAsync();

await using var command = new EDBCommand("refcur_inout_callee'", connection);

command.CommandType
CommandType.StoredProcedure;

command.Transaction = tran;

var refCursorParam = command.Parameters.Add(new EDBParameter ("refCursor",
EDBTypes.EDBDbType.Refcursor));

refCursorParam.Direction =
ParameterDirection.Output;

await command.PrepareAsync();
await command.ExecuteNonQueryAsync();

if (refCursorParam.Value is null)

{
Console.WriteLine("Error: Ref cursor is
null!");
return;

}

var cursorName =
refCursorParam.Value.ToString();

command.CommandText = "fetch all in \"" + cursorName +
ll\|||l;

command.CommandType =
CommandType.Text;

await using (var reader = await
command . ExecuteReaderAsync())

{

var fc =
reader.FieldCount;

while (await
reader.ReadAsync())

for (int i = 0; i < fc;
i++)

Console.WriteLine($"{reader.GetName (i)} =
{reader.GetString(i)}");

}
}

await
reader.CloseAsync();

}

await tran.CommitAsync();
await connection.CloseAsync();

}
catch (Exception
exp)
{
Console.WriteLine($"An error occured:
{exp}");

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 76

EDB .NET Connector

using

System;

using

System.Data;

using

System.Threading.Tasks;

using EnterpriseDB.EDBClient;

namespace
UsingRefCursor
{
internal static class Program
{
static async Task Main(string[] args)
{
// NOT FOR PRODUCTION, consider moving the connection string in a configuration
file
var connectionString = "Server=127.0.0.1;Port=5444;User
Id=enterprisedb;Password=edb;Database=edb";
try
{

using (var dataSource = EDBDataSource.Create(connectionString))
using (var connection = await dataSource.OpenConnectionAsync())
using (var tran = connection.BeginTransaction())
{
using (var command = new EDBCommand("refcur_inout_callee", connection))

{

command.CommandType =
CommandType.StoredProcedure;

command.Transaction = tran;

var refCursorParam = command.Parameters.Add(new EDBParameter ("refCursor",
EDBTypes.EDBDbType.Refcursor));

refCursorParam.Direction =
ParameterDirection.Output;

await command.PrepareAsync();
await command.ExecuteNonQueryAsync();

if (refCursorParam.Value is null)

{
Console.WriteLine("Error: Ref cursor fs
null!");

return;

var cursorName =
refCursorParam.Value.ToString();

command.CommandText = "fetch all in \"" + cursorName +

H\ll||;

command.CommandType =
CommandType.Text;

using (var reader = await
command . ExecuteReaderAsync())

{

var fc =
reader.FieldCount;

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 77

while (await

reader.ReadAsync())

i++)

{reader.

Console.WriteLine($"{reader.GetName(i)} =

{
for (int i = 0; i < fc;
{
GetString(i)}");
}
}
await

reader.CloseAsync();

exp)

{exp}");

}

await tran.CommitAsync();

await connection.CloseAsync();

}
}
catch (Exception
{
Console.WriteLine($"An error occured:
}

This .NET code snippet displays the result on the console:

ename =
ename =
ename =
ename =
ename =
ename =
ename =
ename =
ename =
ename =
ename =
ename =
ename =
ename =
ename =
ename =
ename =
ename =
ename =

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved.

ALLEN
WARD
JONES
MARTIN
BLAKE
CLARK
KING
TURNER
ADAMS
JAMES
FORD
MILLER
EDB
EDB
EDB
EDB
EDB
Mark
SCOTT

EDB .NET Connector

78

EDB .NET Connector
14 Using plugins

EDB .NET Connector plugins support the enhanced capabilities for different data types that are otherwise not directly available using only the default
type mappings. The different plugins available support:

GeoJSON

Json.NET
NetTopologySuite
NodaTime
Dependency Injection
OpenTelemetry

The plugins support the use of spatial, data/time, and JSON types. The following are the supported frameworks and data provider installation path for
these plugins.

Note that the plugins are also available on NuGet. See our blog post on Using EDB .NET Connector with NuGet for more information.

GeoJSON

If you're using the GeoJSON plugin on .NET Standard 2.0, the data provider installation paths are:

C:\Program Files\edb\dotnet\plugins\GeoJSON\netstandard2.0
C:\Program Files\edb\dotnet\plugins\GeoJSON\net472
C:\Program Files\edb\dotnet\plugins\GeoJSON\net48
C:\Program Files\edb\dotnet\plugins\GeoJSON\net481

The following shared library files are required:

® EnterpriseDB.EDBClient.GeoJSON.d1l1l

For detailed information about using the GeoJSON plugin, see the Npgsql documentation.

Json.NET

If you're using the Json.NET plugin on .NET Standard 2.0, the data provider installation paths are:

C:\Program Files\edb\dotnet\plugins\Json.NET\netstandard2.0
C:\Program Files\edb\dotnet\plugins\Json.NET\net472
C:\Program Files\edb\dotnet\plugins\Json.NET\net48
C:\Program Files\edb\dotnet\plugins\Json.NET\net481

The following shared library files are required:

e EnterpriseDB.EDBClient.Json.NET.d1l1l

For detailed information about using the Json.NET plugin, see the Npgsql documentation.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 79

https://www.nuget.org/profiles/EnterpriseDB
https://www.enterprisedb.com/blog/improving-developer-experience-updated-edb-net-connector-now-published-nuget
http://www.npgsql.org/doc/types/geojson.html
http://www.npgsql.org/doc/types/jsonnet.html

OpenTelemetry

Note

OpenTelemetry metrics differ from Npgsql community driver:

e db.system.name issetto edb_postgresql instead of postgresql
e db.namespace issetto edb-dotnet instead of npgsql
o All metrics are prefixed with db.edb_dotnet. instead of db.npgsql.

If you're using the OpenTelemetry plugin on .NET Standard 2.0, the data provider installation paths are:
e C:\Program Files\edb\dotnet\plugins\OpenTelemetry\netstandard2.0
e C:\Program Files\edb\dotnet\plugins\OpenTelemetry\net472
® C:\Program Files\edb\dotnet\plugins\OpenTelemetry\net48

e C:\Program Files\edb\dotnet\plugins\OpenTelemetry\net481

The following shared library files are required:

® EnterpriseDB.EDBClient.OpenTelemetry.dll

NetTopologySuite

If you're using the NetTopologySuite plugin on .Net Standard 2.0, the data provider installation paths are:

e C:\Program Files\edb\dotnet\plugins\NetTopologySuite\netstandard2.0
e C:\Program Files\edb\dotnet\plugins\NetTopologySuite\net472

e C:\Program Files\edb\dotnet\plugins\NetTopologySuite\net48

e C:\Program Files\edb\dotnet\plugins\NetTopologySuite\net481

The following shared library files are required:

® EnterpriseDB.EDBClient.NetTopologySuite.dll

For detailed information about using the NetTopologySuite type plugin, see theNpgsql documentation.

NodaTime

If you're using the NodaTime plugin on .Net Standard 2.0, the data provider installation paths are:

C:\Program Files\edb\dotnet\plugins\NodaTime\netstandard2.0
C:\Program Files\edb\dotnet\plugins\NodaTime\net472
C:\Program Files\edb\dotnet\plugins\NodaTime\net48
C:\Program Files\edb\dotnet\plugins\NodaTime\net481

The following shared library files are required:

® EnterpriseDB.EDBClient.NodaTime.dll

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved.

EDB .NET Connector

80

http://www.npgsql.org/doc/types/nts.html

EDB .NET Connector

For detailed information about using the NodaTime plugin, see theNpgsql documentation.

Available plugins on NuGet

See our blog post on Using EDB .NET Connector with NuGet for more information.

EDB NuGet package ID
EnterpriseDB.EDBClient

EnterpriseDB.EDBClient.Dependencylnjection

EnterpriseDB.EDBClient.EntityFrameworkCore.PostgreSQL

EnterpriseDB.EDBClient.Json.NET

EnterpriseDB.EDBClient.NodaTime

EnterpriseDB.EDBClient.NetTopologySuite

EnterpriseDB.EDBClient.EntityFrameworkCore.PostgreSQL.NetTopologySuite

EnterpriseDB.EDBClient.EntityFrameworkCore.PostgreSQL.NodaTime

Description
Core EDB .NET Connector

Dependency Injection helpers for EDB .NET Connector
(.NET Core only)

Entity Framework Core driver
(.NET Core only)

Json.NET plugin for EDB .NET Connector, allowing transparent
serialization/deserialization of JSON objects directly to and from
the database.

NodaTime plugin for EDB .NET Connector, allowing mapping of
PostgreSQL date/time types to NodaTime types.

NetTopologySuite plugin for Npgsql, allowing mapping of
PostGIS geometry types to NetTopologySuite types.

NetTopologySuite PostGIS spatial support plugin for
PostgreSQL/EDB .NET Connector Entity Framework Core
provider.

(.NET Core only)

NodaTime support plugin for PostgreSQL/EDB .NET Connector
Entity Framework Core provider.
(.NET Core only)

To install one of those plugins packages, simply add a package reference using Visual Studio IDE or using the .NET CLI.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved.

81

http://www.npgsql.org/doc/types/nodatime.html
https://www.enterprisedb.com/blog/improving-developer-experience-updated-edb-net-connector-now-published-nuget

EDB .NET Connector
15 Using object types in .NET

The SQL CREATE TYPE command creates a user-defined object type, which is stored in the EDB Postgres Advanced Server database. You can then
reference these user-defined types in SPL procedures, SPL functions, and .NET programs.

Create the basic object type with the CREATE TYPE AS OBJECT command. Optionally, use the CREATE TYPE BODY command.

Using an object type

To use an object type, you must first create the object type in the EDB Postgres Advanced Server database. Object type addr_object_type
defines the attributes of an address:

CREATE OR REPLACE TYPE addr_object_type AS

OBJECT
(
street
VARCHAR2 (30) ,
city VARCHAR2 (20) ,
state CHAR(2),
zip
NUMBER (5)
)3

Object type emp_obj_typ defines the attributes of an employee. One of these attributes is object type ADDR_OBJIECT_TYPE , as previously
described. The object type body contains a method that displays the employee information:

CREATE OR REPLACE TYPE emp_obj_typ AS

OBJECT

(
empno NUMBER(4) ,
ename VARCHAR2(20),
addr ADDR_OBJECT_TYPE,

MEMBER PROCEDURE display_emp(SELF IN OUT
emp_obj_typ)
)5

CREATE OR REPLACE TYPE BODY emp_obj_typ
AS

MEMBER PROCEDURE display_emp (SELF IN OUT
emp_obj_typ)

IS

BEGIN

DBMS_OUTPUT.PUT_LINE('Employee No 3 0|
SELF.empno);

DBMS_OUTPUT.PUT_LINE('Name S
SELF.ename) ;

DBMS_OUTPUT.PUT_LINE('Street . |
SELF.addr.street);

DBMS_OUTPUT.PUT_LINE('City/State/Zip: ' || SELF.addr.city || ', '
'l
SELF.addr.state || ' ' ||
LPAD (SELF.addr.zip,5,'0'));
END;
END;

This example is a complete .NET program that uses these user-defined object types:

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 82

using

System.Data;

using

EDBTypes;

using EnterpriseDB.EDBClient;

namespace
UsingObjectTypes;

internal class Program

{

EDB .NET Connector

// The following.NET types are defined to map to the types in EDB Postgres Advanced

Server

// Note the PgName attribute that allows to choose any name in .NET for the type

attributes
public class Address
{
[PgName("street")]

public string
Street;

[PgName("city")]
public string City;
[PgName("state")]
public string State;
[PgName("zip")]
public decimal

Zip;
}
public class
Employee
{
[PgName("empno")]
public decimal
Number;
[PgName("ename")]
public string Name;
[PgName("addr")]
public Address Address;
}

static async Task Main(string[] args)

{

// NOT FOR PRODUCTION, consider moving the connection string in a configuration

file

var connectionString = "Server=127.0.0.1;Port=5444;User
Id=enterprisedb;Password=edb;Database=edb";

var dataSourceBuilder =

new EDBDataSourceBuilder (connectionString);

// MapComposite maps the .NET type to the EDB Postgres Advanced Server

types

dataSourceBuilder.MapComposite<Address>("enterprisedb.addr_object_type");
dataSourceBuilder.MapComposite<Employee>("enterprisedb.emp_obj_typ");

await using var dataSource = dataSourceBuilder.Build();

try
{

await using var connection = await dataSource.OpenConnectionAsync();
Console.WriteLine("Connection opened

successfully");

Console.WriteLine("Preparing database...");
await SetupDatabaseAsync(connection);

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 83

EDB .NET Connector

var address = new Address()

{
Street = "123 MAIN
STREET",
City = "EDISON",
State = "NJ",
Zip =
8817
}5
var emp = new
Employee()
{
Number =
9001,
Name = "JONES",
Address = address
}s

await using var cmd = new EDBCommand("emp_obj_typ.display_emp",
connection);

cmd.CommandType =
CommandType.StoredProcedure;

var empParameter = cmd.Parameters.AddWithValue("emp_obj_typ",

emp) ;
empParameter.Direction = ParameterDirection.InputOutput;
empParameter.DataTypeName = "enterprisedb.emp_obj_typ";
// Listen to server

notices
connection.Notice += Connection_Notice;
await

cmd.PrepareAsync();
await

cmd.ExecuteNonQueryAsync() ;

var empOut = empParameter.Value as
Employee;
Console.WriteLine($"Emp No:
{empOut?.Number}");
Console.WriteLine($"Emp Name: {empOut?.Namel}");

Console.WriteLine($"Emp Address Street:
{empOut?.Address?.Street}");

Console.WriteLine($"Emp Address City:
{empOut?.Address?.City}");

Console.WriteLine($"Emp Address State:
{empOut?.Address?.State}");

Console.WriteLine($"Emp Address Zip: {empOut?.Address?.Zip}");

await connection.CloseAsync();

connection.Notice —= Connection_Notice;
}
catch (EDBException
exp)
{
Console.Write($"Error:
{exp}");
}
finally
{

Console.WriteLine("Cleaning database...");

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 84

await using var connection = await dataSource.OpenConnectionAsync();
await CleanDatabaseAsync(connection);

Console.WriteLine("Press any key to close the
program...");

Console.ReadKey () ;

}
private static void Connection_Notice(object sender, EDBNoticeEventArgs
e)
{
Console.WriteLine($"Server Notice: {e.Notice.MessageText}");
}
private async static Task SetupDatabaseAsync(EDBConnection connection)
{
await CleanDatabaseAsync(connection);
string createScript = """
CREATE OR REPLACE TYPE addr_object_type AS
OBJECT
(
street
VARCHAR2(30),
city VARCHAR2(20) ,
state CHAR(2),
zip
NUMBER(5)
)s

nmn .
)

using EDBCommand createCommand = new(createScript, connection);
await createCommand.ExecuteNonQueryAsync();

createScript = """
CREATE OR REPLACE TYPE emp_obj_typ AS

OBJECT
(
empno NUMBER(4) ,
ename VARCHAR2(20),
addr

ADDR_OBJECT_TYPE,
MEMBER PROCEDURE display_emp(SELF IN OUT
emp_obj_typ)
)s
mimn .
3
createCommand.CommandText = createScript;
await createCommand.ExecuteNonQueryAsync();

createScript = """
CREATE OR REPLACE TYPE BODY emp_obj_typ AS

MEMBER PROCEDURE display_emp (SELF IN OUT
emp_obj_typ)

IS

BEGIN

DBMS_OUTPUT.PUT_LINE('Employee No 2 U

SELF.empno) ;

DBMS_OUTPUT.PUT_LINE('Name R
SELF.ename) ;

DBMS_OUTPUT.PUT_LINE('Street . |
SELF.addr.street);

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved.

EDB .NET Connector

85

EDB .NET Connector

DBMS_OUTPUT.PUT_LINE('City/State/Zip: ' || SELF.addr.city || ', '

I
SELF.addr.state || ' ' ||
LPAD(SELF.addr.zip,5,'0"));

END;
END;
mmmn .
3
createCommand.CommandText = createScript;
await createCommand.ExecuteNonQueryAsync();
await connection.ReloadTypesAsync();
}
private static async Task CleanDatabaseAsync(EDBConnection connection)
{
try
{

string dropTypeScript = "DROP TYPE IF EXISTS
emp_obj_typ";

using EDBCommand dropCommand = new(dropTypeScript,
connection);

await
dropCommand. ExecuteNonQueryAsync();

}
catch (Exception ex)
{

Console.WriteLine($"Couldn't clean database
{ex.Messagel}l");

}

using

System;

using

System.Data;

using

System.Threading.Tasks;

using

EDBTypes;

using EnterpriseDB.EDBClient;

namespace
UsingObjectTypes

{

internal class Program

{
// The following.NET types are defined to map to the types in EDB Postgres Advanced
Server

// Note the PgName attribute that allows to choose any name in .NET for the type
attributes

public class Address
{
[PgName("street")]

public string
Street;

[PgName("city")]
public string City;

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 86

[PgName("state")]
public string State;
[PgName("zip")]
public decimal

Zip;
}
public class
Employee
{
[PgName("empno")]
public decimal
Number;
[PgName("ename")]|
public string Name;
[PgName("addr'")]
public Address Address;
}
static async Task Main(string[] args)
{
// NOT FOR PRODUCTION, consider moving the connection string in a configuration
file

var connectionString = "Server=127.0.0.1;Port=5444;User
Id=enterprisedb;Password=edb;Database=edb";
var dataSourceBuilder = new EDBDataSourceBuilder(connectionString);

// MapComposite maps the .NET type to the EDB Postgres Advanced Server

types
dataSourceBuilder.MapComposite<Address>("enterprisedb.addr_object_type");

dataSourceBuilder.MapComposite<Employee>("enterprisedb.emp_obj_typ");

using (var dataSource = dataSourceBuilder.Build())
{

try

{

using (var connection = await dataSource.OpenConnectionAsync())

{
Console.WriteLine("Connection opened
successfully");

Console.WriteLine("Preparing database...");
await SetupDatabaseAsync(connection);

var address = new Address()

{
Street = "123 MAIN
STREET",
City = "EDISON",
State = "NJ",
Zip =
8817
}5
var emp = new
Employee()
{
Number =
9001,
Name = "JONES'",
Address = address
}s

using (var cmd = new EDBCommand("emp_obj_typ.display_emp",
connection))

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved.

EDB .NET Connector

87

cmd.CommandType =
CommandType.StoredProcedure;

var empParameter = cmd.Parameters.AddWithValue("emp_obj_typ",

emp) ;
empParameter.Direction = ParameterDirection.InputOutput;
empParameter.DataTypeName = "enterprisedb.emp_obj_typ";
// Listen to server

notices

connection.Notice += Connection_Notice;

await
cmd.PrepareAsync();

await
cmd. ExecuteNonQueryAsync() ;

var empOut = empParameter.Value as
Employee;
Console.WriteLine($"Emp No:
{empOut?.Number}");
Console.WriteLine($"Emp Name: {empOut?.Namel}");

Console.WriteLine($"Emp Address Street:
{empOut?.Address?.Street}");

Console.WriteLine($"Emp Address City:
{empOut?.Address?.City}");

Console.WriteLine($"Emp Address State:
{empOut?.Address?.State}");

Console.WriteLine($"Emp Address Zip: {empOut?.Address?.Zip}");

await connection.CloseAsync();

connection.Notice —= Connection_Notice;
}
}
catch (EDBException
exp)
{
Console.Write($"Error:
{exp}");
}
finally
{
Console.WriteLine("Cleaning database...");
using (var connection = await dataSource.OpenConnectionAsync())
{
await CleanDatabaseAsync(connection);
}
}

Console.WriteLine("Press any key to close the
program...");

Console.ReadKey () ;

}
private static void Connection_Notice(object sender, EDBNoticeEventArgs
e)
{
Console.WriteLine($"Server Notice: {e.Notice.MessageText}");
}

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved.

EDB .NET Connector

88

EDB .NET Connector

private async static Task SetupDatabaseAsync(EDBConnection connection)

{

await CleanDatabaseAsync(connection);

string createScript = "CREATE OR REPLACE TYPE addr_object_type AS OBJECT

+II(
n

+" street VARCHAR2 (30),
n

+1 city VARCHAR2 (20) ,
n

T state CHAR(2),
n

+1 zip NUMBER(5)
n

)

using (var createCommand = new EDBCommand(createScript, connection))

{
await createCommand.ExecuteNonQueryAsync();
createScript = "CREATE OR REPLACE TYPE emp_obj_typ AS OBJECT
n
+||(
n
+" empno NUMBER (4) ,
n
+" ename VARCHAR2 (20),
n
+" addr ADDR_OBJECT_TYPE,
n
+" MEMBER PROCEDURE display_emp(SELF IN OUT emp_obj_typ)
n
)5
ne
b
createCommand.CommandText = createScript;
await createCommand.ExecuteNonQueryAsync();
createScript = "CREATE OR REPLACE TYPE BODY emp_obj_typ AS
n
+" MEMBER PROCEDURE display_emp (SELF IN OUT emp_obj_typ)
n
+" IS
n
+" BEGIN
n
+" DBMS_OUTPUT.PUT_LINE('Employee No : ' || SELF.empno);
n
+" DBMS_OUTPUT.PUT_LINE('Name : ' || SELF.ename);
n
+" DBMS_OUTPUT.PUT_LINE('Street : ' || SELF.addr.street);
n
+" DBMS_OUTPUT.PUT_LINE('City/State/Zip: ' || SELF.addr.city || ', ' |
n
+" SELF.addr.state || ' ' || LPAD(SELF.addr.zip,5,'0'));
n
+" END;
n
+"END;
e
createCommand.CommandText = createScript;
await createCommand.ExecuteNonQueryAsync();
}

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 89

EDB .NET Connector

await connection.ReloadTypesAsync();

private static async Task CleanDatabaseAsync(EDBConnection connection)
{
try
{
string dropTypeScript = "DROP TYPE IF EXISTS
emp_obj_typ";
using (var dropCommand = new EDBCommand(dropTypeScript,
connection))

await
dropCommand. ExecuteNonQueryAsync();

}
}
catch (Exception ex)

{

Console.WriteLine($"Couldn't clean database
{ex.Messagel}");

}

This program should display the following output in the Console:

Connection opened successfully
Preparing database...

Server Notice: Employee No : 9001
Server Notice: Name : JONES
Server Notice: Street : 123 MAIN STREET

Server Notice: City/State/Zip: EDISON, NJ 08817
Emp No: 9001

Emp Name: JONES

Emp Address Street: 123 MAIN STREET

Emp Address City: EDISON

Emp Address State: NJ

Emp Address Zip: 8817

Cleaning database...

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 90

EDB .NET Connector

16 Using nested tables

EDB Postgres Advanced Server supports nested table collection types created with CREATE TYPE ... AS TABLE OF statements. The EDB .NET
Connector supports output parameters declared as nested tables out of the box, whether free-standing types or declared inside packages.

Nested table types mapping

Nested table types are mapped to List<object> sinC#, asitis preferred over ArrayList . These lists contain as many elements as the nested
table type's rows. The nested table items are translated to be compatible with the C# application using the following rules:

e The connector resolves all nested table rows intoa List<object> in C# while maintaining and converting each column's underlying type.
Forexample,a [textl, text2, numl] rowwill beresolvedasa [string, string, decimal] itemin the list.

e |fthe nested type IS TABLE OF adomain type (int, varchar, decimal, etc.), all the rows will be their C# counterpart according to the
Supported Types and their Mappings.

e [fthe nested type IS TABLE OF arecord or composite type not mapped to a C# class, all rows become a nested List containing as many
elements as the record or composite fields, with proper type translation.

e [fthe nested type IS TABLE OF arecord or composite type mapped to a C# class (for example, MyComposite), all rows will be
MyComposite instances.

Example: Retrieving nested table output parameter

This program:

e Creates a package with a nested emp_tbl_typ table type of emp_rec_typ . This package has a stored procedure that fills the nested table
output parameter.

e Maps the nested table type to a C# class via MapComposite<> .

e Executes and displays the results.

e Cleans up the database by dropping the package (and implicitly the nested table type)
Note

Always provide type names in lowercase.

Program example

Create an empty console program and paste the following code.

using

System.Data;

using

EDBTypes;

using EnterpriseDB.EDBClient;

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 91

https://www.npgsql.org/doc/types/basic.html#read-mappings

namespace
UsingNestedTableTypes

{
internal static class Program
{
// Composite type, will be mapped to the nested table
type
// This will work if field types are convertible from database
types
public class
Employee
{
[PgName("empno")]
public decimal
Number;
[PgName("ename")]
public string Name;

public static async Task Main(string[] args)
{

// not for production, move connection string to app
settings

var connectionString = "Server=127.0.0.1;Port=5444;User
Id=enterprisedb;Password=edb;Database=edb";

var dataSourceBuilder = new EDBDataSourceBuilder(connectionString);
dataSourceBuilder.MapComposite<Employee> ("pkgextendtest.emp_rec_typ");

await using var dataSource = dataSourceBuilder.Build();
await using var connection = await dataSource.OpenConnectionAsync();
try
{
await CreatePackageAsync(connection);

Console.WritelLine('"Package
created");

await using var cstmt = new EDBCommand("pkgExtendTest.nestedTableExtendTest"
connection);

cstmt.CommandType =
CommandType.StoredProcedure;

var tableOfParam = cstmt.Parameters.Add(new EDBParameter ()

{
Direction = ParameterDirection.Output,
DataTypeName = "pkgextendtest.emp_tbl_typ" // nested table is always
lowercase
b
await cstmt.PrepareAsync();
await cstmt.ExecuteNonQueryAsync();
if (tableOfParam.Value is not List<object>
employees)
{
Console.WriteLine($"No employee
found") ;
return;
}
foreach (var employeeRecord 1in
employees)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved.

EDB .NET Connector

J

92

EDB .NET Connector

if (employeeRecord 1is Employee

employee)
{
Console.WriteLine($"Employee {employee.Number}:
{employee.Name}");
}
}
}
catch (Exception ex)
{
Console.WriteLine($"Error: {ex.Message}");
}
finally
{
await CleanupAsync(connection);
Console.WritelLine("Package successfully
deleted");
}
}

// helper methods to create package and cleaning up
static async Task CreatePackageAsync(EDBConnection connection)

{

var createPackage = """

CREATE OR REPLACE PACKAGE pkgExtendTest
IS

TYPE emp_rec_typ IS RECORD

empno NUMBER(4),
ename VARCHAR2(10)
)3
TYPE emp_tbl_typ IS TABLE OF emp_rec_typ;
PROCEDURE nestedTableExtendTest(emp_tbl OUT
emp_tbl_typ);
END
pkgExtendTest;

mmm.
)

using (var com = new EDBCommand(createPackage, connection) { CommandType = CommandType.Text

1))
{
await
com.ExecuteNonQueryAsync() ;
}

var createPackageBody = """
CREATE OR REPLACE PACKAGE BODY pkgExtendTest IS
PROCEDURE nestedTableExtendTest(emp_tbl OUT emp_tbl_typ) IS
DECLARE

CURSOR emp_cur IS SELECT empno, ename FROM emp WHERE ROWNUM <= 10
order by empno;

i INTEGER := 0;
BEGIN
emp_tbl := emp_tbl_typ();
FOR r_emp IN emp_cur LOOP
i =4 + 1
emp_tbl.EXTEND;
emp_tbl(i) := r_emp;
END LOOP;
END nestedTableExtendTest;
END pkgExtendTest;

nmn .
)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 93

EDB .NET Connector

using (var com = new EDBCommand(createPackageBody, connection) { CommandType =
CommandType.Text })

{
await
com.ExecuteNonQueryAsync() ;
}

await connection.ReloadTypesAsync();

static async Task CleanupAsync(EDBConnection connection)
{
var dropPackageBody = "DROP PACKAGE BODY
pkgExtendTest";

var dropPackage = "DROP PACKAGE
pkgExtendTest";

using (var com = new EDBCommand(dropPackageBody, connection) { CommandType = CommandType.Text

b

{

await

com.ExecuteNonQueryAsync() ;

}

using (var com = new EDBCommand(dropPackage, connection) { CommandType = CommandType.Text
b

{

await

com.ExecuteNonQueryAsync() ;

}

}
}

}
using
System;
using
System.Collections.Gener1ic;
using
System.Data;
using
System.Threading.Tasks;
using
EDBTypes;

using EnterpriseDB.EDBClient;

namespace
UsingNestedTableTypes
{
internal static class Program
{
// Composite type, will be mapped to the nested table
type
// This will work if field types are convertible from database
types
public class
Employee
{
[PgName("empno")]
public decimal
Number;
[PgName("ename")]
public string Name;
}

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 9%

EDB .NET Connector

public static async Task Main(string[] args)
{

// not for production, move connection string to app
settings

var connectionString = "Server=127.0.0.1;Port=5444;User
Id=enterprisedb;Password=edb;Database=edb";

var dataSourceBuilder = new EDBDataSourceBuilder(connectionString);
dataSourceBuilder.MapComposite<Employee> ('"pkgextendtest.emp_rec_typ");

using (var dataSource = dataSourceBuilder.Build())

using (var connection = await dataSource.OpenConnectionAsync())

{
try

await CreatePackageAsync(connection);

Console.WritelLine("Package
created");

using (var cstmt = new EDBCommand("pkgExtendTest.nestedTableExtendTest", connection))

{

cstmt.CommandType =
CommandType.StoredProcedure;

var tableOfParam = cstmt.Parameters.Add(new EDBParameter ()
{
Direction = ParameterDirection.Output,

DataTypeName = "pkgextendtest.emp_tbl_typ" // nested table is always
lowercase

)8

await cstmt.PrepareAsync();
await cstmt.ExecuteNonQueryAsync();

List<object> employees = tableOfParam.Value as List<object>;
if (employees == null)
{

Console.WriteLine($"No employee
found") ;

return;

foreach (var employeeRecord 1in
employees)

if (employeeRecord is Employee
employee)

Console.WriteLine($"Employee {employee.Number}:
{employee.Name}");

}

catch (Exception ex)

{

Console.WriteLine($"Error: {ex.Messagel");

}
finally

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 95

EDB .NET Connector

await CleanupAsync(connection);

Console.WriteLine("Package successfully
deleted");

// helper methods to create package and cleaning up
static async Task CreatePackageAsync(EDBConnection connection)

{
var createPackage =
" CREATE OR REPLACE PACKAGE pkgExtendTest IS \n"
+
" TYPE emp_rec_typ IS RECORD (\n"
+
" empno NUMBER(4), \n" +
W ename VARCHAR2(10) \n" +
n); \nll +
" TYPE emp_tbl_typ IS TABLE OF emp_rec_typ; \n"
+
" PROCEDURE nestedTableExtendTest(emp_tbl OUT emp_tbl_typ); \n"
+
" END pkgExtendTest;
\n"3
using (var com = new EDBCommand(createPackage, connection) { CommandType = CommandType.Text
b
{
await
com.ExecuteNonQueryAsync() ;
}
var createPackageBody =
" CREATE OR REPLACE PACKAGE BODY pkgExtendTest IS \n"
+
" PROCEDURE nestedTableExtendTest(emp_tbl OUT emp_tbl_typ) IS \n"
+

" DECLARE \n" +

" CURSOR emp_cur IS SELECT empno, ename FROM emp WHERE ROWNUM <= 10 order by
empno; \n" +

" i INTEGER := 0; \n"

+
" BEGIN \n" +
" emp_tbl := emp_tbl_typ(); \n"
+
" FOR r_emp IN emp_cur LOOP \n"
+
" i:=1+ 1; \n"
+
" emp_tbl.EXTEND; \n" +
" emp_tbl(i) := r_emp; \n"
+
" END LOOP; \n"
+
" END nestedTableExtendTest; \n"
+
" END pkgExtendTest;
\n';

using (var com = new EDBCommand(createPackageBody, connection) { CommandType =
CommandType.Text })

{

await
com.ExecuteNonQueryAsync() ;

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 96

EDB .NET Connector

await connection.ReloadTypesAsync();

static async Task CleanupAsync(EDBConnection connection)

{
var dropPackageBody = "DROP PACKAGE BODY
pkgExtendTest";

var dropPackage = "DROP PACKAGE
pkgExtendTest";

using (var com = new EDBCommand(dropPackageBody, connection) { CommandType = CommandType.Text

b
{
await
com.ExecuteNonQueryAsync() ;
}
using (var com = new EDBCommand(dropPackage, connection) { CommandType = CommandType.Text
b
{
await
com.ExecuteNonQueryAsync() ;
}
}
}
}

The output should look like this:

Package created
Employee 7499: ALLEN
Employee 7521: WARD
Employee 7566: JONES
Employee 7654: MARTIN
Employee 7698: BLAKE
Employee 7782: CLARK
Employee 7839: KING
Employee 7844: TURNER
Employee 7876: ADAMS
Employee 7900: JAMES
Package successfully deleted

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 97

EDB .NET Connector
17 Scram compatibility

The EDB .NET driver provides SCRAM-SHA-256 support for EDB Postgres Advanced Server version 10 and later. This support is available in EDB .NET
4.0.2.1 release and later.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 98

EDB .NET Connector
18 EDB .NET Connector logging

EDB .NET Connector supports the use of logging to help resolve issues with the .NET Connector when used in your application. EDB .NET Connector
supports logging using the standard .NET Microsoft.Extensions.Logging package. For more information about logging in .Net, seeLogging
in C# and .NET in the Microsoft documentation.

Note

For versions earlier than 7.x, EDB .NET Connector had its own, custom logging API.

Console logging provider

The .NET logging API works with a variety of built-in and third-party logging providers. The console logging provider logs output to the console.

To use this provider in your application, make sure you have added a reference to the Microsoft.Extensions.Logging.Console nuget
package.

Console logging with EDBDataSource

Createa Microsoft.Extensions.Logging.LoggerFactory and configure an EDBDataSource with it. Any use of connections opened
through this data source log using this logger factory.

using EnterpriseDB.EDBClient;
using Microsoft.Extensions.Logging;

namespace EnterpriseDB;

internal static class Program

{
public static async Task Main(string[] args)
{
// not for production, move connection string to app
settings

var connectionString = "Server=127.0.0.1;Port=5444;User
Id=enterprisedb;Password=edb;Database=edb";

var loggerFactory = LoggerFactory.Create(builder => builder.AddSimpleConsole());

var dataSourceBuilder = new EDBDataSourceBuilder(connectionString);
dataSourceBuilder.UselLoggerFactory(loggerFactory);

await using var dataSource = dataSourceBuilder.Build();
await using var connection = await dataSource.OpenConnectionAsync();

await using var command = new EDBCommand("SELECT 1", connection);

_ = await
command . ExecuteScalarAsync();

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 99

https://learn.microsoft.com/en-us/dotnet/core/extensions/logging?tabs=command-line

EDB .NET Connector

using

System;

using

System.Threading.Tasks;

using EnterpriseDB.EDBClient;

using Microsoft.Extensions.Logging;

namespace EnterpriseDB

{
internal static class Program
{
public static async Task Main(string[] args)
{
// not for production, move connection string to app
settings

var connectionString = "Server=127.0.0.1;Port=5444;User
Id=enterprisedb;Password=edb;Database=edb";

var loggerFactory = LoggerFactory.Create(builder => builder.AddSimpleConsole());

var dataSourceBuilder = new EDBDataSourceBuilder(connectionString);
dataSourceBuilder.UselLoggerFactory(loggerFactory);

using (var dataSource = dataSourceBuilder.Build())
using (var connection = await dataSource.OpenConnectionAsync())

{
using (var command = new EDBCommand("SELECT 1", connection))
{
_ = await
command . ExecuteScalarAsync() ;
}
}

This program should display the following result in the Console :

info: EnterpriseDB.EDBClient.Command[<ID>]
Command execution completed (duration=761lms): SELECT 1

Console logging without EDBDataSource

Createa Microsoft.Extensions.Logging.LoggerFactory and configure EDB.NET Connector's logger factory globally using

EDBLoggingConfiguration.InitializelLogging .Configureitat the start of your program, before using any other EDB .NET Connector
API.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 100

using

System;

using EnterpriseDB.EDBClient;

using Microsoft.Extensions.Logging;

namespace EnterpriseDB

{
internal static class Program
{
public static async Task Main(string[] args)
{
// not for production, move connection string to app
settings

var connectionString = "Server=127.0.0.1;Port=5444;User
Id=enterprisedb;Password=edb;Database=edb";

var loggerFactory = LoggerFactory.Create(builder => builder.AddSimpleConsole());
EDBLoggingConfiguration.InitializelLogging(loggerFactory);

await using var conn = new EDBConnection(connectionString);
await conn.OpenAsync();

await using var command = new EDBCommand("SELECT 1", conn);
_ = await

command.ExecuteScalarAsync();

}

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved.

EDB .NET Connector

101

EDB .NET Connector

using

System;

using

System.Threading.Tasks;

using EnterpriseDB.EDBClient;

using Microsoft.Extensions.Logging;

namespace EnterpriseDB

{
internal static class Program
{
public static async Task Main(string[] args)
{
// not for production, move connection string to app
settings

var connectionString = "Server=127.0.0.1;Port=5444;User
Id=enterprisedb;Password=edb;Database=edb";

var loggerFactory = LoggerFactory.Create(builder => builder.AddSimpleConsole());
EDBLoggingConfiguration.InitializelLogging(loggerFactory);

using (var conn = new EDBConnection(connectionString))

{
await conn.OpenAsync();
using (var command = new EDBCommand("SELECT 1", conn))
{
_ = await
command . ExecuteScalarAsync() ;
}
}
}
}
}
Log levels

The following log levels are available:

Trace
Debug
Information
Warning
Error
Critical

This example shows how to change the log level to Trace:

var loggerFactory = LoggerFactory.Create(builder => builder
.SetMinimumLevel(LoglLevel.Trace)
.AddSimpleConsole()
)3

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 102

Formatting the log output

EDB .NET Connector

This example shows how to format your log output. Create a LoggerFactory to restrict each log message to a single line and add a date and time

to the log:

var loggerFactory = LoggerFactory.Create(builder =>

.SetMinimumLevel(LoglLevel.Trace)

builder
.AddSimpleConsole(
options =>
{

options.SingleLine = true;

options.TimestampFormat = "yyyy/MM/dd HH:mm:ss

))s

This program should display the following result in the Console. Output may vary depending on your connection settings.

trce: EnterpriseDB.
trce: EnterpriseDB.
trce: EnterpriseDB.
trce: EnterpriseDB.
trce: EnterpriseDB.
trce: EnterpriseDB.
dbug: EnterpriseDB.

157ms)

dbug: EnterpriseDB.
trce: EnterpriseDB.
dbug: EnterpriseDB.
trce: EnterpriseDB.
info: EnterpriseDB.
trce: EnterpriseDB.
trce: EnterpriseDB.
trce: EnterpriseDB.
trce: EnterpriseDB.
dbug: EnterpriseDB.
trce: EnterpriseDB.
trce: EnterpriseDB.
dbug: EnterpriseDB.

EDBClient
EDBClient
EDBClient
EDBClient
EDBClient
EDBClient
EDBClient

EDBClient
EDBClient
EDBClient
EDBClient
EDBClient
EDBClient
EDBClient
EDBClient
EDBClient
EDBClient
EDBClient
EDBClient
EDBClient

.Connection[1000] Opening connection to 127.0.0.1:5444/edb...
.Connection[1110] Opening physical connection to 127.0.0.1:5444/edb...
.Connection[0@] Attempting to connect to 127.0.0.1:5444

.Connection[0®] Socket connected to 127.0.0.1:5444
.Connection[1420024510] Start user action

.Connection[534767465] End user action

.Connection[1111] Opened physical connection to 127.0.0.1:5444/edb (in

.Connection[1001] Opened connection to 127.0.0.1:5444/edb
.Connection[1420024510] Start user action

.Command[2000] Executing command: SELECT 1

.Command[1049610950] Cleaning up reader

.Command[2001] Command execution completed (duration=68ms): SELECT 1
.Connection[534767465] End user action

.Connection[1003] Closing connection to 127.0.0.1:5444/edb...
.Connection[1420024510] Start user action

.Connection[534767465] End user action

.Connection[1004] Closed connection to 127.0.0.1:5444/edb
.Connection[1112] Closing physical connection to 127.0.0.1:5444/edb...
.Connection[0@] Cleaning up connector

.Connection[1113] Closed physical connection to 127.0.0.1:5444/edb

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved.

103

EDB .NET Connector

19 API reference

For information about using the API, see the Npgsql documentation.
Usage notes:

e When using the API, replace references to Npgsql with EnterpriseDB.EDBClient .

e When referring to classes, replace Npgsqgl with EDB . For example, use the EDBBinaryExporter classinstead of the
NpgsqlBinaryExporter class.

e To find the Npgsql API version that was included with a specific EDB .NET release, see theEDB .NET release notes. The release notes specify the
upstream Npgsql version that was merged. The version information is important because the available API features can vary between versions.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 104

http://www.npgsql.org/doc/api/Npgsql.html

	1 EDB .NET Connector
	2 Release notes
	2.1 Version 10.0.1.1
	2.2 Version 9.0.3.1
	2.3 Version 8.0.5.1
	2.4 Version 8.0.2.1
	2.5 Version 7.0.6.2
	2.6 Version 7.0.6.1
	2.7 Version 7.0.4.1
	2.8 Version 6.0.2.1
	2.9 Version 5.0.7.1
	2.10 Version 4.1.6.1
	2.11 Version 4.1.5.1
	2.12 Version 4.1.3.1
	2.13 Version 4.0.10.2
	2.14 Version 4.0.10.1
	2.15 Version 4.0.6.1
	3 Product compatibility
	Supported .NET versions
	Supported platforms
	Supported database server versions

	4 EDB .NET Connector overview
	The .NET class hierarchy

	5 Installing and configuring the .NET Connector
	Installing the .NET Connector
	Installing and configuring the .NET Connector from NuGet.org
	Install NuGet package via command line
	Install NuGet package via Visual Studio interface

	Installing the .NET Connector using EDB installer
	Configuring the .NET Connector
	Referencing the library files
	.NET framework setup

	6 Opening a database connection
	Creating an EDBConnection object
	Connection with a data source
	Connection without a data source

	Connection string parameters
	Example: Opening a database connection

	7 Retrieving database records
	Retrieving a single database record

	8 Parameterized queries
	9 Inserting records in a database
	10 Deleting records in a database
	11 Using SPL stored procedures in your .NET application
	Example: Executing a stored procedure without parameters
	Using the EDBCommand object to execute a stored procedure

	Example: Executing a stored procedure with IN parameters
	Passing input values to a stored procedure

	Example: Executing a stored procedure with IN, OUT, and INOUT parameters
	Creating the stored procedure
	Receiving output values from a stored procedure

	12 Using advanced queueing
	Enqueueing or dequeueing a message
	Server-side setup
	Creating a user-defined type
	Creating the queue table
	Creating the queue
	Starting the queue

	Client-side example
	Enqueue a message
	Dequeue a message

	EDBAQ classes
	EDBAQDequeueMode
	EDBAQDequeueOptions
	EDBAQEnqueueOptions
	EDBAQMessage
	EDBAQMessageProperties
	EDBAQMessageState
	EDBAQMessageType
	EDBAQNavigationMode
	EDBAQQueue
	EDBAQVisibility

	13 Using a ref cursor in a .NET application
	Creating the stored procedure

	14 Using plugins
	GeoJSON
	Json.NET
	OpenTelemetry
	NetTopologySuite
	NodaTime
	Available plugins on NuGet

	15 Using object types in .NET
	Using an object type

	16 Using nested tables
	Nested table types mapping
	Example: Retrieving nested table output parameter
	Program example

	17 Scram compatibility
	18 EDB .NET Connector logging
	Console logging provider
	Console logging with EDBDataSource
	Console logging without EDBDataSource

	Log levels
	Formatting the log output

	19 API reference

