
EDB Postgres™ Advanced Server
Release 13

Database Compatibility for Oracle® Developers SQL Guide

Oct 20, 2020

Contents

1 Introduction 1

2 ALTER DIRECTORY 2

3 ALTER INDEX 4

4 ALTER PROCEDURE 6

5 ALTER PROFILE 8

6 ALTER QUEUE 12

7 ALTER QUEUE TABLE 15

8 ALTER ROLE. . . IDENTIFIED BY 17

9 ALTER ROLE - Managing Database Link and DBMS_RLS Privileges 19

10 ALTER SEQUENCE 22

11 ALTER SESSION 24

12 ALTER TABLE 26

13 ALTER TRIGGER 30

14 ALTER TABLESPACE 33

15 ALTER USER. . . IDENTIFIED BY 34

16 ALTER USER|ROLE. . . PROFILE MANAGEMENT CLAUSES 36

17 CALL 39

18 COMMENT 41

i

19 COMMIT 43

20 CREATE DATABASE 45

21 CREATE PUBLIC DATABASE LINK 47

22 CREATE DIRECTORY 60

23 CREATE FUNCTION 62

24 CREATE INDEX 68

25 CREATE MATERIALIZED VIEW 71

26 CREATE PACKAGE 73

27 CREATE PACKAGE BODY 76

28 CREATE PROCEDURE 82

29 CREATE PROFILE 89

30 CREATE QUEUE 93

31 CREATE QUEUE TABLE 95

32 CREATE ROLE 98

33 CREATE SCHEMA 100

34 CREATE SEQUENCE 102

35 CREATE SYNONYM 105

36 CREATE TABLE 107

37 CREATE TABLE AS 116

38 CREATE TRIGGER 118

39 CREATE TYPE 128

40 CREATE TYPE BODY 136

41 CREATE USER 140

42 CREATE USER|ROLE. . . PROFILE MANAGEMENT CLAUSES 142

43 CREATE VIEW 144

44 DELETE 146

45 DROP DATABASE LINK 149

ii

46 DROP DIRECTORY 151

47 DROP FUNCTION 152

48 DROP INDEX 154

49 DROP PACKAGE 155

50 DROP PROCEDURE 156

51 DROP PROFILE 158

52 DROP QUEUE 160

53 DROP QUEUE TABLE 162

54 DROP SYNONYM 164

55 DROP ROLE 166

56 DROP SEQUENCE 168

57 DROP TABLE 169

58 DROP TABLESPACE 171

59 DROP TRIGGER 172

60 DROP TYPE 173

61 DROP USER 175

62 DROP VIEW 177

63 EXEC 179

64 GRANT 180
64.1 GRANT on Database Objects . 182
64.2 GRANT on Roles . 184
64.3 GRANT on System Privileges . 186

65 INSERT 188

66 LOCK 191

67 REVOKE 193

68 ROLLBACK 197

69 ROLLBACK TO SAVEPOINT 199

70 SAVEPOINT 201

iii

71 SELECT 203
71.1 FROM Clause . 205
71.2 WHERE Clause . 207
71.3 GROUP BY Clause . 207
71.4 HAVING Clause . 208
71.5 SELECT List . 209
71.6 UNION Clause . 209
71.7 INTERSECT Clause . 210
71.8 MINUS Clause . 210
71.9 CONNECT BY Clause . 211
71.10 ORDER BY Clause . 211
71.11 DISTINCT | UNIQUE Clause . 213
71.12 FOR UPDATE Clause . 213

72 SET CONSTRAINTS 215

73 SET ROLE 217

74 SET TRANSACTION 219

75 TRUNCATE 221

76 UPDATE 223

77 Conclusion 226

Index 227

iv

CHAPTER 1

Introduction

This guide provides a summary of the SQL commands compatible with Oracle databases that are supported
by Advanced Server. The SQL commands in this section will work on both an Oracle database and an
Advanced Server database.

Note the following points:

• Advanced Server supports other commands that are not listed here. These commands may have no
Oracle equivalent or they may provide the similar or same functionality as an Oracle SQL command,
but with different syntax.

• The SQL commands in this section do not necessarily represent the full syntax, options, and func-
tionality available for each command. In most cases, syntax, options, and functionality that are not
compatible with Oracle databases have been omitted from the command description and syntax.

• The Advanced Server documentation set documents command functionality that may not be compat-
ible with Oracle databases.

1

CHAPTER 2

ALTER DIRECTORY

Name

ALTER DIRECTORY -- change the owner of a directory created using CREATE DIRECTORY command.

Synopsis

ALTER DIRECTORY <name> OWNER TO <rolename>

Description

The ALTER DIRECTORY ...OWNER TO command changes the owner of a directory. You must have the
superuser privilege to execute this command; the new owner of the directory must also have the superuser
privilege.

Parameters

name

The name of the directory to be altered.

rolename

The name of an owner that will own the directory.

Examples

The following example demonstrates changing ownership; bob and carol are superusers. bob is a current
owner of directory EMPDIR:

SELECT * FROM all_directories where directory_name = 'EMPDIR' order
by 1,2,3;
owner | directory_name | directory_path

-------+----------------+----------------

(continues on next page)

2

EDB Postgres™ Advanced Server, Release 13

(continued from previous page)

bob | EMPDIR | /path
(1 row)

To alter the ownership of directory EMPDIR to carol:

ALTER DIRECTORY EMPDIR OWNER TO carol;
ALTER DIRECTORY

SELECT * FROM all_directories where directory_name = 'EMPDIR' order by
1,2,3;
owner | directory_name | directory_path

-------+----------------+----------------
carol | EMPDIR | /path

(1 row)

The ownership of a directory is altered and granted to carol.

See Also

CREATE DIRECTORY , DROP DIRECTORY

3

CHAPTER 3

ALTER INDEX

Name

ALTER INDEX – modify an existing index.

Synopsis

Advanced Server supports three variations of the ALTER INDEX command compatible with Oracle
databases. Use the first variation to rename an index:

ALTER INDEX <name> RENAME TO <new_name>

Use the second variation of the ALTER INDEX command to rebuild an index:

ALTER INDEX <name> REBUILD

Use the third variation of the ALTER INDEX command to set the PARALLEL or NOPARALLEL clause:

ALTER INDEX <name> { NOPARALLEL | PARALLEL [<integer>] }

Description

ALTER INDEX changes the definition of an existing index. The RENAME clause changes the name of the
index. The REBUILD clause reconstructs an index, replacing the old copy of the index with an updated
version based on the index’s table.

The REBUILD clause invokes the PostgreSQL REINDEX command; for more information about using the
REBUILD clause, see the PostgreSQL core documentation at:

https://www.postgresql.org/docs/current/static/sql-reindex.html

The PARALLEL clause sets the degree of parallelism for an index that can be used to parallelize the rebuild-
ing of an index.

4

https://www.postgresql.org/docs/current/static/sql-reindex.html

EDB Postgres™ Advanced Server, Release 13

The NOPARALLEL clause resets parallelism to use default values; reloptions will show the
parallel_workers parameter as 0.

ALTER INDEX has no effect on stored data.

Parameters

name

The name (possibly schema-qualified) of an existing index.

new_name

New name for the index.

PARALLEL

Include the PARALLEL clause to specify a degree of parallelism; set the
parallel_workers parameter equal to the degree of parallelism for the rebuilding
of an index. If you specify PARALLEL but no degree of parallelism is provided, the server
enforces default parallelism.

NOPARALLEL

Specify NOPARALLEL to reset parallelism to default values.

integer

The integer indicates the degree of parallelism (the number of parallel_workers used
when rebuilding an index).

Examples

To change the name of an index from name_idx to empname_idx:

ALTER INDEX name_idx RENAME TO empname_idx;

To rebuild an index named empname_idx:

ALTER INDEX empname_idx REBUILD;

The following example sets the degree of parallelism on an empname_idx index to 7:

ALTER INDEX empname_idx PARALLEL 7;

See Also

CREATE INDEX, DROP INDEX

5

CHAPTER 4

ALTER PROCEDURE

Name

ALTER PROCEDURE

Synopsis

ALTER PROCEDURE <procedure_name options> [RESTRICT]

Description

Use the ALTER PROCEDURE statement to specify that a procedure is a SECURITY INVOKER or
SECURITY DEFINER.

Parameters

procedure_name

procedure_name specifies the (possibly schema-qualified) name of a stored procedure.

options may be:

[EXTERNAL] SECURITY DEFINER

Specify SECURITY DEFINER to instruct the server to execute the procedure with
the privileges of the user that created the procedure. The EXTERNAL keyword is
accepted for compatibility, but ignored.

[EXTERNAL] SECURITY INVOKER

Specify SECURITY INVOKER to instruct the server to execute the procedure with
the privileges of the user that is invoking the procedure. The EXTERNAL keyword
is accepted for compatibility, but ignored.

6

EDB Postgres™ Advanced Server, Release 13

The RESTRICT keyword is accepted for compatibility, but ignored.

Examples

The following command specifies that the update_balance procedure should execute with the privileges
of the user invoking the procedure:

ALTER PROCEDURE update_balance SECURITY INVOKER;

See Also

CREATE PROCEDURE, DROP PROCEDURE

7

CHAPTER 5

ALTER PROFILE

Name

ALTER PROFILE – alter an existing profile

Synopsis

ALTER PROFILE <profile_name> RENAME TO <new_name>;

ALTER PROFILE <profile_name>
LIMIT {<parameter value>}[...];

Description

Use the ALTER PROFILE command to modify a user-defined profile; Advanced Server supports two forms
of the command:

• Use ALTER PROFILE...RENAME TO to change the name of a profile.

• Use ALTER PROFILE...LIMIT to modify the limits associated with a profile.

Include the LIMIT clause and one or more space-delimited parameter/value pairs to specify the rules
enforced by Advanced Server, or use ALTER PROFILE...RENAME TO to change the name of a profile.

Parameters

profile_name

The name of the profile.

new_name

new_name specifies the new name of the profile.

parameter

8

EDB Postgres™ Advanced Server, Release 13

parameter specifies the attribute limited by the profile.

value

value specifies the parameter limit.

Advanced Server supports the value shown below for each parameter:

FAILED_LOGIN_ATTEMPTS specifies the number of failed login attempts that a user may
make before the server locks the user out of their account for the length of time specified by
PASSWORD_LOCK_TIME. Supported values are:

• An INTEGER value greater than 0.

• DEFAULT- the value of FAILED_LOGIN_ATTEMPTS specified in the DEFAULT profile.

• DEFAULT - the value of FAILED_LOGIN_ATTEMPTS specified in the DEFAULT pro-
file.

• UNLIMITED – the connecting user may make an unlimited number of failed login at-
tempts.

PASSWORD_LOCK_TIME specifies the length of time that must pass before the server unlocks
an account that has been locked because of FAILED_LOGIN_ATTEMPTS. Supported values
are:

• A NUMERIC value greater than or equal to 0. To specify a fractional portion of a day,
specify a decimal value. For example, use the value 4.5 to specify 4 days, 12 hours.

• DEFAULT - the value of PASSWORD_LOCK_TIME specified in the DEFAULT profile.

• UNLIMITED – the account is locked until it is manually unlocked by a database superuser.

PASSWORD_LIFE_TIME specifies the number of days that the current password may be used
before the user is prompted to provide a new password. Include the PASSWORD_GRACE_TIME
clause when using the PASSWORD_LIFE_TIME clause to specify the number of days
that will pass after the password expires before connections by the role are rejected. If
PASSWORD_GRACE_TIME is not specified, the password will expire on the day specified by
the default value of PASSWORD_GRACE_TIME, and the user will not be allowed to execute
any command until a new password is provided. Supported values are:

• A NUMERIC value greater than or equal to 0. To specify a fractional portion of a day,
specify a decimal value. For example, use the value 4.5 to specify 4 days, 12 hours.

• DEFAULT - the value of PASSWORD_LIFE_TIME specified in the DEFAULT profile.

• UNLIMITED – The password does not have an expiration date.

PASSWORD_GRACE_TIME specifies the length of the grace period after a password expires
until the user is forced to change their password. When the grace period expires, a user will
be allowed to connect, but will not be allowed to execute any command until they update their
expired password. Supported values are:

• A NUMERIC value greater than or equal to 0. To specify a fractional portion of a day,
specify a decimal value. For example, use the value 4.5 to specify 4 days, 12 hours.

• DEFAULT - the value of PASSWORD_GRACE_TIME specified in the DEFAULT profile.

9

EDB Postgres™ Advanced Server, Release 13

• UNLIMITED – The grace period is infinite.

PASSWORD_REUSE_TIME specifies the number of days a user must wait before re-using a
password. The PASSWORD_REUSE_TIME and PASSWORD_REUSE_MAX parameters are in-
tended to be used together. If you specify a finite value for one of these parameters while
the other is UNLIMITED, old passwords can never be reused. If both parameters are set to
UNLIMITED there are no restrictions on password reuse. Supported values are:

• A NUMERIC value greater than or equal to 0. To specify a fractional portion of a day,
specify a decimal value. For example, use the value 4.5 to specify 4 days, 12 hours.

• DEFAULT - the value of PASSWORD_REUSE_TIME specified in the DEFAULT profile.

• UNLIMITED – The password can be re-used without restrictions.

PASSWORD_REUSE_MAX specifies the number of password changes that must occur before
a password can be reused. The PASSWORD_REUSE_TIME and PASSWORD_REUSE_MAX
parameters are intended to be used together. If you specify a finite value for one of these pa-
rameters while the other is UNLIMITED, old passwords can never be reused. If both parameters
are set to UNLIMITED there are no restrictions on password reuse. Supported values are:

• An INTEGER value greater than or equal to 0.

• DEFAULT - the value of PASSWORD_REUSE_MAX specified in the DEFAULT profile.

• UNLIMITED – The password can be re-used without restrictions.

PASSWORD_VERIFY_FUNCTION specifies password complexity. Supported values are:

• The name of a PL/SQL function.

• DEFAULT - the value of PASSWORD_VERIFY_FUNCTION specified in the DEFAULT
profile.

• NULL

PASSWORD_ALLOW_HASHED specifies whether an encrypted password to be allowed for use
or not. If you specify the value as TRUE, the system allows a user to change the password by
specifying a hash computed encrypted password on the client side. However, if you specify the
value as FALSE, then a password must be specified in a plain-text form in order to be validated
effectively, else an error will be thrown if a server receives an encrypted password. Supported
values are:

• A BOOLEAN value TRUE/ON/YES/1 or FALSE/OFF/NO/0.

• DEFAULT – the value of PASSWORD_ALLOW_HASHED specified in the DEFAULT pro-
file.

Note: The PASSWORD_ALLOW_HASHED is not an Oracle-compatible parameter.

Examples

The following example modifies a profile named acctg_profile:

10

EDB Postgres™ Advanced Server, Release 13

ALTER PROFILE acctg_profile
LIMIT FAILED_LOGIN_ATTEMPTS 3 PASSWORD_LOCK_TIME 1;

acctg_profilewill count failed connection attempts when a login role attempts to connect to the server.
The profile specifies that if a user has not authenticated with the correct password in three attempts, the
account will be locked for one day.

The following example changes the name of acctg_profile to payables_profile:

ALTER PROFILE acctg_profile RENAME TO payables_profile;

See Also

CREATE PROFILE, DROP PROFILE

11

CHAPTER 6

ALTER QUEUE

Advanced Server includes extra syntax (not offered by Oracle) with the ALTER QUEUE SQL command.
This syntax can be used in association with the DBMS_AQADM package.

Name

ALTER QUEUE -- allows a superuser or a user with the aq_administrator_role privilege to mod-
ify the attributes of a queue.

Synopsis

This command is available in four forms. The first form of this command changes the name of a queue.

ALTER QUEUE <queue_name> RENAME TO <new_name>

Parameters

queue_name

The name (optionally schema-qualified) of an existing queue.

RENAME TO

Include the RENAME TO clause and a new name for the queue to rename the queue.

new_name

New name for the queue.

The second form of the ALTER QUEUE command modifies the attributes of the queue:

ALTER QUEUE <queue_name> SET [({ <option_name option_value> } [,SET
<option_name>

Parameters

12

EDB Postgres™ Advanced Server, Release 13

queue_name

The name (optionally schema-qualified) of an existing queue.

Include the SET clause and option_name/option_value pairs to modify the attributes
of the queue:

option_name option_value

The name of the option or options to be associated with the new queue and the corresponding
value of the option. If you provide duplicate option names, the server will return an error.

• If option_name is retries, provide an integer that represents the number of times a
dequeue may be attempted.

• If option_name is retrydelay, provide a double-precision value that represents the
delay in seconds.

• If option_name is retention, provide a double-precision value that represents the
retention time in seconds.

Use the third form of the ALTER QUEUE command to enable or disable enqueuing and/or dequeuing on a
particular queue:

ALTER QUEUE <queue_name> ACCESS { START | STOP } [FOR { enqueue | dequeue }
] [NOWAIT]

Parameters

queue_name

The name (optionally schema-qualified) of an existing queue.

ACCESS

Include the ACCESS keyword to enable or disable enqueuing and/or dequeuing on a particular
queue.

START | STOP

Use the START and STOP keywords to indicate the desired state of the queue.

FOR enqueue|dequeue

Use the FOR clause to indicate if you are specifying the state of enqueueing or dequeueing
activity on the specified queue.

NOWAIT

Include the NOWAIT keyword to specify that the server should not wait for the completion of
outstanding transactions before changing the state of the queue. The NOWAIT keyword can
only be used when specifying an ACCESS value of STOP. The server will return an error if
NOWAIT is specified with an ACCESS value of START.

Use the fourth form to ADD or DROP callback details for a particular queue.

ALTER QUEUE <queue_name> { ADD | DROP } CALL TO <location_name> [WITH
<callback_option>]

13

EDB Postgres™ Advanced Server, Release 13

Parameters

queue_name

The name (optionally schema-qualified) of an existing queue.

ADD | DROP

Include the ADD or DROP keywords to enable add or remove callback details for a queue.

location_name

location_name specifies the name of the callback procedure.

callback_option

callback_option can be context; specify a RAW value when including this clause.

Examples

The following example changes the name of a queue from work_queue_east to work_order:

ALTER QUEUE work_queue_east RENAME TO work_order;

The following example modifies a queue named work_order, setting the number of retries to 100, the
delay between retries to 2 seconds, and the length of time that the queue will retain dequeued messages to
10 seconds:

ALTER QUEUE work_order SET (retries 100, retrydelay 2, retention 10);

The following commands enable enqueueing and dequeueing in a queue named work_order:

ALTER QUEUE work_order ACCESS START;
ALTER QUEUE work_order ACCESS START FOR enqueue;
ALTER QUEUE work_order ACCESS START FOR dequeue;

The following commands disable enqueueing and dequeueing in a queue named work_order:

ALTER QUEUE work_order ACCESS STOP NOWAIT;
ALTER QUEUE work_order ACCESS STOP FOR enqueue;
ALTER QUEUE work_order ACCESS STOP FOR dequeue;

See Also

CREATE QUEUE, DROP QUEUE

14

CHAPTER 7

ALTER QUEUE TABLE

Advanced Server includes extra syntax (not offered by Oracle) with the ALTER QUEUE SQL command.
This syntax can be used in association with the DBMS_AQADM package.

Name

ALTER QUEUE TABLE-- modify an existing queue table.

Synopsis

Use ALTER QUEUE TABLE to change the name of an existing queue table:

ALTER QUEUE TABLE <name> RENAME TO <new_name>

Description

ALTER QUEUE TABLE allows a superuser or a user with the aq_administrator_role
privilege to change the name of an existing queue table.

Parameters

name

The name (optionally schema-qualified) of an existing queue table.

new_name

New name for the queue table.

Examples

To change the name of a queue table from wo_table_east to work_order_table:

ALTER QUEUE TABLE wo_queue_east RENAME TO work_order_table;

15

EDB Postgres™ Advanced Server, Release 13

See Also

CREATE QUEUE TABLE, DROP QUEUE TABLE

16

CHAPTER 8

ALTER ROLE. . . IDENTIFIED BY

Name

ALTER ROLE - change the password associated with a database role

Synopsis

ALTER ROLE <role_name> IDENTIFIED BY <password>
[REPLACE <prev_password>]

Description

A role without the CREATEROLE privilege may use this command to change their own pass-
word. An unprivileged role must include the REPLACE clause and their previous password if
PASSWORD_VERIFY_FUNCTION is not NULL` in their profile. When the REPLACE clause is used by a
non-superuser, the server will compare the password provided to the existing password and raise an error if
the passwords do not match.

A database superuser can use this command to change the password associated with any role. If a superuser
includes the REPLACE clause, the clause is ignored; a non-matching value for the previous password will
not throw an error.

If the role for which the password is being changed has the SUPERUSER attribute, then a superuser must
issue this command. A role with the CREATEROLE attribute can use this command to change the password
associated with a role that is not a superuser.

Parameters

role_name

The name of the role whose password is to be altered.

password

17

EDB Postgres™ Advanced Server, Release 13

The role’s new password.

prev_password

The role’s previous password.

Examples

To change a role’s password:

ALTER ROLE john IDENTIFIED BY xyRP35z REPLACE 23PJ74a;

18

CHAPTER 9

ALTER ROLE - Managing Database Link and DBMS_RLS Privileges

Advanced Server includes extra syntax (not offered by Oracle) for the ALTER ROLE command. This
syntax can be useful when assigning privileges related to creating and dropping database links compatible
with Oracle databases, and fine-grained access control (using DBMS_RLS).

CREATE DATABASE LINK

A user who holds the CREATE DATABASE LINK privilege may create a private database link. The fol-
lowing ALTER ROLE command grants privileges to an Advanced Server role that allow the specified role
to create a private database link:

ALTER ROLE role_name
WITH [CREATEDBLINK | CREATE DATABASE LINK]

This command is the functional equivalent of:

GRANT CREATE DATABASE LINK to role_name

Use the following command to revoke the privilege:

ALTER ROLE role_name
WITH [NOCREATEDBLINK | NO CREATE DATABASE LINK]

Note: The CREATEDBLINK and NOCREATEDBLINK keywords should be considered deprecated syn-
tax; we recommend using the CREATE DATABASE LINK and NO CREATE DATABASE LINK syntax
options.

CREATE PUBLIC DATABASE LINK

A user who holds the CREATE PUBLIC DATABASE LINK privilege may create a public database link.

19

EDB Postgres™ Advanced Server, Release 13

The following ALTER ROLE command grants privileges to an Advanced Server role that allow the specified
role to create a public database link:

ALTER ROLE role_name
WITH [CREATEPUBLICDBLINK | CREATE PUBLIC DATABASE LINK]

This command is the functional equivalent of:

GRANT CREATE PUBLIC DATABASE LINK to role_name

Use the following command to revoke the privilege:

ALTER ROLE role_name
WITH [NOCREATEPUBLICDBLINK | NO CREATE PUBLIC DATABASE LINK]

Note: The CREATEPUBLICDBLINK and NOCREATEPUBLICDBLINK keywords should be considered
deprecated syntax; we recommend using the CREATE PUBLIC DATABASE LINK and NO CREATE
PUBLIC DATABASE LINK syntax options.

DROP PUBLIC DATABASE LINK

A user who holds the DROP PUBLIC DATABASE LINK privilege may drop a public database link. The
following ALTER ROLE command grants privileges to an Advanced Server role that allow the specified
role to drop a public database link:

ALTER ROLE role_name
WITH [DROPPUBLICDBLINK | DROP PUBLIC DATABASE LINK]

This command is the functional equivalent of:

GRANT DROP PUBLIC DATABASE LINK to role_name

Use the following command to revoke the privilege:

ALTER ROLE role_name
WITH [NODROPPUBLICDBLINK | NO DROP PUBLIC DATABASE LINK]

Note: The DROPPUBLICDBLINK and NODROPPUBLICDBLINK keywords should be considered dep-
recated syntax; we recommend using the DROP PUBLIC DATABASE LINK and NO DROP PUBLIC
DATABASE LINK syntax options.

EXEMPT ACCESS POLICY

A user who holds the EXEMPT ACCESS POLICY privilege is exempt from fine-grained access control
(DBMS_RLS) policies. A user who holds these privileges will be able to view or modify any row in a
table constrained by a DBMS_RLS policy. The following ALTER ROLE command grants privileges to an
Advanced Server role that exempt the specified role from any defined DBMS_RLS policies:

20

EDB Postgres™ Advanced Server, Release 13

ALTER ROLE role_name
WITH [POLICYEXEMPT | EXEMPT ACCESS POLICY]

This command is the functional equivalent of:

GRANT EXEMPT ACCESS POLICY TO role_name

Use the following command to revoke the privilege:

ALTER ROLE role_name
WITH [NOPOLICYEXEMPT | NO EXEMPT ACCESS POLICY]

Note: The POLICYEXEMPT and NOPOLICYEXEMPT keywords should be considered deprecated syn-
tax; we recommend using the EXEMPT ACCESS POLICY and NO EXEMPT ACCESS POLICY syntax
options.

See Also

CREATE ROLE, DROP ROLE, GRANT , REVOKE, SET ROLE

21

CHAPTER 10

ALTER SEQUENCE

Name

ALTER SEQUENCE -- change the definition of a sequence generator

Synopsis

ALTER SEQUENCE <name> [INCREMENT BY <increment>]
[MINVALUE <minvalue>] [MAXVALUE <maxvalue>]
[CACHE <cache> | NOCACHE] [CYCLE]

Description

ALTER SEQUENCE changes the parameters of an existing sequence generator. Any parameter not specifi-
cally set in the ALTER SEQUENCE command retains its prior setting.

Parameters

name

The name (optionally schema-qualified) of a sequence to be altered.

increment

The clause INCREMENT BY increment is optional. A positive value will make an ascend-
ing sequence, a negative one a descending sequence. If unspecified, the old increment value
will be maintained.

minvalue

The optional clause MINVALUE minvalue determines the minimum value a sequence can
generate. If not specified, the current minimum value will be maintained. Note that the key
words, NO MINVALUE, may be used to set this behavior back to the defaults of 1 and -263-1
for ascending and descending sequences, respectively, however, this term is not compatible with
Oracle databases.

22

EDB Postgres™ Advanced Server, Release 13

maxvalue

The optional clause MAXVALUE maxvalue determines the maximum value for the sequence.
If not specified, the current maximum value will be maintained. Note that the key words,
NO MAXVALUE, may be used to set this behavior back to the defaults of 263-1 and -1 for
ascending and descending sequences, respectively, however, this term is not compatible with
Oracle databases.

cache

The optional clause CACHE cache specifies how many sequence numbers are to be preallo-
cated and stored in memory for faster access. The minimum value is 1 (only one value can be
generated at a time, i.e., NOCACHE). If unspecified, the old cache value will be maintained.

CYCLE

The CYCLE option allows the sequence to wrap around when the maxvalue or minvalue
has been reached by an ascending or descending sequence respectively. If the limit is reached,
the next number generated will be the minvalue or maxvalue, respectively. If not specified,
the old cycle behavior will be maintained. Note that the key words, NO CYCLE, may be used to
alter the sequence so that it does not recycle, however, this term is not compatible with Oracle
databases.

Notes

To avoid blocking of concurrent transactions that obtain numbers from the same sequence, ALTER
SEQUENCE is never rolled back; the changes take effect immediately and are not reversible.

ALTER SEQUENCE will not immediately affect NEXTVAL results in backends, other than the current one,
that have pre-allocated (cached) sequence values. They will use up all cached values prior to noticing the
changed sequence parameters. The current backend will be affected immediately.

Examples

Change the increment and cache value of sequence, serial.

ALTER SEQUENCE serial INCREMENT BY 2 CACHE 5;

See Also

CREATE SEQUENCE, DROP SEQUENCE

23

CHAPTER 11

ALTER SESSION

Name

ALTER SESSION -- change a runtime parameter

Synopsis

ALTER SESSION SET <name> = <value>

Description

The ALTER SESSION command changes runtime configuration parameters. ALTER SESSION only af-
fects the value used by the current session. Some of these parameters are provided solely for compatibility
with Oracle syntax and have no effect whatsoever on the runtime behavior of Advanced Server. Others will
alter a corresponding Advanced Server database server runtime configuration parameter.

Parameters

name

Name of a settable runtime parameter. Available parameters are listed below.

value

New value of parameter.

Configuration Parameters

The following configuration parameters can be modified using the ALTER SESSION com-
mand:

NLS_DATE_FORMAT (string)

24

EDB Postgres™ Advanced Server, Release 13

Sets the display format for date and time values as well as the rules for interpreting ambiguous
date input values. Has the same effect as setting the Advanced Server datestyle runtime
configuration parameter.

NLS_LANGUAGE (string)

Sets the language in which messages are displayed. Has the same effect as setting the Advanced
Server lc_messages runtime configuration parameter.

NLS_LENGTH_SEMANTICS (string)

Valid values are BYTE and CHAR. The default is BYTE. This parameter is provided for syntax
compatibility only and has no effect in the Advanced Server.

OPTIMIZER_MODE (string)

Sets the default optimization mode for queries. Valid values are ALL_ROWS, CHOOSE,
FIRST_ROWS, FIRST_ROWS_10, FIRST_ROWS_100, and FIRST_ROWS_1000. The de-
fault is CHOOSE. This parameter is implemented in Advanced Server.

QUERY_REWRITE_ENABLED (string)

Valid values are TRUE, FALSE, and FORCE. The default is FALSE. This parameter is provided
for syntax compatibility only and has no effect in Advanced Server.

QUERY_REWRITE_INTEGRITY (string)

Valid values are ENFORCED, TRUSTED, and STALE_TOLERATED. The default is
ENFORCED. This parameter is provided for syntax compatibility only and has no effect in
Advanced Server.

Examples

Set the language to U.S. English in UTF-8 encoding. Note that in this example, the value, en_US.UTF-8,
is in the format that must be specified for Advanced Server. This form is not compatible with Oracle
databases.

ALTER SESSION SET NLS_LANGUAGE = 'en_US.UTF-8';

Set the date display format.

ALTER SESSION SET NLS_DATE_FORMAT = 'dd/mm/yyyy';

25

CHAPTER 12

ALTER TABLE

Name

ALTER TABLE -- change the definition of a table

Synopsis

ALTER TABLE <name>
action [, ...]

ALTER TABLE <name>
RENAME COLUMN <column> TO <new_column>

ALTER TABLE <name>
RENAME TO <new_name>

ALTER TABLE <name>
{ NOPARALLEL | PARALLEL [<integer>] }

where action is one of:

ADD <column type> [column_constraint [...]]
DROP COLUMN <column>
ADD <table_constraint>
DROP CONSTRAINT <constraint_name> [CASCADE]

Description

ALTER TABLE changes the definition of an existing table. There are several subforms:

ADD column type

This form adds a new column to the table using the same syntax as CREATE TABLE.

DROP COLUMN

26

EDB Postgres™ Advanced Server, Release 13

This form drops a column from a table. Indexes and table constraints involving the column will
be automatically dropped as well.

ADD table_constraint

This form adds a new constraint to a table; for details, see CREATE TABLE.

DROP CONSTRAINT

This form drops constraints on a table. Currently, constraints on tables are not required to have
unique names, so there may be more than one constraint matching the specified name. All
matching constraints will be dropped.

RENAME

The RENAME forms change the name of a table (or an index, sequence, or view) or the name of
an individual column in a table. There is no effect on the stored data.

The PARALLEL clause sets the degree of parallelism for a table. The NOPARALLEL clause resets the values
to their defaults; reloptions will show the parallel_workers parameter as 0.

A superuser has permission to create a trigger on any user’s table but a user can create a trigger only on the
table they own. However, when the ownership of a table is changed, the ownership of the trigger’s implicit
objects is updated when they are matched with a table owner owning a trigger.

You can use ALTER TRIGGER ...ON AUTHORIZATION command to alter a trigger’s implicit object
owner, for information, see ALTER TRIGGER.

You must own the table to use ALTER TABLE.

Parameters

name

The name (possibly schema-qualified) of an existing table to alter.

column

Name of a new or existing column.

new_column

New name for an existing column.

new_name

New name for the table.

type

Data type of the new column.

table_constraint

New table constraint for the table.

constraint_name

Name of an existing constraint to drop.

CASCADE

27

EDB Postgres™ Advanced Server, Release 13

Automatically drop objects that depend on the dropped constraint.

PARALLEL

Specify PARALLEL to select a degree of parallelism; you can also specify the degree of paral-
lelism by setting the parallel_workers parameter when performing a parallel scan on a
table. If you specify PARALLEL without including a degree of parallelism, the index will use
default parallelism.

NOPARALLEL

Specify NOPARALLEL to reset parallelism to default values.

integer

The integer indicates the degree of parallelism, which is the number of
parallel_workers used in the parallel operation to perform a parallel scan on a
table.

Notes

When you invoke ADD COLUMN, all existing rows in the table are initialized with the column’s default value
(null if no DEFAULT clause is specified). Adding a column with a non-null default will require the entire
table to be rewritten. This may take a significant amount of time for a large table; and it will temporarily
require double the disk space. Adding a CHECK or NOT NULL constraint requires scanning the table to
verify that existing rows meet the constraint.

The DROP COLUMN form does not physically remove the column, but simply makes it invisible to SQL
operations. Subsequent insert and update operations in the table will store a null value for the column. Thus,
dropping a column is quick but it will not immediately reduce the on-disk size of your table, as the space
occupied by the dropped column is not reclaimed. The space will be reclaimed over time as existing rows
are updated.

Changing any part of a system catalog table is not permitted. Refer to CREATE TABLE for a further de-
scription of valid parameters.

Examples

To add a column of type VARCHAR2 to a table:

ALTER TABLE emp ADD address VARCHAR2(30);

To drop a column from a table:

ALTER TABLE emp DROP COLUMN address;

To rename an existing column:

ALTER TABLE emp RENAME COLUMN address TO city;

To rename an existing table:

ALTER TABLE emp RENAME TO employee;

To add a check constraint to a table:

28

EDB Postgres™ Advanced Server, Release 13

ALTER TABLE emp ADD CONSTRAINT sal_chk CHECK (sal > 500);

To remove a check constraint from a table:

ALTER TABLE emp DROP CONSTRAINT sal_chk;

To reset the degree of parallelism to 0 on the emp table:

ALTER TABLE emp NOPARALLEL;

The following example creates a table named dept, and then alters the dept table to define and enable
a unique key on the dname column. The constraint dept_dname_uq identifies the dname column as a
unique key. The USING_INDEX clause creates an index on a table dept with the index statement specified
to enable the unique constraint.

CREATE TABLE dept (
deptno NUMBER(2),
dname VARCHAR2(14),
loc VARCHAR2(13)

);

ALTER TABLE dept
ADD CONSTRAINT dept_dname_uq UNIQUE(dname)

USING INDEX (CREATE UNIQUE INDEX idx_dept_dname_uq ON dept (dname));

The following example creates a table named emp, and then alters the emp table to define and enable a
primary key on the ename column. The emp_ename_pk constraint identifies the column ename as a
primary key of the emp table. The USING_INDEX clause creates an index on a table emp with the index
statement specified to enable the primary constraint.

CREATE TABLE emp (
empno NUMBER(4) NOT NULL,
ename VARCHAR2(10),
job VARCHAR2(9),
sal NUMBER(7,2),
deptno NUMBER(2)

);

ALTER TABLE emp
ADD CONSTRAINT emp_ename_pk PRIMARY KEY (ename)

USING INDEX (CREATE INDEX idx_emp_ename_pk ON emp (ename));

See Also

CREATE TABLE, DROP TABLE

29

CHAPTER 13

ALTER TRIGGER

Name

ALTER TRIGGER -- change the definition of a trigger

Synopsis

Advanced Server supports three variations of the ALTER TRIGGER command. Use the first variation to
change the name of a given trigger without changing the trigger definition.

ALTER TRIGGER <name> ON <table_name> RENAME TO <new_name>

Use the second variation of the ALTER TRIGGER command if the trigger is dependent on an extension; if
the extension is dropped the trigger will automatically be dropped as well.

ALTER TRIGGER <name> ON <table_name> DEPENDS ON EXTENSION <extension_name>

Use the third variation of the ALTER TRIGGER command to change the ownership of a trigger’s object.

ALTER TRIGGER <name> ON <table_name> AUTHORIZATION <rolespec>

For information about using non-compatible implementations of the ALTER TRIGGER command that are
supported by Advanced Server, see the PostgreSQL core documentation at:

https://www.postgresql.org/docs/current/sql-altertrigger.html

Description

ALTER TRIGGER changes the properties of existing trigger. You must own the table on which the trigger
acts to be allowed to change its properties.

To alter an owner of the trigger’s implicit object you can use the ALTER TRIGGER ...ON
AUTHORIZATION command. You must have the privilege to execute ALTER TRIGGER ...ON
AUTHORIZATION command to assign the trigger’s implicit object ownership to a user after authorization.

30

https://www.postgresql.org/docs/current/sql-altertrigger.html

EDB Postgres™ Advanced Server, Release 13

Parameters

name

The name of the trigger to be altered.

table_name

The name of a table on which trigger acts.

rolespec

The rolespec determines an owner of trigger objects.

Examples

The following example includes user bob and carol as superusers. The user bob owns a table emp and
user carol owns a trigger named emp_sal_trig, which is created on table emp:

SELECT relname, relowner::regrole FROM pg_class WHERE relname = 'emp';
relname | relowner

---------+----------
emp | bob

(1 row)

SELECT proname, proowner::regrole FROM pg_proc WHERE oid = (SELECT tgfoid
FROM pg_trigger WHERE tgname = 'emp_sal_trig') ORDER BY oid;
proname | proowner

-------------------+----------
emp_sal_trig_emp | carol

(1 row)

To alter the ownership of table emp from user bob to a new owner edb:

ALTER TABLE emp OWNER TO edb;
ALTER TABLE

SELECT relname, relowner::regrole FROM pg_class WHERE relname = 'emp';
relname | relowner

---------+----------
emp | edb

(1 row)

The table ownership is changed from user bob to an owner edb but the trigger ownership of
emp_sal_trig is not altered and owned by user carol. Now alter the trigger emp_sal_trig on
table emp and grant authorization to an owner edb:

ALTER TRIGGER emp_sal_trig ON emp AUTHORIZATION edb;
ALTER TRIGGER

SELECT proname, proowner::regrole FROM pg_proc WHERE oid = (SELECT tgfoid
FROM pg_trigger WHERE tgname = 'emp_sal_trig') ORDER BY oid;
proname | proowner

------------------+----------

(continues on next page)

31

EDB Postgres™ Advanced Server, Release 13

(continued from previous page)

emp_sal_trig_emp | edb
(1 row)

The trigger ownership emp_sal_trig on table emp is altered and granted to an owner edb.

See Also

CREATE TRIGGER, DROP TRIGGER

32

CHAPTER 14

ALTER TABLESPACE

Name

ALTER TABLESPACE -- change the definition of a tablespace

Synopsis

ALTER TABLESPACE <name> RENAME TO <newname>

Description

ALTER TABLESPACE changes the definition of a tablespace.

Parameters

name

The name of an existing tablespace.

newname

The new name of the tablespace. The new name cannot begin with pg_, as such names are
reserved for system tablespaces.

Examples

Rename tablespace empspace to employee_space:

ALTER TABLESPACE empspace RENAME TO employee_space;

See Also

DROP TABLESPACE

33

CHAPTER 15

ALTER USER. . . IDENTIFIED BY

Name

ALTER USER -- change a database user account

Synopsis

ALTER USER <role_name> IDENTIFIED BY <password> REPLACE <prev_password>

Description

A role without the CREATEROLE privilege may use this command to change their own pass-
word. An unprivileged role must include the REPLACE clause and their previous password if
PASSWORD_VERIFY_FUNCTION is not NULL in their profile. When the REPLACE clause is used by
a non-superuser, the server will compare the password provided to the existing password and raise an error
if the passwords do not match.

A database superuser can use this command to change the password associated with any role. If a superuser
includes the REPLACE clause, the clause is ignored; a non-matching value for the previous password will
not throw an error.

If the role for which the password is being changed has the SUPERUSER attribute, then a superuser must
issue this command. A role with the CREATEROLE attribute can use this command to change the password
associated with a role that is not a superuser.

Parameters

role_name

The name of the role whose password is to be altered.

password

The role’s new password.

34

EDB Postgres™ Advanced Server, Release 13

prev_password

The role’s previous password.

Examples

Change a user password:

ALTER USER john IDENTIFIED BY xyRP35z REPLACE 23PJ74a;

See Also

CREATE USER, DROP USER

35

CHAPTER 16

ALTER USER|ROLE. . . PROFILE MANAGEMENT CLAUSES

Name

ALTER USER|ROLE

Synopsis

ALTER USER|ROLE <name> [[WITH] option[...]

where option can be the following compatible clauses:

PROFILE <profile_name>
| ACCOUNT {LOCK|UNLOCK}
| PASSWORD EXPIRE [AT '<timestamp>']

or option can be the following non-compatible clauses:

| PASSWORD SET AT '<timestamp>'
| LOCK TIME '<timestamp>'
| STORE PRIOR PASSWORD {'<password>' '<timestamp>} [, ...]

For information about the administrative clauses of the ALTER USER or ALTER ROLE command that are
supported by Advanced Server, see the PostgreSQL core documentation available at:

https://www.postgresql.org/docs/current/static/sql-commands.html

Only a database superuser can use the ALTER USER|ROLE clauses that enforce profile management. The
clauses enforce the following behaviors:

Include the PROFILE clause and a profile_name to associate a pre-defined profile with a
role, or to change which pre-defined profile is associated with a user.

Include the ACCOUNT clause and the LOCK or UNLOCK keyword to specify that the user account
should be placed in a locked or unlocked state.

36

https://www.postgresql.org/docs/current/static/sql-commands.html

EDB Postgres™ Advanced Server, Release 13

Include the LOCK TIME 'timestamp' clause and a date/time value to lock the role at the
specified time, and unlock the role at the time indicated by the PASSWORD_LOCK_TIME pa-
rameter of the profile assigned to this role. If LOCK TIME is used with the ACCOUNT LOCK
clause, the role can only be unlocked by a database superuser with the ACCOUNT UNLOCK
clause.

Include the PASSWORD EXPIRE clause with the AT 'timestamp' keywords to specify
a date/time when the password associated with the role will expire. If you omit the AT
'timestamp' keywords, the password will expire immediately.

Include the PASSWORD SET AT 'timestamp' keywords to set the password modification
date to the time specified.

Include the STORE PRIOR PASSWORD {'password' 'timestamp} [, ...]
clause to modify the password history, adding the new password and the time the password
was set.

Each login role may only have one profile. To discover the profile that is currently associated with a login
role, query the profile column of the DBA_USERS view.

Parameters

name

The name of the role with which the specified profile will be associated.

password

The password associated with the role.

profile_name

The name of the profile that will be associated with the role.

timestamp

The date and time at which the clause will be enforced. When specifying a value for
timestamp, enclose the value in single-quotes.

Notes

For information about the Postgres-compatible clauses of the ALTER USER or ALTER ROLE command,
see the PostgreSQL core documentation available at:

https://www.postgresql.org/docs/current/static/sql-alterrole.html

Examples

The following command uses the ALTER USER... PROFILE command to associate a profile named
acctg with a user named john:

ALTER USER john PROFILE acctg_profile;

The following command uses the ALTER ROLE... PROFILE command to associate a profile named
acctg with a user named john:

37

https://www.postgresql.org/docs/current/static/sql-alterrole.html

EDB Postgres™ Advanced Server, Release 13

ALTER ROLE john PROFILE acctg_profile;

See Also

CREATE USER|ROLE. . . PROFILE MANAGEMENT CLAUSES

38

CHAPTER 17

CALL

Name

CALL

Synopsis

CALL <procedure_name> '('[<argument_list>]')'

Description

Use the CALL statement to invoke a procedure. To use the CALL statement, you must have EXECUTE
privileges on the procedure that the CALL statement is invoking.

Parameters

procedure_name

procedure_name is the (optionally schema-qualified) procedure name.

argument_list

argument_list specifies a comma-separated list of arguments required by the procedure.
Note that each member of argument_list corresponds to a formal argument expected by
the procedure. Each formal argument may be an IN parameter, an OUT parameter, or an INOUT
parameter.

Note: You must specify an OUT parameter in the CALL statement when calling a package
function; the OUT parameter will act as an INOUT parameter during package overloading.

Examples

The CALL statement may take one of several forms, depending on the arguments required by the procedure:

39

EDB Postgres™ Advanced Server, Release 13

CALL update_balance();
CALL update_balance(1,2,3);

40

CHAPTER 18

COMMENT

Name

COMMENT -- define or change the comment of an object

Synopsis

COMMENT ON
{

TABLE <table_name> |
COLUMN <table_name.column_name>

} IS '<text>'

Description

COMMENT stores a comment about a database object. To modify a comment, issue a new COMMENT com-
mand for the same object. Only one comment string is stored for each object. To remove a comment,
specify the empty string (two consecutive single quotes with no intervening space) for text. Comments
are automatically dropped when the object is dropped.

Parameters

table_name

The name of the table to be commented. The table name may be schema-qualified.

table_name.column_name

The name of a column within table_name to be commented. The table name may be schema-
qualified.

text

The new comment.

41

EDB Postgres™ Advanced Server, Release 13

Notes

There is presently no security mechanism for comments: any user connected to a database can see all the
comments for objects in that database (although only superusers can change comments for objects that they
don’t own). Do not put security-critical information in a comment.

Examples

Attach a comment to the table emp:

COMMENT ON TABLE emp IS 'Current employee information';

Attach a comment to the empno column of the emp table:

COMMENT ON COLUMN emp.empno IS 'Employee identification number';

Remove these comments:

COMMENT ON TABLE emp IS '';
COMMENT ON COLUMN emp.empno IS '';

42

CHAPTER 19

COMMIT

Name

COMMIT -- commit the current transaction

Synopsis

COMMIT [WORK]

Description

COMMIT commits the current transaction. All changes made by the transaction become visible to others and
are guaranteed to be durable if a crash occurs.

Parameters

WORK

Optional key word - has no effect.

Notes

Use ROLLBACK to abort a transaction. Issuing COMMIT when not inside a transaction does no harm.

Note: Executing a COMMIT in a plpgsql procedure will throw an error if there is an Oracle-style SPL
procedure on the runtime stack.

Examples

To commit the current transaction and make all changes permanent:

COMMIT;

43

EDB Postgres™ Advanced Server, Release 13

See Also

ROLLBACK, ROLLBACK TO SAVEPOINT

44

CHAPTER 20

CREATE DATABASE

Name

CREATE DATABASE -- create a new database

Synopsis

CREATE DATABASE <name>

Description

CREATE DATABASE creates a new database.

To create a database, you must be a superuser or have the special CREATEDB privilege. Normally, the
creator becomes the owner of the new database. Non-superusers with CREATEDB privilege can only create
databases owned by them.

The new database will be created by cloning the standard system database template1.

Parameters

name

The name of the database to be created.

Notes

CREATE DATABASE cannot be executed inside a transaction block.

Errors along the line of “could not initialize database directory” are most likely related to insufficient per-
missions on the data directory, a full disk, or other file system problems.

Examples

To create a new database:

45

EDB Postgres™ Advanced Server, Release 13

CREATE DATABASE employees;

46

CHAPTER 21

CREATE PUBLIC DATABASE LINK

Name

CREATE [PUBLIC] DATABASE LINK -- create a new database link.

Synopsis

CREATE [PUBLIC] DATABASE LINK <name>
CONNECT TO { CURRENT_USER |

<username> IDENTIFIED BY '<password>'}
USING { postgres_fdw '<fdw_connection_string>' |

[oci] '<oracle_connection_string>' }

Description

CREATE DATABASE LINK creates a new database link. A database link is an object that allows a refer-
ence to a table or view in a remote database within a DELETE, INSERT, SELECT or UPDATE command.
A database link is referenced by appending @dblink to the table or view name referenced in the SQL
command where dblink is the name of the database link.

Database links can be public or private. A public database link is one that can be used by any
user. A private database link can be used only by the database link’s owner. Specification of the
PUBLIC option creates a public database link. If omitted, a private database link is created.

When the CREATE DATABASE LINK command is given, the database link name and the given connection
attributes are stored in the Advanced Server system table named, pg_catalog.edb_dblink. When
using a given database link, the database containing the edb_dblink entry defining this database link is
called the local database. The server and database whose connection attributes are defined within the
edb_dblink entry is called the remote database.

A SQL command containing a reference to a database link must be issued while connected to the local
database. When the SQL command is executed, the appropriate authentication and connection is made to
the remote database to access the table or view to which the @dblink reference is appended.

47

EDB Postgres™ Advanced Server, Release 13

Note: A database link cannot be used to access a remote database within a standby database server. Standby
database servers are used for high availability, load balancing, and replication.

For information about high availability, load balancing, and replication for Postgres database servers, see
the PostgreSQL core documentation available at:

https://www.postgresql.org/docs/current/static/high-availability.html

Note: For Advanced Server 12, the CREATE DATABASE LINK command is tested against and certified
for use with Oracle version 10g Release 2 (10.2), Oracle version 11g Release 2 (11.2), and Oracle version
12c Release 1 (12.1).

Note: The edb_dblink_oci.rescans GUC can be set to SCROLL or SERIALIZABLE at the server
level in postgresql.conf file. It can also be set at session level using the SET command, but the setting
will not be applied to existing dblink connections due to dblink connection caching.

The edb_dblink_oci supports both types of rescans: SCROLL and SERIALIZABLE. By default it is
set to SERIALIZABLE. When set to SERIALIZABLE, edb_dblink_oci uses the SERIALIZABLE
transaction isolation level on the Oracle side, which corresponds to PostgreSQL’s REPEATABLE READ:

• This is necessary as a single PostgreSQL statement can lead to multiple Oracle queries and thereby
uses a serializable isolation level to provide consistent results.

• A serialization failure may occur due to a table modification concurrent with long-running DML trans-
actions (for example ADD, UPDATE, or DELETE statements). If such a failure occurs, the OCI re-
ports ORA-08177: can't serialize access for this transaction, and the ap-
plication must retry the transaction.

• A SCROLL rescan will be quick, but with each iteration will reset the current row position to 1. A
SERIALIZABLE rescan has performance benefits over a SCROLL rescan.

Parameters

PUBLIC

Create a public database link that can be used by any user. If omitted, then the database link is
private and can only be used by the database link’s owner.

name

The name of the database link.

username

The username to be used for connecting to the remote database.

CURRENT_USER

Include CURRENT_USER to specify that Advanced Server should use the user mapping asso-
ciated with the role that is using the link when establishing a connection to the remote server.

password

The password for username.

postgres_fdw

48

https://www.postgresql.org/docs/current/static/high-availability.html

EDB Postgres™ Advanced Server, Release 13

Specifies foreign data wrapper postgres_fdw as the connection to a remote Advanced
Server database. If postgres_fdw has not been installed on the database, use the CREATE
EXTENSION command to install postgres_fdw. For more information, see the CREATE
EXTENSION command in the PostgreSQL Core documentation at: https://www.postgresql.org/
docs/current/static/sql-createextension.html

fdw_connection_string

Specify the connection information for the postgres_fdw foreign data wrapper.

oci

Specifies a connection to a remote Oracle database. This is Advanced Server’s default behavior.

oracle_connection_string

Specify the connection information for an oci connection.

Notes

To create a non-public database link you must have the CREATE DATABASE LINK privilege. To create a
public database link you must have the CREATE PUBLIC DATABASE LINK privilege.

Setting up an Oracle Instant Client for oci-dblink

In order to use oci-dblink, an Oracle instant client must be downloaded and installed on the host running the
Advanced Server database in which the database link is to be created.

An instant client can be downloaded from the following site:

http://www.oracle.com/technetwork/database/features/instant-client/index-097480.html

Oracle Instant Client for Linux

The following instructions apply to Linux hosts running Advanced Server.

Be sure the libaio library (the Linux-native asynchronous I/O facility) has already been installed on the
Linux host running Advanced Server.

The libaio library can be installed with the following command:

yum install libaio

If the Oracle instant client that you’ve downloaded does not include the file specifically named
libclntsh.so without a version number suffix, you must create a symbolic link named libclntsh.
so that points to the downloaded version of the library file. Navigate to the instant client directory and
execute the following command:

ln -s libclntsh.so.version libclntsh.so

Where version is the version number of the libclntsh.so library. For example:

ln -s libclntsh.so.12.1 libclntsh.so

When you are executing a SQL command that references a database link to a remote Oracle database,
Advanced Server must know where the Oracle instant client library resides on the Advanced Server host.

49

https://www.postgresql.org/docs/current/static/sql-createextension.html
https://www.postgresql.org/docs/current/static/sql-createextension.html
http://www.oracle.com/technetwork/database/features/instant-client/index-097480.html

EDB Postgres™ Advanced Server, Release 13

The LD_LIBRARY_PATH environment variable must include the path to the Oracle client installation di-
rectory containing the libclntsh.so file. For example, assuming the installation directory containing
libclntsh.so is /tmp/instantclient:

export LD_LIBRARY_PATH=/tmp/instantclient:$LD_LIBRARY_PATH

Note: The LD_LIBRARY_PATH environment variable setting must be in effect when the pg_ctl utility
is executed to start or restart Advanced Server.

If you are running the current session as the user account (for example, enterprisedb) that will di-
rectly invoke pg_ctl to start or restart Advanced Server, then be sure to set LD_LIBRARY_PATH before
invoking pg_ctl.

You can set LD_LIBRARY_PATH within the .bash_profile file under the home directory of
the enterprisedb user account (that is, set LD_LIBRARY_PATH within file ~enterprisedb/
.bash_profile). This ensures that LD_LIBRARY_PATH will be set when you log in as
enterprisedb.

If you are using a Linux service script with the systemctl or service command to start or restart
Advanced Server, you must set LD_LIBRARY_PATH so it is in effect when the script invokes the pg_ctl
utility.

For example, to set an environment variable for Advanced Server, you can create a file
named /etc/systemd/system/edb-as-13.service; include /lib/systemd/system/
edb-as-13.service within the file.

Assuming the LD_LIBRARY_PATH=/tmp/instantclient you can now include the environment
variable by specifying:

[Service]
Environment=LD_LIBRARY_PATH=/tmp/instantclient:$LD_LIBRARY_PATH
Environment=ORACLE_HOME=/tmp/instantclient

Then, use the following command to reload systemd:

systemctl daemon-reload

Then, restart the Advanced Server service with the following command:

systemctl restart edb-as-13

The particular script file that needs to be modified to include the LD_LIBRARY_PATH setting depends
upon the Advanced Server version, the Linux system on which it was installed, and whether it was installed
with the graphical installer or an RPM package.

See the appropriate version of the EDB Postgres Advanced Server Installation Guide to
determine the service script that affects the startup environment. The installation guides can be found at the
following location:

https://www.enterprisedb.com/edb-docs

50

https://www.enterprisedb.com/edb-docs

EDB Postgres™ Advanced Server, Release 13

Oracle Instant Client for Windows

The following instructions apply to Windows hosts running Advanced Server.

When you are executing a SQL command that references a database link to a remote Oracle database,
Advanced Server must know where the Oracle instant client library resides on the Advanced Server host.

Set the Windows PATH system environment variable to include the Oracle client installation directory that
contains the oci.dll file.

As an alternative you, can set the value of the oracle_home configuration parameter in the
postgresql.conf file. The value specified in the oracle_home configuration parameter will override
the Windows PATH environment variable.

To set the oracle_home configuration parameter in the postgresql.conf file, edit the file, adding
the following line:

oracle_home = 'lib_directory'

Substitute the name of the Windows directory that contains oci.dll for lib_directory. For example:

oracle_home = 'C:/tmp/instantclient_10_2'

After setting the PATH environment variable or the oracle_home configuration parameter, you must
restart the server for the changes to take effect. Restart the server from the Windows Services console.

Note: If tnsnames.ora is configured in failover mode, and a client:server failure occurs, the client
connection will be established with a secondary server (usually a backup server). Later, when the primary
server resumes, the client will retain their connection to a secondary server until a new session is established.
The new client connections will automatically be established with the primary server. If the primary and
secondary servers are out-of-sync, then there is a possibility that the clients that have established a connec-
tion to the secondary server and the clients which later connected to the primary server can see a different
database view.

Examples

Creating an oci-dblink Database Link

The following example demonstrates using the CREATE DATABASE LINK command to create a database
link (named chicago) that connects an instance of Advanced Server to an Oracle server via an oci-dblink
connection. The connection information tells Advanced Server to log in to Oracle as user admin, whose
password is mypassword. Including the oci option tells Advanced Server that this is an oci-dblink
connection; the connection string, '//127.0.0.1/acctg' specifies the server address and name of the
database.

CREATE DATABASE LINK chicago
CONNECT TO admin IDENTIFIED BY 'mypassword'
USING oci '//127.0.0.1/acctg';

51

EDB Postgres™ Advanced Server, Release 13

Note: You can specify a hostname in the connection string (in place of an IP address).

Creating a postgres_fdw Database Link

The following example demonstrates using the CREATE DATABASE LINK command to create a database
link (named bedford) that connects an instance of Advanced Server to another Advanced Server instance
via a postgres_fdw foreign data wrapper connection. The connection information tells Advanced Server
to log in as user admin, whose password is mypassword. Including the postgres_fdw option tells
Advanced Server that this is a postgres_fdw connection; the connection string, 'host=127.0.0.1
port=5444 dbname=marketing' specifies the server address and name of the database.

CREATE DATABASE LINK bedford
CONNECT TO admin IDENTIFIED BY 'mypassword'
USING postgres_fdw 'host=127.0.0.1 port=5444 dbname=marketing';

Note: You can specify a hostname in the connection string (in place of an IP address).

Using a Database Link

The following examples demonstrate using a database link with Advanced Server to connect to an Oracle
database. The examples assume that a copy of the Advanced Server sample application’s emp table has been
created in an Oracle database and a second Advanced Server database cluster with the sample application is
accepting connections at port 5443.

Create a public database link named, oralink, to an Oracle database named, xe, located at 127.0.0.1
on port 1521. Connect to the Oracle database with username, edb, and password, password.

CREATE PUBLIC DATABASE LINK oralink CONNECT TO edb IDENTIFIED BY 'password'
USING '//127.0.0.1:1521/xe';

Issue a SELECT command on the emp table in the Oracle database using database link, oralink.

SELECT * FROM emp@oralink;

empno | ename | job | mgr | hiredate | sal | comm | deptno
-------+--------+-----------+------+--------------------+------+------+-----

7369 | SMITH | CLERK | 7902 | 17-DEC-80 00:00:00 | 800 | | 20
7499 | ALLEN | SALESMAN | 7698 | 20-FEB-81 00:00:00 | 1600 | 300 | 30
7521 | WARD | SALESMAN | 7698 | 22-FEB-81 00:00:00 | 1250 | 500 | 30
7566 | JONES | MANAGER | 7839 | 02-APR-81 00:00:00 | 2975 | | 20
7654 | MARTIN | SALESMAN | 7698 | 28-SEP-81 00:00:00 | 1250 | 1400 | 30
7698 | BLAKE | MANAGER | 7839 | 01-MAY-81 00:00:00 | 2850 | | 30
7782 | CLARK | MANAGER | 7839 | 09-JUN-81 00:00:00 | 2450 | | 10
7788 | SCOTT | ANALYST | 7566 | 19-APR-87 00:00:00 | 3000 | | 20
7839 | KING | PRESIDENT | | 17-NOV-81 00:00:00 | 5000 | | 10
7844 | TURNER | SALESMAN | 7698 | 08-SEP-81 00:00:00 | 1500 | 0 | 30
7876 | ADAMS | CLERK | 7788 | 23-MAY-87 00:00:00 | 1100 | | 20
7900 | JAMES | CLERK | 7698 | 03-DEC-81 00:00:00 | 950 | | 30

(continues on next page)

52

EDB Postgres™ Advanced Server, Release 13

(continued from previous page)

7902 | FORD | ANALYST | 7566 | 03-DEC-81 00:00:00 | 3000 | | 20
7934 | MILLER | CLERK | 7782 | 23-JAN-82 00:00:00 | 1300 | | 10

(14 rows)

Create a private database link named, fdwlink, to the Advanced Server database named, edb, located on
host 192.168.2.22 running on port 5444. Connect to the Advanced Server database with username,
enterprisedb, and password, password.

CREATE DATABASE LINK fdwlink CONNECT TO enterprisedb IDENTIFIED BY
'password' USING postgres_fdw 'host=192.168.2.22 port=5444 dbname=edb';

Display attributes of database links, oralink and fdwlink, from the local edb_dblink system table:

SELECT lnkname, lnkuser, lnkconnstr FROM pg_catalog.edb_dblink;

lnkname | lnkuser | lnkconnstr
---------+--------------+--
oralink | edb | //127.0.0.1:1521/xe
fdwlink | enterprisedb |

(2 rows)

Perform a join of the emp table from the Oracle database with the dept table from the Advanced Server
database:

SELECT d.deptno, d.dname, e.empno, e.ename, e.job, e.sal, e.comm FROM
emp@oralink e, dept@fdwlink d WHERE e.deptno = d.deptno ORDER BY 1, 3;

deptno | dname | empno | ename | job | sal | comm
--------+------------+-------+--------+-----------+------+------

10 | ACCOUNTING | 7782 | CLARK | MANAGER | 2450 |
10 | ACCOUNTING | 7839 | KING | PRESIDENT | 5000 |
10 | ACCOUNTING | 7934 | MILLER | CLERK | 1300 |
20 | RESEARCH | 7369 | SMITH | CLERK | 800 |
20 | RESEARCH | 7566 | JONES | MANAGER | 2975 |
20 | RESEARCH | 7788 | SCOTT | ANALYST | 3000 |
20 | RESEARCH | 7876 | ADAMS | CLERK | 1100 |
20 | RESEARCH | 7902 | FORD | ANALYST | 3000 |
30 | SALES | 7499 | ALLEN | SALESMAN | 1600 | 300
30 | SALES | 7521 | WARD | SALESMAN | 1250 | 500
30 | SALES | 7654 | MARTIN | SALESMAN | 1250 | 1400
30 | SALES | 7698 | BLAKE | MANAGER | 2850 |
30 | SALES | 7844 | TURNER | SALESMAN | 1500 | 0
30 | SALES | 7900 | JAMES | CLERK | 950 |

(14 rows)

Pushdown for an oci Database Link

When the oci-dblink is used to execute SQL statements on a remote Oracle database, there are certain
circumstances where pushdown of the processing occurs on the foreign server.

Pushdown refers to the occurrence of processing on the foreign (that is, the remote) server instead of the
local client where the SQL statement was issued. Pushdown can result in performance improvement since

53

EDB Postgres™ Advanced Server, Release 13

the data is processed on the remote server before being returned to the local client.

Pushdown applies to statements with the standard SQL join operations (inner join, left outer join, right outer
join, and full outer join). Pushdown still occurs even when a sort is specified on the resulting data set.

In order for pushdown to occur, certain basic conditions must be met. The tables involved in the join
operation must belong to the same foreign server and use the identical connection information to the foreign
server (that is, the same database link defined with the CREATE DATABASE LINK command).

In order to determine if pushdown is to be used for a SQL statement, display the execution plan by using the
EXPLAIN command.

For information about the EXPLAIN command, see the PostgreSQL Core documentation at:

https://www.postgresql.org/docs/current/static/sql-explain.html

The following examples use the database link created as shown by the following:

CREATE PUBLIC DATABASE LINK oralink CONNECT TO edb IDENTIFIED BY 'password'
USING '//192.168.2.23:1521/xe';

The following example shows the execution plan of an inner join:

EXPLAIN (verbose,costs off) SELECT d.deptno, d.dname, e.empno, e.ename FROM
dept@oralink d, emp@oralink e WHERE d.deptno = e.deptno ORDER BY 1, 3;

QUERY PLAN
--

Foreign Scan

Output: d.deptno, d.dname, e.empno, e.ename
Relations: (_dblink_dept_1 d) INNER JOIN (_dblink_emp_2 e)
Remote Query: SELECT r1.deptno, r1.dname, r2.empno, r2.ename FROM (dept
r1 INNER JOIN emp r2 ON ((r1.deptno = r2.deptno))) ORDER BY r1.deptno
ASC NULLS LAST, r2.empno ASC NULLS LAST

(4 rows)

Note that the INNER JOIN operation occurs under the Foreign Scan section. The output of this join is the
following:

deptno | dname | empno | ename
-------+------------+-------+--------

10 | ACCOUNTING | 7782 | CLARK
10 | ACCOUNTING | 7839 | KING
10 | ACCOUNTING | 7934 | MILLER
20 | RESEARCH | 7369 | SMITH
20 | RESEARCH | 7566 | JONES
20 | RESEARCH | 7788 | SCOTT
20 | RESEARCH | 7876 | ADAMS
20 | RESEARCH | 7902 | FORD
30 | SALES | 7499 | ALLEN
30 | SALES | 7521 | WARD
30 | SALES | 7654 | MARTIN
30 | SALES | 7698 | BLAKE

(continues on next page)

54

https://www.postgresql.org/docs/current/static/sql-explain.html

EDB Postgres™ Advanced Server, Release 13

(continued from previous page)

30 | SALES | 7844 | TURNER
30 | SALES | 7900 | JAMES

(14 rows)

The following shows the execution plan of a left outer join:

EXPLAIN (verbose,costs off) SELECT d.deptno, d.dname, e.empno, e.ename FROM
dept@oralink d LEFT OUTER JOIN emp@oralink e ON d.deptno = e.deptno ORDER
BY 1, 3;

QUERY PLAN
--

Foreign Scan

Output: d.deptno, d.dname, e.empno, e.ename
Relations: (_dblink_dept_1 d) LEFT JOIN (_dblink_emp_2 e)
Remote Query: SELECT r1.deptno, r1.dname, r2.empno, r2.ename FROM (dept
r1 LEFT JOIN emp r2 ON ((r1.deptno = r2.deptno))) ORDER BY r1.deptno ASC
NULLS LAST, r2.empno ASC NULLS LAST

(4 rows)

The output of this join is the following:

deptno | dname | empno | ename
-------+------------+-------+--------

10 | ACCOUNTING | 7782 | CLARK
10 | ACCOUNTING | 7839 | KING
10 | ACCOUNTING | 7934 | MILLER
20 | RESEARCH | 7369 | SMITH
20 | RESEARCH | 7566 | JONES
20 | RESEARCH | 7788 | SCOTT
20 | RESEARCH | 7876 | ADAMS
20 | RESEARCH | 7902 | FORD
30 | SALES | 7499 | ALLEN
30 | SALES | 7521 | WARD
30 | SALES | 7654 | MARTIN
30 | SALES | 7698 | BLAKE
30 | SALES | 7844 | TURNER
30 | SALES | 7900 | JAMES
40 | OPERATIONS | |

(15 rows)

The following example shows a case where the entire processing is not pushed down because the emp joined
table resides locally instead of on the same foreign server.

EXPLAIN (verbose,costs off) SELECT d.deptno, d.dname, e.empno, e.ename FROM
dept@oralink d LEFT OUTER JOIN emp e ON d.deptno = e.deptno ORDER BY 1, 3;

QUERY PLAN
--
Sort

(continues on next page)

55

EDB Postgres™ Advanced Server, Release 13

(continued from previous page)

Output: d.deptno, d.dname, e.empno, e.ename
Sort Key: d.deptno, e.empno
-> Hash Left Join

Output: d.deptno, d.dname, e.empno, e.ename
Hash Cond: (d.deptno = e.deptno)
-> Foreign Scan on _dblink_dept_1 d

Output: d.deptno, d.dname, d.loc
Remote Query: SELECT deptno, dname, NULL FROM dept

-> Hash
Output: e.empno, e.ename, e.deptno
-> Seq Scan on public.emp e

Output: e.empno, e.ename, e.deptno
(13 rows)

The output of this join is the same as the previous left outer join example.

Creating a Foreign Table from a Database Link

Note: The procedure described in this section is not compatible with Oracle databases.

After you have created a database link, you can create a foreign table based upon this database link. The
foreign table can then be used to access the remote table referencing it with the foreign table name instead
of using the database link syntax. Using the database link requires appending @dblink to the table or view
name referenced in the SQL command where dblink is the name of the database link.

This technique can be used for either an oci-dblink connection for remote Oracle access, or a
postgres_fdw connection for remote Postgres access.

The following example shows the creation of a foreign table to access a remote Oracle table.

First, create a database link as previously described. The following is the creation of a database link named
oralink for connecting to the Oracle database.

CREATE PUBLIC DATABASE LINK oralink CONNECT TO edb IDENTIFIED BY 'password'
USING '//127.0.0.1:1521/xe';

The following query shows the database link:

SELECT lnkname, lnkuser, lnkconnstr FROM pg_catalog.edb_dblink;

lnkname | lnkuser | lnkconnstr
---------+---------+---------------------
oralink | edb | //127.0.0.1:1521/xe

(1 row)

When you create the database link, Advanced Server creates a corresponding foreign server. The following
query displays the foreign server:

SELECT srvname, srvowner, srvfdw, srvtype, srvoptions FROM
pg_foreign_server;

(continues on next page)

56

EDB Postgres™ Advanced Server, Release 13

(continued from previous page)

srvname | srvowner | srvfdw | srvtype | srvoptions
---------+----------+--------+---------+-------------------------------
oralink | 10 | 14005 | | {connstr=//127.0.0.1:1521/xe}

(1 row)

For more information about foreign servers, see the CREATE SERVER command in the PostgreSQL Core
documentation at:

https://www.postgresql.org/docs/current/static/sql-createserver.html

Create the foreign table as shown by the following:

CREATE FOREIGN TABLE emp_ora (
empno NUMERIC(4),
ename VARCHAR(10),
job VARCHAR(9),
mgr NUMERIC(4),
hiredate TIMESTAMP WITHOUT TIME ZONE,
sal NUMERIC(7,2),
comm NUMERIC(7,2),
deptno NUMERIC(2)

)
SERVER oralink
OPTIONS (table_name 'emp', schema_name 'edb'

);

Note the following in the CREATE FOREIGN TABLE command:

• The name specified in the SERVER clause at the end of the CREATE FOREIGN TABLE command
is the name of the foreign server, which is oralink in this example as displayed in the srvname
column from the query on pg_foreign_server.

• The table name and schema name are specified in the OPTIONS clause by the table and schema
options.

• The column names specified in the CREATE FOREIGN TABLE command must match the column
names in the remote table.

• Generally, CONSTRAINT clauses may not be accepted or enforced on the foreign table as they are
assumed to have been defined on the remote table.

For more information about the CREATE FOREIGN TABLE command, see the PostgreSQL Core docu-
mentation at:

https://www.postgresql.org/docs/current/static/sql-createforeigntable.html

The following is a query on the foreign table:

SELECT * FROM emp_ora;

empno | ename | job | mgr | hiredate | sal | comm
| deptno

(continues on next page)

57

https://www.postgresql.org/docs/current/static/sql-createserver.html
https://www.postgresql.org/docs/current/static/sql-createforeigntable.html

EDB Postgres™ Advanced Server, Release 13

(continued from previous page)

-------+--------+-----------+------+--------------------+---------+---------
+--------

7369 | SMITH | CLERK | 7902 | 17-DEC-80 00:00:00 | 800.00 |
| 20
7499 | ALLEN | SALESMAN | 7698 | 20-FEB-81 00:00:00 | 1600.00 | 300.00
| 30
7521 | WARD | SALESMAN | 7698 | 22-FEB-81 00:00:00 | 1250.00 | 500.00
| 30
7566 | JONES | MANAGER | 7839 | 02-APR-81 00:00:00 | 2975.00 |
| 20
7654 | MARTIN | SALESMAN | 7698 | 28-SEP-81 00:00:00 | 1250.00 | 1400.00
| 30
7698 | BLAKE | MANAGER | 7839 | 01-MAY-81 00:00:00 | 2850.00 |
| 30
7782 | CLARK | MANAGER | 7839 | 09-JUN-81 00:00:00 | 2450.00 |
| 10
7788 | SCOTT | ANALYST | 7566 | 19-APR-87 00:00:00 | 3000.00 |
| 20
7839 | KING | PRESIDENT | | 17-NOV-81 00:00:00 | 5000.00 |
| 10
7844 | TURNER | SALESMAN | 7698 | 08-SEP-81 00:00:00 | 1500.00 | 0.00
| 30
7876 | ADAMS | CLERK | 7788 | 23-MAY-87 00:00:00 | 1100.00 |
| 20
7900 | JAMES | CLERK | 7698 | 03-DEC-81 00:00:00 | 950.00 |
| 30
7902 | FORD | ANALYST | 7566 | 03-DEC-81 00:00:00 | 3000.00 |
| 20
7934 | MILLER | CLERK | 7782 | 23-JAN-82 00:00:00 | 1300.00 |
| 10

(14 rows)

In contrast, the following is a query on the same remote table, but using the database link instead of the
foreign table:

SELECT * FROM emp@oralink;

empno | ename | job | mgr | hiredate | sal | comm | deptno
-------+--------+-----------+------+--------------------+------+------+-----

7369 | SMITH | CLERK | 7902 | 17-DEC-80 00:00:00 | 800 | | 20
7499 | ALLEN | SALESMAN | 7698 | 20-FEB-81 00:00:00 | 1600 | 300 | 30
7521 | WARD | SALESMAN | 7698 | 22-FEB-81 00:00:00 | 1250 | 500 | 30
7566 | JONES | MANAGER | 7839 | 02-APR-81 00:00:00 | 2975 | | 20
7654 | MARTIN | SALESMAN | 7698 | 28-SEP-81 00:00:00 | 1250 | 1400 | 30
7698 | BLAKE | MANAGER | 7839 | 01-MAY-81 00:00:00 | 2850 | | 30
7782 | CLARK | MANAGER | 7839 | 09-JUN-81 00:00:00 | 2450 | | 10
7788 | SCOTT | ANALYST | 7566 | 19-APR-87 00:00:00 | 3000 | | 20
7839 | KING | PRESIDENT | | 17-NOV-81 00:00:00 | 5000 | | 10
7844 | TURNER | SALESMAN | 7698 | 08-SEP-81 00:00:00 | 1500 | 0 | 30
7876 | ADAMS | CLERK | 7788 | 23-MAY-87 00:00:00 | 1100 | | 20

(continues on next page)

58

EDB Postgres™ Advanced Server, Release 13

(continued from previous page)

7900 | JAMES | CLERK | 7698 | 03-DEC-81 00:00:00 | 950 | | 30
7902 | FORD | ANALYST | 7566 | 03-DEC-81 00:00:00 | 3000 | | 20
7934 | MILLER | CLERK | 7782 | 23-JAN-82 00:00:00 | 1300 | | 10

(14 rows)

Note: For backward compatibility reasons, it is still possible to write USING libpq rather than USING
postgres_fdw. However, the libpq connector is missing many important optimizations which are
present in the postgres_fdw connector. Therefore, the postgres_fdw connector should be used
whenever possible. The libpq option is deprecated and may be removed entirely in a future Advanced
Server release.

See Also

DROP DATABASE LINK

59

CHAPTER 22

CREATE DIRECTORY

Name

CREATE DIRECTORY -- create an alias for a file system directory path

Synopsis

CREATE DIRECTORY <name> AS '<pathname>'

Description

The CREATE DIRECTORY command creates an alias for a file system directory pathname. You must be a
database superuser to use this command.

When the alias is specified as the appropriate parameter to the programs of the UTL_FILE package, the
operating system files are created in, or accessed from the directory corresponding to the given alias.

Parameters

name

The directory alias name.

pathname

The fully-qualified directory path represented by the alias name. The CREATE DIRECTORY
command does not create the operating system directory. The physical directory must be created
independently using the appropriate operating system commands.

Notes

The operating system user id, enterprisedb, must have the appropriate read and/or write privileges on
the directory if the UTL_FILE package is to be used to create and/or read files using the directory.

60

EDB Postgres™ Advanced Server, Release 13

The directory alias is stored in the pg_catalog.edb_dir system catalog table. Note that edb_dir is
not a table compatible with Oracle databases.

The directory alias can also be viewed from the Oracle catalog views SYS.ALL_DIRECTORIES and SYS.
DBA_DIRECTORIES, which are compatible with Oracle databases.

Use the DROP DIRECTORY command to delete the directory alias. When a directory alias is deleted, the
corresponding physical file system directory is not affected. The file system directory must be deleted using
the appropriate operating system commands.

In a Linux system, the directory name separator is a forward slash (/).

In a Windows system, the directory name separator can be specified as a forward slash (/) or two consec-
utive backslashes (\\).

Examples

Create an alias named empdir for directory /tmp/empdir on Linux:

CREATE DIRECTORY empdir AS '/tmp/empdir';

Create an alias named empdir for directory C:\TEMP\EMPDIR on Windows:

CREATE DIRECTORY empdir AS 'C:/TEMP/EMPDIR';

View all of the directory aliases:

SELECT * FROM pg_catalog.edb_dir;

dirname | dirowner | dirpath | diracl
--------+----------+----------------+--------
empdir | 10 | C:/TEMP/EMPDIR |

(1 row)

View the directory aliases using a view compatible with Oracle databases:

SELECT * FROM SYS.ALL_DIRECTORIES;

owner | directory_name | directory_path
--------------+----------------+----------------
ENTERPRISEDB | EMPDIR | C:/TEMP/EMPDIR

(1 row)

See Also

ALTER DIRECTORY , DROP DIRECTORY

61

CHAPTER 23

CREATE FUNCTION

Name

CREATE FUNCTION -- define a new function

Synopsis

CREATE [OR REPLACE] FUNCTION <name> [(<parameters>)]
RETURN <data_type>
[

IMMUTABLE
| STABLE
| VOLATILE
| DETERMINISTIC
| [NOT] LEAKPROOF
| CALLED ON NULL INPUT
| RETURNS NULL ON NULL INPUT
| STRICT
| [EXTERNAL] SECURITY INVOKER
| [EXTERNAL] SECURITY DEFINER
| AUTHID DEFINER
| AUTHID CURRENT_USER
| PARALLEL { UNSAFE | RESTRICTED | SAFE }
| COST <execution_cost>
| ROWS <result_rows>
| SET configuration_parameter

{ TO <value> | = <value> | FROM CURRENT }
...]

{ IS | AS }
[PRAGMA AUTONOMOUS_TRANSACTION;]
[<declarations>]

BEGIN

(continues on next page)

62

EDB Postgres™ Advanced Server, Release 13

(continued from previous page)

<statements>
END [<name>];

Description

CREATE FUNCTION defines a new function. CREATE OR REPLACE FUNCTION will either create a
new function, or replace an existing definition.

If a schema name is included, then the function is created in the specified schema. Otherwise it is created in
the current schema. The name of the new function must not match any existing function with the same input
argument types in the same schema. However, functions of different input argument types may share a name
(this is called overloading). (Overloading of functions is an Advanced Server feature - overloading of
stored, standalone functions is not compatible with Oracle databases.)

To update the definition of an existing function, use CREATE OR REPLACE FUNCTION. It is not possible
to change the name or argument types of a function this way (if you tried, you would actually be creating
a new, distinct function). Also, CREATE OR REPLACE FUNCTION will not let you change the return
type of an existing function. To do that, you must drop and recreate the function. Also when using OUT
parameters, you cannot change the types of any OUT parameters except by dropping the function.

The user that creates the function becomes the owner of the function.

Parameters

name

name is the identifier of the function.

parameters

parameters is a list of formal parameters.

data_type

data_type is the data type of the value returned by the function’s RETURN statement.

declarations

declarations are variable, cursor, type, or subprogram declarations. If subprogram decla-
rations are included, they must be declared after all other variable, cursor, and type declarations.

statements

statements are SPL program statements (the BEGIN - END block may contain an
EXCEPTION section).

IMMUTABLE

STABLE

VOLATILE

These attributes inform the query optimizer about the behavior of the function; you can specify
only one choice. VOLATILE is the default behavior.

IMMUTABLE indicates that the function cannot modify the database and always reaches the
same result when given the same argument values; it does not do database lookups or otherwise

63

EDB Postgres™ Advanced Server, Release 13

use information not directly present in its argument list. If you include this clause, any call of
the function with all-constant arguments can be immediately replaced with the function value.

STABLE indicates that the function cannot modify the database, and that within a single table
scan, it will consistently return the same result for the same argument values, but that its result
could change across SQL statements. This is the appropriate selection for function that depend
on database lookups, parameter variables (such as the current time zone), etc.

VOLATILE indicates that the function value can change even within a single table scan, so no
optimizations can be made. Please note that any function that has side-effects must be classified
volatile, even if its result is quite predictable, to prevent calls from being optimized away.

DETERMINISTIC

DETERMINISTIC is a synonym for IMMUTABLE. A DETERMINISTIC function cannot
modify the database and always reaches the same result when given the same argument val-
ues; it does not do database lookups or otherwise use information not directly present in its
argument list. If you include this clause, any call of the function with all-constant arguments
can be immediately replaced with the function value.

[NOT] LEAKPROOF

A LEAKPROOF function has no side effects, and reveals no information about the values used
to call the function.

CALLED ON NULL INPUT

RETURNS NULL ON NULL INPUT

STRICT

CALLED ON NULL INPUT (the default) indicates that the procedure will be called normally
when some of its arguments are NULL. It is the author’s responsibility to check for NULL values
if necessary and respond appropriately.

RETURNS NULL ON NULL INPUT or STRICT indicates that the procedure always returns
NULL whenever any of its arguments are NULL. If these clauses are specified, the procedure is
not executed when there are NULL arguments; instead a NULL result is assumed automatically.

[EXTERNAL] SECURITY DEFINER

SECURITY DEFINER specifies that the function will execute with the privileges of the user
that created it; this is the default. The key word EXTERNAL is allowed for SQL conformance,
but is optional.

[EXTERNAL] SECURITY INVOKER

The SECURITY INVOKER clause indicates that the function will execute with the privileges
of the user that calls it. The key word EXTERNAL is allowed for SQL conformance, but is
optional.

AUTHID DEFINER

AUTHID CURRENT_USER

64

EDB Postgres™ Advanced Server, Release 13

The AUTHID DEFINER clause is a synonym for [EXTERNAL] SECURITY DEFINER. If
the AUTHID clause is omitted or if AUTHID DEFINER is specified, the rights of the function
owner are used to determine access privileges to database objects.

The AUTHID CURRENT_USER clause is a synonym for [EXTERNAL] SECURITY
INVOKER. If AUTHID CURRENT_USER is specified, the rights of the current user execut-
ing the function are used to determine access privileges.

PARALLEL { UNSAFE | RESTRICTED | SAFE }

The PARALLEL clause enables the use of parallel sequential scans (parallel mode). A parallel
sequential scan uses multiple workers to scan a relation in parallel during a query in contrast to
a serial sequential scan.

When set to UNSAFE, the function cannot be executed in parallel mode. The presence of such
a function in a SQL statement forces a serial execution plan. This is the default setting if the
PARALLEL clause is omitted.

When set to RESTRICTED, the function can be executed in parallel mode, but the execution is
restricted to the parallel group leader. If the qualification for any particular relation has anything
that is parallel restricted, that relation won’t be chosen for parallelism.

When set to SAFE, the function can be executed in parallel mode with no restriction.

COST execution_cost

execution_cost is a positive number giving the estimated execution cost for the function,
in units of cpu_operator_cost. If the function returns a set, this is the cost per returned
row. Larger values cause the planner to try to avoid evaluating the function more often than
necessary.

ROWS result_rows

result_rows is a positive number giving the estimated number of rows that the planner
should expect the function to return. This is only allowed when the function is declared to
return a set. The default assumption is 1000 rows.

SET configuration_parameter { TO value | = value | FROM CURRENT }

The SET clause causes the specified configuration parameter to be set to the specified value
when the function is entered, and then restored to its prior value when the function exits. SET
FROM CURRENT saves the session’s current value of the parameter as the value to be applied
when the function is entered.

If a SET clause is attached to a function, then the effects of a SET LOCAL command executed
inside the function for the same variable are restricted to the function; the configuration pa-
rameter’s prior value is restored at function exit. An ordinary SET command (without LOCAL)
overrides the SET clause, much as it would do for a previous SET LOCAL command, with
the effects of such a command persisting after procedure exit, unless the current transaction is
rolled back.

PRAGMA AUTONOMOUS_TRANSACTION

PRAGMA AUTONOMOUS_TRANSACTION is the directive that sets the function as an au-
tonomous transaction.

65

EDB Postgres™ Advanced Server, Release 13

Note: The STRICT, LEAKPROOF, PARALLEL, COST, ROWS and SET keywords provide extended func-
tionality for Advanced Server and are not supported by Oracle.

Notes

Advanced Server allows function overloading; that is, the same name can be used for several different
functions so long as they have distinct input (IN, IN OUT) argument data types.

Examples

The function emp_comp takes two numbers as input and returns a computed value. The SELECT command
illustrates use of the function.

CREATE OR REPLACE FUNCTION emp_comp (
p_sal NUMBER,
p_comm NUMBER

) RETURN NUMBER
IS
BEGIN

RETURN (p_sal + NVL(p_comm, 0)) * 24;
END;

SELECT ename "Name", sal "Salary", comm "Commission", emp_comp(sal, comm)
"Total Compensation" FROM emp;

Name | Salary | Commission | Total Compensation
--------+---------+------------+--------------------
SMITH | 800.00 | | 19200.00
ALLEN | 1600.00 | 300.00 | 45600.00
WARD | 1250.00 | 500.00 | 42000.00
JONES | 2975.00 | | 71400.00
MARTIN | 1250.00 | 1400.00 | 63600.00
BLAKE | 2850.00 | | 68400.00
CLARK | 2450.00 | | 58800.00
SCOTT | 3000.00 | | 72000.00
KING | 5000.00 | | 120000.00
TURNER | 1500.00 | 0.00 | 36000.00
ADAMS | 1100.00 | | 26400.00
JAMES | 950.00 | | 22800.00
FORD | 3000.00 | | 72000.00
MILLER | 1300.00 | | 31200.00

(14 rows)

Function sal_range returns a count of the number of employees whose salary falls in the specified range.
The following anonymous block calls the function a number of times using the arguments’ default values
for the first two calls.

CREATE OR REPLACE FUNCTION sal_range (
p_sal_min NUMBER DEFAULT 0,
p_sal_max NUMBER DEFAULT 10000

) RETURN INTEGER

(continues on next page)

66

EDB Postgres™ Advanced Server, Release 13

(continued from previous page)

IS
v_count INTEGER;

BEGIN
SELECT COUNT(*) INTO v_count FROM emp

WHERE sal BETWEEN p_sal_min AND p_sal_max;
RETURN v_count;

END;

BEGIN
DBMS_OUTPUT.PUT_LINE('Number of employees with a salary: ' ||

sal_range);
DBMS_OUTPUT.PUT_LINE('Number of employees with a salary of at least '

|| '$2000.00: ' || sal_range(2000.00));
DBMS_OUTPUT.PUT_LINE('Number of employees with a salary between '

|| '$2000.00 and $3000.00: ' || sal_range(2000.00, 3000.00));

END;

Number of employees with a salary: 14
Number of employees with a salary of at least $2000.00: 6
Number of employees with a salary between $2000.00 and $3000.00: 5

The following example demonstrates using the AUTHID CURRENT_USER clause and STRICT keyword
in a function declaration:

CREATE OR REPLACE FUNCTION dept_salaries(dept_id int) RETURN NUMBER
STRICT
AUTHID CURRENT_USER

BEGIN
RETURN QUERY (SELECT sum(salary) FROM emp WHERE deptno = id);

END;

Include the STRICT keyword to instruct the server to return NULL if any input parameter passed is NULL;
if a NULL value is passed, the function will not execute.

The dept_salaries function executes with the privileges of the role that is calling the function. If the
current user does not have sufficient privileges to perform the SELECT statement querying the emp table
(to display employee salaries), the function will report an error. To instruct the server to use the privileges
associated with the role that defined the function, replace the AUTHID CURRENT_USER clause with the
AUTHID DEFINER clause.

Other Pragmas (declared within a package specification)

PRAGMA RESTRICT_REFERENCES

Advanced Server accepts but ignores syntax referencing PRAGMA
RESTRICT_REFERENCES.

See Also

DROP FUNCTION

67

CHAPTER 24

CREATE INDEX

Name

CREATE INDEX -- define a new index

Synopsis

CREATE [UNIQUE] INDEX <name> ON <table>
({ <column> | (<expression>) | <constant> })
[TABLESPACE <tablespace>]
({ NOPARALLEL | PARALLEL [<integer>] })

Description

CREATE INDEX constructs an index, name, on the specified table. Indexes are primarily used to enhance
database performance (though inappropriate use will result in slower performance).

The key field(s) for the index are specified as column names, constants, or as expressions written in paren-
theses. Multiple fields can be specified to create multicolumn indexes.

An index field can be an expression computed from the values of one or more columns of the table row.
This feature can be used to obtain fast access to data based on some transformation of the basic data. For
example, an index computed on UPPER(col) would allow the clause WHERE UPPER(col) = 'JIM'
to use an index.

Advanced Server provides the B-tree index method. The B-tree index method is an implementation of
Lehman-Yao high-concurrency B-trees.

Indexes are not used for IS NULL clauses by default.

All functions and operators used in an index definition must be “immutable”, that is, their results must
depend only on their arguments and never on any outside influence (such as the contents of another table or
the current time). This restriction ensures that the behavior of the index is well-defined. To use a user-defined
function in an index expression remember to mark the function immutable when you create it.

68

EDB Postgres™ Advanced Server, Release 13

If you create an index on a partitioned table, the CREATE INDEX command does propagate indexes to the
table’s subpartitions.

The PARALLEL clause specifies the degree of parallelism used during the creation of an index.
The NOPARALLEL clause resets the parallelism to the default value; reloptions will show the
parallel_workers parameter as 0.

Note: If you use the CREATE INDEX... PARALLEL command to create an index on a table whose
definition included the PARALLEL clause (at creation), the server will use the PARALLEL clause provided
with the CREATE INDEX command when building a parallel index.

Parameters

UNIQUE

Causes the system to check for duplicate values in the table when the index is created (if data
already exist) and each time data is added. Attempts to insert or update data which would result
in duplicate entries will generate an error.

name

The name of the index to be created. No schema name can be included here; the index is always
created in the same schema as its parent table.

table

The name (possibly schema-qualified) of the table to be indexed.

column

The name of a column in the table.

expression

An expression based on one or more columns of the table. The expression usually must be
written with surrounding parentheses, as shown in the syntax. However, the parentheses may
be omitted if the expression has the form of a function call.

constant

A constant value that can be used as an index key.

Normally, a row where all indexed columns are NULL is not included in an index. That means
that the optimizer cannot use that index for certain queries. To overcome this limitation, you
can add a constant to the index, thereby forcing the index to never contain a row where all index
columns are NULL.

tablespace

The tablespace in which to create the index. If not specified, default_tablespace is used,
or the database’s default tablespace if default_tablespace is an empty string.

PARALLEL

69

EDB Postgres™ Advanced Server, Release 13

Specify PARALLEL to select a degree of parallelism; set parallel_workers parameter
equal to the degree of parallelism to create a parallelized index. Alternatively, if you specify
PARALLEL but no degree of parallelism is listed, an index accepts default parallelism.

NOPARALLEL

Specify NOPARALLEL for default execution.

integer

The integer indicates the degree of parallelism, which is a number of
parallel_workers used in the parallel operation to perform a parallel scan on an
index.

Notes

Up to 32 fields may be specified in a multicolumn index.

Examples

To create a B-tree index on the column, ename, in the table, emp:

CREATE INDEX name_idx ON emp (ename);

To create the same index as above, but have it reside in the index_tblspc tablespace:

CREATE INDEX name_idx ON emp (ename) TABLESPACE index_tblspc;

You can include a constant value in the index definition (1) to create an index that never contains a row
where all of the indexed columns are NULL:

CREATE INDEX emp_dob_idx on emp (emp_dob, 1);

To create an index on name_idx in the table emp with degree of parallelism set to 7:

CREATE UNIQUE INDEX name_idx ON emp (ename) PARALLEL 7;

See Also

ALTER INDEX, DROP INDEX

70

CHAPTER 25

CREATE MATERIALIZED VIEW

Name

CREATE MATERIALIZED VIEW -- define a new materialized view

Synopsis

CREATE MATERIALIZED VIEW <name>
[<build_clause>][<create_mv_refresh>] AS subquery

Where <build_clause> is:

BUILD {IMMEDIATE | DEFERRED}

Where <create_mv_refresh> is:

REFRESH [COMPLETE] [ON DEMAND]``

Description

CREATE MATERIALIZED VIEW defines a view of a query that is not updated each time the view is
referenced in a query. By default, the view is populated when the view is created; you can include the
BUILD DEFERRED keywords to delay the population of the view.

A materialized view may be schema-qualified; if you specify a schema name when invoking the CREATE
MATERIALIZED VIEW command, the view will be created in the specified schema. The view name must
be distinct from the name of any other view, table, sequence, or index in the same schema.

Parameters

name

The name (optionally schema-qualified) of a view to be created.

71

EDB Postgres™ Advanced Server, Release 13

subquery

A SELECT statement that specifies the contents of the view. Refer to SELECT for more infor-
mation about valid queries.

build_clause

Include a build_clause to specify when the view should be populated. Specify BUILD
IMMEDIATE, or BUILD DEFERRED:

• BUILD IMMEDIATE instructs the server to populate the view immediately. This is the
default behavior.

• BUILD DEFERRED instructs the server to populate the view at a later time (during a
REFRESH operation).

create_mv_refresh

Include the create_mv_refresh clause to specify when the contents of a materialized view
should be updated. The clause contains the REFRESH keyword followed by COMPLETE and/or
ON DEMAND, where:

• COMPLETE instructs the server to discard the current content and reload the materialized
view by executing the view’s defining query when the materialized view is refreshed.

• ON DEMAND instructs the server to refresh the materialized view on demand by calling the
DBMS_MVIEW package or by calling the Postgres REFRESH MATERIALIZED VIEW
statement. This is the default behavior.

Notes

Materialized views are read only - the server will not allow an INSERT, UPDATE, or DELETE on a view.

Access to tables referenced in the view is determined by permissions of the view owner; the user of a view
must have permissions to call all functions used by the view.

For more information about the Postgres REFRESH MATERIALIZED VIEW command, see the Post-
greSQL Core Documentation available at:

https://www.postgresql.org/docs/current/static/sql-refreshmaterializedview.html

Examples

The following statement creates a materialized view named dept_30:

CREATE MATERIALIZED VIEW dept_30 BUILD IMMEDIATE AS SELECT * FROM emp
WHERE deptno = 30;

The view contains information retrieved from the emp table about any employee that works in department
30.

72

https://www.postgresql.org/docs/current/static/sql-refreshmaterializedview.html

CHAPTER 26

CREATE PACKAGE

Name

CREATE PACKAGE -- define a new package specification

Synopsis

CREATE [OR REPLACE] PACKAGE <name>
[AUTHID { DEFINER | CURRENT_USER }]
{ IS | AS }

[<declaration>;] [, ...]
[{ PROCEDURE <proc_name>

[(<argname> [IN | IN OUT | OUT] <argtype> [DEFAULT value]
[, ...])];

[PRAGMA RESTRICT_REFERENCES(<name>,
{ RNDS | RNPS | TRUST | WNDS | WNPS } [, ...]);]

|
FUNCTION <func_name>
[(<argname> [IN | IN OUT | OUT] <argtype> [DEFAULT value]

[, ...])]
RETURN <rettype> [DETERMINISTIC];
[PRAGMA RESTRICT_REFERENCES(<name>,

{ RNDS | RNPS | TRUST | WNDS | WNPS } [, ...]);]
}

] [, ...]
END [<name>]

Description

CREATE PACKAGE defines a new package specification. CREATE OR REPLACE PACKAGE will either
create a new package specification, or replace an existing specification.

If a schema name is included, then the package is created in the specified schema. Otherwise it is created

73

EDB Postgres™ Advanced Server, Release 13

in the current schema. The name of the new package must not match any existing package in the same
schema unless the intent is to update the definition of an existing package, in which case use CREATE OR
REPLACE PACKAGE.

The user that creates the procedure becomes the owner of the package.

Parameters

name

The name (optionally schema-qualified) of the package to create.

DEFINER | CURRENT_USER

Specifies whether the privileges of the package owner (DEFINER) or the privileges of the cur-
rent user executing a program in the package (CURRENT_USER) are to be used to determine
whether or not access is allowed to database objects referenced in the package. DEFINER is
the default.

declaration

A public variable, type, cursor, or REF CURSOR declaration.

proc_name

The name of a public procedure.

argname

The name of an argument.

IN | IN OUT | OUT

The argument mode.

argtype

The data type(s) of the program’s arguments.

DEFAULT value

Default value of an input argument.

func_name

The name of a public function.

rettype

The return data type.

DETERMINISTIC

DETERMINISTIC is a synonym for IMMUTABLE. A DETERMINISTIC procedure cannot
modify the database and always reaches the same result when given the same argument values;
it does not do database lookups or otherwise use information not directly present in its argument
list. If you include this clause, any call of the procedure with all-constant arguments can be
immediately replaced with the procedure value.

RNDS | RNPS | TRUST | WNDS | WNPS

74

EDB Postgres™ Advanced Server, Release 13

The keywords are accepted for compatibility and ignored.

Examples

The package specification, empinfo, contains three public components - a public variable, a public proce-
dure, and a public function.

CREATE OR REPLACE PACKAGE empinfo
IS

emp_name VARCHAR2(10);
PROCEDURE get_name (

p_empno NUMBER
);
FUNCTION display_counter
RETURN INTEGER;

END;

See Also

DROP PACKAGE

75

CHAPTER 27

CREATE PACKAGE BODY

Name

CREATE PACKAGE BODY -- define a new package body

Synopsis

CREATE [OR REPLACE] PACKAGE BODY <name>
{ IS | AS }

[declaration;] | [forward_declaration] [, ...]
[{ PROCEDURE <proc_name>

[(<argname> [IN | IN OUT | OUT] <argtype> [DEFAULT <value>] [,
...])]
[STRICT]
[LEAKPROOF]
[PARALLEL { UNSAFE | RESTRICTED | SAFE }]
[COST <execution_cost>]
[ROWS <result_rows>]
[SET <config_param> { TO <value> | = <value> | FROM CURRENT }]

{ IS | AS }
<program_body>

END [<proc_name>];
|

FUNCTION <func_name>
[(<argname> [IN | IN OUT | OUT] <argtype> [DEFAULT <value>] [,
...])]
RETURN <rettype> [DETERMINISTIC]
[STRICT]
[LEAKPROOF]
[PARALLEL { UNSAFE | RESTRICTED | SAFE }]
[COST <execution_cost>]
[ROWS <result_rows>]

(continues on next page)

76

EDB Postgres™ Advanced Server, Release 13

(continued from previous page)

[SET <config_param> { TO <value> | = <value> | FROM CURRENT }]
{ IS | AS }

<program_body>
END [<func_name>];

}
] [, ...]
[BEGIN

<statement>; [, ...]]
END [<name>]

Where forward_declaration:=

[{ PROCEDURE <proc_name>
[(<argname> [IN | IN OUT | OUT] <argtype> [DEFAULT <value>] [, ...])
] ;]

|
[{ FUNCTION <func_name>

[(<argname> [IN | IN OUT | OUT] <argtype> [DEFAULT <value>] [, ...])
]
RETURN <rettype> [DETERMINISTIC];]

Description

CREATE PACKAGE BODY defines a new package body. CREATE OR REPLACE PACKAGE BODYwill
either create a new package body, or replace an existing body.

If a schema name is included, then the package body is created in the specified schema. Otherwise it
is created in the current schema. The name of the new package body must match an existing package
specification in the same schema. The new package body name must not match any existing package body
in the same schema unless the intent is to update the definition of an existing package body, in which case
use CREATE OR REPLACE PACKAGE BODY.

Parameters

name

The name (optionally schema-qualified) of the package body to create.

declaration

A private variable, type, cursor, or REF CURSOR declaration.

forward_declaration

The forward declaration of a procedure or function appears within a package body and is de-
clared in advance of the actual body definition. In a block, you can create multiple subprograms;
if they invoke each other, each one requires a forward declaration. A subprogram must be de-
clared before it can be invoked. You can use a forward declaration to declare a subprogram
without defining it. The forward declaration and its corresponding definition must reside in the
same block.

proc_name

77

EDB Postgres™ Advanced Server, Release 13

The name of a public or private procedure. If proc_name exists in the package specification
with an identical signature, then it is public, otherwise it is private.

argname

The name of an argument.

IN | IN OUT | OUT

The argument mode.

argtype

The data type(s) of the program’s arguments.

DEFAULT value

Default value of an input argument.

STRICT

The STRICT keyword specifies that the function will not be executed if called with a NULL
argument; instead the function will return NULL.

LEAKPROOF

The LEAKPROOF keyword specifies that the function will not reveal any information about
arguments, other than through a return value.

PARALLEL { UNSAFE | RESTRICTED | SAFE }

The PARALLEL clause enables the use of parallel sequential scans (parallel mode). A parallel
sequential scan uses multiple workers to scan a relation in parallel during a query in contrast to
a serial sequential scan.

When set to UNSAFE, the procedure or function cannot be executed in parallel mode. The
presence of such a procedure or function forces a serial execution plan. This is the default
setting if the PARALLEL clause is omitted.

When set to RESTRICTED, the procedure or function can be executed in parallel mode, but the
execution is restricted to the parallel group leader. If the qualification for any particular relation
has anything that is parallel restricted, that relation won’t be chosen for parallelism.

When set to SAFE, the procedure or function can be executed in parallel mode with no restric-
tion.

execution_cost

execution_cost specifies a positive number giving the estimated execution cost for the
function, in units of cpu_operator_cost. If the function returns a set, this is the cost per
returned row. The default is 0.0025.

result_rows

result_rows is the estimated number of rows that the query planner should expect the func-
tion to return. The default is 1000.

SET

78

EDB Postgres™ Advanced Server, Release 13

Use the SET clause to specify a parameter value for the duration of the function:

config_param specifies the parameter name.

value specifies the parameter value.

FROM CURRENT guarantees that the parameter value is restored when the function
ends.

program_body

The pragma, declarations, and SPL statements that comprise the body of the function or proce-
dure.

The pragma may be PRAGMA AUTONOMOUS_TRANSACTION to set the function or procedure
as an autonomous transaction.

The declarations may include variable, type, REF CURSOR, or subprogram declarations. If
subprogram declarations are included, they must be declared after all other variable, type, and
REF CURSOR declarations.

func_name

The name of a public or private function. If func_name exists in the package specification
with an identical signature, then it is public, otherwise it is private.

rettype

The return data type.

DETERMINISTIC

Include DETERMINISTIC to specify that the function will always return the same result when
given the same argument values. A DETERMINISTIC function must not modify the database.

Note: The DETERMINISTIC keyword is equivalent to the PostgreSQL IMMUTABLE option.
If DETERMINISTIC is specified for a public function in the package body, it must also be
specified for the function declaration in the package specification. For private functions, there
is no function declaration in the package specification.

statement

An SPL program statement. Statements in the package initialization section are executed once
per session the first time the package is referenced.

Note: The STRICT, LEAKPROOF, PARALLEL, COST, ROWS and SET keywords provide extended func-
tionality for Advanced Server and are not supported by Oracle.

Examples

The following is the package body for the empinfo package.

79

EDB Postgres™ Advanced Server, Release 13

CREATE OR REPLACE PACKAGE BODY empinfo
IS

v_counter INTEGER;
PROCEDURE get_name (

p_empno NUMBER
)
IS
BEGIN

SELECT ename INTO emp_name FROM emp WHERE empno = p_empno;
v_counter := v_counter + 1;

END;
FUNCTION display_counter
RETURN INTEGER
IS
BEGIN

RETURN v_counter;
END;

BEGIN
v_counter := 0;
DBMS_OUTPUT.PUT_LINE('Initialized counter');

END;

The following two anonymous blocks execute the procedure and function in the empinfo package and
display the public variable.

BEGIN
empinfo.get_name(7369);
DBMS_OUTPUT.PUT_LINE('Employee Name : ' || empinfo.emp_name);
DBMS_OUTPUT.PUT_LINE('Number of queries: ' || empinfo.display_counter);

END;

Initialized counter
Employee Name : SMITH
Number of queries: 1

BEGIN
empinfo.get_name(7900);
DBMS_OUTPUT.PUT_LINE('Employee Name : ' || empinfo.emp_name);
DBMS_OUTPUT.PUT_LINE('Number of queries: ' || empinfo.display_counter);

END;

Employee Name : JAMES
Number of queries: 2

The following example demonstrates the use of a forward declaration within a package body. The example
displays the name and number of employees whose salary falls in the specified range.

CREATE OR REPLACE PACKAGE empinfo IS
FUNCTION emp_comp (p_sal_range INTEGER) RETURN INTEGER;

END empinfo;

CREATE OR REPLACE PACKAGE BODY empinfo IS

(continues on next page)

80

EDB Postgres™ Advanced Server, Release 13

(continued from previous page)

FUNCTION sal_range (p_sal_range INTEGER) RETURN INTEGER;
PROCEDURE list_emp (p_sal_range INTEGER);

FUNCTION emp_comp (p_sal_range INTEGER) RETURN INTEGER IS
BEGIN

dbms_output.put_line ('Employee details');
return sal_range(p_sal_range);

END;

FUNCTION sal_range (p_sal_range INTEGER) RETURN INTEGER IS
emp_cnt INTEGER;

BEGIN
select count(*) into emp_cnt from emp where sal <= p_sal_range;
dbms_output.put_line('Number of employees in the salary range ' ||

p_sal_range|| ' is :'|| emp_cnt);
list_emp(p_sal_range);
return emp_cnt;

END;

PROCEDURE list_emp (p_sal_range IN INTEGER) IS
BEGIN

FOR i IN select ename from emp where sal <= p_sal_range
LOOP

dbms_output.put_line (i);
END LOOP;

END;

END empinfo;

SELECT empinfo.emp_comp(1500);
Employee details
Number of employees in the salary range 1500 is :7
(SMITH)
(WARD)
(MARTIN)
(TURNER)
(ADAMS)
(JAMES)
(MILLER)
emp_comp

7
(1 row)

See Also

CREATE PACKAGE, DROP PACKAGE

81

CHAPTER 28

CREATE PROCEDURE

Name

CREATE PROCEDURE -- define a new stored procedure

Synopsis

CREATE [OR REPLACE] PROCEDURE <name> [(<parameters>)]
[

IMMUTABLE
| STABLE
| VOLATILE
| DETERMINISTIC
| [NOT] LEAKPROOF
| CALLED ON NULL INPUT
| RETURNS NULL ON NULL INPUT
| STRICT
| [EXTERNAL] SECURITY INVOKER
| [EXTERNAL] SECURITY DEFINER
| AUTHID DEFINER
| AUTHID CURRENT_USER
| PARALLEL { UNSAFE | RESTRICTED | SAFE }
| COST <execution_cost>
| ROWS <result_rows>
| SET <configuration_parameter>

{ TO <value> | = <value> | FROM CURRENT }
...]

{ IS | AS }
[PRAGMA AUTONOMOUS_TRANSACTION;]
[<declarations>]

BEGIN
<statements>

END [<name>];

82

EDB Postgres™ Advanced Server, Release 13

Description

CREATE PROCEDURE defines a new stored procedure. CREATE OR REPLACE PROCEDUREwill either
create a new procedure, or replace an existing definition.

If a schema name is included, then the procedure is created in the specified schema. Otherwise it is created
in the current schema. The name of the new procedure must not match any existing procedure with the
same input argument types in the same schema. However, procedures of different input argument types may
share a name (this is called overloading). (Overloading of procedures is an Advanced Server feature -
overloading of stored, standalone procedures is not compatible with Oracle databases.)

To update the definition of an existing procedure, use CREATE OR REPLACE PROCEDURE. It is not
possible to change the name or argument types of a procedure this way (if you tried, you would actually be
creating a new, distinct procedure). When using OUT parameters, you cannot change the types of any OUT
parameters except by dropping the procedure.

Parameters

name

name is the identifier of the procedure.

parameters

parameters is a list of formal parameters.

declarations

declarations are variable, cursor, type, or subprogram declarations. If subprogram decla-
rations are included, they must be declared after all other variable, cursor, and type declarations.

statements

statements are SPL program statements (the BEGIN - END block may contain an
EXCEPTION section).

IMMUTABLE

STABLE

VOLATILE

These attributes inform the query optimizer about the behavior of the procedure; you can specify
only one choice. VOLATILE is the default behavior.

IMMUTABLE indicates that the procedure cannot modify the database and always reaches the
same result when given the same argument values; it does not do database lookups or otherwise
use information not directly present in its argument list. If you include this clause, any call
of the procedure with all-constant arguments can be immediately replaced with the procedure
value.

STABLE indicates that the procedure cannot modify the database, and that within a single
table scan, it will consistently return the same result for the same argument values, but that its
result could change across SQL statements. This is the appropriate selection for procedures that
depend on database lookups, parameter variables (such as the current time zone), etc.

83

EDB Postgres™ Advanced Server, Release 13

VOLATILE indicates that the procedure value can change even within a single table scan, so no
optimizations can be made. Please note that any function that has side-effects must be classified
volatile, even if its result is quite predictable, to prevent calls from being optimized away.

DETERMINISTIC

DETERMINISTIC is a synonym for IMMUTABLE. A DETERMINISTIC procedure cannot
modify the database and always reaches the same result when given the same argument values;
it does not do database lookups or otherwise use information not directly present in its argument
list. If you include this clause, any call of the procedure with all-constant arguments can be
immediately replaced with the procedure value.

[NOT] LEAKPROOF

A LEAKPROOF procedure has no side effects, and reveals no information about the values used
to call the procedure.

CALLED ON NULL INPUT

RETURNS NULL ON NULL INPUT

STRICT

CALLED ON NULL INPUT (the default) indicates that the procedure will be called normally
when some of its arguments are NULL. It is the author’s responsibility to check for NULL values
if necessary and respond appropriately.

RETURNS NULL ON NULL INPUT or STRICT indicates that the procedure always returns
NULL whenever any of its arguments are NULL. If these clauses are specified, the procedure is
not executed when there are NULL arguments; instead a NULL result is assumed automatically.

[EXTERNAL] SECURITY DEFINER

SECURITY DEFINER specifies that the procedure will execute with the privileges of the user
that created it; this is the default. The key word EXTERNAL is allowed for SQL conformance,
but is optional.

[EXTERNAL] SECURITY INVOKER

The SECURITY INVOKER clause indicates that the procedure will execute with the privileges
of the user that calls it. The key word EXTERNAL is allowed for SQL conformance, but is
optional.

AUTHID DEFINER

AUTHID CURRENT_USER

The AUTHID DEFINER clause is a synonym for [EXTERNAL] SECURITY DEFINER. If
the AUTHID clause is omitted or if AUTHID DEFINER is specified, the rights of the procedure
owner are used to determine access privileges to database objects.

The AUTHID CURRENT_USER clause is a synonym for [EXTERNAL] SECURITY
INVOKER. If AUTHID CURRENT_USER is specified, the rights of the current user execut-
ing the procedure are used to determine access privileges.

PARALLEL { UNSAFE | RESTRICTED | SAFE }

84

EDB Postgres™ Advanced Server, Release 13

The PARALLEL clause enables the use of parallel sequential scans (parallel mode). A parallel
sequential scan uses multiple workers to scan a relation in parallel during a query in contrast to
a serial sequential scan.

When set to UNSAFE, the procedure cannot be executed in parallel mode. The presence of such
a procedure forces a serial execution plan. This is the default setting if the PARALLEL clause
is omitted.

When set to RESTRICTED, the procedure can be executed in parallel mode, but the execution is
restricted to the parallel group leader. If the qualification for any particular relation has anything
that is parallel restricted, that relation won’t be chosen for parallelism.

When set to SAFE, the procedure can be executed in parallel mode with no restriction.

COST execution_cost

execution_cost is a positive number giving the estimated execution cost for the procedure,
in units of cpu_operator_cost. If the procedure returns a set, this is the cost per returned
row. Larger values cause the planner to try to avoid evaluating the function more often than
necessary.

ROWS result_rows

result_rows is a positive number giving the estimated number of rows that the planner
should expect the procedure to return. This is only allowed when the procedure is declared to
return a set. The default assumption is 1000 rows.

SET configuration_parameter { TO value | = value | FROM CURRENT }

The SET clause causes the specified configuration parameter to be set to the specified value
when the procedure is entered, and then restored to its prior value when the procedure exits.
SET FROM CURRENT saves the session’s current value of the parameter as the value to be
applied when the procedure is entered.

If a SET clause is attached to a procedure, then the effects of a SET LOCAL command executed
inside the procedure for the same variable are restricted to the procedure; the configuration
parameter’s prior value is restored at procedure exit. An ordinary SET command (without
LOCAL) overrides the SET clause, much as it would do for a previous SET LOCAL command,
with the effects of such a command persisting after procedure exit, unless the current transaction
is rolled back.

PRAGMA AUTONOMOUS_TRANSACTION

PRAGMA AUTONOMOUS_TRANSACTION is the directive that sets the procedure as an au-
tonomous transaction.

Note:

• The STRICT, LEAKPROOF, PARALLEL, COST, ROWS and SET keywords provide extended func-
tionality for Advanced Server and are not supported by Oracle.

• The IMMUTABLE, STABLE, STRICT, LEAKPROOF, COST, ROWS and PARALLEL { UNSAFE |
RESTRICTED | SAFE } attributes are only supported for EDB SPL procedures.

85

EDB Postgres™ Advanced Server, Release 13

• By default, stored procedures are created as SECURITY DEFINERS; stored procedures defined in
plpgsql are created as SECURITY INVOKERS.

Examples

The following procedure lists the employees in the emp table:

CREATE OR REPLACE PROCEDURE list_emp
IS

v_empno NUMBER(4);
v_ename VARCHAR2(10);
CURSOR emp_cur IS

SELECT empno, ename FROM emp ORDER BY empno;
BEGIN

OPEN emp_cur;
DBMS_OUTPUT.PUT_LINE('EMPNO ENAME');
DBMS_OUTPUT.PUT_LINE('----- -------');
LOOP

FETCH emp_cur INTO v_empno, v_ename;
EXIT WHEN emp_cur%NOTFOUND;
DBMS_OUTPUT.PUT_LINE(v_empno || ' ' || v_ename);

END LOOP;
CLOSE emp_cur;

END;

EXEC list_emp;

EMPNO ENAME
----- -------
7369 SMITH
7499 ALLEN
7521 WARD
7566 JONES
7654 MARTIN
7698 BLAKE
7782 CLARK
7788 SCOTT
7839 KING
7844 TURNER
7876 ADAMS
7900 JAMES
7902 FORD
7934 MILLER

The following procedure uses IN OUT and OUT arguments to return an employee’s number, name, and job
based upon a search using first, the given employee number, and if that is not found, then using the given
name. An anonymous block calls the procedure.

CREATE OR REPLACE PROCEDURE emp_job (
p_empno IN OUT emp.empno%TYPE,
p_ename IN OUT emp.ename%TYPE,
p_job OUT emp.job%TYPE

)

(continues on next page)

86

EDB Postgres™ Advanced Server, Release 13

(continued from previous page)

IS
v_empno emp.empno%TYPE;
v_ename emp.ename%TYPE;
v_job emp.job%TYPE;

BEGIN
SELECT ename, job INTO v_ename, v_job FROM emp WHERE empno = p_empno;
p_ename := v_ename;
p_job := v_job;
DBMS_OUTPUT.PUT_LINE('Found employee # ' || p_empno);

EXCEPTION
WHEN NO_DATA_FOUND THEN

BEGIN
SELECT empno, job INTO v_empno, v_job FROM emp

WHERE ename = p_ename;
p_empno := v_empno;
p_job := v_job;
DBMS_OUTPUT.PUT_LINE('Found employee ' || p_ename);

EXCEPTION
WHEN NO_DATA_FOUND THEN

DBMS_OUTPUT.PUT_LINE('Could not find an employee with ' ||
'number, ' || p_empno || ' nor name, ' || p_ename);

p_empno := NULL;
p_ename := NULL;
p_job := NULL;

END;
END;

DECLARE
v_empno emp.empno%TYPE;
v_ename emp.ename%TYPE;
v_job emp.job%TYPE;

BEGIN
v_empno := 0;
v_ename := 'CLARK';
emp_job(v_empno, v_ename, v_job);
DBMS_OUTPUT.PUT_LINE('Employee No: ' || v_empno);
DBMS_OUTPUT.PUT_LINE('Name : ' || v_ename);
DBMS_OUTPUT.PUT_LINE('Job : ' || v_job);

END;

Found employee CLARK
Employee No: 7782
Name : CLARK
Job : MANAGER

The following example demonstrates using the AUTHID DEFINER and SET clauses in a procedure dec-
laration. The update_salary procedure conveys the privileges of the role that defined the procedure to
the role that is calling the procedure (while the procedure executes):

CREATE OR REPLACE PROCEDURE update_salary(id INT, new_salary NUMBER)
SET SEARCH_PATH = 'public' SET WORK_MEM = '1MB'

(continues on next page)

87

EDB Postgres™ Advanced Server, Release 13

(continued from previous page)

AUTHID DEFINER IS
BEGIN

UPDATE emp SET salary = new_salary WHERE emp_id = id;
END;

Include the SET clause to set the procedure’s search path to public and the work memory to 1MB. Other
procedures, functions and objects will not be affected by these settings.

In this example, the AUTHID DEFINER clause temporarily grants privileges to a role that might otherwise
not be allowed to execute the statements within the procedure. To instruct the server to use the privileges
associated with the role invoking the procedure, replace the AUTHID DEFINER clause with the AUTHID
CURRENT_USER clause.

See Also

DROP PROCEDURE, ALTER PROCEDURE

88

CHAPTER 29

CREATE PROFILE

Name

CREATE PROFILE - create a new profile

Synopsis

CREATE PROFILE <profile_name>
[LIMIT {<parameter value>} ...];

Description

CREATE PROFILE creates a new profile. Include the LIMIT clause and one or more space-delimited
parameter/value pairs to specify the rules enforced by Advanced Server.

Advanced Server creates a default profile named DEFAULT. When you use the CREATE ROLE command
to create a new role, the new role is automatically associated with the DEFAULT profile. If you upgrade
from a previous version of Advanced Server to Advanced Server 10, the upgrade process will automatically
create the roles in the upgraded version to the DEFAULT profile.

You must be a superuser to use CREATE PROFILE.

Include the LIMIT clause and one or more space-delimited parameter/value pairs to specify the rules
enforced by Advanced Server.

Parameters

profile_name

The name of the profile.

parameter

The password attribute that will be monitored by the rule.

89

EDB Postgres™ Advanced Server, Release 13

value

The value the parameter must reach before an action is taken by the server.

Advanced Server supports the value shown below for each parameter:

FAILED_LOGIN_ATTEMPTS specifies the number of failed login attempts that a user may
make before the server locks the user out of their account for the length of time specified by
PASSWORD_LOCK_TIME. Supported values are:

• An INTEGER value greater than 0.

• DEFAULT - the value of FAILED_LOGIN_ATTEMPTS specified in the DEFAULT pro-
file.

• UNLIMITED – the connecting user may make an unlimited number of failed login at-
tempts.

PASSWORD_LOCK_TIME specifies the length of time that must pass before the server unlocks
an account that has been locked because of FAILED_LOGIN_ATTEMPTS. Supported values
are:

• A NUMERIC value greater than or equal to 0. To specify a fractional portion of a day,
specify a decimal value. For example, use the value 4.5 to specify 4 days, 12 hours.

• DEFAULT - the value of PASSWORD_LOCK_TIME specified in the DEFAULT profile.

• UNLIMITED – the account is locked until it is manually unlocked by a database superuser.

PASSWORD_LIFE_TIME specifies the number of days that the current password may be used
before the user is prompted to provide a new password. Include the PASSWORD_GRACE_TIME
clause when using the PASSWORD_LIFE_TIME clause to specify the number of days
that will pass after the password expires before connections by the role are rejected. If
PASSWORD_GRACE_TIME is not specified, the password will expire on the day specified by
the default value of PASSWORD_GRACE_TIME, and the user will not be allowed to execute
any command until a new password is provided. Supported values are:

• A NUMERIC value greater than or equal to 0. To specify a fractional portion of a day,
specify a decimal value. For example, use the value 4.5 to specify 4 days, 12 hours.

• DEFAULT - the value of PASSWORD_LIFE_TIME specified in the DEFAULT profile.

• UNLIMITED – The password does not have an expiration date.

PASSWORD_GRACE_TIME specifies the length of the grace period after a password expires
until the user is forced to change their password. When the grace period expires, a user will
be allowed to connect, but will not be allowed to execute any command until they update their
expired password. Supported values are:

• A NUMERIC value greater than or equal to 0. To specify a fractional portion of a day,
specify a decimal value. For example, use the value 4.5 to specify 4 days, 12 hours.

• DEFAULT - the value of PASSWORD_GRACE_TIME specified in the DEFAULT profile.

• UNLIMITED – The grace period is infinite.

90

EDB Postgres™ Advanced Server, Release 13

PASSWORD_REUSE_TIME specifies the number of days a user must wait before re-using a
password. The PASSWORD_REUSE_TIME and PASSWORD_REUSE_MAX parameters are in-
tended to be used together. If you specify a finite value for one of these parameters while
the other is UNLIMITED, old passwords can never be reused. If both parameters are set to
UNLIMITED there are no restrictions on password reuse. Supported values are:

• A NUMERIC value greater than or equal to 0. To specify a fractional portion of a day,
specify a decimal value. For example, use the value 4.5 to specify 4 days, 12 hours.

• DEFAULT - the value of PASSWORD_REUSE_TIME specified in the DEFAULT profile.

• UNLIMITED – The password can be re-used without restrictions.

PASSWORD_REUSE_MAX specifies the number of password changes that must occur before
a password can be reused. The PASSWORD_REUSE_TIME and PASSWORD_REUSE_MAX
parameters are intended to be used together. If you specify a finite value for one of these pa-
rameters while the other is UNLIMITED, old passwords can never be reused. If both parameters
are set to UNLIMITED there are no restrictions on password reuse. Supported values are:

• An INTEGER value greater than or equal to 0.

• DEFAULT - the value of PASSWORD_REUSE_MAX specified in the DEFAULT profile.

• UNLIMITED – The password can be re-used without restrictions.

PASSWORD_VERIFY_FUNCTION specifies password complexity. Supported values are:

• The name of a PL/SQL function.

• DEFAULT - the value of PASSWORD_VERIFY_FUNCTION specified in the DEFAULT
profile.

• NULL

PASSWORD_ALLOW_HASHED specifies whether an encrypted password to be allowed for use
or not. If you specify the value as TRUE, the system allows a user to change the password by
specifying a hash computed encrypted password on the client side. However, if you specify the
value as FALSE, then a password must be specified in a plain-text form in order to be validated
effectively, else an error will be thrown if a server receives an encrypted password. Supported
values are:

• A BOOLEAN value TRUE/ON/YES/1 or FALSE/OFF/NO/0.

• DEFAULT – the value of PASSWORD_ALLOW_HASHED specified in the DEFAULT pro-
file.

Note: The PASSWORD_ALLOW_HASHED is not an Oracle-compatible parameter.

Notes

Use DROP PROFILE command to remove the profile.

Examples

91

EDB Postgres™ Advanced Server, Release 13

The following command creates a profile named acctg. The profile specifies that if a user has not authen-
ticated with the correct password in five attempts, the account will be locked for one day:

CREATE PROFILE acctg LIMIT
FAILED_LOGIN_ATTEMPTS 5
PASSWORD_LOCK_TIME 1;

The following command creates a profile named sales. The profile specifies that a user must change their
password every 90 days:

CREATE PROFILE sales LIMIT
PASSWORD_LIFE_TIME 90
PASSWORD_GRACE_TIME 3;

If the user has not changed their password before the 90 days specified in the profile has passed, they will
be issued a warning at login. After a grace period of 3 days, their account will not be allowed to invoke any
commands until they change their password.

The following command creates a profile named accts. The profile specifies that a user cannot re-use a
password within 180 days of the last use of the password, and must change their password at least 5 times
before re-using the password:

CREATE PROFILE accts LIMIT
PASSWORD_REUSE_TIME 180
PASSWORD_REUSE_MAX 5;

The following command creates a profile named resources; the profile calls a user-defined function
named password_rules that will verify that the password provided meets their standards for complexity:

CREATE PROFILE resources LIMIT
PASSWORD_VERIFY_FUNCTION password_rules;

See Also

ALTER PROFILE, DROP PROFILE

92

CHAPTER 30

CREATE QUEUE

Advanced Server includes extra syntax (not offered by Oracle) with the CREATE QUEUE SQL command.
This syntax can be used in association with DBMS_AQADM.

Name

CREATE QUEUE - create a queue.

Synopsis

Use CREATE QUEUE to define a new queue:

CREATE QUEUE <name> QUEUE TABLE <queue_table_name> [({ <option_name
option_value>} [, ...])]

where option_name and the corresponding option_value can be:

TYPE [normal_queue | exception_queue]
RETRIES [INTEGER]
RETRYDELAY [DOUBLE PRECISION]
RETENTION [DOUBLE PRECISION]

Description

The CREATE QUEUE command allows a database superuser or any user with the system-defined
aq_administrator_role privilege to create a new queue in the current database.

If the name of the queue is schema-qualified, the queue is created in the specified schema. If a schema is not
included in the CREATE QUEUE command, the queue is created in the current schema. A queue may only
be created in the schema in which the queue table resides. The name of the queue must be unique from the
name of any other queue in the same schema.

Use DROP QUEUE to remove a queue.

93

EDB Postgres™ Advanced Server, Release 13

Parameters

name

The name (optionally schema-qualified) of the queue to be created.

queue_table_name

The name of the queue table with which this queue is associated.

option_name option_value

The name of any options that will be associated with the new queue, and the corresponding
value for the option. If the call to CREATE QUEUE includes duplicate option names, the server
will return an error. The following values are supported:

TYPE Specify normal_queue to indicate that the queue is a normal queue, or
exception_queue to indicate that the queue is an exception queue. An
exception queue will only accept dequeue operations.

RETRIES An INTEGER value that specifies the maximum number of attempts to remove a
message from a queue.

RETRYDELAY A DOUBLE PRECISION value that specifies the number of seconds after a
ROLLBACK that the server will wait before retrying a message.

RETENTION A DOUBLE PRECISION value that specifies the number of seconds that a message
will be saved in the queue table after dequeueing.

Examples

The following command creates a queue named work_order that is associated with a queue table named
work_order_table:

CREATE QUEUE work_order QUEUE TABLE work_order_table (RETRIES 5, RETRYDELAY
2);

The server will allow 5 attempts to remove a message from the queue, and enforce a retry delay of 2 seconds
between attempts.

See Also

ALTER QUEUE, DROP QUEUE

94

CHAPTER 31

CREATE QUEUE TABLE

Advanced Server includes extra syntax (not offered by Oracle) with the CREATE QUEUE TABLE SQL
command. This syntax can be used in association with DBMS_AQADM.

Name

CREATE QUEUE TABLE-- create a new queue table.

Synopsis

Use CREATE QUEUE TABLE to define a new queue table:

CREATE QUEUE TABLE <name> OF <type_name> [({ <option_name option_value> }
[, ...])]

where option_name and the corresponding option_value can be:

option_name option_value
SORT_LIST priority, enq_time
MULTIPLE_CONSUMERS FALSE, TRUE
MESSAGE_GROUPING NONE, TRANSACTIONAL

continues on next page

95

EDB Postgres™ Advanced Server, Release 13

Table 1 – continued from previous page
option_name option_value
STORAGE_CLAUSE TABLESPACE tablespace_name, PCTFREE integer,

PCTUSED integer, INITRANS integer, MAXTRANS
integer, STORAGE storage_option
Where storage_option is one or more of the following:
MINEXTENTS integer, MAXEXTENTS integer,
PCTINCREASE integer, INITIAL size_clause,
NEXT, FREELISTS integer, OPTIMAL size_clause,
BUFFER_POOL {KEEP|RECYCLE|DEFAULT}.
Please note that only the TABLESPACE option is enforced; all others are
accepted for compatibility and ignored. Use the TABLESPACE clause to
specify the name of a tablespace in which the table will be created.

Description

CREATE QUEUE TABLE allows a superuser or a user with the aq_administrator_role privilege
to create a new queue table.

If the call to CREATE QUEUE TABLE includes a schema name, the queue table is created in the specified
schema. If no schema name is provided, the new queue table is created in the current schema.

The name of the queue table must be unique from the name of any other queue table in the same schema.

Parameters

name

The name (optionally schema-qualified) of the new queue table.

type_name

The name of an existing type that describes the payload of each entry in the queue table. For
information about defining a type, see CREATE TYPE.

option_name option_value

The name of any options that will be associated with the new queue table, and the corresponding
value for the option. If the call to CREATE QUEUE TABLE includes duplicate option names,
the server will return an error. The following values are accepted:

96

EDB Postgres™ Advanced Server, Release 13

SORT_LIST Use the SORT_LIST option to control the dequeueing order of the
queue; specify the names of the column(s) that will be used to sort
the queue (in ascending order). The currently accepted values are
the following combinations of enq_time and priority:

enq_time. priority
priority. enq_time
priority
enq_time
Any other value will return an ERROR.

MULTIPLE_CONSUMERS A BOOLEAN value that indicates if a message can have more than
one consumer (TRUE), or are limited to one consumer per message
(FALSE).

MESSAGE_GROUPING Specify none to indicate that each message should be dequeued individ-
ually, or transactional to indicate that messages that are added to
the queue as a result of one transaction should be dequeued as a group.

STORAGE_CLAUSE Use STORAGE_CLAUSE to specify table attributes.
STORAGE_CLAUSE may be TABLESPACE tablespace_name,
PCTFREE integer, PCTUSED integer, INITRANS
integer, MAXTRANS integer, STORAGE
storage_option
Where storage_option is one or more of the following:
MINEXTENTS integer, MAXEXTENTS integer,
PCTINCREASE integer, INITIAL size_clause,
NEXT, FREELISTS integer, OPTIMAL size_clause,
BUFFER_POOL {KEEP|RECYCLE|DEFAULT}.
Please note that only the TABLESPACE option is enforced; all others are
accepted for compatibility and ignored. Use the TABLESPACE clause to
specify the name of a tablespace in which the table will be created.

Examples

You must create a user-defined type before creating a queue table; the type describes the columns and data
types within the table. The following command creates a type named work_order:

CREATE TYPE work_order AS (name VARCHAR2, project TEXT, completed BOOLEAN);

The following command uses the work_order type to create a queue table named
work_order_table:

CREATE QUEUE TABLE work_order_table OF work_order (sort_list (enq_time,
priority));

See Also

ALTER QUEUE TABLE, DROP QUEUE TABLE

97

CHAPTER 32

CREATE ROLE

Name

CREATE ROLE -- define a new database role

Synopsis

CREATE ROLE <name> [IDENTIFIED BY <password> [REPLACE old_password]]

Description

CREATE ROLE adds a new role to the Advanced Server database cluster. A role is an entity that can
own database objects and have database privileges; a role can be considered a “user”, a “group”, or both
depending on how it is used. The newly created role does not have the LOGIN attribute, so it cannot be
used to start a session. Use the ALTER ROLE command to give the role LOGIN rights. You must have
CREATEROLE privilege or be a database superuser to use the CREATE ROLE command.

If the IDENTIFIED BY clause is specified, the CREATE ROLE command also creates a schema owned
by, and with the same name as the newly created role.

Note: The roles are defined at the database cluster level, and so are valid in all databases in the cluster.

Parameters

name

The name of the new role.

IDENTIFIED BY password

Sets the role’s password. (A password is only of use for roles having the LOGIN attribute,
but you can nonetheless define one for roles without it.) If you do not plan to use password

98

EDB Postgres™ Advanced Server, Release 13

authentication you can omit this option.

Notes

Use ALTER ROLE to change the attributes of a role, and DROP ROLE to remove a role. The attributes
specified by CREATE ROLE can be modified by later ALTER ROLE commands.

Use GRANT and REVOKE to add and remove members of roles that are being used as groups.

The maximum length limit for role name and password is 63 characters.

Examples

Create a role (and a schema) named, admins, with a password:

CREATE ROLE admins IDENTIFIED BY Rt498zb;

See Also

ALTER ROLE, DROP ROLE, GRANT , REVOKE, SET ROLE

99

CHAPTER 33

CREATE SCHEMA

Name

CREATE SCHEMA -- define a new schema

Synopsis

CREATE SCHEMA AUTHORIZATION <username> <schema_element> [...]

Description

This variation of the CREATE SCHEMA command creates a new schema owned by username and popu-
lated with one or more objects. The creation of the schema and objects occur within a single transaction so
either all objects are created or none of them including the schema. (Please note: if you are using an Oracle
database, no new schema is created – username, and therefore the schema, must pre-exist.)

A schema is essentially a namespace: it contains named objects (tables, views, etc.) whose names may
duplicate those of other objects existing in other schemas. Named objects are accessed either by “qualifying”
their names with the schema name as a prefix, or by setting a search path that includes the desired schema(s).
Unqualified objects are created in the current schema (the one at the front of the search path, which can be
determined with the function CURRENT_SCHEMA). (The search path concept and the CURRENT_SCHEMA
function are not compatible with Oracle databases.)

CREATE SCHEMA includes subcommands to create objects within the schema. The subcommands are
treated essentially the same as separate commands issued after creating the schema. All the created objects
will be owned by the specified user.

Parameters

username

The name of the user who will own the new schema. The schema will be named the same
as username. Only superusers may create schemas owned by users other than themselves.

100

EDB Postgres™ Advanced Server, Release 13

(Please note: In Advanced Server the role, username, must already exist, but the schema
must not exist. In Oracle, the user (equivalently, the schema) must exist.)

schema_element

An SQL statement defining an object to be created within the schema. CREATE TABLE,
CREATE VIEW, and GRANT are accepted as clauses within CREATE SCHEMA. Other kinds
of objects may be created in separate commands after the schema is created.

Notes

To create a schema, the invoking user must have the CREATE privilege for the current database. (Of course,
superusers bypass this check.)

In Advanced Server, there are other forms of the CREATE SCHEMA command that are not compatible with
Oracle databases.

Examples

CREATE SCHEMA AUTHORIZATION enterprisedb
CREATE TABLE empjobs (ename VARCHAR2(10), job VARCHAR2(9))
CREATE VIEW managers AS SELECT ename FROM empjobs WHERE job = 'MANAGER'
GRANT SELECT ON managers TO PUBLIC;

101

CHAPTER 34

CREATE SEQUENCE

Name

CREATE SEQUENCE -- define a new sequence generator

Synopsis

CREATE SEQUENCE <name> [INCREMENT BY <increment>]
[{ NOMINVALUE | MINVALUE <minvalue> }]
[{ NOMAXVALUE | MAXVALUE <maxvalue> }]
[START WITH <start>] [CACHE <cache> | NOCACHE] [CYCLE]

Description

CREATE SEQUENCE creates a new sequence number generator. This involves creating and initializing a
new special single-row table with the name, name. The generator will be owned by the user issuing the
command.

If a schema name is given then the sequence is created in the specified schema, otherwise it is created in the
current schema. The sequence name must be distinct from the name of any other sequence, table, index, or
view in the same schema.

After a sequence is created, use the functions NEXTVAL and CURRVAL to operate on the sequence. These
functions are documented in Sequence Manipulation Functions of Database Compatibility for Oracle De-
velopers Reference Guide.

Parameters

name

The name (optionally schema-qualified) of the sequence to be created.

increment

102

EDB Postgres™ Advanced Server, Release 13

The optional clause INCREMENT BY increment specifies the value to add to the current
sequence value to create a new value. A positive value will make an ascending sequence, a
negative one a descending sequence. The default value is 1.

NOMINVALUE | MINVALUE minvalue

The optional clause MINVALUE minvalue determines the minimum value a sequence can
generate. If this clause is not supplied, then defaults will be used. The defaults are 1 and -263-1
for ascending and descending sequences, respectively. Note that the key words, NOMINVALUE,
may be used to set this behavior to the default.

NOMAXVALUE | MAXVALUE maxvalue

The optional clause MAXVALUE maxvalue determines the maximum value for the sequence.
If this clause is not supplied, then default values will be used. The defaults are 263-1 and -1 for
ascending and descending sequences, respectively. Note that the key words, NOMAXVALUE,
may be used to set this behavior to the default.

start

The optional clause START WITH start allows the sequence to begin anywhere. The de-
fault starting value is minvalue for ascending sequences and maxvalue for descending
ones.

cache

The optional clause CACHE cache specifies how many sequence numbers are to be preallo-
cated and stored in memory for faster access. The minimum value is 1 (only one value can be
generated at a time, i.e., NOCACHE), and this is also the default.

CYCLE

The CYCLE option allows the sequence to wrap around when the maxvalue or minvalue
has been reached by an ascending or descending sequence respectively. If the limit is reached,
the next number generated will be the minvalue or maxvalue, respectively.

If CYCLE is omitted (the default), any calls to NEXTVAL after the sequence has reached its
maximum value will return an error. Note that the key words, NO CYCLE, may be used to
obtain the default behavior, however, this term is not compatible with Oracle databases.

Notes

Sequences are based on big integer arithmetic, so the range cannot exceed the range of an eight-byte in-
teger (-9223372036854775808 to 9223372036854775807). On some older platforms, there may be no
compiler support for eight-byte integers, in which case sequences use regular INTEGER arithmetic (range
-2147483648 to +2147483647).

Unexpected results may be obtained if a cache setting greater than one is used for a sequence object that
will be used concurrently by multiple sessions. Each session will allocate and cache successive sequence
values during one access to the sequence object and increase the sequence object’s last value accordingly.
Then, the next cache-1 uses of NEXTVALwithin that session simply return the preallocated values without
touching the sequence object. So, any numbers allocated but not used within a session will be lost when that
session ends, resulting in “holes” in the sequence.

103

EDB Postgres™ Advanced Server, Release 13

Furthermore, although multiple sessions are guaranteed to allocate distinct sequence values, the values may
be generated out of sequence when all the sessions are considered. For example, with a cache setting
of 10, session A might reserve values 1..10 and return NEXTVAL=1, then session B might reserve values
11..20 and return NEXTVAL=11 before session A has generated NEXTVAL=2. Thus, with a cache setting
of one it is safe to assume that NEXTVAL values are generated sequentially; with a cache setting greater
than one you should only assume that the NEXTVAL values are all distinct, not that they are generated purely
sequentially. Also, the last value will reflect the latest value reserved by any session, whether or not it has
yet been returned by NEXTVAL.

Examples

Create an ascending sequence called serial, starting at 101:

CREATE SEQUENCE serial START WITH 101;

Select the next number from this sequence:

SELECT serial.NEXTVAL FROM DUAL;

nextval

101
(1 row)

Create a sequence called supplier_seq with the NOCACHE option:

CREATE SEQUENCE supplier_seq
MINVALUE 1
START WITH 1
INCREMENT BY 1
NOCACHE;

Select the next number from this sequence:

SELECT supplier_seq.NEXTVAL FROM DUAL;

nextval

1
(1 row)

See Also

ALTER SEQUENCE, DROP SEQUENCE

104

CHAPTER 35

CREATE SYNONYM

Name

CREATE SYNONYM -- define a new synonym

Synopsis

CREATE [OR REPLACE] [PUBLIC] SYNONYM [<schema>.]<syn_name>
FOR <object_schema>.<object_name>[@<dblink_name>];

Description

CREATE SYNONYM defines a synonym for certain types of database objects. Advanced Server supports
synonyms for:

• tables

• views

• materialized views

• sequences

• stored procedures

• stored functions

• types

• objects that are accessible through a database link

• other synonyms

Parameters

syn_name

105

EDB Postgres™ Advanced Server, Release 13

syn_name is the name of the synonym. A synonym name must be unique within a schema.

schema

schema specifies the name of the schema that the synonym resides in. If you do not specify a
schema name, the synonym is created in the first existing schema in your search path.

object_name

object_name specifies the name of the object.

object_schema

object_schema specifies the name of the schema that the referenced object resides in.

dblink_name

dblink_name specifies the name of the database link through which an object is accessed.

Include the REPLACE clause to replace an existing synonym definition with a new synonym definition.

Include the PUBLIC clause to create the synonym in the public schema. The CREATE PUBLIC
SYNONYM command, compatible with Oracle databases, creates a synonym that resides in the public
schema:

CREATE [OR REPLACE] PUBLIC SYNONYM <syn_name> FOR
<object_schema>.<object_name>;

This just a shorthand way to write:

CREATE [OR REPLACE] SYNONYM public.<syn_name> FOR
<object_schema>.<object_name>;

Notes

Access to the object referenced by the synonym is determined by the permissions of the current user of the
synonym; the synonym user must have the appropriate permissions on the underlying database object.

Examples

Create a synonym for the emp table in a schema named, enterprisedb:

CREATE SYNONYM personnel FOR enterprisedb.emp;

See Also

DROP SYNONYM

106

CHAPTER 36

CREATE TABLE

Name

CREATE TABLE -- define a new table

Synopsis

CREATE [GLOBAL TEMPORARY] TABLE <table_name> (
{ <column_name> <data_type> [DEFAULT <default_expr>]
[<column_constraint> [...]] | <table_constraint> } [, ...]
)
[WITH (ROWIDS [= <value>])]
[ON COMMIT { PRESERVE ROWS | DELETE ROWS }]
[TABLESPACE <tablespace>]
{ NOPARALLEL | PARALLEL [<integer>] }

where column_constraint is:

[CONSTRAINT <constraint_name>]
{ NOT NULL |

NULL |
UNIQUE [USING INDEX TABLESPACE <tablespace>] |
PRIMARY KEY [USING INDEX TABLESPACE <tablespace>] |
CHECK (<expression>) |
REFERENCES <reftable> [(<refcolumn>)]

[ON DELETE <action>] }
[DEFERRABLE | NOT DEFERRABLE] [INITIALLY DEFERRED |

INITIALLY IMMEDIATE]

and table_constraint is:

107

EDB Postgres™ Advanced Server, Release 13

[CONSTRAINT <constraint_name>]
{ UNIQUE (<column_name> [, ...])

[USING INDEX [<create_index_statement>] TABLESPACE <tablespace>] |
PRIMARY KEY (<column_name> [, ...])

[USING INDEX [<create_index_statement>] TABLESPACE <tablespace>] |
CHECK (<expression>) |
FOREIGN KEY (<column_name> [, ...])

REFERENCES <reftable> [(<refcolumn> [, ...])]
[ON DELETE <action>] }

[DEFERRABLE | NOT DEFERRABLE]
[INITIALLY DEFERRED | INITIALLY IMMEDIATE]

Description

CREATE TABLE will create a new, initially empty table in the current database. The table will be owned
by the user issuing the command.

If a schema name is given (for example, CREATE TABLE myschema.mytable ...) then the table is
created in the specified schema. Otherwise it is created in the current schema. Temporary tables exist in a
special schema, so a schema name may not be given when creating a temporary table. The table name must
be distinct from the name of any other table, sequence, index, or view in the same schema.

CREATE TABLE also automatically creates a data type that represents the composite type corresponding
to one row of the table. Therefore, tables cannot have the same name as any existing data type in the same
schema.

The PARALLEL clause sets the degree of parallelism for a table. If you do not specify the PARALLEL
clause, the server determines a value based on the relation size.

The NOPARALLEL clause reset the parallelism for default execution, and reloptions will show the
parallel_workers parameter as 0.

A table cannot have more than 1600 columns. (In practice, the effective limit is lower because of tuple-length
constraints).

The optional constraint clauses specify constraints (or tests) that new or updated rows must satisfy for an
insert or update operation to succeed. A constraint is an SQL object that helps define the set of valid values
in the table in various ways.

There are two ways to define constraints: table constraints and column constraints. A column constraint is
defined as part of a column definition. A table constraint definition is not tied to a particular column, and it
can encompass more than one column. Every column constraint can also be written as a table constraint; a
column constraint is only a notational convenience if the constraint only affects one column.

Parameters

GLOBAL TEMPORARY

If specified, the table is created as a temporary table. Temporary tables are automatically
dropped at the end of a session, or optionally at the end of the current transaction (see ON
COMMIT below). Existing permanent tables with the same name are not visible to the cur-
rent session while the temporary table exists, unless they are referenced with schema-qualified
names. In addition, temporary tables are not visible outside the session in which it was created.

108

EDB Postgres™ Advanced Server, Release 13

(This aspect of global temporary tables is not compatible with Oracle databases.) Any indexes
created on a temporary table are automatically temporary as well.

table_name

The name (optionally schema-qualified) of the table to be created.

column_name

The name of a column to be created in the new table.

data_type

The data type of the column. This may include array specifiers. For more information on the
data types included with Advanced Server, refer to Data Types of Database Compatibility for
Oracle Developers Reference Guide.

DEFAULT default_expr

The DEFAULT clause assigns a default data value for the column whose column definition it
appears within. The value is any variable-free expression (subqueries and cross-references to
other columns in the current table are not allowed). The data type of the default expression must
match the data type of the column.

The default expression will be used in any insert operation that does not specify a value for the
column. If there is no default for a column, then the default is null.

CONSTRAINT constraint_name

An optional name for a column or table constraint. If not specified, the system generates a
name.

NOT NULL

The column is not allowed to contain null values.

NULL

The column is allowed to contain null values. This is the default.

This clause is only available for compatibility with non-standard SQL databases. Its use is
discouraged in new applications.

UNIQUE - column constraint

UNIQUE (column_name [, ...]) - table constraint

The UNIQUE constraint specifies that a group of one or more distinct columns of a table may
contain only unique values. The behavior of the unique table constraint is the same as that for
column constraints, with the additional capability to span multiple columns.

For the purpose of a unique constraint, null values are not considered equal.

Each unique table constraint must name a set of columns that is different from the set of columns
named by any other unique or primary key constraint defined for the table. (Otherwise it would
just be the same constraint listed twice.)

PRIMARY KEY - column constraint

109

EDB Postgres™ Advanced Server, Release 13

PRIMARY KEY (column_name [, ...]) - table constraint

The primary key constraint specifies that a column or columns of a table may contain only
unique (non-duplicate), non-null values. Technically, PRIMARY KEY is merely a combination
of UNIQUE and NOT NULL, but identifying a set of columns as primary key also provides
metadata about the design of the schema, as a primary key implies that other tables may rely on
this set of columns as a unique identifier for rows.

Only one primary key can be specified for a table, whether as a column constraint or a table
constraint.

The primary key constraint should name a set of columns that is different from other sets of
columns named by any unique constraint defined for the same table.

CHECK (expression)

The CHECK clause specifies an expression producing a Boolean result which new or updated
rows must satisfy for an insert or update operation to succeed. Expressions evaluating to TRUE
or “unknown” succeed. Should any row of an insert or update operation produce a FALSE
result an error exception is raised and the insert or update does not alter the database. A check
constraint specified as a column constraint should reference that column’s value only, while an
expression appearing in a table constraint may reference multiple columns.

Currently, CHECK expressions cannot contain subqueries nor refer to variables other than
columns of the current row.

REFERENCES reftable [(refcolumn ``)] [``ON DELETE action] - column constraint
FOREIGN KEY (column [, ...]) REFERENCES reftable [(refcolumn [,
...])] [ON DELETE action] - table constraint

These clauses specify a foreign key constraint, which requires that a group of one or more
columns of the new table must only contain values that match values in the referenced col-
umn(s) of some row of the referenced table. If refcolumn is omitted, the primary key of the
reftable is used. The referenced columns must be the columns of a unique or primary key
constraint in the referenced table.

In addition, when the data in the referenced columns is changed, certain actions are performed
on the data in this table’s columns. The ON DELETE clause specifies the action to perform
when a referenced row in the referenced table is being deleted. Referential actions cannot be
deferred even if the constraint is deferrable. Here are the following possible actions for each
clause:

CASCADE

Delete any rows referencing the deleted row, or update the value of the referencing
column to the new value of the referenced column, respectively.

SET NULL

Set the referencing column(s) to NULL.

110

EDB Postgres™ Advanced Server, Release 13

If the referenced column(s) are changed frequently, it may be wise to add an index to the foreign
key column so that referential actions associated with the foreign key column can be performed
more efficiently.

DEFERRABLE

NOT DEFERRABLE

This controls whether the constraint can be deferred. A constraint that is not deferrable will be
checked immediately after every command. Checking of constraints that are deferrable may be
postponed until the end of the transaction (using the SET CONSTRAINTS command). NOT
DEFERRABLE is the default. Only foreign key constraints currently accept this clause. All
other constraint types are not deferrable.

INITIALLY IMMEDIATE

INITIALLY DEFERRED

If a constraint is deferrable, this clause specifies the default time to check the constraint. If the
constraint is INITIALLY IMMEDIATE, it is checked after each statement. This is the default.
If the constraint is INITIALLY DEFERRED, it is checked only at the end of the transaction.
The constraint check time can be altered with the SET CONSTRAINTS command.

WITH (ROWIDS [= value])

The ROWIDS option for a table include value equals to TRUE/ON/1 or FALSE/OFF/0.
When set to TRUE/ON/1, a ROWID column is created in the new table. ROWID is an auto-
incrementing value based on a sequence that starts with 1 and assigned to each row of a table.
If a value is not specified then the default value is always TRUE.

By default, a unique index is created on a ROWID column. The ALTER and DROP operations
are restricted on a ROWID column.

ON COMMIT

The behavior of temporary tables at the end of a transaction block can be controlled using ON
COMMIT. The two options are:

PRESERVE ROWS

No special action is taken at the ends of transactions. This is the default behavior.
(Note that this aspect is not compatible with Oracle databases. The Oracle default is
DELETE ROWS.)

DELETE ROWS

All rows in the temporary table will be deleted at the end of each transaction block.
Essentially, an automatic TRUNCATE is done at each commit.

TABLESPACE tablespace

The tablespace is the name of the tablespace in which the new table is to be created.
If not specified, default tablespace is used, or the database’s default tablespace if
default_tablespace is an empty string.

USING INDEX [create_index_statement] TABLESPACE tablespace

111

EDB Postgres™ Advanced Server, Release 13

This clause allows selection of the tablespace in which the index associated with a UNIQUE or
PRIMARY KEY constraint will be created. If not specified, default tablespace is used,
or the database’s default tablespace if default_tablespace is an empty string.

If you specify the create_index_statement option, the database server creates an index
enabling unique or primary key constraints. The columns specified in the constraint and the
columns of an index must be the same, but their order of appearance may differ.

PARALLEL

Include the PARALLEL clause to specify the degree of parallelism for the table; set the
parallel_workers parameter equal to the degree of parallelism to perform a parallel scan
of a table. Alternatively, if you specify PARALLEL but do not include a degree of parallelism,
an index will use default parallelism.

NOPARALLEL

Specify NOPARALLEL for default execution.

integer

The integer indicates the degree of parallelism, which is a number of
parallel_workers used in the parallel operation to perform a parallel scan on a
table.

Notes

Advanced Server automatically creates an index for each unique constraint and primary key constraint to
enforce the uniqueness. Thus, it is not necessary to create an explicit index for primary key columns. (See
CREATE INDEX for more information.)

Examples

Create table dept and table emp:

CREATE TABLE dept (
deptno NUMBER(2) NOT NULL CONSTRAINT dept_pk PRIMARY KEY,
dname VARCHAR2(14),
loc VARCHAR2(13)

);
CREATE TABLE emp (

empno NUMBER(4) NOT NULL CONSTRAINT emp_pk PRIMARY KEY,
ename VARCHAR2(10),
job VARCHAR2(9),
mgr NUMBER(4),
hiredate DATE,
sal NUMBER(7,2),
comm NUMBER(7,2),
deptno NUMBER(2) CONSTRAINT emp_ref_dept_fk

REFERENCES dept(deptno)
);

Define a unique table constraint for the table dept. Unique table constraints can be defined on one or more
columns of the table.

112

EDB Postgres™ Advanced Server, Release 13

CREATE TABLE dept (
deptno NUMBER(2) NOT NULL CONSTRAINT dept_pk PRIMARY KEY,
dname VARCHAR2(14) CONSTRAINT dept_dname_uq UNIQUE,
loc VARCHAR2(13)

);

Define a check column constraint:

CREATE TABLE emp (
empno NUMBER(4) NOT NULL CONSTRAINT emp_pk PRIMARY KEY,
ename VARCHAR2(10),
job VARCHAR2(9),
mgr NUMBER(4),
hiredate DATE,
sal NUMBER(7,2) CONSTRAINT emp_sal_ck CHECK (sal > 0),
comm NUMBER(7,2),
deptno NUMBER(2) CONSTRAINT emp_ref_dept_fk

REFERENCES dept(deptno)
);

Define a check table constraint:

CREATE TABLE emp (
empno NUMBER(4) NOT NULL CONSTRAINT emp_pk PRIMARY KEY,
ename VARCHAR2(10),
job VARCHAR2(9),
mgr NUMBER(4),
hiredate DATE,
sal NUMBER(7,2),
comm NUMBER(7,2),
deptno NUMBER(2) CONSTRAINT emp_ref_dept_fk

REFERENCES dept(deptno),
CONSTRAINT new_emp_ck CHECK (ename IS NOT NULL AND empno > 7000)

);

Define a primary key table constraint for the table jobhist. Primary key table constraints can be defined
on one or more columns of the table.

CREATE TABLE jobhist (
empno NUMBER(4) NOT NULL,
startdate DATE NOT NULL,
enddate DATE,
job VARCHAR2(9),
sal NUMBER(7,2),
comm NUMBER(7,2),
deptno NUMBER(2),
chgdesc VARCHAR2(80),
CONSTRAINT jobhist_pk PRIMARY KEY (empno, startdate)

);

This assigns a literal constant default value for the column, job and makes the default value of hiredate
be the date at which the row is inserted.

113

EDB Postgres™ Advanced Server, Release 13

CREATE TABLE emp (
empno NUMBER(4) NOT NULL CONSTRAINT emp_pk PRIMARY KEY,
ename VARCHAR2(10),
job VARCHAR2(9) DEFAULT 'SALESMAN',
mgr NUMBER(4),
hiredate DATE DEFAULT SYSDATE,
sal NUMBER(7,2),
comm NUMBER(7,2),
deptno NUMBER(2) CONSTRAINT emp_ref_dept_fk

REFERENCES dept(deptno)
);

Create table dept in tablespace diskvol1:

CREATE TABLE dept (
deptno NUMBER(2) NOT NULL CONSTRAINT dept_pk PRIMARY KEY,
dname VARCHAR2(14),
loc VARCHAR2(13)

) TABLESPACE diskvol1;

The following PARALLEL example creates a table sales and sets a degree of parallelism to 6:

CREATE TABLE sales (deptno number) PARALLEL 6 WITH (FILLFACTOR=66);

The following NOPARALLEL example creates a table sales_order and sets a degree of parallelism to 0:

CREATE TABLE sales_order (deptno number) NOPARALLEL WITH (FILLFACTOR=66);

The following example creates a table named dept; the definition creates a unique key on the dname
column. The constraint dept_dname_uq identifies the dname column as a unique key. The preceding
statement includes the USING_INDEX clause, which explicitly creates an index on a table dept with the
index statement specified to enable the unique constraint.

CREATE TABLE dept (
deptno NUMBER(2) NOT NULL,
dname VARCHAR2(14),
loc VARCHAR2(13),
CONSTRAINT dept_dname_uq UNIQUE(dname)

USING INDEX (CREATE UNIQUE INDEX idx_dept_dname_uq ON dept(dname))
);

The following example creates a table named emp; the definition creates a primary key on the ename
column. The emp_ename_pk constraint identifies the ename column as a primary key of the emp table.
The preceding statement includes the USING_INDEX clause, which explicitly creates an index on a table
emp with the index statement specified to enable the primary constraint.

CREATE TABLE emp (
empno NUMBER(4) NOT NULL,
ename VARCHAR2(10),
job VARCHAR2(9),
sal NUMBER(7,2),

(continues on next page)

114

EDB Postgres™ Advanced Server, Release 13

(continued from previous page)

deptno NUMBER(2),
CONSTRAINT emp_ename_pk PRIMARY KEY (ename)

USING INDEX (CREATE INDEX idx_emp_ename_pk ON emp (ename))
);

See Also

ALTER TABLE, DROP TABLE

115

CHAPTER 37

CREATE TABLE AS

Name

CREATE TABLE AS -- define a new table from the results of a query

Synopsis

CREATE [GLOBAL TEMPORARY] TABLE <table_name>
[(<column_name> [, ...])]
[ON COMMIT { PRESERVE ROWS | DELETE ROWS }]
[TABLESPACE tablespace]
AS <query>

Description

CREATE TABLE AS creates a table and fills it with data computed by a SELECT command. The table
columns have the names and data types associated with the output columns of the SELECT (except that you
can override the column names by giving an explicit list of new column names).

CREATE TABLE AS bears some resemblance to creating a view, but it is really quite different: it creates
a new table and evaluates the query just once to fill the new table initially. The new table will not track
subsequent changes to the source tables of the query. In contrast, a view re-evaluates its defining SELECT
statement whenever it is queried.

Parameters

GLOBAL TEMPORARY

If specified, the table is created as a temporary table. Refer to CREATE TABLE for details.

table_name

The name (optionally schema-qualified) of the table to be created.

column_name

116

EDB Postgres™ Advanced Server, Release 13

The name of a column in the new table. If column names are not provided, they are taken from
the output column names of the query.

query

A query statement (a SELECT command). Refer to SELECT for a description of the allowed
syntax.

117

CHAPTER 38

CREATE TRIGGER

Name

CREATE TRIGGER -- define a simple trigger

Synopsis

CREATE [OR REPLACE] TRIGGER <name>
{ BEFORE | AFTER | INSTEAD OF }
{ INSERT | UPDATE | DELETE | TRUNCATE }

[OR { INSERT | UPDATE | DELETE | TRUNCATE}] [, ...]
ON <table>

[REFERENCING { OLD AS <old> | NEW AS <new> } ...]
[FOR EACH ROW]
[WHEN <condition>]
[DECLARE

[PRAGMA AUTONOMOUS_TRANSACTION;]
<declaration>; [, ...]]

BEGIN
<statement>; [, ...]

[EXCEPTION
{ WHEN <exception> [OR <exception>] [...] THEN

<statement>; [, ...] } [, ...]
]

END

Name

CREATE TRIGGER -- define a compound trigger

Synopsis

118

EDB Postgres™ Advanced Server, Release 13

CREATE [OR REPLACE] TRIGGER <name>
FOR { INSERT | UPDATE | DELETE | TRUNCATE }

[OR { INSERT | UPDATE | DELETE | TRUNCATE }] [, ...]
ON <table>

[REFERENCING { OLD AS <old> | NEW AS <new> } ...]
[WHEN <condition>]
COMPOUND TRIGGER
[<private_declaration>;] ...
[<procedure_or_function_definition>] ...
<compound_trigger_definition>
END

Where private_declaration is an identifier of a private variable that can be accessed by any proce-
dure or function. There can be zero, one, or more private variables. private_declaration can be any
of the following:

• Variable Declaration

• Record Declaration

• Collection Declaration

• REF CURSOR and Cursor Variable Declaration

• TYPE Definitions for Records, Collections, and REF CURSORs

• Exception

• Object Variable Declaration

Where procedure_or_function_definition :=

procedure_definition | function_definition

Where procedure_definition :=

PROCEDURE proc_name[argument_list]
[options_list]
{ IS | AS }

procedure_body
END [proc_name];

Where procedure_body :=

[declaration;] [, ...]
BEGIN

statement; [...]
[EXCEPTION

{ WHEN exception [OR exception] [...]] THEN statement; }
[...]

]

Where function_definition :=

119

EDB Postgres™ Advanced Server, Release 13

FUNCTION func_name [argument_list]
RETURN rettype [DETERMINISTIC]
[options_list]
{ IS | AS }

function_body
END [func_name] ;

Where function_body :=

[declaration;] [, ...]
BEGIN

statement; [...]
[EXCEPTION

{ WHEN exception [OR exception] [...] THEN statement; }
[...]

]

Where compound_trigger_definition :=

{ compound_trigger_event } { IS | AS }
compound_trigger_body

END [compound_trigger_event] [...]

Where compound_trigger_event :=

[BEFORE STATEMENT | BEFORE EACH ROW | AFTER EACH ROW |
AFTER STATEMENT | INSTEAD OF EACH ROW]

Where compound_trigger_body :=

[declaration;] [, ...]
BEGIN

statement; [...]
[EXCEPTION

{ WHEN exception [OR exception] [...] THEN statement; }
[...]

]

Description

CREATE TRIGGER defines a new trigger. CREATE OR REPLACE TRIGGER will either create a new
trigger, or replace an existing definition.

If you are using the CREATE TRIGGER keywords to create a new trigger, the name of the new trigger must
not match any existing trigger defined on the same table. New triggers will be created in the same schema
as the table on which the triggering event is defined.

If you are updating the definition of an existing trigger, use the CREATE OR REPLACE TRIGGER key-
words.

When you use syntax that is compatible with Oracle to create a trigger, the trigger runs as a SECURITY
DEFINER function.

Parameters

120

EDB Postgres™ Advanced Server, Release 13

name

The name of the trigger to create.

BEFORE | AFTER

Determines whether the trigger is fired before or after the triggering event.

INSTEAD OF

INSTEAD OF trigger modifies an updatable view; the trigger will execute to update the under-
lying table(s) appropriately. The INSTEAD OF trigger is executed for each row of the view
that is updated or modified.

INSERT | UPDATE | DELETE | TRUNCATE

Defines the triggering event.

table

The name of the table or view on which the triggering event occurs.

condition

condition is a Boolean expression that determines if the trigger will actually be executed; if
condition evaluates to TRUE, the trigger will fire.

If the simple trigger definition includes the FOR EACH ROW keywords, the WHEN clause can
refer to columns of the old and/or new row values by writing OLD.column_name or NEW.
column_name respectively. INSERT triggers cannot refer to OLD and DELETE triggers can-
not refer to NEW.

If the compound trigger definition includes a statement-level trigger having a WHEN clause,
then the trigger is executed without evaluating the expression in the WHEN clause. Similarly,
if a compound trigger definition includes a row-level trigger having a WHEN clause, then the
trigger is executed if the expression evaluates to TRUE.

If the trigger includes the INSTEAD OF keywords, it may not include a WHEN clause. A WHEN
clause cannot contain subqueries.

REFERENCING { OLD AS old | NEW AS new } ...

REFERENCING clause to reference old rows and new rows, but restricted in that old may
only be replaced by an identifier named old or any equivalent that is saved in all low-
ercase (for example, REFERENCING OLD AS old, REFERENCING OLD AS OLD, or
REFERENCING OLD AS "old"). Also, new may only be replaced by an identifier named
new or any equivalent that is saved in all lowercase (for example, REFERENCING NEW AS
new, REFERENCING NEW AS NEW, or REFERENCING NEW AS "new").

Either one, or both phrases OLD AS old and NEW AS new may be specified in the
REFERENCING clause (for example, REFERENCING NEW AS New OLD AS Old).

This clause is not compatible with Oracle databases in that identifiers other than old or new
may not be used.

FOR EACH ROW

121

EDB Postgres™ Advanced Server, Release 13

Determines whether the trigger should be fired once for every row affected by the triggering
event, or just once per SQL statement. If specified, the trigger is fired once for every affected
row (row-level trigger), otherwise the trigger is a statement-level trigger.

PRAGMA AUTONOMOUS_TRANSACTION

PRAGMA AUTONOMOUS_TRANSACTION is the directive that sets the trigger as an au-
tonomous transaction.

declaration

A variable, type, REF CURSOR, or subprogram declaration. If subprogram declarations are
included, they must be declared after all other variable, type, and REF CURSOR declarations.

statement

An SPL program statement. Note that a DECLARE - BEGIN - END block is considered an
SPL statement unto itself. Thus, the trigger body may contain nested blocks.

exception

An exception condition name such as NO_DATA_FOUND, OTHERS, etc.

Examples

The following is a statement-level trigger that fires after the triggering statement (insert, update, or delete on
table emp) is executed.

CREATE OR REPLACE TRIGGER user_audit_trig
AFTER INSERT OR UPDATE OR DELETE ON emp

DECLARE
v_action VARCHAR2(24);

BEGIN
IF INSERTING THEN

v_action := ' added employee(s) on ';
ELSIF UPDATING THEN

v_action := ' updated employee(s) on ';
ELSIF DELETING THEN

v_action := ' deleted employee(s) on ';
END IF;
DBMS_OUTPUT.PUT_LINE('User ' || USER || v_action ||

TO_CHAR(SYSDATE,'YYYY-MM-DD'));
END;

The following is a row-level trigger that fires before each row is either inserted, updated, or deleted on table
emp.

CREATE OR REPLACE TRIGGER emp_sal_trig
BEFORE DELETE OR INSERT OR UPDATE ON emp
FOR EACH ROW

DECLARE
sal_diff NUMBER;

BEGIN
IF INSERTING THEN

DBMS_OUTPUT.PUT_LINE('Inserting employee ' || :NEW.empno);

(continues on next page)

122

EDB Postgres™ Advanced Server, Release 13

(continued from previous page)

DBMS_OUTPUT.PUT_LINE('..New salary: ' || :NEW.sal);
END IF;
IF UPDATING THEN

sal_diff := :NEW.sal - :OLD.sal;
DBMS_OUTPUT.PUT_LINE('Updating employee ' || :OLD.empno);
DBMS_OUTPUT.PUT_LINE('..Old salary: ' || :OLD.sal);
DBMS_OUTPUT.PUT_LINE('..New salary: ' || :NEW.sal);
DBMS_OUTPUT.PUT_LINE('..Raise : ' || sal_diff);

END IF;
IF DELETING THEN

DBMS_OUTPUT.PUT_LINE('Deleting employee ' || :OLD.empno);
DBMS_OUTPUT.PUT_LINE('..Old salary: ' || :OLD.sal);

END IF;
END;

The following is an example of a compound trigger that records a change to the employee salary by defining
a compound trigger hr_trigger on table emp.

First, create a table named emp.

CREATE TABLE emp(EMPNO INT, ENAME TEXT, SAL INT, DEPTNO INT);
CREATE TABLE

Then, create a compound trigger named hr_trigger. The trigger utilizes each of the four timing-points
to modify the salary with an INSERT, UPDATE, or DELETE statement. In the global declaration section,
the initial salary is declared as 10,000.

CREATE OR REPLACE TRIGGER hr_trigger
FOR INSERT OR UPDATE OR DELETE ON emp

COMPOUND TRIGGER
-- Global declaration.
var_sal NUMBER := 10000;

BEFORE STATEMENT IS
BEGIN

var_sal := var_sal + 1000;
DBMS_OUTPUT.PUT_LINE('Before Statement: ' || var_sal);

END BEFORE STATEMENT;

BEFORE EACH ROW IS
BEGIN

var_sal := var_sal + 1000;
DBMS_OUTPUT.PUT_LINE('Before Each Row: ' || var_sal);

END BEFORE EACH ROW;

AFTER EACH ROW IS
BEGIN

var_sal := var_sal + 1000;
DBMS_OUTPUT.PUT_LINE('After Each Row: ' || var_sal);

END AFTER EACH ROW;

(continues on next page)

123

EDB Postgres™ Advanced Server, Release 13

(continued from previous page)

AFTER STATEMENT IS
BEGIN

var_sal := var_sal + 1000;
DBMS_OUTPUT.PUT_LINE('After Statement: ' || var_sal);

END AFTER STATEMENT;

END hr_trigger;

Output: Trigger created.

INSERT the record into table emp.

INSERT INTO emp (EMPNO, ENAME, SAL, DEPTNO) VALUES(1111,'SMITH', 10000, 20);

The INSERT statement produces the following output:

Before Statement: 11000
Before each row: 12000
After each row: 13000
After statement: 14000
INSERT 0 1

The UPDATE statement will update the employee salary record, setting the salary to 15000 for a specific
employee number.

UPDATE emp SET SAL = 15000 where EMPNO = 1111;

The UPDATE statement produces the following output:

Before Statement: 11000
Before each row: 12000
After each row: 13000
After statement: 14000
UPDATE 1

SELECT * FROM emp;
EMPNO | ENAME | SAL | DEPTNO

-------+-------+-------+--------
1111 | SMITH | 15000 | 20

(1 row)

The DELETE statement deletes the employee salary record.

DELETE from emp where EMPNO = 1111;

The DELETE statement produces the following output:

Before Statement: 11000
Before each row: 12000
After each row: 13000
After statement: 14000

(continues on next page)

124

EDB Postgres™ Advanced Server, Release 13

(continued from previous page)

DELETE 1

SELECT * FROM emp;
EMPNO | ENAME | SAL | DEPTNO

-------+-------+-----+--------
(0 rows)

The TRUNCATE statement removes all the records from the emp table.

CREATE OR REPLACE TRIGGER hr_trigger
FOR TRUNCATE ON emp

COMPOUND TRIGGER
-- Global declaration.
var_sal NUMBER := 10000;
BEFORE STATEMENT IS
BEGIN

var_sal := var_sal + 1000;
DBMS_OUTPUT.PUT_LINE('Before Statement: ' || var_sal);

END BEFORE STATEMENT;

AFTER STATEMENT IS
BEGIN

var_sal := var_sal + 1000;
DBMS_OUTPUT.PUT_LINE('After Statement: ' || var_sal);

END AFTER STATEMENT;

END hr_trigger;

Output: Trigger created.

The TRUNCATE statement produces the following output:

TRUNCATE emp;
Before Statement: 11000
After statement: 12000
TRUNCATE TABLE

Note: The TRUNCATE statement may be used only at a BEFORE STATEMENT or AFTER STATEMENT
timing-point.

The following example creates a compound trigger named hr_trigger on the emp table with a WHEN
condition that checks and prints employee salary whenever an INSERT, UPDATE, or DELETE statement
affects the emp table. The database evaluates the WHEN condition for a row-level trigger, and the trigger
is executed once per row if the WHEN condition evaluates to TRUE. The statement-level trigger is executed
irrespective of the WHEN condition.

CREATE OR REPLACE TRIGGER hr_trigger
FOR INSERT OR UPDATE OR DELETE ON emp
REFERENCING NEW AS new OLD AS old
WHEN (old.sal > 5000 OR new.sal < 8000)

COMPOUND TRIGGER

(continues on next page)

125

EDB Postgres™ Advanced Server, Release 13

(continued from previous page)

BEFORE STATEMENT IS
BEGIN

DBMS_OUTPUT.PUT_LINE('Before Statement');
END BEFORE STATEMENT;

BEFORE EACH ROW IS
BEGIN

DBMS_OUTPUT.PUT_LINE('Before Each Row: ' || :OLD.sal ||' ' || :NEW.sal);
END BEFORE EACH ROW;

AFTER EACH ROW IS
BEGIN

DBMS_OUTPUT.PUT_LINE('After Each Row: ' || :OLD.sal ||' ' || :NEW.sal);
END AFTER EACH ROW;

AFTER STATEMENT IS
BEGIN

DBMS_OUTPUT.PUT_LINE('After Statement');
END AFTER STATEMENT;

END hr_trigger;

Insert the record into table emp.

INSERT INTO emp(EMPNO, ENAME, SAL, DEPTNO) VALUES(1111, 'SMITH', 1600, 20);

The INSERT statement produces the following output:

Before Statement
Before Each Row: 1600
After Each Row: 1600
After Statement
INSERT 0 1

The UPDATE statement will update the employee salary record, setting the salary to 7500.

UPDATE emp SET SAL = 7500 where EMPNO = 1111;

The UPDATE statement produces the following output:

Before Statement
Before Each Row: 1600 7500
After Each Row: 1600 7500
After Statement
UPDATE 1

SELECT * from emp;
empno | ename | sal | deptno

-------+-------+------+--------
1111 | SMITH | 7500 | 20

(1 row)

126

EDB Postgres™ Advanced Server, Release 13

The DELETE statement deletes the employee salary record.

DELETE from emp where EMPNO = 1111;

The DELETE statement produces the following output:

Before Statement
Before Each Row: 7500
After Each Row: 7500
After Statement
DELETE 1

SELECT * from emp;
empno | ename | sal | deptno

-------+-------+-----+--------
(0 rows)

See Also

ALTER TRIGGER, DROP TRIGGER

127

CHAPTER 39

CREATE TYPE

Name

CREATE TYPE -- define a new user-defined type, which can be an object type, a collection type (a nested
table type or a varray type), or a composite type.

Synopsis

Object Type

CREATE [OR REPLACE] TYPE <name>
[AUTHID { DEFINER | CURRENT_USER }]
{ IS | AS } OBJECT

({ <attribute> { <datatype> | <objtype> | <collecttype> } }
[, ...]

[<method_spec>] [, ...]
) [[NOT] { FINAL | INSTANTIABLE }] ...

where method_spec is:

[[NOT] { FINAL | INSTANTIABLE }] ...
[OVERRIDING]

<subprogram_spec>

and subprogram_spec is:

{ MEMBER | STATIC }
{ PROCEDURE <proc_name>

[([SELF [IN | IN OUT] <name>]
[, <argname> [IN | IN OUT | OUT] <argtype>

[DEFAULT <value>]
] ...)

(continues on next page)

128

EDB Postgres™ Advanced Server, Release 13

(continued from previous page)

]
|

FUNCTION <func_name>
[([SELF [IN | IN OUT] <name>]

[, <argname> [IN | IN OUT | OUT] <argtype>
[DEFAULT <value>]

] ...)
]

RETURN <rettype>
}

Nested Table Type

CREATE [OR REPLACE] TYPE <name> { IS | AS } TABLE OF
{ <datatype> | <objtype> | <collecttype> }

Varray Type

CREATE [OR REPLACE] TYPE <name> { IS | AS }
{ VARRAY | VARYING ARRAY } (<maxsize>) OF { <datatype> | <objtype> }

Composite Type

CREATE [OR REPLACE] TYPE <name> { IS | AS }
([attribute <datatype>][, ...]
)

Description

CREATE TYPE defines a new, user-defined data type. The types that can be created are an object type, a
nested table type, a varray type, or a composite type. Nested table and varray types belong to the category
of types known as collections.

Composite types are not compatible with Oracle databases. However, composite types can be accessed
by SPL programs as with other types described in this section.

Note:

• For packages only, a composite type can be included in a user-defined record type declared with
the TYPE IS RECORD statement within the package specification or package body. Such nested
structure is not permitted in other SPL programs such as functions, procedures, triggers, etc.

• In the CREATE TYPE command, if a schema name is included, then the type is created in the speci-
fied schema, otherwise it is created in the current schema. The name of the new type must not match
any existing type in the same schema unless the intent is to update the definition of an existing type,
in which case use CREATE OR REPLACE TYPE.

• The OR REPLACE option cannot be currently used to add, delete, or modify the attributes of an
existing object type. Use the DROP TYPE command to first delete the existing object type. The OR
REPLACE option can be used to add, delete, or modify the methods in an existing object type.

129

EDB Postgres™ Advanced Server, Release 13

• The PostgreSQL form of the ALTER TYPE ALTER ATTRIBUTE command can be used to change
the data type of an attribute in an existing object type. However, the ALTER TYPE command cannot
add or delete attributes in the object type.

The user that creates the type becomes the owner of the type.

Parameters

name

The name (optionally schema-qualified) of the type to create.

DEFINER | CURRENT_USER

Specifies whether the privileges of the object type owner (DEFINER) or the privileges of the
current user executing a method in the object type (CURRENT_USER) are to be used to de-
termine whether or not access is allowed to database objects referenced in the object type.
DEFINER is the default.

attribute

The name of an attribute in the object type or composite type.

datatype

The data type that defines an attribute of the object type or composite type, or the elements of
the collection type that is being created.

objtype

The name of an object type that defines an attribute of the object type or the elements of the
collection type that is being created.

collecttype

The name of a collection type that defines an attribute of the object type or the elements of the
collection type that is being created.

FINAL

NOT FINAL

For an object type, specifies whether or not a subtype can be derived from the object type.
FINAL (subtype cannot be derived from the object type) is the default.

For method_spec, specifies whether or not the method may be overridden in a subtype. NOT
FINAL (method may be overridden in a subtype) is the default.

INSTANTIABLE

NOT INSTANTIABLE

For an object type, specifies whether or not an object instance can be created of this object
type. INSTANTIABLE (an instance of this object type can be created) is the default. If NOT
INSTANTIABLE is specified, then NOT FINAL must be specified as well. If method_spec
for any method in the object type contains the NOT INSTANTIABLE qualifier, then the ob-
ject type, itself, must be defined with NOT INSTANTIABLE and NOT FINAL following the
closing parenthesis of the object type specification.

130

EDB Postgres™ Advanced Server, Release 13

For method_spec, specifies whether or not the object type definition provides an implemen-
tation for the method. INSTANTIABLE (the CREATE TYPE BODY command for the object
type provides the implementation of the method) is the default. If NOT INSTANTIABLE is
specified, then the CREATE TYPE BODY command for the object type must not contain the
implementation of the method.

OVERRIDING

If OVERRIDING is specified, method_spec overrides an identically named method with the
same number of identically named method arguments with the same data types, in the same
order, and the same return type (if the method is a function) as defined in a supertype.

MEMBER

STATIC

Specify MEMBER if the subprogram operates on an object instance. Specify STATIC if the
subprogram operates independently of any particular object instance.

proc_name

The name of the procedure to create.

SELF [IN | IN OUT] name

For a member method there is an implicit, built-in parameter named SELF whose data type
is that of the object type being defined. SELF refers to the object instance that is currently
invoking the method. SELF can be explicitly declared as an IN or IN OUT parameter in the
parameter list. If explicitly declared, SELF must be the first parameter in the parameter list. If
SELF is not explicitly declared, its parameter mode defaults to IN OUT for member procedures
and IN for member functions.

argname

The name of an argument. The argument is referenced by this name within the method body.

argtype

The data type(s) of the method’s arguments. The argument types may be a base data type or a
user-defined type such as a nested table or an object type. A length must not be specified for
any base type - for example, specify VARCHAR2, not VARCHAR2(10).

DEFAULT value

Supplies a default value for an input argument if one is not supplied in the method call.
DEFAULT may not be specified for arguments with modes IN OUT or OUT.

func_name

The name of the function to create.

rettype

The return data type, which may be any of the types listed for argtype. As for argtype, a
length must not be specified for rettype.

maxsize

131

EDB Postgres™ Advanced Server, Release 13

The maximum number of elements permitted in the varray.

Examples

Creating an Object Type

Create object type addr_obj_typ.

CREATE OR REPLACE TYPE addr_obj_typ AS OBJECT (
street VARCHAR2(30),
city VARCHAR2(20),
state CHAR(2),
zip NUMBER(5)

);

Create object type emp_obj_typ that includes a member method display_emp.

CREATE OR REPLACE TYPE emp_obj_typ AS OBJECT (
empno NUMBER(4),
ename VARCHAR2(20),
addr ADDR_OBJ_TYP,
MEMBER PROCEDURE display_emp (SELF IN OUT emp_obj_typ)

);

Create object type dept_obj_typ that includes a static method get_dname.

CREATE OR REPLACE TYPE dept_obj_typ AS OBJECT (
deptno NUMBER(2),
STATIC FUNCTION get_dname (p_deptno IN NUMBER) RETURN VARCHAR2,
MEMBER PROCEDURE display_dept

);

Creating a Collection Type

Create a nested table type, budget_tbl_typ, of data type, NUMBER(8,2).

CREATE OR REPLACE TYPE budget_tbl_typ IS TABLE OF NUMBER(8,2);

Creating and Using a Composite Type

The following example shows the usage of a composite type accessed from an anonymous block.

The composite type is created by the following:

CREATE OR REPLACE TYPE emphist_typ AS (
empno NUMBER(4),
ename VARCHAR2(10),
hiredate DATE,
job VARCHAR2(9),
sal NUMBER(7,2)

);

The following is the anonymous block that accesses the composite type:

132

EDB Postgres™ Advanced Server, Release 13

DECLARE
v_emphist EMPHIST_TYP;

BEGIN
v_emphist.empno := 9001;
v_emphist.ename := 'SMITH';
v_emphist.hiredate := '01-AUG-17';
v_emphist.job := 'SALESMAN';
v_emphist.sal := 8000.00;
DBMS_OUTPUT.PUT_LINE(' EMPNO: ' || v_emphist.empno);
DBMS_OUTPUT.PUT_LINE(' ENAME: ' || v_emphist.ename);
DBMS_OUTPUT.PUT_LINE('HIREDATE: ' || v_emphist.hiredate);
DBMS_OUTPUT.PUT_LINE(' JOB: ' || v_emphist.job);
DBMS_OUTPUT.PUT_LINE(' SAL: ' || v_emphist.sal);

END;

EMPNO: 9001
ENAME: SMITH

HIREDATE: 01-AUG-17 00:00:00
JOB: SALESMAN
SAL: 8000.00

The following example shows the usage of a composite type accessed from a user-defined record type,
declared within a package body.

The composite type is created by the following:

CREATE OR REPLACE TYPE salhist_typ AS (
startdate DATE,
job VARCHAR2(9),
sal NUMBER(7,2)

);

The package specification is defined by the following:

CREATE OR REPLACE PACKAGE emp_salhist
IS

PROCEDURE fetch_emp (
p_empno IN NUMBER

);
END;

The package body is defined by the following:

CREATE OR REPLACE PACKAGE BODY emp_salhist
IS

TYPE emprec_typ IS RECORD (
empno NUMBER(4),
ename VARCHAR(10),
salhist SALHIST_TYP

);
TYPE emp_arr_typ IS TABLE OF emprec_typ INDEX BY BINARY_INTEGER;
emp_arr emp_arr_typ;

(continues on next page)

133

EDB Postgres™ Advanced Server, Release 13

(continued from previous page)

PROCEDURE fetch_emp (
p_empno IN NUMBER

)
IS

CURSOR emp_cur IS SELECT e.empno, e.ename, h.startdate, h.job, h.sal
FROM emp e, jobhist h
WHERE e.empno = p_empno

AND e.empno = h.empno;

i INTEGER := 0;
BEGIN

DBMS_OUTPUT.PUT_LINE('EMPNO ENAME STARTDATE JOB ' ||
'SAL ');
DBMS_OUTPUT.PUT_LINE('----- ------- --------- --------- ' ||
'---------');

FOR r_emp IN emp_cur LOOP
i := i + 1;
emp_arr(i) := (r_emp.empno, r_emp.ename,

(r_emp.startdate, r_emp.job, r_emp.sal));
END LOOP;

FOR i IN 1 .. emp_arr.COUNT LOOP
DBMS_OUTPUT.PUT_LINE(emp_arr(i).empno || ' ' ||

RPAD(emp_arr(i).ename,8) || ' ' ||
TO_CHAR(emp_arr(i).salhist.startdate,'DD-MON-YY') || ' ' ||
RPAD(emp_arr(i).salhist.job,10) || ' ' ||
TO_CHAR(emp_arr(i).salhist.sal,'99,999.99'));

END LOOP;
END;

END;

Note that in the declaration of the TYPE emprec_typ IS RECORD data structure in the package body,
the salhist field is defined with the SALHIST_TYP composite type as created by the CREATE TYPE
salhist_typ statement.

The associative array definition TYPE emp_arr_typ IS TABLE OF emprec_typ references the
record type data structure emprec_typ that includes the field salhist that is defined with the
SALHIST_TYP composite type.

Invocation of the package procedure that loads the array from a join of the emp and jobhist tables, then
displays the array content is shown by the following:

EXEC emp_salhist.fetch_emp(7788);

EMPNO ENAME STARTDATE JOB SAL
----- ------- --------- --------- ---------
7788 SCOTT 19-APR-87 CLERK 1,000.00
7788 SCOTT 13-APR-88 CLERK 1,040.00
7788 SCOTT 05-MAY-90 ANALYST 3,000.00

(continues on next page)

134

EDB Postgres™ Advanced Server, Release 13

(continued from previous page)

EDB-SPL Procedure successfully completed

See Also

CREATE TYPE BODY , DROP TYPE

135

CHAPTER 40

CREATE TYPE BODY

Name

CREATE TYPE BODY -- define a new object type body

Synopsis

CREATE [OR REPLACE] TYPE BODY <name>
{ IS | AS }
<method_spec> [...]

END

where method_spec is:

subprogram_spec

and subprogram_spec is:

{ MEMBER | STATIC }
{ PROCEDURE <proc_name>

[([SELF [IN | IN OUT] <name>]
[, <argname> [IN | IN OUT | OUT] <argtype>

[DEFAULT <value>]
] ...)

]
{ IS | AS }

<program_body>
END;

|
FUNCTION <func_name>

[([SELF [IN | IN OUT] <name>]
[, <argname> [IN | IN OUT | OUT] <argtype>

(continues on next page)

136

EDB Postgres™ Advanced Server, Release 13

(continued from previous page)

[DEFAULT <value>]
] ...)

]
RETURN <rettype>

{ IS |AS }
<program_body>

END;
}

Description

CREATE TYPE BODY defines a new object type body. CREATE OR REPLACE TYPE BODY will either
create a new object type body, or replace an existing body.

If a schema name is included, then the object type body is created in the specified schema. Otherwise it is
created in the current schema. The name of the new object type body must match an existing object type
specification in the same schema. The new object type body name must not match any existing object type
body in the same schema unless the intent is to update the definition of an existing object type body, in
which case use CREATE OR REPLACE TYPE BODY.

Parameters

name

The name (optionally schema-qualified) of the object type for which a body is to be created.

MEMBER

STATIC

Specify MEMBER if the subprogram operates on an object instance. Specify STATIC if the
subprogram operates independently of any particular object instance.

proc_name

The name of the procedure to create.

SELF [IN | IN OUT] name

For a member method there is an implicit, built-in parameter named SELF whose data type
is that of the object type being defined. SELF refers to the object instance that is currently
invoking the method. SELF can be explicitly declared as an IN or IN OUT parameter in the
parameter list. If explicitly declared, SELF must be the first parameter in the parameter list. If
SELF is not explicitly declared, its parameter mode defaults to IN OUT for member procedures
and IN for member functions.

argname

The name of an argument. The argument is referenced by this name within the method body.

argtype

The data type(s) of the method’s arguments. The argument types may be a base data type or a
user-defined type such as a nested table or an object type. A length must not be specified for
any base type - for example, specify VARCHAR2, not VARCHAR2(10).

137

EDB Postgres™ Advanced Server, Release 13

DEFAULT value

Supplies a default value for an input argument if one is not supplied in the method call.
DEFAULT may not be specified for arguments with modes IN OUT or OUT.

program_body

The pragma, declarations, and SPL statements that comprise the body of the function or pro-
cedure. The pragma may be PRAGMA AUTONOMOUS_TRANSACTION to set the function or
procedure as an autonomous transaction.

func_name

The name of the function to create.

rettype

The return data type, which may be any of the types listed for argtype. As for argtype, a
length must not be specified for rettype.

Examples

Create the object type body for object type emp_obj_typ given in the example for the CREATE TYPE
command.

CREATE OR REPLACE TYPE BODY emp_obj_typ AS
MEMBER PROCEDURE display_emp (SELF IN OUT emp_obj_typ)
IS
BEGIN

DBMS_OUTPUT.PUT_LINE('Employee No : ' || empno);
DBMS_OUTPUT.PUT_LINE('Name : ' || ename);
DBMS_OUTPUT.PUT_LINE('Street : ' || addr.street);
DBMS_OUTPUT.PUT_LINE('City/State/Zip: ' || addr.city || ', ' ||

addr.state || ' ' || LPAD(addr.zip,5,'0'));
END;

END;

Create the object type body for object type dept_obj_typ given in the example for the CREATE TYPE
command.

CREATE OR REPLACE TYPE BODY dept_obj_typ AS
STATIC FUNCTION get_dname (p_deptno IN NUMBER) RETURN VARCHAR2
IS

v_dname VARCHAR2(14);
BEGIN

CASE p_deptno
WHEN 10 THEN v_dname := 'ACCOUNING';
WHEN 20 THEN v_dname := 'RESEARCH';
WHEN 30 THEN v_dname := 'SALES';
WHEN 40 THEN v_dname := 'OPERATIONS';
ELSE v_dname := 'UNKNOWN';

END CASE;
RETURN v_dname;

END;
MEMBER PROCEDURE display_dept

(continues on next page)

138

EDB Postgres™ Advanced Server, Release 13

(continued from previous page)

IS
BEGIN

DBMS_OUTPUT.PUT_LINE('Dept No : ' || SELF.deptno);
DBMS_OUTPUT.PUT_LINE('Dept Name : ' ||

dept_obj_typ.get_dname(SELF.deptno));
END;

END;

See Also

CREATE TYPE, DROP TYPE

139

CHAPTER 41

CREATE USER

Name

CREATE USER -- define a new database user account

Synopsis

CREATE USER <name> [IDENTIFIED BY <password>]

Description

CREATE USER adds a new user to an Advanced Server database cluster. You must be a database superuser
to use this command.

When the CREATE USER command is given, a schema will also be created with the same name as the new
user and owned by the new user. Objects with unqualified names created by this user will be created in this
schema.

Parameters

name

The name of the user.

password

The user’s password. The password can be changed later using ALTER USER.

Notes

The maximum length allowed for the user name and password is 63 characters.

Examples

Create a user named, john.

140

EDB Postgres™ Advanced Server, Release 13

CREATE USER john IDENTIFIED BY abc;

See Also

DROP USER

141

CHAPTER 42

CREATE USER|ROLE. . . PROFILE MANAGEMENT CLAUSES

Name

CREATE USER|ROLE

Synopsis

CREATE USER|ROLE <name> [[WITH] option [...]]

where option can be the following compatible clauses:

PROFILE <profile_name>
| ACCOUNT {LOCK|UNLOCK}
| PASSWORD EXPIRE [AT '<timestamp>']

or option can be the following non-compatible clauses:

| LOCK TIME '<timestamp>'

For information about the administrative clauses of the CREATE USER or CREATE ROLE command that
are supported by Advanced Server, see the PostgreSQL core documentation available at:

https://www.postgresql.org/docs/current/static/sql-commands.html

Description

CREATE ROLE|USER... PROFILE adds a new role with an associated profile to an Advanced Server
database cluster.

Roles created with the CREATE USER command are (by default) login roles. Roles created with the
CREATE ROLE command are (by default) not login roles. To create a login account with the CREATE
ROLE command, you must include the LOGIN keyword.

142

https://www.postgresql.org/docs/current/static/sql-commands.html

EDB Postgres™ Advanced Server, Release 13

Only a database superuser can use the CREATE USER|ROLE clauses that enforce profile management;
these clauses enforce the following behaviors:

Include the PROFILE clause and a profile_name to associate a pre-defined profile with a
role, or to change which pre-defined profile is associated with a user.

Include the ACCOUNT clause and the LOCK or UNLOCK keyword to specify that the user account
should be placed in a locked or unlocked state.

Include the LOCK TIME 'timestamp' clause and a date/time value to lock the role at the
specified time, and unlock the role at the time indicated by the PASSWORD_LOCK_TIME pa-
rameter of the profile assigned to this role. If LOCK TIME is used with the ACCOUNT LOCK
clause, the role can only be unlocked by a database superuser with the ACCOUNT UNLOCK
clause.

Include the PASSWORD EXPIRE clause with the optional AT 'timestamp' keywords to
specify a date/time when the password associated with the role will expire. If you omit the AT
'timestamp' keywords, the password will expire immediately.

Each login role may only have one profile. To discover the profile that is currently associated with a login
role, query the profile column of the DBA_USERS view.

Parameters

name

The name of the role.

profile_name

The name of the profile associated with the role.

timestamp

The date and time at which the clause will be enforced. When specifying a value for
timestamp, enclose the value in single-quotes.

Examples

The following example uses CREATE USER to create a login role named john who is associated with the
acctg_profile profile:

CREATE USER john PROFILE acctg_profile IDENTIFIED BY “1safepwd”;

john can log in to the server, using the password 1safepwd.

The following example uses CREATE ROLE to create a login role named john who is associated with the
acctg_profile profile:

CREATE ROLE john PROFILE acctg_profile LOGIN PASSWORD “1safepwd”;

john can log in to the server, using the password 1safepwd.

See Also

ALTER USER|ROLE. . . PROFILE MANAGEMENT CLAUSES

143

CHAPTER 43

CREATE VIEW

Name

CREATE VIEW -- define a new view

Synopsis

CREATE [OR REPLACE] VIEW <name> [(<column_name> [, ...])]
AS <query>

Description

CREATE VIEW defines a view of a query. The view is not physically materialized. Instead, the query is run
every time the view is referenced in a query.

CREATE OR REPLACE VIEW is similar, but if a view of the same name already exists, it is replaced.

If a schema name is given (for example, CREATE VIEW myschema.myview ...) then the view is
created in the specified schema. Otherwise it is created in the current schema. The view name must be
distinct from the name of any other view, table, sequence, or index in the same schema.

Parameters

name

The name (optionally schema-qualified) of a view to be created.

column_name

An optional list of names to be used for columns of the view. If not given, the column names
are deduced from the query.

query

A query (that is, a SELECT statement) which will provide the columns and rows of the view.

144

EDB Postgres™ Advanced Server, Release 13

Refer to SELECT for more information about valid queries.

Notes

Currently, views are read only - the system will not allow an insert, update, or delete on a view. You can
get the effect of an updatable view by creating rules that rewrite inserts, etc. on the view into appropriate
actions on other tables.

Access to tables referenced in the view is determined by permissions of the view owner. However, functions
called in the view are treated the same as if they had been called directly from the query using the view.
Therefore the user of a view must have permissions to call all functions used by the view.

Examples

Create a view consisting of all employees in department 30:

CREATE VIEW dept_30 AS SELECT * FROM emp WHERE deptno = 30;

See Also

DROP VIEW

145

CHAPTER 44

DELETE

Name

DELETE -- delete rows of a table

Synopsis

DELETE [<optimizer_hint>] FROM <table>[@<dblink>]
[WHERE <condition>]
[RETURNING <return_expression> [, ...]

{ INTO { <record> | <variable> [, ...] }
| BULK COLLECT INTO <collection> [, ...] }]

Description

DELETE deletes rows that satisfy the WHERE clause from the specified table. If the WHERE clause is absent,
the effect is to delete all rows in the table. The result is a valid, but empty table.

Note: The TRUNCATE command provides a faster mechanism to remove all rows from a table.

The RETURNING INTO { record | variable [, ...] } clause may only be specified if the
DELETE command is used within an SPL program. In addition the result set of the DELETE command
must not include more than one row, otherwise an exception is thrown. If the result set is empty, then the
contents of the target record or variables are set to null.

The RETURNING BULK COLLECT INTO collection [, ...] clause may only be specified if
the DELETE command is used within an SPL program. If more than one collection is specified as the
target of the BULK COLLECT INTO clause, then each collection must consist of a single, scalar field
– i.e., collection must not be a record. The result set of the DELETE command may contain none, one,
or more rows. return_expression evaluated for each row of the result set, becomes an element in

146

EDB Postgres™ Advanced Server, Release 13

collection starting with the first element. Any existing rows in collection are deleted. If the result
set is empty, then collection will be empty.

You must have the DELETE privilege on the table to delete from it, as well as the SELECT privilege for any
table whose values are read in the condition.

Parameters

optimizer_hint

Comment-embedded hints to the optimizer for selection of an execution plan.

table

The name (optionally schema-qualified) of an existing table.

dblink

Database link name identifying a remote database. See the CREATE DATABASE LINK com-
mand for information on database links.

condition

A value expression that returns a value of type BOOLEAN that determines the rows which are to
be deleted.

return_expression

An expression that may include one or more columns from table. If a column name from
table is specified in the return_expression, the value substituted for the column when
return_expression is evaluated is the value from the deleted row.

record

A record whose field the evaluated return_expression is to be assigned. The
first return_expression is assigned to the first field in record, the second
return_expression is assigned to the second field in record, etc. The number of
fields in record must exactly match the number of expressions and the fields must be type-
compatible with their assigned expressions.

variable

A variable to which the evaluated return_expression is to be assigned. If more than one
return_expression and variable are specified, the first return_expression
is assigned to the first variable, the second return_expression is assigned to the sec-
ond variable, etc. The number of variables specified following the INTO keyword must
exactly match the number of expressions following the RETURNING keyword and the vari-
ables must be type-compatible with their assigned expressions.

collection

A collection in which an element is created from the evaluated return_expression. There
can be either a single collection which may be a collection of a single field or a collection of
a record type, or there may be more than one collection in which case each collection must
consist of a single field. The number of return expressions must match in number and order the
number of fields in all specified collections. Each corresponding return_expression and
collection field must be type-compatible.

147

EDB Postgres™ Advanced Server, Release 13

Examples

Delete all rows for employee 7900 from the jobhist table:

DELETE FROM jobhist WHERE empno = 7900;

Clear the table jobhist:

DELETE FROM jobhist;

See Also

TRUNCATE

148

CHAPTER 45

DROP DATABASE LINK

Name

DROP DATABASE LINK -- remove a database link

Synopsis

DROP [PUBLIC] DATABASE LINK name

Description

DROP DATABASE LINK drops existing database links. To execute this command you must be a superuser
or the owner of the database link.

Parameters

name

The name of a database link to be removed.

PUBLIC

Indicates that name is a public database link.

Examples

Remove the public database link named, oralink:

DROP PUBLIC DATABASE LINK oralink;

Remove the private database link named, edblink:

DROP DATABASE LINK edblink;

149

EDB Postgres™ Advanced Server, Release 13

See Also

CREATE PUBLIC DATABASE LINK

150

CHAPTER 46

DROP DIRECTORY

Name

DROP DIRECTORY -- remove a directory alias for a file system directory path

Synopsis

DROP DIRECTORY <name>

Description

DROP DIRECTORY drops an existing alias for a file system directory path that was created with the
CREATE DIRECTORY command. To execute this command you must be a superuser.

When a directory alias is deleted, the corresponding physical file system directory is not affected. The file
system directory must be deleted using the appropriate operating system commands.

Parameters

name

The name of a directory alias to be removed.

Examples

Remove the directory alias named empdir:

DROP DIRECTORY empdir;

See Also

CREATE DIRECTORY , ALTER DIRECTORY

151

CHAPTER 47

DROP FUNCTION

Name

DROP FUNCTION -- remove a function

Synopsis

DROP FUNCTION [IF EXISTS] <name>
[([[<argmode>] [<argname>] <argtype>] [, ...])]
[CASCADE | RESTRICT]

Description

DROP FUNCTION removes the definition of an existing function. To execute this command you must be a
superuser or the owner of the function. All input (IN, IN OUT) argument data types to the function must
be specified if this is an overloaded function. (This requirement is not compatible with Oracle databases.
In Oracle, only the function name is specified. Advanced Server allows overloading of function names,
so the function signature given by the input argument data types is required in the Advanced Server DROP
FUNCTION command of an overloaded function.)

Usage of IF EXISTS, CASCADE, or RESTRICT is not compatible with Oracle databases and is used only
by Advanced Server.

Parameters

IF EXISTS

Do not throw an error if the function does not exist. A notice is issued in this case.

name

The name (optionally schema-qualified) of an existing function.

argmode

152

EDB Postgres™ Advanced Server, Release 13

The mode of an argument: IN, IN OUT, or OUT. If omitted, the default is IN. Note that
DROP FUNCTION does not actually pay any attention to OUT arguments, since only the input
arguments are needed to determine the function’s identity. So it is sufficient to list only the IN
and IN OUT arguments. (Specification of argmode is not compatible with Oracle databases
and applies only to Advanced Server.)

argname

The name of an argument. Note that DROP FUNCTION does not actually pay any attention
to argument names, since only the argument data types are needed to determine the function’s
identity. (Specification of argname is not compatible with Oracle databases and applies only
to Advanced Server.)

argtype

The data type of an argument of the function. (Specification of argtype is not compatible
with Oracle databases and applies only to Advanced Server.)

CASCADE

Automatically drop objects that depend on the function (such as operators or triggers), and in
turn all objects that depend on those objects.

RESTRICT

Refuse to drop the function if any objects depend on it. This is the default.

Examples

The following command removes the emp_comp function.

DROP FUNCTION emp_comp(NUMBER, NUMBER);

See Also

CREATE FUNCTION

153

CHAPTER 48

DROP INDEX

Name

DROP INDEX -- remove an index

Synopsis

DROP INDEX <name>

Description

DROP INDEX drops an existing index from the database system. To execute this command you must be a
superuser or the owner of the index. If any objects depend on the index, an error will be given and the index
will not be dropped.

Parameters

name

The name (optionally schema-qualified) of an index to remove.

Examples

This command will remove the index, name_idx:

DROP INDEX name_idx;

See Also

CREATE INDEX, ALTER INDEX

154

CHAPTER 49

DROP PACKAGE

Name

DROP PACKAGE -- remove a package

Synopsis

DROP PACKAGE [BODY] <name>

Description

DROP PACKAGE drops an existing package. To execute this command you must be a superuser or the
owner of the package. If BODY is specified, only the package body is removed – the package specification
is not dropped. If BODY is omitted, both the package specification and body are removed.

Parameters

name

The name (optionally schema-qualified) of a package to remove.

Examples

This command will remove the emp_admin package:

DROP PACKAGE emp_admin;

See Also

CREATE PACKAGE, CREATE PACKAGE BODY

155

CHAPTER 50

DROP PROCEDURE

Name

DROP PROCEDURE -- remove a procedure

Synopsis

DROP PROCEDURE [IF EXISTS] <name>
[([[<argmode>] [<argname>] <argtype>] [, ...])]
[CASCADE | RESTRICT]

Description

DROP PROCEDURE removes the definition of an existing procedure. To execute this command you must
be a superuser or the owner of the procedure. All input (IN, IN OUT) argument data types to the proce-
dure must be specified if this is an overloaded procedure. (This requirement is not compatible with Oracle
databases. In Oracle, only the procedure name is specified. Advanced Server allows overloading of proce-
dure names, so the procedure signature given by the input argument data types is required in the Advanced
Server DROP PROCEDURE command of an overloaded procedure.)

Usage of IF EXISTS, CASCADE, or RESTRICT is not compatible with Oracle databases and is used only
by Advanced Server.

Parameters

IF EXISTS

Do not throw an error if the procedure does not exist. A notice is issued in this case.

name

The name (optionally schema-qualified) of an existing procedure.

argmode

156

EDB Postgres™ Advanced Server, Release 13

The mode of an argument: IN, IN OUT, or OUT. If omitted, the default is IN. Note that
DROP PROCEDURE does not actually pay any attention to OUT arguments, since only the input
arguments are needed to determine the procedure’s identity. So it is sufficient to list only the IN
and IN OUT arguments. (Specification of argmode is not compatible with Oracle databases
and applies only to Advanced Server.)

argname

The name of an argument. Note that DROP PROCEDURE does not actually pay any attention
to argument names, since only the argument data types are needed to determine the procedure’s
identity. (Specification of argname is not compatible with Oracle databases and applies only
to Advanced Server.)

argtype

The data type of an argument of the procedure. (Specification of argtype is not compatible
with Oracle databases and applies only to Advanced Server.)

CASCADE

Automatically drop objects that depend on the procedure, and in turn all objects that depend on
those objects.

RESTRICT

Refuse to drop the procedure if any objects depend on it. This is the default.

Examples

The following command removes the select_emp procedure.

DROP PROCEDURE select_emp;

See Also

CREATE PROCEDURE, ALTER PROCEDURE

157

CHAPTER 51

DROP PROFILE

Name

DROP PROFILE - drop a user-defined profile

Synopsis

DROP PROFILE [IF EXISTS] <profile_name> [CASCADE | RESTRICT];

Description

Include the IF EXISTS clause to instruct the server to not throw an error if the specified profile does not
exist. The server will issue a notice if the profile does not exist.

Include the optional CASCADE clause to reassign any users that are currently associated with the profile
to the default profile, and then drop the profile. Include the optional RESTRICT clause to instruct the
server to not drop any profile that is associated with a role. This is the default behavior.

Parameters

profile_name

The name of the profile being dropped.

Examples

The following example drops a profile named acctg_profile:

DROP PROFILE acctg_profile CASCADE;

The command first re-associates any roles associated with the acctg_profile profile with the default
profile, and then drops the acctg_profile profile.

The following example drops a profile named acctg_profile:

158

EDB Postgres™ Advanced Server, Release 13

DROP PROFILE acctg_profile RESTRICT;

The RESTRICT clause in the command instructs the server to not drop acctg_profile if there are any
roles associated with the profile.

See Also

CREATE PROFILE, ALTER PROFILE

159

CHAPTER 52

DROP QUEUE

Advanced Server includes extra syntax (not offered by Oracle) with the DROP QUEUE SQL command.
This syntax can be used in association with DBMS_AQADM.

Name

DROP QUEUE -- drop an existing queue.

Synopsis

Use DROP QUEUE to drop an existing queue:

DROP QUEUE [IF EXISTS] <name>

Description

DROP QUEUE allows a superuser or a user with the aq_administrator_role privilege to drop an
existing queue.

Parameters

name

The name (possibly schema-qualified) of the queue that is being dropped.

IF EXISTS

Include the IF EXISTS clause to instruct the server to not return an error if the queue does
not exist. The server will issue a notice.

Examples

The following example drops a queue named work_order:

160

EDB Postgres™ Advanced Server, Release 13

DROP QUEUE work_order;

See Also

CREATE QUEUE, ALTER QUEUE

161

CHAPTER 53

DROP QUEUE TABLE

Advanced Server includes extra syntax (not offered by Oracle) with the DROP QUEUE TABLE SQL com-
mand. This syntax can be used in association with DBMS_AQADM.

Name

DROP QUEUE TABLE-- drop a queue table.

Synopsis

Use DROP QUEUE TABLE to delete a queue table:

DROP QUEUE TABLE [IF EXISTS] <name> [, ...]
[CASCADE | RESTRICT]

Description

DROP QUEUE TABLE allows a superuser or a user with the aq_administrator_role privilege to
delete a queue table.

Parameters

name

The name (possibly schema-qualified) of the queue table that will be deleted.

IF EXISTS

Include the IF EXISTS clause to instruct the server to not return an error if the queue table
does not exist. The server will issue a notice.

CASCADE

Include the CASCADE keyword to automatically delete any objects that depend on the queue
table.

162

EDB Postgres™ Advanced Server, Release 13

RESTRICT

Include the RESTRICT keyword to instruct the server to refuse to delete the queue table if any
objects depend on it. This is the default.

Examples

The following example deletes a queue table named work_order_table and any objects that depend on
it:

DROP QUEUE TABLE work_order_table CASCADE;

See Also

CREATE QUEUE TABLE, ALTER QUEUE TABLE

163

CHAPTER 54

DROP SYNONYM

Name

DROP SYNONYM -- remove a synonym

Synopsis

DROP [PUBLIC] SYNONYM [<schema>.]<syn_name>

Description

DROP SYNONYM deletes existing synonyms. To execute this command you must be a superuser or the
owner of the synonym, and have USAGE privileges on the schema in which the synonym resides.

Parameters

syn_name

syn_name is the name of the synonym. A synonym name must be unique within a schema.

schema

schema specifies the name of the schema that the synonym resides in.

Like any other object that can be schema-qualified, you may have two synonyms with the same name in
your search path. To disambiguate the name of the synonym that you are dropping, include a schema name.
Unless a synonym is schema qualified in the DROP SYNONYM command, Advanced Server deletes the first
instance of the synonym it finds in your search path.

You can optionally include the PUBLIC clause to drop a synonym that resides in the public schema. The
DROP PUBLIC SYNONYM command, compatible with Oracle databases, drops a synonym that resides in
the public schema:

164

EDB Postgres™ Advanced Server, Release 13

DROP PUBLIC SYNONYM syn_name;

The following example drops the synonym, personnel:

DROP SYNONYM personnel;

See Also

CREATE SYNONYM

165

CHAPTER 55

DROP ROLE

Name

DROP ROLE -- remove a database role

Synopsis

DROP ROLE <name> [CASCADE]

Description

DROP ROLE removes the specified role. To drop a superuser role, you must be a superuser yourself; to drop
non-superuser roles, you must have CREATEROLE privilege.

A role cannot be removed if it is still referenced in any database of the cluster; an error will be raised if so.
Before dropping the role, you must drop all the objects it owns (or reassign their ownership) and revoke any
privileges the role has been granted.

It is not necessary to remove role memberships involving the role; DROP ROLE automatically revokes any
memberships of the target role in other roles, and of other roles in the target role. The other roles are not
dropped nor otherwise affected.

Alternatively, if the only objects owned by the role belong within a schema that is owned by the role and has
the same name as the role, the CASCADE option can be specified. In this case the issuer of the DROP ROLE
name CASCADE command must be a superuser and the named role, the schema, and all objects within the
schema will be deleted.

Parameters

name

The name of the role to remove.

CASCADE

166

EDB Postgres™ Advanced Server, Release 13

If specified, also drops the schema owned by, and with the same name as the role (and all objects
owned by the role belonging to the schema) as long as no other dependencies on the role or the
schema exist.

Examples

To drop a role:

DROP ROLE admins;

See Also

CREATE ROLE, SET ROLE, GRANT , REVOKE

167

CHAPTER 56

DROP SEQUENCE

Name

DROP SEQUENCE -- remove a sequence

Synopsis

DROP SEQUENCE <name> [, ...]

Description

DROP SEQUENCE removes sequence number generators. To execute this command you must be a supe-
ruser or the owner of the sequence.

Parameters

name

The name (optionally schema-qualified) of a sequence.

Examples

To remove the sequence, serial:

DROP SEQUENCE serial;

See Also

ALTER SEQUENCE, CREATE SEQUENCE

168

CHAPTER 57

DROP TABLE

Name

DROP TABLE -- remove a table

Synopsis

DROP TABLE <name> [CASCADE | RESTRICT | CASCADE CONSTRAINTS]

Description

DROP TABLE removes tables from the database. Only its owner may destroy a table. To empty a table
of rows, without destroying the table, use DELETE. DROP TABLE always removes any indexes, rules,
triggers, and constraints that exist for the target table.

Parameters

name

The name (optionally schema-qualified) of the table to drop.

Include the RESTRICT keyword to specify that the server should refuse to drop the table if any objects
depend on it. This is the default behavior; the DROP TABLE command will report an error if any objects
depend on the table.

Include the CASCADE clause to drop any objects that depend on the table.

Include the CASCADE CONSTRAINTS clause to specify that Advanced Server should drop any dependent
constraints (excluding other object types) on the specified table.

Examples

The following command drops a table named emp that has no dependencies:

169

EDB Postgres™ Advanced Server, Release 13

DROP TABLE emp;

The outcome of a DROP TABLE command will vary depending on whether the table has any dependencies
- you can control the outcome by specifying a drop behavior. For example, if you create two tables,
orders and items, where the items table is dependent on the orders table:

CREATE TABLE orders
(order_id int PRIMARY KEY, order_date date, ...);

CREATE TABLE items
(order_id REFERENCES orders, quantity int, ...);

Advanced Server will perform one of the following actions when dropping the orders table, depending
on the drop behavior that you specify:

• If you specify DROP TABLE orders RESTRICT, Advanced Server will report an error.

• If you specify DROP TABLE orders CASCADE, Advanced Server will drop the orders table
and the items table.

• If you specify DROP TABLE orders CASCADE CONSTRAINTS, Advanced Server will drop the
orders table and remove the foreign key specification from the items table, but not drop the
items table.

See Also

CREATE TABLE, ALTER TABLE

170

CHAPTER 58

DROP TABLESPACE

Name

DROP TABLESPACE -- remove a tablespace

Synopsis

DROP TABLESPACE <tablespacename>

Description

DROP TABLESPACE removes a tablespace from the system.

A tablespace can only be dropped by its owner or a superuser. The tablespace must be empty of all database
objects before it can be dropped. It is possible that objects in other databases may still reside in the tablespace
even if no objects in the current database are using the tablespace.

Parameters

tablespacename

The name of a tablespace.

Examples

To remove tablespace employee_space from the system:

DROP TABLESPACE employee_space;

See Also

ALTER TABLESPACE

171

CHAPTER 59

DROP TRIGGER

Name

DROP TRIGGER -- remove a trigger

Synopsis

DROP TRIGGER <name>

Description

DROP TRIGGER removes a trigger from its associated table. The command must be run by a superuser or
the owner of the table on which the trigger is defined.

Parameters

name

The name of a trigger to remove.

Examples

Remove a trigger named emp_salary_trig:

DROP TRIGGER emp_salary_trig;

See Also

CREATE TRIGGER, ALTER TRIGGER

172

CHAPTER 60

DROP TYPE

Name

DROP TYPE -- remove a type definition

Synopsis

DROP TYPE [BODY] <name>

Description

DROP TYPE removes the type definition. To execute this command you must be a superuser or the owner
of the type.

The optional BODY qualifier applies only to object type definitions, not to collection types nor to composite
types. If BODY is specified, only the object type body is removed – the object type specification is not
dropped. If BODY is omitted, both the object type specification and body are removed.

The type will not be deleted if there are other database objects dependent upon the named type.

Parameters

name

The name of a type definition to remove.

Examples

Drop the object type named addr_obj_typ:

DROP TYPE addr_obj_typ;

Drop the nested table type named budget_tbl_typ:

173

EDB Postgres™ Advanced Server, Release 13

DROP TYPE budget_tbl_typ;

See Also

CREATE TYPE, CREATE TYPE BODY

174

CHAPTER 61

DROP USER

Name

DROP USER -- remove a database user account

Synopsis

DROP USER <name> [CASCADE]

Description

DROP USER removes the specified user. To drop a superuser, you must be a superuser yourself; to drop
non-superusers, you must have CREATEROLE privilege.

A user cannot be removed if it is still referenced in any database of the cluster; an error will be raised if so.
Before dropping the user, you must drop all the objects it owns (or reassign their ownership) and revoke any
privileges the user has been granted.

However, it is not necessary to remove role memberships involving the user; DROP USER automatically
revokes any memberships of the target user in other roles, and of other roles in the target user. The other
roles are not dropped nor otherwise affected.

Alternatively, if the only objects owned by the user belong within a schema that is owned by the user and
has the same name as the user, the CASCADE option can be specified. In this case the issuer of the DROP
USER name CASCADE command must be a superuser and the named user, the schema, and all objects
within the schema will be deleted.

Parameters

name

The name of the user to remove.

CASCADE

175

EDB Postgres™ Advanced Server, Release 13

If specified, also drops the schema owned by, and with the same name as the user (and all
objects owned by the user belonging to the schema) as long as no other dependencies on the
user or the schema exist.

Examples

To drop a user account named john that owns no objects nor has been granted any privileges on other
objects:

DROP USER john;

To drop user account, john, who has not been granted any privileges on any objects, and does not own any
objects outside of a schema named, john, that is owned by user, john:

DROP USER john CASCADE;

See Also

CREATE USER, ALTER USER

176

CHAPTER 62

DROP VIEW

Name

DROP VIEW -- remove a view

Synopsis

DROP VIEW <name>

Description

DROP VIEW drops an existing view. To execute this command you must be a database superuser or the
owner of the view. The named view will not be deleted if other objects are dependent upon this view (such
as a view of a view).

The form of the DROP VIEW command compatible with Oracle does not support a CASCADE clause; to
drop a view and it’s dependencies, use the PostgreSQL-compatible form of the DROP VIEW command. For
more information, see the PostgreSQL core documentation at:

https://www.postgresql.org/docs/current/static/sql-dropview.html

Parameters

name

The name (optionally schema-qualified) of the view to remove.

Examples

This command will remove the view named dept_30:

DROP VIEW dept_30;

See Also

177

https://www.postgresql.org/docs/current/static/sql-dropview.html

EDB Postgres™ Advanced Server, Release 13

CREATE VIEW

178

CHAPTER 63

EXEC

Name

EXEC

Synopsis

EXEC function_name ['('[<argument_list>]')']

Description

EXECUTE

Parameters

procedure_name

procedure_name is the (optionally schema-qualified) function name.

argument_list

argument_list specifies a comma-separated list of arguments required by the function.
Note that each member of argument_list corresponds to a formal argument expected by
the function. Each formal argument may be an IN parameter, an OUT parameter, or an INOUT
parameter.

Examples

The EXEC statement may take one of several forms, depending on the arguments required by the function:

EXEC update_balance;
EXEC update_balance();
EXEC update_balance(1,2,3);

179

CHAPTER 64

GRANT

Name

GRANT -- define access privileges

Synopsis

GRANT { { SELECT | INSERT | UPDATE | DELETE | REFERENCES }
[,...] | ALL [PRIVILEGES] }
ON tablename
TO { username | groupname | PUBLIC } [, ...]
[WITH GRANT OPTION]

GRANT { { INSERT | UPDATE | REFERENCES } (column [, ...]) }
[, ...]
ON tablename
TO { username | groupname | PUBLIC } [, ...]
[WITH GRANT OPTION]

GRANT { SELECT | ALL [PRIVILEGES] }
ON sequencename
TO { username | groupname | PUBLIC } [, ...]
[WITH GRANT OPTION]

GRANT { EXECUTE | ALL [PRIVILEGES] }
ON FUNCTION progname

([[argmode] [argname] argtype] [, ...])
TO { username | groupname | PUBLIC } [, ...]
[WITH GRANT OPTION]

GRANT { EXECUTE | ALL [PRIVILEGES] }
ON PROCEDURE progname

(continues on next page)

180

EDB Postgres™ Advanced Server, Release 13

(continued from previous page)

[([[argmode] [argname] argtype] [, ...])]
TO { username | groupname | PUBLIC } [, ...]
[WITH GRANT OPTION]

GRANT { EXECUTE | ALL [PRIVILEGES] }
ON PACKAGE packagename
TO { username | groupname | PUBLIC } [, ...]
[WITH GRANT OPTION]

GRANT role [, ...]
TO { username | groupname | PUBLIC } [, ...]
[WITH ADMIN OPTION]

GRANT { CONNECT | RESOURCE | DBA } [, ...]
TO { username | groupname } [, ...]
[WITH ADMIN OPTION]

GRANT CREATE [PUBLIC] DATABASE LINK
TO { username | groupname }

GRANT DROP PUBLIC DATABASE LINK
TO { username | groupname }

GRANT EXEMPT ACCESS POLICY
TO { username | groupname }

Description

The GRANT command has three basic variants: one that grants privileges on a database object (table, view,
sequence, or program), one that grants membership in a role, and one that grants system privileges. These
variants are similar in many ways, but they are different enough to be described separately.

In Advanced Server, the concept of users and groups has been unified into a single type of entity called a
role. In this context, a user is a role that has the LOGIN attribute – the role may be used to create a
session and connect to an application. A group is a role that does not have the LOGIN attribute – the role
may not be used to create a session or connect to an application.

A role may be a member of one or more other roles, so the traditional concept of users belonging to groups is
still valid. However, with the generalization of users and groups, users may “belong” to users, groups may
“belong” to groups, and groups may “belong” to users, forming a general multi-level hierarchy of roles.
User names and group names share the same namespace therefore it is not necessary to distinguish whether
a grantee is a user or a group in the GRANT command.

181

EDB Postgres™ Advanced Server, Release 13

64.1 GRANT on Database Objects

This variant of the GRANT command gives specific privileges on a database object to a role. These privileges
are added to those already granted, if any.

The key word PUBLIC indicates that the privileges are to be granted to all roles, including those that may
be created later. PUBLIC may be thought of as an implicitly defined group that always includes all roles.
Any particular role will have the sum of privileges granted directly to it, privileges granted to any role it is
presently a member of, and privileges granted to PUBLIC.

If the WITH GRANT OPTION is specified, the recipient of the privilege may in turn grant it to others.
Without a grant option, the recipient cannot do that. Grant options cannot be granted to PUBLIC.

There is no need to grant privileges to the owner of an object (usually the user that created it), as the owner
has all privileges by default. (The owner could, however, choose to revoke some of his own privileges for
safety.) The right to drop an object or to alter its definition in any way is not described by a grantable
privilege; it is inherent in the owner, and cannot be granted or revoked. The owner implicitly has all grant
options for the object as well.

Depending on the type of object, the initial default privileges may include granting some privileges to
PUBLIC. The default is no public access for tables and EXECUTE privilege for functions, procedures, and
packages. The object owner may of course revoke these privileges. (For maximum security, issue the
REVOKE in the same transaction that creates the object; then there is no window in which another user may
use the object.)

The possible privileges are:

SELECT

Allows SELECT from any column of the specified table, view, or sequence. For sequences, this
privilege also allows the use of the currval function.

INSERT

Allows INSERT of a new row into the specified table.

UPDATE

Allows UPDATE of a column of the specified table. SELECT ... FOR UPDATE also re-
quires this privilege (besides the SELECT privilege).

DELETE

Allows DELETE of a row from the specified table.

REFERENCES

To create a foreign key constraint, it is necessary to have this privilege on both the referencing
and referenced tables.

EXECUTE

Allows the use of the specified package, procedure, or function. When applied to a package,
allows the use of all of the package’s public procedures, public functions, public variables,
records, cursors and other public objects and object types. This is the only type of privilege that
is applicable to functions, procedures, and packages.

64.1. GRANT on Database Objects 182

EDB Postgres™ Advanced Server, Release 13

The Advanced Server syntax for granting the EXECUTE privilege is not fully compatible with
Oracle databases. Advanced Server requires qualification of the program name by one of the
keywords, FUNCTION, PROCEDURE, or PACKAGE whereas these keywords must be omitted
in Oracle. For functions, Advanced Server requires all input (IN, IN OUT) argument data types
after the function name (including an empty parenthesis if there are no function arguments). For
procedures, all input argument data types must be specified if the procedure has one or more
input arguments. In Oracle, function and procedure signatures must be omitted. This is due to
the fact that all programs share the same namespace in Oracle, whereas functions, procedures,
and packages have their own individual namespace in Advanced Server to allow program name
overloading to a certain extent.

ALL PRIVILEGES

Grant all of the available privileges at once.

The privileges required by other commands are listed on the reference page of the respective command.

64.1. GRANT on Database Objects 183

EDB Postgres™ Advanced Server, Release 13

64.2 GRANT on Roles

This variant of the GRANT command grants membership in a role to one or more other roles. Membership
in a role is significant because it conveys the privileges granted to a role to each of its members.

If the WITH ADMIN OPTION is specified, the member may in turn grant membership in the role to others,
and revoke membership in the role as well. Without the admin option, ordinary users cannot do that.

Database superusers can grant or revoke membership in any role to anyone. Roles having the CREATEROLE
privilege can grant or revoke membership in any role that is not a superuser.

There are three pre-defined roles that have the following meanings:

CONNECT

Granting the CONNECT role is equivalent to giving the grantee the LOGIN privilege. The
grantor must have the CREATEROLE privilege.

RESOURCE

Granting the RESOURCE role is equivalent to granting the CREATE and USAGE privileges on a
schema that has the same name as the grantee. This schema must exist before the grant is given.
The grantor must have the privilege to grant CREATE or USAGE privileges on this schema to
the grantee.

DBA

Granting the DBA role is equivalent to making the grantee a superuser. The grantor must be a
superuser.

Notes

The REVOKE command is used to revoke access privileges.

When a non-owner of an object attempts to GRANT privileges on the object, the command will fail outright
if the user has no privileges whatsoever on the object. As long as a privilege is available, the command
will proceed, but it will grant only those privileges for which the user has grant options. The GRANT ALL
PRIVILEGES forms will issue a warning message if no grant options are held, while the other forms will
issue a warning if grant options for any of the privileges specifically named in the command are not held.
(In principle these statements apply to the object owner as well, but since the owner is always treated as
holding all grant options, the cases can never occur.)

It should be noted that database superusers can access all objects regardless of object privilege settings. This
is comparable to the rights of root in a Unix system. As with root, it’s unwise to operate as a superuser
except when absolutely necessary.

If a superuser chooses to issue a GRANT or REVOKE command, the command is performed as though it
were issued by the owner of the affected object. In particular, privileges granted via such a command will
appear to have been granted by the object owner. (For role membership, the membership appears to have
been granted by the containing role itself.)

GRANT and REVOKE can also be done by a role that is not the owner of the affected object, but is a member
of the role that owns the object, or is a member of a role that holds privileges WITH GRANT OPTION on
the object. In this case the privileges will be recorded as having been granted by the role that actually owns
the object or holds the privileges WITH GRANT OPTION.

64.2. GRANT on Roles 184

EDB Postgres™ Advanced Server, Release 13

For example, if table t1 is owned by role g1, of which role u1 is a member, then u1 can grant
privileges on t1 to u2, but those privileges will appear to have been granted directly by g1.
Any other member of role g1 could revoke them later.

If the role executing GRANT holds the required privileges indirectly via more than one role membership
path, it is unspecified which containing role will be recorded as having done the grant. In such cases it is
best practice to use SET ROLE to become the specific role you want to do the GRANT as.

Currently, Advanced Server does not support granting or revoking privileges for individual columns of a
table. One possible workaround is to create a view having just the desired columns and then grant privileges
to that view.

Examples

Grant insert privilege to all users on table emp:

GRANT INSERT ON emp TO PUBLIC;

Grant all available privileges to user mary on view salesemp:

GRANT ALL PRIVILEGES ON salesemp TO mary;

Note that while the above will indeed grant all privileges if executed by a superuser or the owner of emp,
when executed by someone else it will only grant those permissions for which the someone else has grant
options.

Grant membership in role admins to user joe:

GRANT admins TO joe;

Grant CONNECT privilege to user joe:

GRANT CONNECT TO joe;

See Also

REVOKE, SET ROLE

64.2. GRANT on Roles 185

EDB Postgres™ Advanced Server, Release 13

64.3 GRANT on System Privileges

This variant of the GRANT command gives a role the ability to perform certain system operations within
a database. System privileges relate to the ability to create or delete certain database objects that are not
necessarily within the confines of one schema. Only database superusers can grant system privileges.

CREATE [PUBLIC] DATABASE LINK

The CREATE [PUBLIC] DATABASE LINK privilege allows the specified role to create a database link.
Include the PUBLIC keyword to allow the role to create public database links; omit the PUBLIC keyword
to allow the specified role to create private database links.

DROP PUBLIC DATABASE LINK

The DROP PUBLIC DATABASE LINK privilege allows a role to drop a public database link. System
privileges are not required to drop a private database link. A private database link may be dropped by the
link owner or a database superuser.

EXEMPT ACCESS POLICY

The EXEMPT ACCESS POLICY privilege allows a role to execute a SQL command without invoking any
policy function that may be associated with the target database object. The role is exempt from all security
policies in the database.

The EXEMPT ACCESS POLICY privilege is not inheritable by membership to a role that has the EXEMPT
ACCESS POLICY privilege. For example, the following sequence of GRANT commands does not result in
user joe obtaining the EXEMPT ACCESS POLICY privilege even though joe is granted membership to
the enterprisedb role, which has been granted the EXEMPT ACCESS POLICY privilege:

GRANT EXEMPT ACCESS POLICY TO enterprisedb;
GRANT enterprisedb TO joe;

The rolpolicyexempt column of the system catalog table pg_authid is set to true if a role has the
EXEMPT ACCESS POLICY privilege.

Examples

Grant CREATE PUBLIC DATABASE LINK privilege to user joe:

GRANT CREATE PUBLIC DATABASE LINK TO joe;

Grant DROP PUBLIC DATABASE LINK privilege to user joe:

GRANT DROP PUBLIC DATABASE LINK TO joe;

Grant the EXEMPT ACCESS POLICY privilege to user joe:

GRANT EXEMPT ACCESS POLICY TO joe;

Using the ALTER ROLE Command to Assign System Privileges

The Advanced Server ALTER ROLE command also supports syntax that you can use to assign:

• the privilege required to create a public or private database link.

64.3. GRANT on System Privileges 186

EDB Postgres™ Advanced Server, Release 13

• the privilege required to drop a public database link.

• the EXEMPT ACCESS POLICY privilege.

The ALTER ROLE syntax is functionally equivalent to the respective commands compatible with Oracle
databases.

See Also

REVOKE, ALTER ROLE

64.3. GRANT on System Privileges 187

CHAPTER 65

INSERT

Name

INSERT -- create new rows in a table

Synopsis

INSERT INTO <table>[@<dblink>] [(<column> [, ...])]
{ VALUES ({ <expression> | DEFAULT } [, ...])

[RETURNING <return_expression> [, ...]
{ INTO { <record> | <variable> [, ...] }
| BULK COLLECT INTO <collection> [, ...] }]

| <query> }

Description

INSERT allows you to insert new rows into a table. You can insert a single row at a time or several rows as
a result of a query.

The columns in the target list may be listed in any order. Each column not present in the target list will be
inserted using a default value, either its declared default value or null.

If the expression for each column is not of the correct data type, automatic type conversion will be attempted.

The RETURNING INTO { record | variable [, ...] } clause may only be specified when
the INSERT command is used within an SPL program and only when the VALUES clause is used.

The RETURNING BULK COLLECT INTO collection [, ...] clause may only be specified if
the INSERT command is used within an SPL program. If more than one collection is specified as
the target of the BULK COLLECT INTO clause, then each collection must consist of a single, scalar
field – i.e., collection must not be a record. return_expression evaluated for each inserted row,
becomes an element in collection starting with the first element. Any existing rows in collection
are deleted. If the result set is empty, then collection will be empty.

188

EDB Postgres™ Advanced Server, Release 13

You must have INSERT privilege to a table in order to insert into it. If you use the query clause to insert
rows from a query, you also need to have SELECT privilege on any table used in the query.

Parameters

table

The name (optionally schema-qualified) of an existing table.

dblink

Database link name identifying a remote database. See the CREATE DATABASE LINK com-
mand for information on database links.

column

The name of a column in table.

expression

An expression or value to assign to column.

DEFAULT

This column will be filled with its default value.

query

A query (SELECT statement) that supplies the rows to be inserted. Refer to the SELECT
command for a description of the syntax.

return_expression

An expression that may include one or more columns from table. If a column name from
table is specified in return_expression, the value substituted for the column when
return_expression is evaluated is determined as follows:

If the column specified in return_expression is assigned a value in
the INSERT command, then the assigned value is used in the evaluation of
return_expression.

If the column specified in return_expression is not assigned a value in the
INSERT command and there is no default value for the column in the table’s column
definition, then null is used in the evaluation of return_expression.

If the column specified in return_expression is not assigned a value in
the INSERT command and there is a default value for the column in the ta-
ble’s column definition, then the default value is used in the evaluation of
return_expression.

record

A record whose field the evaluated return_expression is to be assigned. The
first return_expression is assigned to the first field in record, the second
return_expression is assigned to the second field in record, etc. The number of
fields in record must exactly match the number of expressions and the fields must be type-
compatible with their assigned expressions.

189

EDB Postgres™ Advanced Server, Release 13

variable

A variable to which the evaluated return_expression is to be assigned. If more than one
return_expression and variable are specified, the first return_expression is
assigned to the first variable, the second return_expression is assigned to the second
variable, etc. The number of variables specified following the INTO keyword must exactly
match the number of expressions following the RETURNING keyword and the variables must
be type-compatible with their assigned expressions.

collection

A collection in which an element is created from the evaluated return_expression. There
can be either a single collection which may be a collection of a single field or a collection of
a record type, or there may be more than one collection in which case each collection must
consist of a single field. The number of return expressions must match in number and order the
number of fields in all specified collections. Each corresponding return_expression and
collection field must be type-compatible.

Examples

Insert a single row into table emp:

INSERT INTO emp VALUES (8021,'JOHN','SALESMAN',7698,'22-FEB-07',1250,500,30);

In this second example, the column, comm, is omitted and therefore it will have the default value of null:

INSERT INTO emp (empno, ename, job, mgr, hiredate, sal, deptno)
VALUES (8022,'PETERS','CLERK',7698,'03-DEC-06',950,30);

The third example uses the DEFAULT clause for the hiredate and comm columns rather than specifying
a value:

INSERT INTO emp VALUES (8023,'FORD','ANALYST',7566,NULL,3000,NULL,20);

This example creates a table for the department names and then inserts into the table by selecting from the
dname column of the dept table:

CREATE TABLE deptnames (
deptname VARCHAR2(14)

);
INSERT INTO deptnames SELECT dname FROM dept;

190

CHAPTER 66

LOCK

Name

LOCK -- lock a table

Synopsis

LOCK TABLE <name> [, ...] IN <lockmode> MODE [NOWAIT]

where lockmode is one of:

ROW SHARE | ROW EXCLUSIVE | SHARE | SHARE ROW EXCLUSIVE | EXCLUSIVE

Description

LOCK TABLE obtains a table-level lock, waiting if necessary for any conflicting locks to be released. If
NOWAIT is specified, LOCK TABLE does not wait to acquire the desired lock: if it cannot be acquired
immediately, the command is aborted and an error is emitted. Once obtained, the lock is held for the
remainder of the current transaction. (There is no UNLOCK TABLE command; locks are always released at
transaction end.)

When acquiring locks automatically for commands that reference tables, Advanced Server always uses the
least restrictive lock mode possible. LOCK TABLE provides for cases when you might need more restrictive
locking. For example, suppose an application runs a transaction at the isolation level read committed and
needs to ensure that data in a table remains stable for the duration of the transaction. To achieve this you
could obtain SHARE lock mode over the table before querying. This will prevent concurrent data changes
and ensure subsequent reads of the table see a stable view of committed data, because SHARE lock mode
conflicts with the ROW EXCLUSIVE lock acquired by writers, and your LOCK TABLE name IN SHARE
MODE statement will wait until any concurrent holders of ROW EXCLUSIVE mode locks commit or roll
back. Thus, once you obtain the lock, there are no uncommitted writes outstanding; furthermore none can
begin until you release the lock.

191

EDB Postgres™ Advanced Server, Release 13

To achieve a similar effect when running a transaction at the isolation level serializable, you have to execute
the LOCK TABLE statement before executing any data modification statement. A serializable transaction’s
view of data will be frozen when its first data modification statement begins. A later LOCK TABLE will
still prevent concurrent writes - but it won’t ensure that what the transaction reads corresponds to the latest
committed values.

If a transaction of this sort is going to change the data in the table, then it should use SHARE ROW
EXCLUSIVE lock mode instead of SHARE mode.

This ensures that only one transaction of this type runs at a time. Without this, a deadlock is possible: two
transactions might both acquire SHARE mode, and then be unable to also acquire ROW EXCLUSIVE mode
to actually perform their updates. (Note that a transaction’s own locks never conflict, so a transaction can
acquire ROW EXCLUSIVE mode when it holds SHARE mode - but not if anyone else holds SHARE mode.)
To avoid deadlocks, make sure all transactions acquire locks on the same objects in the same order, and
if multiple lock modes are involved for a single object, then transactions should always acquire the most
restrictive mode first.

Parameters

name

The name (optionally schema-qualified) of an existing table to lock.

The command LOCK TABLE a, b; is equivalent to LOCK TABLE a; LOCK TABLE b.
The tables are locked one-by-one in the order specified in the LOCK TABLE command.

lockmode

The lock mode specifies which locks this lock conflicts with.

If no lock mode is specified, then the server uses the most restrictive mode, ACCESS
EXCLUSIVE. (ACCESS EXCLUSIVE is not compatible with Oracle databases. In Advanced
Server, this configuration mode ensures that no other transaction can access the locked table in
any manner.)

NOWAIT

Specifies that LOCK TABLE should not wait for any conflicting locks to be released: if the
specified lock cannot be immediately acquired without waiting, the transaction is aborted.

Notes

All forms of LOCK require UPDATE and/or DELETE privileges.

LOCK TABLE is useful only inside a transaction block since the lock is dropped as soon as the transaction
ends. A LOCK TABLE command appearing outside any transaction block forms a self-contained transac-
tion, so the lock will be dropped as soon as it is obtained.

LOCK TABLE only deals with table-level locks, and so the mode names involving ROW are all misnomers.
These mode names should generally be read as indicating the intention of the user to acquire row-level locks
within the locked table. Also, ROW EXCLUSIVE mode is a sharable table lock. Keep in mind that all the
lock modes have identical semantics so far as LOCK TABLE is concerned, differing only in the rules about
which modes conflict with which.

192

CHAPTER 67

REVOKE

Name

REVOKE -- remove access privileges

Synopsis

REVOKE { { SELECT | INSERT | UPDATE | DELETE | REFERENCES }
[,...] | ALL [PRIVILEGES] }
ON tablename
FROM { username | groupname | PUBLIC } [, ...]
[CASCADE | RESTRICT]

REVOKE { SELECT | ALL [PRIVILEGES] }
ON sequencename
FROM { username | groupname | PUBLIC } [, ...]
[CASCADE | RESTRICT]

REVOKE { EXECUTE | ALL [PRIVILEGES] }
ON FUNCTION progname

([[argmode] [argname] argtype] [, ...])
FROM { username | groupname | PUBLIC } [, ...]
[CASCADE | RESTRICT]

REVOKE { EXECUTE | ALL [PRIVILEGES] }
ON PROCEDURE progname

[([[argmode] [argname] argtype] [, ...])]
FROM { username | groupname | PUBLIC } [, ...]
[CASCADE | RESTRICT]

REVOKE { EXECUTE | ALL [PRIVILEGES] }
ON PACKAGE packagename

(continues on next page)

193

EDB Postgres™ Advanced Server, Release 13

(continued from previous page)

FROM { username | groupname | PUBLIC } [, ...]
[CASCADE | RESTRICT]

REVOKE role [, ...] FROM { username | groupname | PUBLIC }
[, ...]
[CASCADE | RESTRICT]

REVOKE { CONNECT | RESOURCE | DBA } [, ...]
FROM { username | groupname } [, ...]

REVOKE CREATE [PUBLIC] DATABASE LINK
FROM { username | groupname }

REVOKE DROP PUBLIC DATABASE LINK
FROM { username | groupname }

REVOKE EXEMPT ACCESS POLICY
FROM { username | groupname }

Description

The REVOKE command revokes previously granted privileges from one or more roles. The key word
PUBLIC refers to the implicitly defined group of all roles.

See the description of the GRANT command for the meaning of the privilege types.

Note that any particular role will have the sum of privileges granted directly to it, privileges granted to any
role it is presently a member of, and privileges granted to PUBLIC. Thus, for example, revoking SELECT
privilege from PUBLIC does not necessarily mean that all roles have lost SELECT privilege on the object:
those who have it granted directly or via another role will still have it.

If the privilege had been granted with the grant option, the grant option for the privilege is revoked as well
as the privilege, itself.

If a user holds a privilege with grant option and has granted it to other users then the privileges held by
those other users are called dependent privileges. If the privilege or the grant option held by the first user
is being revoked and dependent privileges exist, those dependent privileges are also revoked if CASCADE is
specified, else the revoke action will fail. This recursive revocation only affects privileges that were granted
through a chain of users that is traceable to the user that is the subject of this REVOKE command. Thus, the
affected users may effectively keep the privilege if it was also granted through other users.

Note: CASCADE is not an option compatible with Oracle databases. By default Oracle always cascades
dependent privileges, but Advanced Server requires the CASCADE keyword to be explicitly given, otherwise
the REVOKE command will fail.

When revoking membership in a role, GRANT OPTION is instead called ADMIN OPTION, but the behavior
is similar.

Notes

A user can only revoke privileges that were granted directly by that user. If, for example, user A has granted

194

EDB Postgres™ Advanced Server, Release 13

a privilege with grant option to user B, and user B has in turned granted it to user C, then user A cannot
revoke the privilege directly from C. Instead, user A could revoke the grant option from user B and use the
CASCADE option so that the privilege is in turn revoked from user C. For another example, if both A and B
have granted the same privilege to C, A can revoke his own grant but not B’s grant, so C will still effectively
have the privilege.

When a non-owner of an object attempts to REVOKE privileges on the object, the command will fail outright
if the user has no privileges whatsoever on the object. As long as some privilege is available, the command
will proceed, but it will revoke only those privileges for which the user has grant options. The REVOKE
ALL PRIVILEGES forms will issue a warning message if no grant options are held, while the other forms
will issue a warning if grant options for any of the privileges specifically named in the command are not
held. (In principle these statements apply to the object owner as well, but since the owner is always treated
as holding all grant options, the cases can never occur.)

If a superuser chooses to issue a GRANT or REVOKE command, the command is performed as though it
were issued by the owner of the affected object. Since all privileges ultimately come from the object owner
(possibly indirectly via chains of grant options), it is possible for a superuser to revoke all privileges, but
this may require use of CASCADE as stated above.

REVOKE can also be done by a role that is not the owner of the affected object, but is a member of the role
that owns the object, or is a member of a role that holds privileges WITH GRANT OPTION on the object.
In this case the command is performed as though it were issued by the containing role that actually owns
the object or holds the privileges WITH GRANT OPTION. For example, if table t1 is owned by role g1,
of which role u1 is a member, then u1 can revoke privileges on t1 that are recorded as being granted by
g1. This would include grants made by u1 as well as by other members of role g1.

If the role executing REVOKE holds privileges indirectly via more than one role membership path, it is
unspecified which containing role will be used to perform the command. In such cases it is best practice to
use SET ROLE to become the specific role you want to do the REVOKE as. Failure to do so may lead to
revoking privileges other than the ones you intended, or not revoking anything at all.

Note: The Advanced Server ALTER ROLE command also supports syntax that revokes the system priv-
ileges required to create a public or private database link, or exemptions from fine-grained access control
policies (DBMS_RLS). The ALTER ROLE syntax is functionally equivalent to the respective REVOKE com-
mand, compatible with Oracle databases.

Examples

Revoke insert privilege for the public on table emp:

REVOKE INSERT ON emp FROM PUBLIC;

Revoke all privileges from user mary on view salesemp:

REVOKE ALL PRIVILEGES ON salesemp FROM mary;

Note that this actually means “revoke all privileges that I granted”.

Revoke membership in role admins from user joe:

195

EDB Postgres™ Advanced Server, Release 13

REVOKE admins FROM joe;

Revoke CONNECT privilege from user joe:

REVOKE CONNECT FROM joe;

Revoke CREATE DATABASE LINK privilege from user joe:

REVOKE CREATE DATABASE LINK FROM joe;

Revoke the EXEMPT ACCESS POLICY privilege from user joe:

REVOKE EXEMPT ACCESS POLICY FROM joe;

See Also

GRANT , SET ROLE

196

CHAPTER 68

ROLLBACK

Name

ROLLBACK -- abort the current transaction

Synopsis

ROLLBACK [WORK]

Description

ROLLBACK rolls back the current transaction and causes all the updates made by the transaction to be
discarded.

Parameters

WORK

Optional key word - has no effect.

Notes

Use COMMIT to successfully terminate a transaction.

Issuing ROLLBACK when not inside a transaction does no harm.

Note: Executing a ROLLBACK in a plpgsql procedure will throw an error if there is an Oracle-style SPL
procedure on the runtime stack.

Examples

To abort all changes:

197

EDB Postgres™ Advanced Server, Release 13

ROLLBACK;

See Also

COMMIT , ROLLBACK TO SAVEPOINT , SAVEPOINT

198

CHAPTER 69

ROLLBACK TO SAVEPOINT

Name

ROLLBACK TO SAVEPOINT -- roll back to a savepoint

Synopsis

ROLLBACK [WORK] TO [SAVEPOINT] <savepoint_name>

Description

Roll back all commands that were executed after the savepoint was established. The savepoint remains valid
and can be rolled back to again, if needed.

ROLLBACK TO SAVEPOINT destroys all savepoints that were established after the named savepoint.

Parameters

savepoint_name

The savepoint to which to roll back.

Notes

Specifying a savepoint name that has not been established is an error.

ROLLBACK TO SAVEPOINT is not supported within SPL programs.

Examples

To undo the effects of the commands executed savepoint depts was established:

\set AUTOCOMMIT off
INSERT INTO dept VALUES (50, 'HR', 'NEW YORK');
SAVEPOINT depts;

(continues on next page)

199

EDB Postgres™ Advanced Server, Release 13

(continued from previous page)

INSERT INTO emp (empno, ename, deptno) VALUES (9001, 'JONES', 50);
INSERT INTO emp (empno, ename, deptno) VALUES (9002, 'ALICE', 50);
ROLLBACK TO SAVEPOINT depts;

See Also

COMMIT , ROLLBACK, SAVEPOINT

200

CHAPTER 70

SAVEPOINT

Name

SAVEPOINT -- define a new savepoint within the current transaction

Synopsis

SAVEPOINT <savepoint_name>

Description

SAVEPOINT establishes a new savepoint within the current transaction.

A savepoint is a special mark inside a transaction that allows all commands that are executed after it was
established to be rolled back, restoring the transaction state to what it was at the time of the savepoint.

Parameters

savepoint_name

The name to be given to the savepoint.

Notes

Use ROLLBACK TO SAVEPOINT to roll back to a savepoint.

Savepoints can only be established when inside a transaction block. There can be multiple savepoints defined
within a transaction.

When another savepoint is established with the same name as a previous savepoint, the old savepoint is kept,
though only the more recent one will be used when rolling back.

SAVEPOINT is not supported within SPL programs.

Examples

201

EDB Postgres™ Advanced Server, Release 13

To establish a savepoint and later undo the effects of all commands executed after it was established:

\set AUTOCOMMIT off
INSERT INTO dept VALUES (50, 'HR', 'NEW YORK');
SAVEPOINT depts;
INSERT INTO emp (empno, ename, deptno) VALUES (9001, 'JONES', 50);
INSERT INTO emp (empno, ename, deptno) VALUES (9002, 'ALICE', 50);
SAVEPOINT emps;
INSERT INTO jobhist VALUES (9001,'17-SEP-07',NULL,'CLERK',800,NULL,50,'New
Hire');
INSERT INTO jobhist VALUES (9002,'20-SEP-07',NULL,'CLERK',700,NULL,50,'New
Hire');
ROLLBACK TO depts;
COMMIT;

The above transaction will commit a row into the dept table, but the inserts into the emp and jobhist
tables are rolled back.

See Also

COMMIT , ROLLBACK, ROLLBACK TO SAVEPOINT

202

CHAPTER 71

SELECT

Name

SELECT -- retrieve rows from a table or view

Synopsis

SELECT [optimizer_hint] [ALL | DISTINCT | UNIQUE]

* | expression [AS output_name] [, ...]
FROM from_item [, ...]
[WHERE condition]
[[START WITH start_expression]

CONNECT BY { PRIOR parent_expr = child_expr |
child_expr = PRIOR parent_expr }

[ORDER SIBLINGS BY expression [ASC | DESC] [, ...]]]
[GROUP BY { expression | ROLLUP (expr_list) |

CUBE (expr_list) | GROUPING SETS (expr_list) } [, ...]
[LEVEL]]

[HAVING condition [, ...]]
[{ UNION [ALL] | INTERSECT | MINUS } select]
[ORDER BY expression [ASC | DESC] [, ...]]
[FOR UPDATE [WAIT n|NOWAIT|SKIP LOCKED]]

where from_item can be one of:

table_name[@dblink] [alias]
(select) alias
from_item [NATURAL] join_type from_item

[ON join_condition | USING (join_column [, ...])]

Description

SELECT retrieves rows from one or more tables. The general processing of SELECT is as follows:

203

EDB Postgres™ Advanced Server, Release 13

1. All elements in the FROM list are computed. (Each element in the FROM list is a real or virtual table.)
If more than one element is specified in the FROM list, they are cross-joined together. (See FROM
clause, below.)

2. If the WHERE clause is specified, all rows that do not satisfy the condition are eliminated from the
output. (See WHERE clause, below.)

3. If the GROUP BY clause is specified, the output is divided into groups of rows that match on one
or more values. If the HAVING clause is present, it eliminates groups that do not satisfy the given
condition. (See GROUP BY clause and HAVING clause below.)

4. Using the operators UNION, INTERSECT, and MINUS, the output of more than one SELECT state-
ment can be combined to form a single result set. The UNION operator returns all rows that are in one
or both of the result sets. The INTERSECT operator returns all rows that are strictly in both result
sets. The MINUS operator returns the rows that are in the first result set but not in the second. In all
three cases, duplicate rows are eliminated. In the case of the UNION operator, if ALL is specified then
duplicates are not eliminated. (See UNION clause, INTERSECT clause, and MINUS clause below.)

5. The actual output rows are computed using the SELECT output expressions for each selected row.
(See SELECT list below.)

6. The CONNECT BY clause is used to select data that has a hierarchical relationship. Such data has a
parent-child relationship between rows. (See CONNECT BY clause.)

7. If the ORDER BY clause is specified, the returned rows are sorted in the specified order. If ORDER
BY is not given, the rows are returned in whatever order the system finds fastest to produce. (See
ORDER BY clause below.)

8. DISTINCT | UNIQUE eliminates duplicate rows from the result. ALL (the default) will return all
candidate rows, including duplicates. (See DISTINCT | UNIQUE clause below.)

9. The FOR UPDATE clause causes the SELECT statement to lock the selected rows against concurrent
updates. (See FOR UPDATE clause below.)

You must have SELECT privilege on a table to read its values. The use of FOR UPDATE requires UPDATE
privilege as well.

Parameters

optimizer_hint

Comment-embedded hints to the optimizer for selection of an execution plan. See Functions and
Operators of Database Compatibility for Oracle Developers Reference Guide for information
about optimizer hints.

204

EDB Postgres™ Advanced Server, Release 13

71.1 FROM Clause

The FROM clause specifies one or more source tables for a SELECT statement. The syntax is:

FROM source [, ...]

Where source can be one of following elements:

table_name[@dblink]

The name (optionally schema-qualified) of an existing table or view. dblink is a database
link name identifying a remote database. See the CREATE DATABASE LINK command for
information on database links.

alias

A substitute name for the FROM item containing the alias. An alias is used for brevity or to
eliminate ambiguity for self-joins (where the same table is scanned multiple times). When an
alias is provided, it completely hides the actual name of the table or function; for example given
FROM foo AS f, the remainder of the SELECT must refer to this FROM item as f not foo.

select

A sub-SELECT can appear in the FROM clause. This acts as though its output were created as a
temporary table for the duration of this single SELECT command. Note that the sub-SELECT
must be surrounded by parentheses, and an alias must be provided for it.

join_type

One of the following:

[INNER] JOIN

LEFT [OUTER] JOIN

RIGHT [OUTER] JOIN

FULL [OUTER] JOIN

CROSS JOIN

For the INNER and OUTER join types, a join condition must be specified, namely exactly one of
NATURAL, ON join_condition, or USING (join_column [, ...]). See below
for the meaning. For CROSS JOIN, none of these clauses may appear.

A JOIN clause combines two FROM items. Use parentheses if necessary to determine the order
of nesting. In the absence of parentheses, JOINs nest left-to-right. In any case JOIN binds
more tightly than the commas separating FROM items.

CROSS JOIN and INNER JOIN produce a simple Cartesian product, the same result as you
get from listing the two items at the top level of FROM, but restricted by the join condition
(if any). CROSS JOIN is equivalent to INNER JOIN ON (TRUE), that is, no rows are
removed by qualification. These join types are just a notational convenience, since they do
nothing you couldn’t do with plain FROM and WHERE.

71.1. FROM Clause 205

EDB Postgres™ Advanced Server, Release 13

LEFT OUTER JOIN returns all rows in the qualified Cartesian product (i.e., all combined
rows that pass its join condition), plus one copy of each row in the left-hand table for which
there was no right-hand row that passed the join condition. This left-hand row is extended to
the full width of the joined table by inserting null values for the right-hand columns. Note that
only the JOIN clause’s own condition is considered while deciding which rows have matches.
Outer conditions are applied afterwards.

Conversely, RIGHT OUTER JOIN returns all the joined rows, plus one row for each un-
matched right-hand row (extended with nulls on the left). This is just a notational convenience,
since you could convert it to a LEFT OUTER JOIN by switching the left and right inputs.

FULL OUTER JOIN returns all the joined rows, plus one row for each unmatched left-hand
row (extended with nulls on the right), plus one row for each unmatched right-hand row (ex-
tended with nulls on the left).

ON join_condition

join_condition is an expression resulting in a value of type BOOLEAN (similar to a WHERE
clause) that specifies which rows in a join are considered to match.

USING (join_column [, ...])

A clause of the form USING (a, b, ...) is shorthand for ON left_table.a =
right_table.a AND left_table.b = right_table.b Also, USING im-
plies that only one of each pair of equivalent columns will be included in the join output, not
both.

NATURAL

NATURAL is shorthand for a USING list that mentions all columns in the two tables that have
the same names.

If multiple sources are specified, the result is the Cartesian product (cross join) of all the sources. Usually
qualification conditions are added to restrict the returned rows to a small subset of the Cartesian product.

Example

The following example selects all of the entries from the dept table:

SELECT * FROM dept;
deptno | dname | loc
-------+-------------+-----------

10 | ACCOUNTING | NEW YORK
20 | RESEARCH | DALLAS
30 | SALES | CHICAGO
40 | OPERATIONS | BOSTON

(4 rows)

71.1. FROM Clause 206

EDB Postgres™ Advanced Server, Release 13

71.2 WHERE Clause

The optional WHERE clause has the form:

WHERE condition

where condition is any expression that evaluates to a result of type BOOLEAN. Any row that does not
satisfy this condition will be eliminated from the output. A row satisfies the condition if it returns TRUE
when the actual row values are substituted for any variable references.

Example

The following example joins the contents of the emp and dept tables, WHERE the value of the deptno
column in the emp table is equal to the value of the deptno column in the deptno table:

SELECT d.deptno, d.dname, e.empno, e.ename, e.mgr, e.hiredate
FROM emp e, dept d
WHERE d.deptno = e.deptno;

deptno | dname | empno | ename | mgr | hiredate
--------+------------+-------+--------+------+--------------------

10 | ACCOUNTING | 7934 | MILLER | 7782 | 23-JAN-82 00:00:00
10 | ACCOUNTING | 7782 | CLARK | 7839 | 09-JUN-81 00:00:00
10 | ACCOUNTING | 7839 | KING | | 17-NOV-81 00:00:00
20 | RESEARCH | 7788 | SCOTT | 7566 | 19-APR-87 00:00:00
20 | RESEARCH | 7566 | JONES | 7839 | 02-APR-81 00:00:00
20 | RESEARCH | 7369 | SMITH | 7902 | 17-DEC-80 00:00:00
20 | RESEARCH | 7876 | ADAMS | 7788 | 23-MAY-87 00:00:00
20 | RESEARCH | 7902 | FORD | 7566 | 03-DEC-81 00:00:00
30 | SALES | 7521 | WARD | 7698 | 22-FEB-81 00:00:00
30 | SALES | 7844 | TURNER | 7698 | 08-SEP-81 00:00:00
30 | SALES | 7499 | ALLEN | 7698 | 20-FEB-81 00:00:00
30 | SALES | 7698 | BLAKE | 7839 | 01-MAY-81 00:00:00
30 | SALES | 7654 | MARTIN | 7698 | 28-SEP-81 00:00:00
30 | SALES | 7900 | JAMES | 7698 | 03-DEC-81 00:00:00

(14 rows)

71.3 GROUP BY Clause

The optional GROUP BY clause has the form:

GROUP BY { expression | ROLLUP (expr_list) |
CUBE (expr_list) | GROUPING SETS (expr_list) } [, ...]

GROUP BY will condense into a single row all selected rows that share the same values for the grouped ex-
pressions. expression can be an input column name, or the name or ordinal number of an output column
(SELECT list item), or an arbitrary expression formed from input-column values. In case of ambiguity, a
GROUP BY name will be interpreted as an input-column name rather than an output column name.

ROLLUP, CUBE, and GROUPING SETS are extensions to the GROUP BY clause for supporting multidi-
mensional analysis.

71.2. WHERE Clause 207

EDB Postgres™ Advanced Server, Release 13

Aggregate functions, if any are used, are computed across all rows making up each group, producing a
separate value for each group (whereas without GROUP BY, an aggregate produces a single value computed
across all the selected rows). When GROUP BY is present, it is not valid for the SELECT list expressions to
refer to ungrouped columns except within aggregate functions, since there would be more than one possible
value to return for an ungrouped column.

Example

The following example computes the sum of the sal column in the emp table, grouping the results by
department number:

SELECT deptno, SUM(sal) AS total
FROM emp
GROUP BY deptno;

deptno | total
--------+----------

10 | 8750.00
20 | 10875.00
30 | 9400.00

(3 rows)

71.4 HAVING Clause

The optional HAVING clause has the form:

HAVING condition

where condition is the same as specified for the WHERE clause.

HAVING eliminates group rows that do not satisfy the specified condition. HAVING is different from
WHERE; WHERE filters individual rows before the application of GROUP BY, while HAVING filters group
rows created by GROUP BY. Each column referenced in condition must unambiguously reference a group-
ing column, unless the reference appears within an aggregate function.

Example

To sum the column, sal of all employees, group the results by department number and show those group
totals that are less than 10000:

SELECT deptno, SUM(sal) AS total
FROM emp
GROUP BY deptno
HAVING SUM(sal) < 10000;

deptno | total
--------+---------

10 | 8750.00
30 | 9400.00

(2 rows)

71.4. HAVING Clause 208

EDB Postgres™ Advanced Server, Release 13

71.5 SELECT List

The SELECT list (between the key words SELECT and FROM) specifies expressions that form the output
rows of the SELECT statement. The expressions can (and usually do) refer to columns computed in the
FROM clause. Using the clause AS output_name, another name can be specified for an output column.
This name is primarily used to label the column for display. It can also be used to refer to the column’s value
in ORDER BY and GROUP BY clauses, but not in the WHERE or HAVING clauses; there you must write out
the expression instead.

Instead of an expression, * can be written in the output list as a shorthand for all the columns of the selected
rows.

Example

The SELECT list in the following example specifies that the result set should include the empno column,
the ename column, the mgr column and the hiredate column:

SELECT empno, ename, mgr, hiredate FROM emp;

empno | ename | mgr | hiredate
-------+--------+------+--------------------

7934 | MILLER | 7782 | 23-JAN-82 00:00:00
7782 | CLARK | 7839 | 09-JUN-81 00:00:00
7839 | KING | | 17-NOV-81 00:00:00
7788 | SCOTT | 7566 | 19-APR-87 00:00:00
7566 | JONES | 7839 | 02-APR-81 00:00:00
7369 | SMITH | 7902 | 17-DEC-80 00:00:00
7876 | ADAMS | 7788 | 23-MAY-87 00:00:00
7902 | FORD | 7566 | 03-DEC-81 00:00:00
7521 | WARD | 7698 | 22-FEB-81 00:00:00
7844 | TURNER | 7698 | 08-SEP-81 00:00:00
7499 | ALLEN | 7698 | 20-FEB-81 00:00:00
7698 | BLAKE | 7839 | 01-MAY-81 00:00:00
7654 | MARTIN | 7698 | 28-SEP-81 00:00:00
7900 | JAMES | 7698 | 03-DEC-81 00:00:00

(14 rows)

71.6 UNION Clause

The UNION clause has the form:

select_statement UNION [ALL] select_statement

select_statement is any SELECT statement without an ORDER BY or FOR UPDATE clause.
(ORDER BY can be attached to a sub-expression if it is enclosed in parentheses. Without parentheses,
these clauses will be taken to apply to the result of the UNION, not to its right-hand input expression.)

The UNION operator computes the set union of the rows returned by the involved SELECT statements. A
row is in the set union of two result sets if it appears in at least one of the result sets. The two SELECT

71.5. SELECT List 209

EDB Postgres™ Advanced Server, Release 13

statements that represent the direct operands of the UNION must produce the same number of columns, and
corresponding columns must be of compatible data types.

The result of UNION does not contain any duplicate rows unless the ALL option is specified. ALL prevents
elimination of duplicates.

Multiple UNION operators in the same SELECT statement are evaluated left to right, unless otherwise
indicated by parentheses.

Currently, FOR UPDATE may not be specified either for a UNION result or for any input of a UNION.

71.7 INTERSECT Clause

The INTERSECT clause has the form:

select_statement INTERSECT select_statement

select_statement is any SELECT statement without an ORDER BY or FOR UPDATE clause.

The INTERSECT operator computes the set intersection of the rows returned by the involved SELECT
statements. A row is in the intersection of two result sets if it appears in both result sets.

The result of INTERSECT does not contain any duplicate rows.

Multiple INTERSECT operators in the same SELECT statement are evaluated left to right, unless parenthe-
ses dictate otherwise. INTERSECT binds more tightly than UNION. That is, A UNION B INTERSECT
C will be read as A UNION (B INTERSECT C).

71.8 MINUS Clause

The MINUS clause has this general form:

select_statement MINUS select_statement

select_statement is any SELECT statement without an ORDER BY or FOR UPDATE clause.

The MINUS operator computes the set of rows that are in the result of the left SELECT statement but not in
the result of the right one.

The result of MINUS does not contain any duplicate rows.

Multiple MINUS operators in the same SELECT statement are evaluated left to right, unless parentheses
dictate otherwise. MINUS binds at the same level as UNION.

71.7. INTERSECT Clause 210

EDB Postgres™ Advanced Server, Release 13

71.9 CONNECT BY Clause

The CONNECT BY clause determines the parent-child relationship of rows when performing a hierarchical
query. It has the general form:

CONNECT BY { PRIOR parent_expr = child_expr |
child_expr = PRIOR parent_expr }

parent_expr is evaluated on a candidate parent row. If parent_expr = child_expr results in
TRUE for a row returned by the FROM clause, then this row is considered a child of the parent.

The following optional clauses may be specified in conjunction with the CONNECT BY clause:

START WITH start_expression

The rows returned by the FROM clause on which start_expression evaluates to TRUE
become the root nodes of the hierarchy.

ORDER SIBLINGS BY expression [ASC | DESC] [, ...]

Sibling rows of the hierarchy are ordered by expression in the result set.

Note: Advanced Server does not support the use of AND (or other operators) in the CONNECT BY clause.

71.10 ORDER BY Clause

The optional ORDER BY clause has the form:

ORDER BY expression [ASC | DESC] [, ...]

expression can be the name or ordinal number of an output column (SELECT list item), or it can be an
arbitrary expression formed from input-column values.

The ORDER BY clause causes the result rows to be sorted according to the specified expressions. If two
rows are equal according to the leftmost expression, they are compared according to the next expression
and so on. If they are equal according to all specified expressions, they are returned in an implementation-
dependent order.

The ordinal number refers to the ordinal (left-to-right) position of the result column. This feature makes
it possible to define an ordering on the basis of a column that does not have a unique name. This is never
absolutely necessary because it is always possible to assign a name to a result column using the AS clause.

It is also possible to use arbitrary expressions in the ORDER BY clause, including columns that do not
appear in the SELECT result list. Thus the following statement is valid:

SELECT ename FROM emp ORDER BY empno;

A limitation of this feature is that an ORDER BY clause applying to the result of a UNION, INTERSECT,
or MINUS clause may only specify an output column name or number, not an expression.

71.9. CONNECT BY Clause 211

EDB Postgres™ Advanced Server, Release 13

If an ORDER BY expression is a simple name that matches both a result column name and an input column
name, ORDER BY will interpret it as the result column name. This is the opposite of the choice that GROUP
BY will make in the same situation. This inconsistency is made to be compatible with the SQL standard.

Optionally one may add the key word ASC (ascending) or DESC (descending) after any expression in the
ORDER BY clause. If not specified, ASC is assumed by default.

The null value sorts higher than any other value. In other words, with ascending sort order, null values sort
at the end, and with descending sort order, null values sort at the beginning.

Character-string data is sorted according to the locale-specific collation order that was established when the
database cluster was initialized.

Note: If SELECT DISTINCT is specified or if a SELECT statement includes the SELECT DISTINCT
...ORDER BY clause then all the expressions in ORDER BY must be present in the select list of the
SELECT DISTINCT query.

Examples

The following two examples are identical ways of sorting the individual results according to the contents of
the second column (dname):

SELECT * FROM dept ORDER BY dname;

deptno | dname | loc
--------+------------+----------

10 | ACCOUNTING | NEW YORK
40 | OPERATIONS | BOSTON
20 | RESEARCH | DALLAS
30 | SALES | CHICAGO

(4 rows)

SELECT * FROM dept ORDER BY 2;

deptno | dname | loc
--------+------------+----------

10 | ACCOUNTING | NEW YORK
40 | OPERATIONS | BOSTON
20 | RESEARCH | DALLAS
30 | SALES | CHICAGO

(4 rows)

The following example uses the SELECT DISTINCT ...ORDER BY clause to fetch the job and
deptno from table emp:

CREATE TABLE EMP(EMPNO NUMBER(4) NOT NULL,
ENAME VARCHAR2(10),
JOB VARCHAR2(9),
DEPTNO NUMBER(2));

71.10. ORDER BY Clause 212

EDB Postgres™ Advanced Server, Release 13

INSERT INTO EMP VALUES (7369, 'SMITH', 'CLERK', 20);
INSERT 0 1
INSERT INTO EMP VALUES (7499, 'ALLEN', 'SALESMAN', 30);
INSERT 0 1
INSERT INTO EMP VALUES (7521, 'WARD', 'SALESMAN', 30);
INSERT 0 1
INSERT INTO EMP VALUES (7566, 'JONES', 'MANAGER', 20);
INSERT 0 1

SELECT DISTINCT e.job, e.deptno FROM emp e ORDER BY e.job, e.deptno;
job | deptno

----------+--------
CLERK | 20
MANAGER | 20
SALESMAN | 30

(3 rows)

71.11 DISTINCT | UNIQUE Clause

If a SELECT statement specifies DISTINCT or UNIQUE, all duplicate rows are removed from the result
set (one row is kept from each group of duplicates). The DISTINCT or UNIQUE clause are synonymous
when used with a SELECT statement. The ALL keyword specifies the opposite: all rows are kept; that is the
default.

Error messages resulting from the improper use of a SELECT statement that includes the DISTINCT or
UNIQUE keywords will include both the DISTINCT | UNIQUE keywords as shown below:

psql: ERROR: FOR UPDATE is not allowed with DISTINCT/UNIQUE clause

71.12 FOR UPDATE Clause

The FOR UPDATE clause takes the form:

FOR UPDATE [WAIT n|NOWAIT|SKIP LOCKED]

FOR UPDATE causes the rows retrieved by the SELECT statement to be locked as though for update.
This prevents a row from being modified or deleted by other transactions until the current transaction ends;
any transaction that attempts to UPDATE, DELETE, or SELECT FOR UPDATE a selected row will be
blocked until the current transaction ends. If an UPDATE, DELETE, or SELECT FOR UPDATE from
another transaction has already locked a selected row or rows, SELECT FOR UPDATE will wait for the
first transaction to complete, and will then lock and return the updated row (or no row, if the row was
deleted).

FOR UPDATE cannot be used in contexts where returned rows cannot be clearly identified with individual
table rows (for example, with aggregation).

Use FOR UPDATE options to specify locking preferences:

71.11. DISTINCT | UNIQUE Clause 213

EDB Postgres™ Advanced Server, Release 13

• Include the WAIT n keywords to specify the number of seconds (or fractional seconds) that the
SELECT statement will wait for a row locked by another session. Use a decimal form to specify
fractional seconds; for example, WAIT 1.5 instructs the server to wait one and a half seconds.
Specify up to 4 digits to the right of the decimal.

• Include the NOWAIT keyword to report an error immediately if a row cannot be locked by the current
session.

• Include SKIP LOCKED to instruct the server to lock rows if possible, and skip rows that are already
locked by another session.

71.12. FOR UPDATE Clause 214

CHAPTER 72

SET CONSTRAINTS

Name

SET CONSTRAINTS -- set constraint checking modes for the current transaction

Synopsis

SET CONSTRAINTS { ALL | name [, ...] } { DEFERRED | IMMEDIATE }

Description

SET CONSTRAINTS sets the behavior of constraint checking within the current transaction. IMMEDIATE
constraints are checked at the end of each statement. DEFERRED constraints are not checked until transac-
tion commit. Each constraint has its own IMMEDIATE or DEFERRED mode.

Upon creation, a constraint is given one of three characteristics: DEFERRABLE INITIALLY
DEFERRED, DEFERRABLE INITIALLY IMMEDIATE, or NOT DEFERRABLE. The third class is al-
ways IMMEDIATE and is not affected by the SET CONSTRAINTS command. The first two classes start
every transaction in the indicated mode, but their behavior can be changed within a transaction by SET
CONSTRAINTS.

SET CONSTRAINTS with a list of constraint names changes the mode of just those constraints (which
must all be deferrable). If there are multiple constraints matching any given name, all are affected. SET
CONSTRAINTS ALL changes the mode of all deferrable constraints.

When SET CONSTRAINTS changes the mode of a constraint from DEFERRED to IMMEDIATE, the new
mode takes effect retroactively: any outstanding data modifications that would have been checked at the
end of the transaction are instead checked during the execution of the SET CONSTRAINTS command. If
any such constraint is violated, the SET CONSTRAINTS fails (and does not change the constraint mode).
Thus, SET CONSTRAINTS can be used to force checking of constraints to occur at a specific point in a
transaction.

215

EDB Postgres™ Advanced Server, Release 13

Currently, only foreign key constraints are affected by this setting. Check and unique constraints are always
effectively not deferrable.

Notes

This command only alters the behavior of constraints within the current transaction. Thus, if you execute
this command outside of a transaction block it will not appear to have any effect.

216

CHAPTER 73

SET ROLE

Name

SET ROLE -- set the current user identifier of the current session

Synopsis

SET ROLE { rolename | NONE }

Description

This command sets the current user identifier of the current SQL session context to be rolename. After
SET ROLE, permissions checking for SQL commands is carried out as though the named role is the one
that had logged in originally.

The specified rolename must be a role that the current session user is a member of. If the session user is
a superuser, any role can be selected.

NONE resets the current user identifier to be the current session user identifier. These forms may be executed
by any user.

Notes

You can use this command, to either add privileges or restrict one’s privileges. If the session user role has
the INHERITS attribute, then it automatically has all the privileges of every role that it could SET ROLE
to; in this case SET ROLE effectively drops all the privileges assigned directly to the session user and to
the other roles it is a member of, leaving only the privileges available to the named role. If the session user
role has the NOINHERITS attribute, SET ROLE drops the privileges assigned directly to the session user
and instead acquires the privileges available to the named role. When a superuser chooses to SET ROLE to
a non-superuser role, she loses her superuser privileges.

Examples

User mary takes on the identity of role admins:

217

EDB Postgres™ Advanced Server, Release 13

SET ROLE admins;

User mary reverts back to her own identity:

SET ROLE NONE;

218

CHAPTER 74

SET TRANSACTION

Name

SET TRANSACTION -- set the characteristics of the current transaction

Synopsis

SET TRANSACTION transaction_mode

where transaction_mode is one of:

ISOLATION LEVEL { SERIALIZABLE | READ COMMITTED }

READ WRITE | READ ONLY

Description

The SET TRANSACTION command sets the characteristics of the current transaction. It has no effect on
any subsequent transactions. The available transaction characteristics are the transaction isolation level and
the transaction access mode (read/write or read-only). The isolation level of a transaction determines what
data the transaction can see when other transactions are running concurrently:

READ COMMITTED

A statement can only see rows committed before it began. This is the default.

SERIALIZABLE

All statements of the current transaction can only see rows committed before the first query or
data-modification statement was executed in this transaction.

The transaction isolation level cannot be changed after the first query or data-modification statement
(SELECT, INSERT, DELETE, UPDATE, or FETCH) of a transaction has been executed. The transaction
access mode determines whether the transaction is read/write or read-only. Read/write is the default.

219

EDB Postgres™ Advanced Server, Release 13

When a transaction is read-only, the following SQL commands are disallowed: INSERT, UPDATE, and
DELETE if the table they would write to is not a temporary table; all CREATE, ALTER, and DROP com-
mands; COMMENT, GRANT, REVOKE, TRUNCATE; and EXECUTE if the command it would execute is
among those listed. This is a high-level notion of read-only that does not prevent all writes to disk.

220

CHAPTER 75

TRUNCATE

Name

TRUNCATE -- empty a table

Synopsis

TRUNCATE TABLE <name> [DROP STORAGE]

Description

TRUNCATE quickly removes all rows from a table. It has the same effect as an unqualified DELETE but
since it does not actually scan the table, it is faster. This is most useful on large tables.

The DROP STORAGE clause is accepted for compatibility, but is ignored.

Parameters

name

The name (optionally schema-qualified) of the table to be truncated.

Notes

TRUNCATE cannot be used if there are foreign-key references to the table from other tables. Checking
validity in such cases would require table scans, and the whole point is not to do one.

TRUNCATE will not run any user-defined ON DELETE triggers that might exist for the table.

Examples

The following command truncates a table named accounts:

TRUNCATE TABLE accounts;

221

EDB Postgres™ Advanced Server, Release 13

See Also

DROP VIEW, DELETE

222

CHAPTER 76

UPDATE

Name

UPDATE -- update rows of a table

Synopsis

UPDATE [<optimizer_hint>] <table>[@<dblink>]
SET <column> = { <expression> | DEFAULT } [, ...]

[WHERE <condition>]
[RETURNING <return_expression> [, ...]

{ INTO { <record> | <variable> [, ...] }
| BULK COLLECT INTO <collection> [, ...] }]

Description

UPDATE changes the values of the specified columns in all rows that satisfy the condition. Only the columns
to be modified need be mentioned in the SET clause; columns not explicitly modified retain their previous
values.

The RETURNING INTO { record | variable [, ...] } clause may only be specified within
an SPL program. In addition the result set of the UPDATE command must not return more than one row,
otherwise an exception is thrown. If the result set is empty, then the contents of the target record or variables
are set to null.

The RETURNING BULK COLLECT INTO collection [, ...] clause may only be specified if
the UPDATE command is used within an SPL program. If more than one collection is specified as the
target of the BULK COLLECT INTO clause, then each collection must consist of a single, scalar field
– i.e., collection must not be a record. The result set of the UPDATE command may contain none, one,
or more rows. return_expression evaluated for each row of the result set, becomes an element in
collection starting with the first element. Any existing rows in collection are deleted. If the result
set is empty, then collection will be empty.

223

EDB Postgres™ Advanced Server, Release 13

You must have the UPDATE privilege on the table to update it, as well as the SELECT privilege to any table
whose values are read in expression or condition.

Parameters

optimizer_hint

Comment-embedded hints to the optimizer for selection of an execution plan.

table

The name (optionally schema-qualified) of the table to update.

dblink

Database link name identifying a remote database. See the CREATE DATABASE LINK com-
mand for information on database links.

column

The name of a column in table.

expression

An expression to assign to the column. The expression may use the old values of this and other
columns in the table.

DEFAULT

Set the column to its default value (which will be null if no specific default expression has been
assigned to it).

condition

An expression that returns a value of type BOOLEAN. Only rows for which this expression
returns true will be updated.

return_expression

An expression that may include one or more columns from table. If a column name from
table is specified in return_expression, the value substituted for the column when
return_expression is evaluated is determined as follows:

If the column specified in return_expression is assigned a value in
the UPDATE command, then the assigned value is used in the evaluation of
return_expression.

If the column specified in return_expression is not assigned a value in the
UPDATE command, then the column’s current value in the affected row is used in
the evaluation of return_expression.

record

A record whose field the evaluated return_expression is to be assigned. The
first return_expression is assigned to the first field in record, the second
return_expression is assigned to the second field in record, etc. The number of
fields in record must exactly match the number of expressions and the fields must be type-
compatible with their assigned expressions.

224

EDB Postgres™ Advanced Server, Release 13

variable

A variable to which the evaluated return_expression is to be assigned. If more than one
return_expression and variable are specified, the first return_expression is
assigned to the first variable, the second return_expression is assigned to the second
variable, etc. The number of variables specified following the INTO keyword must exactly
match the number of expressions following the RETURNING keyword and the variables must
be type-compatible with their assigned expressions.

collection

A collection in which an element is created from the evaluated return_expression. There
can be either a single collection which may be a collection of a single field or a collection of
a record type, or there may be more than one collection in which case each collection must
consist of a single field. The number of return expressions must match in number and order the
number of fields in all specified collections. Each corresponding return_expression and
collection field must be type-compatible.

Examples

Change the location to AUSTIN for department 20 in the dept table:

UPDATE dept SET loc = 'AUSTIN' WHERE deptno = 20;

For all employees with job = SALESMAN in the emp table, update the salary by 10% and increase the
commission by 500.

UPDATE emp SET sal = sal * 1.1, comm = comm + 500 WHERE job = 'SALESMAN';

225

CHAPTER 77

Conclusion

EDB Postgres™ Advanced Server Database Compatibility for Oracle® Developers SQL Guide

Copyright © 2007 - 2020 EnterpriseDB Corporation.

All rights reserved.

EnterpriseDB® Corporation

34 Crosby Drive, Suite 201, Bedford, MA 01730, USA

T +1 781 357 3390 F +1 978 467 1307 E

info@enterprisedb.com

www.enterprisedb.com

• EnterpriseDB and Postgres Enterprise Manager are registered trademarks of EnterpriseDB Corpora-
tion. EDB and EDB Postgres are trademarks of EnterpriseDB Corporation. Oracle is a registered
trademark of Oracle, Inc. Other trademarks may be trademarks of their respective owners.

• EDB designs, establishes coding best practices, reviews, and verifies input validation for the logon UI
for EDB products where present. EDB follows the same approach for additional input components,
however the nature of the product may require that it accepts freeform SQL, WMI or other strings to
be entered and submitted by trusted users for which limited validation is possible. In such cases it is
not possible to prevent users from entering incorrect or otherwise dangerous inputs.

• EDB reserves the right to add features to products that accept freeform SQL, WMI or other potentially
dangerous inputs from authenticated, trusted users in the future, but will ensure all such features are
designed and tested to ensure they provide the minimum possible risk, and where possible, require
superuser or equivalent privileges.

• EDB does not warrant that we can or will anticipate all potential threats and therefore our process
cannot fully guarantee that all potential vulnerabilities have been addressed or considered.

226

mailto:info@enterprisedb.com

Index

A
ALTER DIRECTORY, 2
ALTER INDEX, 4
ALTER PROCEDURE, 6
ALTER PROFILE, 8
ALTER QUEUE, 12
ALTER QUEUE TABLE, 15
ALTER ROLE - Managing Database

Link and DBMS_RLS Privileges,
19

ALTER ROLE... IDENTIFIED BY, 17
ALTER SEQUENCE, 22
ALTER SESSION, 24
ALTER TABLE, 26
ALTER TABLESPACE, 33
ALTER TRIGGER, 30
ALTER USER... IDENTIFIED BY, 34
ALTER USER|ROLE... PROFILE

MANAGEMENT CLAUSES, 36

C
CALL, 39
COMMENT, 41
COMMIT, 43
Conclusion, 226
CREATE DATABASE, 45
CREATE DIRECTORY, 60
CREATE FUNCTION, 62
CREATE INDEX, 68
CREATE MATERIALIZED VIEW, 71
CREATE PACKAGE, 73
CREATE PACKAGE BODY, 76
CREATE PROCEDURE, 82
CREATE PROFILE, 89
CREATE PUBLIC DATABASE LINK, 47

CREATE QUEUE, 93
CREATE QUEUE TABLE, 95
CREATE ROLE, 98
CREATE SCHEMA, 100
CREATE SEQUENCE, 102
CREATE SYNONYM, 105
CREATE TABLE, 107
CREATE TABLE AS, 116
CREATE TRIGGER, 118
CREATE TYPE, 128
CREATE TYPE BODY, 136
CREATE USER, 140
CREATE USER|ROLE... PROFILE

MANAGEMENT CLAUSES, 142
CREATE VIEW, 144

D
DELETE, 146
DROP DATABASE LINK, 149
DROP DIRECTORY, 151
DROP FUNCTION, 152
DROP INDEX, 154
DROP PACKAGE, 155
DROP PROCEDURE, 156
DROP PROFILE, 158
DROP QUEUE, 160
DROP QUEUE TABLE, 162
DROP ROLE, 166
DROP SEQUENCE, 168
DROP SYNONYM, 164
DROP TABLE, 169
DROP TABLESPACE, 171
DROP TRIGGER, 172
DROP TYPE, 173
DROP USER, 175

227

EDB Postgres™ Advanced Server, Release 13

DROP VIEW, 177

E
EXEC, 179

G
GRANT, 180

I
INSERT, 188

L
LOCK, 191

R
REVOKE, 193
ROLLBACK, 197
ROLLBACK TO SAVEPOINT, 199

S
SAVEPOINT, 201
SELECT, 203
SET CONSTRAINTS, 215
SET ROLE, 217
SET TRANSACTION, 219

T
TRUNCATE, 221

U
UPDATE, 223

Index 228

	Introduction
	ALTER DIRECTORY
	ALTER INDEX
	ALTER PROCEDURE
	ALTER PROFILE
	ALTER QUEUE
	ALTER QUEUE TABLE
	ALTER ROLE… IDENTIFIED BY
	ALTER ROLE - Managing Database Link and DBMS_RLS Privileges
	ALTER SEQUENCE
	ALTER SESSION
	ALTER TABLE
	ALTER TRIGGER
	ALTER TABLESPACE
	ALTER USER… IDENTIFIED BY
	ALTER USER|ROLE… PROFILE MANAGEMENT CLAUSES
	CALL
	COMMENT
	COMMIT
	CREATE DATABASE
	CREATE PUBLIC DATABASE LINK
	CREATE DIRECTORY
	CREATE FUNCTION
	CREATE INDEX
	CREATE MATERIALIZED VIEW
	CREATE PACKAGE
	CREATE PACKAGE BODY
	CREATE PROCEDURE
	CREATE PROFILE
	CREATE QUEUE
	CREATE QUEUE TABLE
	CREATE ROLE
	CREATE SCHEMA
	CREATE SEQUENCE
	CREATE SYNONYM
	CREATE TABLE
	CREATE TABLE AS
	CREATE TRIGGER
	CREATE TYPE
	CREATE TYPE BODY
	CREATE USER
	CREATE USER|ROLE… PROFILE MANAGEMENT CLAUSES
	CREATE VIEW
	DELETE
	DROP DATABASE LINK
	DROP DIRECTORY
	DROP FUNCTION
	DROP INDEX
	DROP PACKAGE
	DROP PROCEDURE
	DROP PROFILE
	DROP QUEUE
	DROP QUEUE TABLE
	DROP SYNONYM
	DROP ROLE
	DROP SEQUENCE
	DROP TABLE
	DROP TABLESPACE
	DROP TRIGGER
	DROP TYPE
	DROP USER
	DROP VIEW
	EXEC
	GRANT
	GRANT on Database Objects
	GRANT on Roles
	GRANT on System Privileges

	INSERT
	LOCK
	REVOKE
	ROLLBACK
	ROLLBACK TO SAVEPOINT
	SAVEPOINT
	SELECT
	FROM Clause
	WHERE Clause
	GROUP BY Clause
	HAVING Clause
	SELECT List
	UNION Clause
	INTERSECT Clause
	MINUS Clause
	CONNECT BY Clause
	ORDER BY Clause
	DISTINCT | UNIQUE Clause
	FOR UPDATE Clause

	SET CONSTRAINTS
	SET ROLE
	SET TRANSACTION
	TRUNCATE
	UPDATE
	Conclusion
	Index

