

EDB Postgres™ Advanced Server JDBC Connector Guide

The EDB JDBC connector provides connectivity between a Java application and
an Advanced Server database. This guide provides installation
instructions, usage instructions, and examples that demonstrate the
Advanced Server specific functionality of the JDBC Connector.

The EDB JDBC connector is written in Java and conforms to Sun’s JDK
architecture. For more information, see JDBC Driver Types

The EDB JDBC connector is built on and supports all of the functionality of
the PostgreSQL community driver. For more information about the features
and functionality of the driver, please refer to the community
documentation [https://jdbc.postgresql.org/documentation/head/index.html].

	What’s New

	Requirements Overview
	Supported Versions

	Supported Platforms

	Advanced Server JDBC Connector Overview
	JDBC Driver Types

	The JDBC Interface

	JDBC Classes and Interfaces

	The JDBC DriverManager

	Advanced Server JDBC Connector Compatibility

	Installing and Configuring the JDBC Connector
	Installing the Connector with an RPM Package
	On RHEL 7

	On RHEL 8

	On CentOS 7

	On CentOS 8

	Updating an RPM Installation

	Installing the Connector on an SLES 12 Host

	Installing the Connector on a Debian or Ubuntu Host

	Using the Graphical Installer to Install the Connector

	Configuring the Advanced Server JDBC Connector

	Using the Advanced Server JDBC Connector with Java applications
	Loading the Advanced Server JDBC Connector

	Connecting to the Database
	Additional Connection Properties

	Preferring Synchronous Secondary Database Servers

	Executing SQL Statements through Statement Objects
	Using Named Notation with a CallableStatement Object

	Retrieving Results from a ResultSet Object

	Freeing Resources

	Handling Errors

	Executing SQL Commands with executeUpdate()
	Using executeUpdate() to INSERT Data
	executeUpdate() Syntax Examples

	Adding a Graphical Interface to a Java Program

	Advanced JDBC Connector Functionality
	Reducing Client-side Resource Requirements
	Modifying the Batch Size of a Statement Object

	Using PreparedStatements to Send SQL Commands

	Executing Stored Procedures
	Invoking Stored Procedures

	Using REF CURSORS with Java
	Using a REF CURSOR to retrieve a ResultSet

	Using BYTEA Data with Java
	Inserting BYTEA Data into an Advanced Server Database

	Retrieving BYTEA Data from an Advanced Server Database

	Using Object Types and Collections with Java
	Using an Object Type

	Using a Collection

	Asynchronous Notification Handling with NoticeListener

	Security and Encryption
	Using SSL
	Configuring the Server

	Configuring the Client

	Testing the SSL JDBC Connection

	Using Certificate Authentication Without a Password

	Scram Compatibility

	Advanced Server JDBC Connector Logging
	Enabling Logging with Connection Properties (static)

	Enabling Logging with logging.properties (dynamic)

	Reference - JDBC Data Types

	Conclusion

What’s New

The following features are added to create EDB JDBC Connector 42.2.12.3:

	Support for EDB Postgres Advanced Server 13.

	Support for Ubuntu 20.04 LTS platform.

Requirements Overview

Supported Versions

The EDB JDBC Connector is certified with Advanced Server
version 9.5 and above.

Supported Platforms

The EDB JDBC Connector native packages are supported on the
following 64 bit Linux platforms:

	Red Hat Enterprise Linux and CentOS (x86_64) 7.x and 8.x

	OEL Linux 7.x and 8.x

	PPC-LE 8 running RHEL or CentOS 7.x

	SLES 12.x

	Debian 9.x and 10.x

	Ubuntu 18.04 LTS and 20.04 LTS

The EDB JDBC Connector graphical installers are supported on
the following Windows platforms:

64-bit Windows:

	Windows Server 2019

	Windows Server 2016

	Windows Server 2012 R2

	Windows 10

	Windows 8.1

32-bit Windows:

	Windows 10

	Windows 8.1

Advanced Server JDBC Connector Overview

Sun Microsystems created a standardized interface for connecting Java
applications to databases known as Java Database Connectivity (JDBC).
The EDB JDBC Connector connects a Java application to a
Postgres database.

JDBC Driver Types

There are currently four different types of JDBC drivers, each with
their own specific implementation, use and limitations. The EDB JDBC Connector is a Type 4 driver.

Type 1 Driver

	This driver type is the JDBC-ODBC bridge.

	It is limited to running locally.

	Must have ODBC installed on computer.

	Must have ODBC driver for specific database installed on computer.

	Generally can’t run inside an applet because of Native Method calls.

Type 2 Driver

	This is the native database library driver.

	Uses Native Database library on computer to access database.

	Generally can’t run inside an applet because of Native Method calls.

	Must have database library installed on client.

Type 3 Driver

	100% Java Driver, no native methods.

	Does not require pre-installation on client.

	Can be downloaded and configured on-the-fly just like any Java class
file.

	Uses a proprietary protocol for talking with a middleware server.

	Middleware server converts from proprietary calls to DBMS specific
calls

Type 4 Driver

	100% Java Driver, no native methods.

	Does not require pre-installation on client.

	Can be downloaded and configured on-the-fly just like any Java class
file.

	Unlike Type III driver, talks directly with the DBMS server.

	Converts JDBC calls directly to database specific calls.

The JDBC Interface

The following figure shows the core API interfaces in the JDBC specification and
how they relate to each other. These interfaces are implemented in the
java.sql package.

[image: JDBC Class Relationships]
JDBC Class Relationships

JDBC Classes and Interfaces

The core API is composed of classes and interfaces; these classes and
interfaces work together as shown below:

[image: Core Classes and Interfaces]
Core Classes and Interfaces

The JDBC DriverManager

The figure below depicts the role of the DriverManager class in a typical JDBC application. The DriverManager acts as the bridge between a Java
application and the backend database and determines which JDBC driver to
use for the target database.

[image: DriverManager/Drivers]
DriverManager/Drivers

Advanced Server JDBC Connector Compatibility

EDB provides support for multiple JRE/JDK versions by providing appropriate
JDBC drivers for each version of Java Virtual Machine. Use the following table to
determine compatibility between your JRE/JDK version and the Advanced Server Driver.

Table – Advanced Server JDBC Driver Compatibility

	JRE/JDK Version(s)

	JDBC Specification

	Advanced Server JDBC Driver

	Community JDBC Driver

	1.4, 1.5 (see Note 1)

	3

	edb-jdbc15.jar

	postgresql-9.3.1103.JDBC3.jar

	1.6 (see Note 2)

	4

	edb-jdbc16.jar

	postgresql-42.2.12.jre6.jar

	1.7 (see Note 3)

	4.1

	edb-jdbc17.jar

	postgresql-42.2.12.jre7.jar

	1.8 or newer

	4.2

	edb-jdbc18.jar

	postgresql-42.2.12.jar

Note

	JRE/JDK versions 1.4 and 1.5 are no longer supported by the Advanced Server JDBC Connector as the JDBC driver file edb-jdbc15.jar is no longer provided.

	The edb-jdbc16.jar file is not available for Linux on PowerPC 64
little endian (ppc64le), Debian/Ubuntu and RHEL 8 platforms.

	The edb-jdbc17.jar file is not available for Debian/Ubuntu and RHEL 8 platforms.

	Community version numbers are based on the pgjdbc version, not the
PostgreSQL version.

	Advanced Server JDBC releases are decoupled with EDB Postgres
Advanced Server releases.

The following JDBC Compatibility rules apply:

	From Community website: “The PostgreSQL JDBC driver has some unique
properties that you should be aware of before starting to develop any
code for it. The current development driver supports six server
versions and six java environments. This doesn’t mean that every
feature must work in every combination, but a reasonable behaviour
must be provided for non-supported versions. While this extra
compatibility sounds like a lot of work, the actual goal is to reduce
the amount of work by maintaining only one code base.”

	PgJDBC regression tests are run against all PostgreSQL versions since 8.4,
including the development version.

For the supported community versions, see the PostgreSQL JDBC Driver
website [https://jdbc.postgresql.org/download.html].

Installing and Configuring the JDBC Connector

This chapter describes how to install and configure the EDB JDBC Connector.

Before installing the EDB JDBC Connector, you must have Java installed on your system; you can download a Java installer that matches your environment from the Oracle Java Downloads website [http://www.oracle.com/technetwork/java/javase/downloads/index.html]. Documentation that contains detailed installation instructions is available through the associated Installation Instruction links on the same page.

You can use the Advanced Server graphical installer or an RPM package to add the EDB JDBC Connector to your installation.

The following sections describe these installation methods.

	Installing the Connector with an RPM Package
	On RHEL 7

	On RHEL 8

	On CentOS 7

	On CentOS 8

	Updating an RPM Installation

	Installing the Connector on an SLES 12 Host

	Installing the Connector on a Debian or Ubuntu Host

	Using the Graphical Installer to Install the Connector

	Configuring the Advanced Server JDBC Connector

Installing the Connector with an RPM Package

You can install the JDBC Connector using an RPM package on the following platforms:

	RHEL 7

	RHEL 8

	CentOS 7

	CentOS 8

On RHEL 7

Before installing the JDBC Connector, you must install the following prerequisite packages, and request credentials from EDB:

Install the epel-release package:

yum -y install https://dl.fedoraproject.org/pub/epel/epel-release-latest-7.noarch.rpm

Enable the optional, extras, and HA repositories:

subscription-manager repos --enable "rhel-*-optional-rpms" --enable "rhel-*-extras-rpms" --enable "rhel-ha-for-rhel-*-server-rpms"

You must also have credentials that allow access to the EDB repository. For information about requesting credentials, visit:

https://info.enterprisedb.com/rs/069-ALB-339/images/Repository%20Access%2004-09-2019.pdf

After receiving your repository credentials you can:

	Create the repository configuration file.

	Modify the file, providing your user name and password.

	Install edb-jdbc.

Creating a Repository Configuration File

To create the repository configuration file, assume superuser privileges, and invoke the following command:

yum -y install https://yum.enterprisedb.com/edbrepos/edb-repo-latest.noarch.rpm

The repository configuration file is named edb.repo. The file resides in /etc/yum.repos.d.

Modifying the file, providing your user name and password

After creating the edb.repo file, use your choice of editor to ensure that the value of the enabled parameter is 1, and replace the username and password placeholders in the baseurl specification with the name and password of a registered EDB user.

[edb]
name=EnterpriseDB RPMs $releasever - $basearch
baseurl=https://<username>:<password>@yum.enterprisedb.com/edb/redhat/rhel-$releasever-$basearch
enabled=1
gpgcheck=1
gpgkey=file:///etc/pki/rpm-gpg/ENTERPRISEDB-GPG-KEY

Installing JDBC Connector

After saving your changes to the configuration file, use the following command to install the JDBC Connector:

yum install edb-jdbc

When you install an RPM package that is signed by a source that is not recognized by your system, yum may ask for your permission to import the key to your local server. If prompted, and you are satisfied that the packages come from a trustworthy source, enter y, and press Return to continue.

During the installation, yum may encounter a dependency that it cannot resolve. If it does, it will provide a list of the required dependencies that you must manually resolve.

On RHEL 8

Before installing the JDBC Connector, you must install the following prerequisite packages, and request credentials from EDB:

Install the epel-release package:

dnf -y install https://dl.fedoraproject.org/pub/epel/epel-release-latest-8.noarch.rpm

Enable the codeready-builder-for-rhel-8-*-rpms repository:

ARCH=$(/bin/arch)
subscription-manager repos --enable "codeready-builder-for-rhel-8-${ARCH}-rpms"

You must also have credentials that allow access to the EDB repository. For information about requesting credentials, visit:

https://info.enterprisedb.com/rs/069-ALB-339/images/Repository%20Access%2004-09-2019.pdf

After receiving your repository credentials you can:

	Create the repository configuration file.

	Modify the file, providing your user name and password.

	Install edb-jdbc.

Creating a Repository Configuration File

To create the repository configuration file, assume superuser privileges, and invoke the following command:

dnf -y https://yum.enterprisedb.com/edbrepos/edb-repo-latest.noarch.rpm

The repository configuration file is named edb.repo. The file resides in /etc/yum.repos.d.

Modifying the file, providing your user name and password

After creating the edb.repo file, use your choice of editor to ensure that the value of the enabled parameter is 1, and replace the username and password placeholders in the baseurl specification with the name and password of a registered EDB user.

[edb]
name=EnterpriseDB RPMs $releasever - $basearch
baseurl=https://<username>:<password>@yum.enterprisedb.com/edb/redhat/rhel-$releasever-$basearch
enabled=1
gpgcheck=1
gpgkey=file:///etc/pki/rpm-gpg/ENTERPRISEDB-GPG-KEY

Installing JDBC Connector

After saving your changes to the configuration file, use the below command to install the JDBC Connector:

dnf install edb-jdbc

When you install an RPM package that is signed by a source that is not recognized by your system, yum may ask for your permission to import the key to your local server. If prompted, and you are satisfied that the packages come from a trustworthy source, enter y, and press Return to continue.

During the installation, yum may encounter a dependency that it cannot resolve. If it does, it will provide a list of the required dependencies that you must manually resolve.

On CentOS 7

Before installing the JDBC Connector, you must install the following prerequisite packages, and request credentials from EDB:

Install the epel-release package:

yum -y install https://dl.fedoraproject.org/pub/epel/epel-release-latest-7.noarch.rpm

Note

You may need to enable the [extras] repository definition in the CentOS-Base.repo file (located in /etc/yum.repos.d).

You must also have credentials that allow access to the EDB repository. For information about requesting credentials, visit:

https://info.enterprisedb.com/rs/069-ALB-339/images/Repository%20Access%2004-09-2019.pdf

After receiving your repository credentials you can:

	Create the repository configuration file.

	Modify the file, providing your user name and password.

	Install edb-jdbc.

Creating a Repository Configuration File

To create the repository configuration file, assume superuser privileges, and invoke the following command:

yum -y install https://yum.enterprisedb.com/edbrepos/edb-repo-latest.noarch.rpm

The repository configuration file is named edb.repo. The file resides in /etc/yum.repos.d.

Modifying the file, providing your user name and password

After creating the edb.repo file, use your choice of editor to ensure that the value of the enabled parameter is 1, and replace the username and password placeholders in the baseurl specification with the name and password of a registered EDB user.

[edb]
name=EnterpriseDB RPMs $releasever - $basearch
baseurl=https://<username>:<password>@yum.enterprisedb.com/edb/redhat/rhel-$releasever-$basearch
enabled=1
gpgcheck=1
gpgkey=file:///etc/pki/rpm-gpg/ENTERPRISEDB-GPG-KEY

Installing JDBC Connector

After saving your changes to the configuration file, use the following command to install the JDBC Connector:

yum install edb-jdbc

When you install an RPM package that is signed by a source that is not recognized by your system, yum may ask for your permission to import the key to your local server. If prompted, and you are satisfied that the packages come from a trustworthy source, enter y, and press Return to continue.

During the installation, yum may encounter a dependency that it cannot resolve. If it does, it will provide a list of the required dependencies that you must manually resolve.

On CentOS 8

Before installing the JDBC Connector, you must install the following prerequisite packages, and request credentials from EDB:

Install the epel-release package:

dnf -y install https://dl.fedoraproject.org/pub/epel/epel-release-latest-8.noarch.rpm

Enable the PowerTools repository:

dnf config-manager --set-enabled PowerTools

You must also have credentials that allow access to the EDB repository. For information about requesting credentials, visit:

https://info.enterprisedb.com/rs/069-ALB-339/images/Repository%20Access%2004-09-2019.pdf

After receiving your repository credentials you can:

	Create the repository configuration file.

	Modify the file, providing your user name and password.

	Install edb-jdbc.

Creating a Repository Configuration File

To create the repository configuration file, assume superuser privileges, and invoke the following command:

dnf -y install https://yum.enterprisedb.com/edbrepos/edb-repo-latest.noarch.rpm

The repository configuration file is named edb.repo. The file resides in /etc/yum.repos.d.

Modifying the file, providing your user name and password

After creating the edb.repo file, use your choice of editor to ensure that the value of the enabled parameter is 1, and replace the username and password placeholders in the baseurl specification with the name and password of a registered EDB user.

[edb]
name=EnterpriseDB RPMs $releasever - $basearch
baseurl=https://<username>:<password>@yum.enterprisedb.com/edb/redhat/rhel-$releasever-$basearch
enabled=1
gpgcheck=1
gpgkey=file:///etc/pki/rpm-gpg/ENTERPRISEDB-GPG-KEY

Installing JDBC Connector

After saving your changes to the configuration file, use the following command to install the JDBC Connector:

dnf install edb-jdbc

When you install an RPM package that is signed by a source that is not recognized by your system, yum may ask for your permission to import the key to your local server. If prompted, and you are satisfied that the packages come from a trustworthy source, enter y, and press Return to continue.

During the installation, yum may encounter a dependency that it cannot resolve. If it does, it will provide a list of the required dependencies that you must manually resolve.

Updating an RPM Installation

If you have an existing JDBC Connector RPM installation, you can use yum or dnf to upgrade your repository configuration file and update to a more recent product version. To update the edb.repo file, assume superuser privileges and enter:

	On RHEL or CentOS 7:

yum upgrade edb-repo

	On RHEL or CentOS 8:

dnf upgrade edb-repo

yum or dnf will update the edb.repo file to enable access to the current EDB repository, configured to connect with the credentials specified in your edb.repo file. Then, you can use yum or dnf to upgrade any installed packages:

	On RHEL or CentOS 7:

yum upgrade edb-jdbc

	On RHEL or CentOS 8:

dnf upgrade edb-jdbc

Installing the Connector on an SLES 12 Host

You can use the zypper package manager to install the connector on an
SLES 12 host. zypper will attempt to satisfy package dependencies as it
installs a package, but requires access to specific repositories that
are not hosted at EDB. Before installing the connector, use the
following commands to add EDB repository configuration files to your
SLES host:

zypper addrepo https://zypp.enterprisedb.com/suse/edb-sles.repo

After creating the repository configuration files, use the zypper
refresh command to refresh the metadata on your SLES host to include the
EDB repositories.

When prompted for a User Name and Password, provide your connection
credentials for the EDB repository. To request
credentials for the repository, visit the EDB website [https://www.enterprisedb.com/repository-access-request].

Before installing EDB Postgres Advanced Server or supporting components,
you must also add SUSEConnect and the SUSE Package Hub extension to the
SLES host, and register the host with SUSE, allowing access to SUSE
repositories. Use the commands:

zypper install SUSEConnect

SUSEConnect -r 'REGISTRATION_CODE' -e 'EMAIL'

SUSEConnect -p PackageHub/12.4/x86_64

SUSEConnect -p sle-sdk/12.4/x86_64

For detailed information about registering a SUSE host, visit the SUSE website [https://www.suse.com/support/kb/doc/?id=7016626].

Then, you can use the zypper utility to install the connector:

zypper install edb-jdbc

Installing the Connector on a Debian or Ubuntu Host

To install a DEB package on a Debian or Ubuntu host, you must have
credentials that allow access to the EDB repository. To request
credentials for the repository, visit the EDB website [https://www.enterprisedb.com/repository-access-request].

The following steps will walk you through on using the EDB apt
repository to install a DEB package. When using the commands, replace
the username and password with the credentials provided by EDB.

	Assume superuser privileges:

sudo su –

	Configure the EDB repository:

On Debian 9:

sh -c 'echo "deb https://username:password@apt.enterprisedb.com/$(lsb_release -cs)-edb/ $(lsb_release -cs) main" > /etc/apt/sources.list.d/edb-$(lsb_release -cs).list'

On Debian 10:

	Set up the EDB repository:

sh -c 'echo "deb [arch=amd64] https://apt.enterprisedb.com/$(lsb_release -cs)-edb/ $(lsb_release -cs) main" > /etc/apt/sources.list.d/edb-$(lsb_release -cs).list'

	Substitute your EDB credentials for the username and password in the following command:

sh -c 'echo "machine apt.enterprisedb.com login <username> password <password>" > /etc/apt/auth.conf.d/edb.conf'

	Add support to your system for secure APT repositories:

apt-get install apt-transport-https

	Add the EDB signing key:

wget -q -O - https://<username>:<password>@apt.enterprisedb.com/edb-deb.gpg.key | apt-key add -

	Update the repository metadata:

apt-get update

	Install DEB package:

apt-get install edb-jdbc

Note

By default, the Debian 9x and Ubuntu 18.04 platform installs Java version 10. Make sure you install Java version 8 on your system to run the EDB Java-based components.

Using the Graphical Installer to Install the Connector

You can use the EDB Connectors Installation wizard to add the
JDBC connector to your system; the wizard is available at the EDB website [https://www.enterprisedb.com/software-downloads-postgres/].

This section demonstrates using the Installation Wizard to install the
Connectors on a Windows system. To open the Installation Wizard, download
the installer, and then, right-click on the installer icon, and
select Run As Administrator from the context menu.

When the Language Selection popup opens, select an installation language
and click OK to continue to the Setup window.

[image: The JDBC Connectors Installation wizard]
The JDBC Connector Installation wizard

Click Next to continue.

[image: The Installation dialog]
The Installation dialog

Use the Installation Directory dialog to specify the
directory in which the connector will be installed, and click Next to
continue.

[image: The Ready to Install dialog]
The Ready to Install dialog

Click Next on the Ready to Install dialog to start the
installation; popup dialogs confirm the progress of the installation
wizard.

[image: The installation is complete]
The installation is complete

When the wizard informs you that it has completed the setup, click the
Finish button to exit the dialog.

You can also use StackBuilder Plus to add or update the connector on an
existing Advanced Server installation; to open StackBuilder Plus, select
StackBuilder Plus from the Windows Apps menu.

[image: Starting StackBuilder Plus]
Starting StackBuilder Plus

When StackBuilder Plus opens, follow the onscreen instructions. Select
the EnterpriseDB JDBC Connector option from the Database Drivers node of
the tree control.

[image: Selecting the Connectors installer]
Selecting the Connectors installer

Follow the directions of the onscreen wizard to add/update an
installation of the EDB Connectors.

Configuring the Advanced Server JDBC Connector

Advanced Server ships with the following JDBC drivers:

	edb-jdbc16.jar supports JDBC version 4

	edb-jdbc17.jar supports JDBC version 4.1

	edb-jdbc18.jar supports JDBC version 4.2

Note

The edb-jdbc16.jar file is not available for Linux on PowerPC
64 little endian (ppc64le).

To make the JDBC driver available to Java, you must either copy the
appropriate java .jar file for the JDBC version that you are using to
your $java_home/jre/lib/ext directory or append the location of the
.jar file to the CLASSPATH environment variable.

Note that if you choose to append the location of the jar file to the
CLASSPATH environment variable, you must include the complete pathname:

/usr/edb/jdbc/edb-jdbcxx.jar

Using the Advanced Server JDBC Connector with Java applications

With Java and the EDB JDBC Connector in place, a Java
application can access an Advanced Server database. Listing 1.1 creates
an application that executes a query and prints the result set.

Listing 1.1

import java.sql.*;
public class ListEmployees
{
 public static void main(String[] args)
 {
 try
 {
 Class.forName("com.edb.Driver");
 String url = "jdbc:edb://localhost:5444/edb";
 String user = "enterprisedb";
 String password = "enterprisedb";
 Connection con = DriverManager.getConnection(url, user, password);
 Statement stmt = con.createStatement();
 ResultSet rs = stmt.executeQuery("SELECT * FROM emp");
 while(rs.next())
 {
 System.out.println(rs.getString(1));
 }

 rs.close();
 stmt.close();
 con.close();
 System.out.println("Command successfully executed");
 }
 catch(ClassNotFoundException e)
 {
 System.out.println("Class Not Found : " + e.getMessage());
 }
 catch(SQLException exp)
 {
 System.out.println("SQL Exception: " + exp.getMessage());
 System.out.println("SQL State: " + exp.getSQLState());
 System.out.println("Vendor Error: " + exp.getErrorCode());
 }
 }
}

This example is simple, but it demonstrates the fundamental steps
required to interact with an Advanced Server database from a Java
application:

	Load the JDBC driver

	Build connection properties

	Connect to the database server

	Execute an SQL statement

	Process the result set

	Clean up

	Handle any errors that may occur

	Loading the Advanced Server JDBC Connector

	Connecting to the Database
	Additional Connection Properties

	Preferring Synchronous Secondary Database Servers
	Configuring Primary and Secondary Database Servers Overview

	Example: Primary and Secondary Database Servers

	Executing SQL Statements through Statement Objects
	Using Named Notation with a CallableStatement Object

	Retrieving Results from a ResultSet Object

	Freeing Resources

	Handling Errors

Loading the Advanced Server JDBC Connector

The Advanced Server JDBC driver is written in Java and is distributed in
the form of a compiled JAR (Java Archive) file. Use the Class.forName()
method to load the driver. The forName() method dynamically loads a Java
class at runtime. When an application calls the forName() method, the
JVM (Java Virtual Machine) attempts to find the compiled form (the
bytecode) that implements the requested class.

The Advanced Server JDBC driver is named com.edb.Driver:

Class.forName("com.edb.Driver");

After loading the bytecode for the driver, the driver registers itself
with another JDBC class (named DriverManager) that is responsible for
managing all the JDBC drivers installed on the current system.

If the JVM is unable to locate the named driver, it throws a
ClassNotFound exception (which is intercepted with a catch block near
the end of the program). The DriverManager is designed to handle
multiple JDBC driver objects. You can write a Java application that
connects to more than one database system via JDBC. The next section
explains how to select a specific driver.

Connecting to the Database

After the driver has loaded and registered itself with the
DriverManager, the ListEmployees class can attempt to connect to the
database server, as shown in the following code fragment:

String url = "jdbc:edb://localhost:5444/edb";
String user = "enterprisedb";
String password = "enterprisedb";
Connection con = DriverManager.getConnection(url, user, password);

All JDBC connections start with the DriverManager. The DriverManager
class offers a static method called getConnection() that is responsible
for creating a connection to the database. When you call the
getConnection() method, the DriverManager must decide which JDBC driver
to use to connect to the database; that decision is based on a URL
(Uniform Resource Locator) that you pass to getConnection().

A JDBC URL takes the following general format:

jdbc:<driver>:<connection parameters>

The first component in a JDBC URL is always jdbc. When using the
Advanced Server JDBC Connector, the second component (the driver) is
edb.

The Advanced Server JDBC URL takes one of the following forms:

jdbc:edb:<database>

jdbc:edb://<host>/<database>

jdbc:edb://<host>:<port>/<database>

The following table shows the various connection parameters:

Table - Connection Parameters

	Name

	Description

	host

	The host name of the server. Defaults to localhost.

	port

	The port number the server is listening on. Defaults to the Advanced Server standard port number (5444).

	database

	The database name.

	Additional Connection Properties

	Preferring Synchronous Secondary Database Servers
	Configuring Primary and Secondary Database Servers Overview

	Example: Primary and Secondary Database Servers

Additional Connection Properties

In addition to the standard connection parameters, the Advanced Server
JDBC driver supports connection properties that control behavior
specific to EDB. You can specify these properties in the
connection URL or as a Properties object parameter passed to
DriverManager.getConnection(). Listing 1.2 demonstrates how to use a
Properties object to specify additional connection properties:

Listing 1.2

String url = "jdbc:edb://localhost/edb";
Properties props = new Properties();

props.setProperty("user", "enterprisedb");
props.setProperty("password", "enterprisedb");
props.setProperty("sslfactory", "com.edb.ssl.NonValidatingFactory");
props.setProperty("ssl", "true");

Connection con = DriverManager.getConnection(url, props);

Note

By default the combination of SSL=true and setting the
connection URL parameter sslfactory=org.postgresql.ssl.NonValidatingFactory encrypts the
connection but does not validate the SSL certificate. To enforce
certificate validation, you must use a Custom SSLSocketFactory. For more details about writing a
Custom SSLSocketFactory, review the PostgreSQL JDBC driver documentation [https://jdbc.postgresql.org/documentation/head/ssl-factory.html].

To specify additional connection properties in the URL, add a question
mark and an ampersand-separated list of keyword-value pairs:

String url = "jdbc:edb://localhost/edb?user=enterprisedb&ssl=true";

Some of the additional connection properties are shown in the following table:

Table 5-2 - Additional Connection Properties

	Name

	Type

	Description

	user

	String

	The database user on whose behalf the connection is being made.

	password

	String

	The database user’s password.

	ssl

	Boolean

	Requests an authenticated, encrypted SSL connection

	loggerLevel

	String

	The logger level of the driver. The allowed values are OFF, DEBUG or TRACE. This enables the java.util.logging.Logger Level of the driver based on the following mapping of levels: DEBUG -> FINE, TRACE -> FINEST. The loggerLevel property is intended for debugging the driver, and not for general SQL query debugging.

	loggerFile

	String

	The file name output of the logger. This parameter must be used together with loggerLevel. If set, the Logger uses a java.util.logging.FileHandler to write to a specified file. If the parameter is not set or the file can’t be created, the java.util.logging.ConsoleHandler is used instead of java.util.logging.FileHandler.

	charSet

	String

	The value of charSet determines the character set used for data sent to or received from the database.

	prepareThreshold

	Integer

	The value of prepareThreshold determines the number of PreparedStatement executions required before switching to server side prepared statements. The default is five.

	loadBalanceHosts

	Boolean

	In default mode (disabled) hosts are connected in the given order. If enabled, hosts are chosen randomly from the set of suitable candidates.

	targetServerType

	String

	Allows opening connections to only servers with the required state. The allowed values are any, primary, secondary, preferSecondary, and preferSyncSecondary. The primary/secondary distinction is currently done by observing if the server allows writes. The value preferSecondary tries to connect to secondaries if any are available, otherwise allows connecting to the primary. The Advanced Server JDBC Connector supports preferSyncSecondary, which permits connection to only synchronous secondaries or the primary if there are no active synchronous secondaries.

	skipQuotesOnReturning

	Boolean

	When set to true, column names from the RETURNING clause are not quoted. This eliminates a case-sensitive comparison of the column name. When set to false (the default setting), column names are quoted.

Preferring Synchronous Secondary Database Servers

The Advanced Server JDBC Connector supports the preferSyncSecondary
option for the targetServerType connection property as noted in Table 5-2.

The preferSyncSecondary option provides a preference for synchronous,
standby servers for failover connection, and thus ignoring asynchronous
servers.

The specification of this capability in the connection URL is shown by
the following syntax:

jdbc:edb://primary:port,secondary_1:port_1,secondary_2:port_2,.../
database?targetServerType=preferSyncSecondary

Parameters

primary:port

The IP address or a name assigned to the primary database server followed
by its port number. If primary is a name, it must be specified with its
IP address in the /etc/hosts file on the host running the Java program.
Note: The primary database server can be specified in any location in
the list. It does not have to precede the secondary database servers.

secondary_n:port_n

The IP address or a name assigned to a standby, secondary database
server followed by its port number. If secondary_n is a name, it must
be specified with its IP address in the /etc/hosts file on the host
running the Java program.

database

The name of the database to which the connection is to be made.

The following is an example of the connection URL:

String url = "jdbc:edb://primary:5300,secondary1:5400/edb?targetServerType=preferSyncSecondary";
con = DriverManager.getConnection(url, "enterprisedb", "edb");

The following characteristics apply to the preferSyncSecondary option:

	The primary database server may be specified in any location in the
connection list.

	Connection for accessing the database for usage by the Java program
is first attempted on a synchronous secondary. The secondary servers
are available for read-only operations.

	No connection attempt is made to any servers running in asynchronous
mode.

	The order in which connection attempts are made is determined by the
loadBalanceHosts connection property as described in Table 5‑2. If
disabled, which is the default setting, connection attempts are made
in the left-to-right order specified in the connection list. If
enabled, connection attempts are made randomly.

	If connection cannot be made to a synchronous secondary, then
connection to the primary database server is used. If the primary
database server is not active, then the connection attempt fails.

The synchronous secondaries to be used for the preferSyncSecondary
option must be configured for hot standby usage.

The following section provides a brief overview of setting up the primary
and secondary database servers for hot standby, synchronous replication.

Configuring Primary and Secondary Database Servers Overview

The process for configuring a primary and secondary database servers are
described in the PostgreSQL documentation.

For general information on hot standby usage, which is needed for the
preferSyncSecondary option, see the PostgreSQL core documentation [https://www.postgresql.org/docs/12/static/hot-standby.html].

For information about creating a base backup for the secondary database
server from the primary, see Section 25.3.2, Making a Base Backup
(describes usage of the pg_basebackup utility program) or Section
25.3.3, Making a Base Backup Using the Low Level API within Section
25.3 Continuous Archiving and Point-in-Time Recovery (PITR) in The
PostgreSQL Core Documentation [https://www.postgresql.org/docs/12/static/continuous-archiving.html].

For information on the configuration parameters that must be set for hot
standby usage, see Section 19.6, Replication [https://www.postgresql.org/docs/12/static/runtime-config-replication.html].

The following section provides a basic example of setting up the primary
and secondary database servers.

Example: Primary and Secondary Database Servers

In the example that follows, the:

	primary database server resides on host 192.168.2.24, port 5444

	Secondary database server is named secondary1 and resides on host 192.168.2.22, port
5445

	Secondary database server is named secondary2 and resides on host 192.162.2.24, port
5446 (same host as the primary)

In the primary database server’s pg_hba.conf file, there must be a
replication entry for each unique replication database USER/ADDRESS
combination for all secondary database servers. In the following
example, the database superuser enterprisedb is used as the replication database user
for both the secondary1 database server on 192.168.2.22 and the
secondary2 database server that is local relative to the primary.

TYPE DATABASE USER ADDRESS METHOD
host replication enterprisedb 192.168.2.22/32 md5
host replication enterprisedb 127.0.0.1/32 md5

After the primary database server has been configured in the
postgresql.conf file along with its pg_hba.conf file, database server
secondary1 is created by invoking the following command on host
192.168.2.22 for secondary1:

su – enterprisedb
Password:
-bash-4.1$ pg_basebackup -D /opt/secondary1 -h 192.168.2.24 -p 5444 -Fp -R -X stream -l 'Secondary1'

On the secondary database server, /opt/secondary1, a recovery.conf file
is generated in the database cluster, which has been edited in the
following example by adding the application_name=secondary1 setting as
part of the primary_conninfo string and removal of some of the other
unneeded options automatically generated by pg_basebackup. Also note the
use of the standby_mode = 'on' parameter.

standby_mode = 'on'
primary_conninfo = 'user=enterprisedb password=password host=192.168.2.24 port=5444 application_name=secondary1'

The application name secondary1 must be included in the
synchronous_standby_names parameter of the primary database server’s
postgresql.conf file.

The secondary database server (secondary2) is created in an alternative manner
on the same host used by the primary:

su - enterprisedb
Password:
-bash-4.1$ psql -d edb -c "SELECT pg_start_backup('Secondary2')"
Password:
 pg_start_backup

 0/6000028
(1 row)

-bash-4.1$ cp -rp /var/lib/edb/as12/data/opt/secondary2
-bash-4.1$ psql -d edb -c "SELECT pg_stop_backup()"
Password:
NOTICE: pg_stop_backup complete, all required WAL segments have been archived
 pg_stop_backup

 0/6000130
(1 row)

On the secondary database server /opt/secondary2, create the
recovery.conf file in the database cluster. Note the
application_name=secondary2 setting as part of the primary_conninfo
string as shown in the following example. Also be sure to include the
standby_mode = 'on' parameter.

standby_mode = 'on'
primary_conninfo = 'user=enterprisedb password=password host=localhost port=5444 application_name=secondary2'

The application name secondary2 must be included in the
synchronous_standby_names parameter of the primary database server’s
postgresql.conf file.

You must ensure the configuration parameter settings in the postgresql.conf
file of the secondary database servers are properly set (particularly hot_standby=on).

Note

As of EDB Postgres Advanced Server v12, the recovery.conf file is no longer valid; it is replaced by the standby.signal file. As a result, primary_conninfo is moved from the recovery.conf file to the postgresql.conf file. The presence of standby.signal file signals the cluster to run in standby mode. Please note that even if you try to create a recovery.conf file manually and keep it under the data directory, the server will fail to start and throw an error.

The parameter standby_mode=on is also removed from EDB Postgres Advanced Server v12, and the trigger_file parameter name is changed to promote_trigger_file.

The following table lists the basic postgresql.conf configuration
parameter settings of the primary database server as compared to the
secondary database servers:

Table - Primary/Secondary Configuration Parameters

	Parameter

	Primary

	Secondary

	Description

	archive_mode

	on

	off

	Completed WAL segments sent to archive storage

	archive_command

	cp %p /archive_dir/%f

	n/a

	Archive completed WAL segments

	wal_level (9.5 or prior)

	hot_standby

	minimal

	Information written to WAL segment

	wal_level (9.6 or later)

	replica

	minimal

	Information written to WAL segment

	max_wal_senders

	n (positive integer)

	0

	Maximum concurrent connections from standby servers

	wal_keep_segments

	n (positive integer)

	0

	Minimum number of past log segments to keep for standby servers

	synchronous_standby_names

	n(secondary1,
secondary2,…)

	n/a

	List of standby servers for synchronous replication. Must be present to enable synchronous replication.
These are obtained from the application_name option of the primary_conninfo parameter in the recovery.conf file of each standby server.

	hot_standby

	off

	on

	Client application can connect and run queries on the secondary server in standby mode

The secondary database server (secondary1) is started:

-bash-4.1$ pg_ctl start -D /opt/secondary1 -l logfile -o "-p 5445"
server starting

The secondary database server (secondary2) is started:

-bash-4.1$ pg_ctl start -D /opt/secondary2/data -l logfile -o "-p 5446"
server starting

To ensure that the secondary database servers are properly set up in
synchronous mode, use the following query on the primary database server.
Note that the sync_state column lists applications secondary1 and
secondary2 as sync.

edb=# SELECT usename, application_name, client_addr, client_port, sync_state FROM pg_stat_replication;
 usename | application_name | client_addr | client_port | sync_state
--------------+------------------+--------------+-------------+------------
 enterprisedb | secondary1 | 192.168.2.22 | 53525 | sync
 enterprisedb | secondary2 | 127.0.0.1 | 36214 | sync
(2 rows)

The connection URL is:

String url = "jdbc:edb://primary:5444,secondary1:5445,secondary2:5446/edb?targetServerType=preferSyncSecondary";
con = DriverManager.getConnection(url, "enterprisedb", "password");

The /etc/hosts file on the host running the Java program contains the
following entries with the server names specified in the connection URL
string:

192.168.2.24 localhost.localdomain primary
192.168.2.22 localhost.localdomain secondary1
192.168.2.24 localhost.localdomain secondary2

For this example, the preferred synchronous secondary connection option
results in the first usage attempt made on secondary1, then on
secondary2 if secondary1 is not active, then on the primary if both
secondary1 and secondary2 are not active as demonstrated by the
following program that displays the IP address and port of the database
server to which the connection is made.

import java.sql.*;
public class InetServer
{
 public static void main(String[] args)
 {
 try
 {
 Class.forName("com.edb.Driver");
 String url =
 "jdbc:edb://primary:5444,secondary1:5445,secondary2:5446/edb?targetServerType=preferSyncSecondary";
 String user = "enterprisedb";
 String password = "password";
 Connection con = DriverManager.getConnection(url, user, password);

 ResultSet rs = con.createStatement().executeQuery("SELECT inet_server_addr() || ':' || inet_server_port()");
 rs.next();
 System.out.println(rs.getString(1));

 rs.close();
 con.close();
 System.out.println("Command successfully executed");
 }
 catch(ClassNotFoundException e)
 {
 System.out.println("Class Not Found : " + e.getMessage());
 }
 catch(SQLException exp)
 {
 System.out.println("SQL Exception: " + exp.getMessage());
 System.out.println("SQL State: " + exp.getSQLState());
 System.out.println("Vendor Error: " + exp.getErrorCode());
 }
 }
}

Case 1: When all database servers are active, connection is made to
secondary1 on 192.168.2.22 port 5445.

$ java InetServer
192.168.2.22/32:5445
Command successfully executed

Case 2: When secondary1 is shut down, connection is made to
secondary2 on 192.168.2.24 port 5446.

bash-4.1$ /usr/edb/as12/bin/pg_ctl stop -D /opt/secondary1
waiting for server to shut down.... done
server stopped

$ java InetServer
192.168.2.24/32:5446
Command successfully executed

Case 3: When secondary2 is also shut down, connection is made to the
primary on 192.168.2.24 port 5444.

bash-4.1$ /usr/edb/as12/bin/pg_ctl stop -D /opt/secondary2/data
waiting for server to shut down.... done
server stopped

$ java InetServer
192.168.2.24/32:5444
Command successfully executed

Executing SQL Statements through Statement Objects

After loading the Advanced Server JDBC Connector driver and connecting
to the server, the code in the sample application builds a JDBC
Statement object, executes an SQL query, and displays the results.

A Statement object sends SQL statements to a database. There are three
kinds of Statement objects. Each is specialized to send a particular
type of SQL statement:

	A Statement object is used to execute a simple SQL statement with no
parameters.

	A PreparedStatement object is used to execute a pre-compiled SQL
statement with or without IN parameters.

	A CallableStatement object is used to execute a call to a database
stored procedure.

You must construct a Statement object before executing an SQL statement.
The Statement object offers a way to send a SQL statement to the server
(and gain access to the result set). Each Statement object belongs to a
Connection; use the createStatement() method to ask the Connection to
create the Statement object.

A Statement object defines several methods to execute different types of
SQL statements. In the sample application, the executeQuery() method
executes a SELECT statement:

Statement stmt = con.createStatement();
ResultSet rs = stmt.executeQuery("SELECT * FROM emp");

The executeQuery() method expects a single argument: the SQL statement
that you want to execute. executeQuery() returns data from the query in
a ResultSet object. If the server encounters an error while executing
the SQL statement provided, it throws an SQLException (and does not
return a ResultSet).

Using Named Notation with a CallableStatement Object

The JDBC Connector (Advanced Server version 9.6 and later) supports the
use of named parameters when instantiating a CallableStatement object.
This syntax is an extension of JDBC supported syntax, and does not
conform to the JDBC standard.

You can use a CallableStatement object to pass parameter values to a
stored procedure. You can assign values to IN, OUT, and INOUT parameters
with a CallableStatement object.

When using the CallableStatement class, you can use ordinal notation or
named notation to specify values for an actual arguments. You must set a
value for each IN or INOUT parameter marker in a statement.

When using ordinal notation to pass values to a CallableStatement
object, you should use the setter method that corresponds to the
parameter type. For example, when passing a STRING value, use the
setString setter method. Each parameter marker within a statement (?)
represents an ordinal value. When using ordinal parameters, you should
pass the actual parameter values to the statement in the order that the
formal arguments are specified within the procedure definition.

You can also use named parameter notation when specifying argument
values for a CallableStatement object. Named parameter notation allows
you to supply values for only those parameters that are required by the
procedure, omitting any parameters that have acceptable default values.
You can also specify named parameters in any order.

When using named notation, each parameter name should correspond to a
COLUMN_NAME returned by a call to the
DatabaseMetaData.getProcedureColumns method. You should use the => token
when including a named parameter in a statement call.

Use the registerOutParameter method to identify each OUT or INOUT
parameter marker in the statement.

Examples

The following examples demonstrate using the CallableStatement method to
provide parameters to a procedure with the following signature:

PROCEDURE hire_emp (ename VARCHAR2
empno NUMBER
job VARCHAR2
sal NUMBER
hiredate DATE DEFAULT now(),
mgr NUMBER DEFAULT 7100,
deptno NUMBER
)

The following example uses ordinal notation to provide parameters:

CallableStatement cstmt = con.prepareCall
("{CALL hire_emp(?,?,?,?,?,?,?)}");
//Bind a value to each parameter.
cstmt.setString(1, "SMITH");
cstmt.setInt(2, 8888);
cstmt.setString(3, "Sales");
cstmt.setInt(4, 5500);
cstmt.setDate(5, "2016-06-01");
cstmt.setInt(6, 7566);
cstmt.setInt(7, 30);

The following example uses named notation to provide parameters; using
named notation, you can omit parameters that have default values or
re-order parameters:

CallableStatement cstmt = con.prepareCall
("{CALL hire_emp(ename => ?,
job => ?,
empno => ?,
sal => ?,
deptno => ?
)}");

//Bind a value to each parameter.
cstmt.setString("ename", "SMITH");
cstmt.setInt("empno", 8888);
cstmt.setString("job", "Sales");
cstmt.setInt("sal", 5500);
cstmt.setInt("deptno", 30);

Retrieving Results from a ResultSet Object

A ResultSet object is the primary storage mechanism for the data
returned by an SQL statement. Each ResultSet object contains both data
and metadata (in the form of a ResultSetMetaData object).
ResultSetMetaData includes useful information about results returned by
the SQL command: column names, column count, row count, column length,
and so on.

To access the row data stored in a ResultSet object, an application
calls one or more getter methods. A getter method retrieves the
value in particular column of the current row. There are many different
getter methods; each method returns a value of a particular type. For
example, the getString() method returns a STRING type; the getDate()
method returns a Date, and the getInt() method returns an INT type. When
an application calls a getter method, JDBC tries to convert the value
into the requested type.

Each ResultSet keeps an internal pointer that point to the current row.
When the executeQuery() method returns a ResultSet, the pointer is
positioned before the first row; if an application calls a getter
method before moving the pointer, the getter method will fail. To
advance to the next (or first) row, call the ResultSet’s next() method.
ResultSet.next() is a boolean method; it returns TRUE if there is
another row in the ResultSet or FALSE if you have moved past the last
row.

After moving the pointer to the first row, the sample application uses
the getString() getter method to retrieve the value in the first
column and then prints that value. Since ListEmployees calls rs.next()
and rs.getString() in a loop, it processes each row in the result set.
ListEmployees exits the loop when rs.next() moves the pointer past the
last row and returns FALSE.

while(rs.next())
{
System.out.println(rs.getString(1));
}

When using the ResultSet interface, remember:

	You must call next() before reading any values. next() returns true if
another row is available and prepares the row for processing.

	Under the JDBC specification, an application should access each row
in the ResultSet only once. It is safest to stick to this rule,
although at the current time, the Advanced Server JDBC driver will
allow you to access a field as many times as you want.

	When you’ve finished using a ResultSet, call the close() method to
free the resources held by that object.

Freeing Resources

Every JDBC object consumes some number of resources. A ResultSet object,
for example, may contain a copy of every row returned by a query; a
Statement object may contain the text of the last command executed, and
so forth. It’s usually a good idea to free up those resources when the
application no longer needs them. The sample application releases the
resources consumed by the Result, Statement, and Connection objects by
calling each object’s close() method:

rs.close();
stmt.close();
con.close();

If you attempt to use a JDBC object after closing it, that object will
throw an error.

Handling Errors

When connecting to an external resource (such as a database server),
errors are bound to occur; your code should include a way to handle
these errors. Both JDBC and the Advanced Server JDBC Connector provide
various types of error handling. The ListEmployees class example
demonstrates how to handle an error using try/catch blocks.

When a JDBC object throws an error (an object of type SQLException or of
a type derived from SQLException), the SQLException object exposes three
different pieces of error information:

	The error message.

	The SQL State.

	A vendor-specific error code.

In the example, the following code displays the value of these
components should an error occur:

System.out.println("SQL Exception: " + exp.getMessage());
System.out.println("SQL State: " + exp.getSQLState());
System.out.println("Vendor Error: " + exp.getErrorCode());

For example, if the server tries to connect to a database that does not
exist on the specified host, the following error message is displayed:

SQL Exception: FATAL: database "acctg" does not exist
SQL State: 3D000
Vendor Error: 0

Executing SQL Commands with executeUpdate()

In the previous example ListEmployees executed a SELECT statement using
the Statement.executeQuery() method. executeQuery() was designed to
execute query statements so it returns a ResultSet that contains the
data returned by the query. The Statement class offers a second method
that you should use to execute other types of commands (UPDATE, INSERT,
DELETE, and so forth). Instead of returning a collection of rows, the
executeUpdate() method returns the number of rows affected by the SQL
command it executes.

The signature of the executeUpdate() method is:

int executeUpdate(String sqlStatement)

Provide this method a single parameter of type String, containing the
SQL command that you wish to execute.

Using executeUpdate() to INSERT Data

The example that follows demonstrates using the executeUpdate() method to add a row
to the emp table.

NOTE: the following example is not a complete application, only a
method - the samples in the remainder of this document do not include
the code required to set up and tear down a Connection. To experiment
with the example, you must provide a class that invokes the sample code.

Listing 1.3

public void updateEmployee(Connection con)
{
 try
 {
 Console console = System.console();
 Statement stmt = con.createStatement();

 String empno = console.readLine("Employee Number :");
 String ename = console.readLine("Employee Name :");
 int rowcount = stmt.executeUpdate("INSERT INTO emp(empno, ename)
 VALUES("+empno+",'"+ename+"')");
 System.out.println("");
 System.out.println("Success - "+rowcount+" rows affected.");
 }
 catch(Exception err)
 {
 System.out.println("An error has occurred.");
 System.out.println("See full details below.");
 err.printStackTrace();
 }
}

The updateEmployee() method expects a single argument from the caller, a
Connection object that must be connected to an Advanced Server
database:

public void updateEmployee(Connection con)

Next, updateEmployee() prompts the user for an employee name and number:

String empno = console.readLine("Employee Number :");
String ename = console.readLine("Employee Name :");

updateEmployee() concatenates the values returned by console.readline()
into an INSERT statement and pass the result to the executeUpdate()
method.

int rowcount = stmt.executeUpdate("INSERT INTO emp(empno, ename)
VALUES("+empno+",'"+ename+"')");

For example, if the user enters an employee number of 6000 and a name of
Jones, the INSERT statement passed to executeUpdate() will look like
this:

INSERT INTO emp(empno, ename) VALUES(6000, 'Jones');

The executeUpdate() method returns the number of rows affected by the
SQL statement (an INSERT typically affects one row, but an UPDATE or
DELETE statement can affect more). If executeUpdate() returns without
throwing an error, the call to System.out.println displays a message to
the user that shows the number of rows affected.

System.out.println("");
System.out.println("Success - "+rowcount+" rows affected.");

The catch block displays an appropriate error message to the user if the
program encounters an exception:

{
System.out.println("An error has occurred.");
System.out.println("See full details below.");
err.printStackTrace();
}

executeUpdate() Syntax Examples

You can use executeUpdate() with any SQL command that does not return
a result set. Some simple syntax examples using executeUpdate() with SQL
commands follow:

To use the UPDATE command with executeUpdate() to update a row:

stmt.executeUpdate("UPDATE emp SET ename='"+ename+"' WHERE empno="+empno);

To use the DELETE command with executeUpdate() to remove a row from a
table:

stmt.executeUpdate("DELETE FROM emp WHERE empno="+empno);

To use the DROP TABLE command with executeUpdate() to delete a table
from a database:

stmt.executeUpdate("DROP TABLE tablename");

To use the CREATE TABLE command with executeUpdate() to add a new table
to a database:

stmt.executeUpdate("CREATE TABLE tablename (fieldname NUMBER(4,2),
fieldname2 VARCHAR2(30))");

To use the ALTER TABLE command with executeUpdate() to change the
attributes of a table:

stmt.executeUpdate("ALTER TABLE tablename ADD COLUMN colname BOOLEAN");

Adding a Graphical Interface to a Java Program

With a little extra work, you can add a graphical user interface to a
program - the next example (Listing 1.4) demonstrates how to write a
Java application that creates a JTable (a spreadsheet-like graphical
object) and copies the data returned by a query into that JTable.

Note

The following sample application is a method, not a complete
application. To call this method, provide an appropriate main() function
and wrapper class.

Listing 1.4

import java.sql.*;
import java.util.Vector;
import javax.swing.JFrame;
import javax.swing.JScrollPane;
import javax.swing.JTable;

...
public void showEmployees(Connection con)
{
 try
 {
 Statement stmt = con.createStatement();
 ResultSet rs = stmt.executeQuery("SELECT * FROM emp");
 ResultSetMetaData rsmd = rs.getMetaData();
 Vector labels = new Vector();
 for(int column = 0; column < rsmd.getColumnCount(); column++)
 labels.addElement(rsmd.getColumnLabel(column + 1));

 Vector rows = new Vector();
 while(rs.next())
 {
 Vector rowValues = new Vector();
 for(int column = 0; column < rsmd.getColumnCount(); column++)
 rowValues.addElement(rs.getString(column + 1));
 rows.addElement(rowValues);
 }

 JTable table = new JTable(rows, labels);
 JFrame jf = new JFrame("Browsing table: EMP (from EnterpriseDB)");
 jf.getContentPane().add(new JScrollPane(table));
 jf.setSize(400, 400);
 jf.setVisible(true);
 jf.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 System.out.println("Command successfully executed");
 }
 catch(Exception err)
 {
 System.out.println("An error has occurred.");
 System.out.println("See full details below.");
 err.printStackTrace();
 }
}

Before writing the showEmployees() method, you must import the
definitions for a few JDK-provided classes:

import java.sql.*;
import java.util.Vector;
import javax.swing.JFrame;
import javax.swing.JScrollPane;
import javax.swing.JTable;

The showEmployees() method expects a Connection object to be provided by
the caller; the Connection object must be connected to the Advanced
Server:

public void showEmployees(Connection con)

showEmployees() creates a Statement and uses the executeQuery() method
to execute an SQL query that generates an employee list:

Statement stmt = con.createStatement();
ResultSet rs = stmt.executeQuery("SELECT * FROM emp");

As you would expect, executeQuery() returns a ResultSet object. The
ResultSet object contains the metadata that describes the shape of the
result set (that is, the number of rows and columns in the result set,
the data type for each column, the name of each column, and so forth).
You can extract the metadata from the ResultSet by calling the
getMetaData() method:

ResultSetMetaData rsmd = rs.getMetaData();

Next, showEmployees() creates a Vector (a one dimensional array) to hold
the column headers and then copies each header from the ResultMetaData
object into the vector:

Vector labels = new Vector();
for(int column = 0; column < rsmd.getColumnCount(); column++)
{
 labels.addElement(rsmd.getColumnLabel(column + 1));
}

With the column headers in place, showEmployees() extracts each row from
the ResultSet and copies it into a new vector (named rows). The rows
vector is actually a vector of vectors: each entry in the rows vector
contains a vector that contains the data values in that row. This
combination forms the two-dimensional array that you will need to build
a JTable. After creating the rows vector, the program reads through each
row in the ResultSet (by calling rs.next()). For each column in each
row, a getter method extracts the value at that row/column and adds
the value to the rowValues vector. Finally, showEmployee() adds each
rowValues vector to the rows vector:

Vector rows = new Vector();
while(rs.next())
{
 Vector rowValues = new Vector();
 for(int column = 0; column < rsmd.getColumnCount(); column++)
 rowValues.addElement(rs.getString(column + 1));
 rows.addElement(rowValues);
}

At this point, the vector (labels) contains the column headers, and a
second two-dimensional vector (rows) contains the data for the table.
Now you can create a JTable from the vectors and a JFrame to hold the
JTable:

JTable table = new JTable(rows, labels);
JFrame jf = new JFrame("Browsing table: EMP (from EnterpriseDB)");
jf.getContentPane().add(new JScrollPane(table));
jf.setSize(400, 400);
jf.setVisible(true);
jf.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
System.out.println("Command successfully executed");

The showEmployees() method includes a catch block to intercept any
errors that may occur and display an appropriate message to the user:

catch(Exception err)
{
 System.out.println("An error has occurred.");
 System.out.println("See full details below.");
 err.printStackTrace();
}

The result of calling the showEmployees() method is shown in below figure:

[image: The showEmployees Window]
The showEmployees Window

Advanced JDBC Connector Functionality

The previous example created a graphical user interface that displayed a
result set in a JTable. Now we will switch gears and show you some of
the more advanced features of the Advanced Server JDBC Connector.

To avoid unnecessary clutter, the rest of the code samples in this
document will use the console to interact with the user instead of
creating a graphical use interface.

	Reducing Client-side Resource Requirements
	Modifying the Batch Size of a Statement Object

	Using PreparedStatements to Send SQL Commands

	Executing Stored Procedures
	Invoking Stored Procedures
	Executing a Simple Stored Procedure

	Executing Stored Procedures with IN parameters

	Executing Stored Procedures with OUT parameters

	Executing Stored Procedures with IN OUT parameters

	Using REF CURSORS with Java
	Using a REF CURSOR to retrieve a ResultSet

	Using BYTEA Data with Java
	Inserting BYTEA Data into an Advanced Server Database

	Retrieving BYTEA Data from an Advanced Server Database

	Using Object Types and Collections with Java
	Using an Object Type

	Using a Collection

	Asynchronous Notification Handling with NoticeListener

Reducing Client-side Resource Requirements

The Advanced Server JDBC driver retrieves the results of a SQL query as
a ResultSet object. If a query returns a large number of rows, using a
batched ResultSet will:

	Reduce the amount of time it takes to retrieve the first row.

	Save time by retrieving only the rows that you need.

	Reduce the memory requirement of the client.

When you reduce the fetch size of a ResultSet object, the driver doesn’t
copy the entire ResultSet across the network (from the server to the
client). Instead, the driver requests a small number of rows at a time;
as the client application moves through the result set, the driver
fetches the next batch of rows from the server.

Batched result sets cannot be used in all situations. Not adhering to
the following restrictions will make the driver silently fall back to
fetching the whole ResultSet at once:

	The client application must disable autocommit.

	The Statement object must be created with a ResultSet type of
TYPE_FORWARD_ONLY type (which is the default). TYPE_FORWARD_ONLY
result sets can only step forward through the ResultSet.

	The query must consist of a single SQL statement.

Modifying the Batch Size of a Statement Object

Limiting the batch size of a ResultSet object can speed the retrieval of
data and reduce the resources needed by a client-side application.
Listing 1.5 creates a Statement object with a batch size limited to five
rows:

// Make sure autocommit is off
conn.setAutoCommit(false);

Statement stmt = conn.createStatement();
// Set the Batch Size.
stmt.setFetchSize(5);

ResultSet rs = stmt.executeQuery("SELECT * FROM emp");
while (rs.next())
 System.out.println("a row was returned.");

rs.close();
stmt.close();

The call to conn.setAutoCommit(false) ensures that the server won’t
close the ResultSet before you have a chance to retrieve the first row.
After preparing the Connection, you can construct a Statement object:

Statement stmt = db.createStatement();

The following code sets the batch size to five (rows) before executing
the query:

stmt.setFetchSize(5);

ResultSet rs = stmt.executeQuery("SELECT * FROM emp");

For each row in the ResultSet object, the call to println() prints a row
was returned.

System.out.println("a row was returned.");

Remember, while the ResultSet contains all of the rows in the table,
they are only fetched from the server five rows at a time. From the
client’s point of view, the only difference between a batched result
set and an unbatched result set is that a batched result may return
the first row in less time.

Next, we will look at another feature (the PreparedStatement) that you
can use to increase the performance of certain JDBC applications.

Using PreparedStatements to Send SQL Commands

Many applications execute the same SQL statement over and over again,
changing one or more of the data values in the statement between each
iteration. If you use a Statement object to repeatedly execute a SQL
statement, the server must parse, plan, and optimize the statement every
time. JDBC offers another Statement derivative, the PreparedStatement to
reduce the amount of work required in such a scenario.

Listing 1.6 demonstrates invoking a PreparedStatement that accepts an
employee ID and employee name and inserts that employee information in
the emp table:

Listing 1.6

public void AddEmployee(Connection con)
{
 try
 {
 Console c = System.console();
 String command = "INSERT INTO emp(empno,ename) VALUES(?,?)";
 PreparedStatement stmt = con.prepareStatement(command);
 stmt.setObject(1,new Integer(c.readLine("ID:")));
 stmt.setObject(2,c.readLine("Name:"));
 stmt.execute();

 System.out.println("The procedure successfully executed.");
 }
 catch(Exception err)
 {
 System.out.println("An error has occurred.");
 System.out.println("See full details below.");
 err.printStackTrace();
 }
}

Instead of hard-coding data values in the SQL statement, you insert
placeholders to represent the values that will change with each
iteration. Listing 1.6 shows an INSERT statement that includes two
placeholders (each represented by a question mark):

String command = "INSERT INTO emp(empno,ename) VALUES(?,?)";

With the parameterized SQL statement in hand, the AddEmployee() method
can ask the Connection object to prepare that statement and return a
PreparedStatement object:

PreparedStatement stmt = con.prepareStatement(command);

At this point, the PreparedStatement has parsed and planned the INSERT
statement, but it does not know what values to add to the table. Before
executing the PreparedStatement, you must supply a value for each
placeholder by calling a setter method. setObject() expects two
arguments:

	A parameter number; parameter number one corresponds to the first
question mark, parameter number two corresponds to the second
question mark, etc.

	The value to substitute for the placeholder.

The AddEmployee() method prompts the user for an employee ID and name
and calls setObject() with the values supplied by the user:

stmt.setObject(1,new Integer(c.readLine("ID:")));
stmt.setObject(2, c.readLine("Name:"));

And then asks the PreparedStatement object to execute the statement:

stmt.execute();

If the SQL statement executes as expected, AddEmployee() displays a
message that confirms the execution. If the server encounters an
exception, the error handling code displays an error message.

Executing Stored Procedures

A stored procedure is a module that is written in EDB’s SPL and
stored in the database. A stored procedure may define input parameters
to supply data to the procedure and output parameters to return data
from the procedure. Stored procedures execute within the server and
consist of database access commands (SQL), control statements, and data
structures that manipulate the data obtained from the database.

Stored procedures are especially useful when extensive data manipulation
is required before storing data from the client. It is also efficient to
use a stored procedure to manipulate data in a batch program.

Invoking Stored Procedures

The CallableStatement class provides a way for a Java program to call
stored procedures. A CallableStatement object can have a variable number
of parameters used for input (IN parameters), output (OUT parameters),
or both (IN OUT parameters).

The syntax for invoking a stored procedure in JDBC is shown below. Note
that the square brackets indicate optional parameters; they are not part
of the command syntax.

{call procedure_name([?, ?, ...])}

The syntax to invoke a procedure that returns a result parameter is:

{? = call procedure_name([?, ?, ...])}

Each question mark serves as a placeholder for a parameter. The stored
procedure determines if the placeholders represent IN, OUT, or IN OUT
parameters and the Java code must match. We will show you how to supply
values for IN (or IN OUT) parameters and how to retrieve values returned
in OUT (or IN OUT) parameters in a moment.

Executing a Simple Stored Procedure

Listing 1.7-a shows a stored procedure that increases the salary of each
employee by 10%. increaseSalary expects no arguments from the caller and
does not return any information:

CREATE OR REPLACE PROCEDURE increaseSalary
IS
 BEGIN
 UPDATE emp SET sal = sal * 1.10;
 END;

Listing 1.7-b demonstrates how to invoke the increaseSalary procedure:

public void SimpleCallSample(Connection con)
{
 try
 {
 CallableStatement stmt = con.prepareCall("{call increaseSalary()}");
 stmt.execute();
 System.out.println("Stored Procedure executed successfully");
 }
 catch(Exception err)
 {
 System.out.println("An error has occurred.");
 System.out.println("See full details below.");
 err.printStackTrace();
 }
}

To invoke a stored procedure from a Java application, use a
CallableStatement object. The CallableStatement class is derived from
the Statement class and, like the Statement class, you obtain a
CallableStatement object by asking a Connection object to create one for
you. To create a CallableStatement from a Connection, use the
prepareCall() method:

CallableStatement stmt = con.prepareCall("{call increaseSalary()}");

As the name implies, the prepareCall() method prepares the statement,
but does not execute it. As you will see in the next example, an
application typically binds parameter values between the call to
prepareCall() and the call to execute(). To invoke the stored procedure
on the server, call the execute() method.

stmt.execute();

This stored procedure (increaseSalary) did not expect any IN parameters
and did not return any information to the caller (using OUT parameters)
so invoking the procedure is simply a matter of creating a
CallableStatement object and then calling that object’s execute()
method.

The next section demonstrates how to invoke a stored procedure that
requires data (IN parameters) from the caller.

Executing Stored Procedures with IN parameters

The code in the next example first creates and then invokes a stored
procedure named empInsert; empInsert requires IN parameters that contain
employee information: empno, ename, job, sal, comm, deptno, and mgr.
empInsert then inserts that information into the emp table.

Listing 1.8-a creates the stored procedure in the Advanced Server
database:

CREATE OR REPLACE PROCEDURE empInsert(
 pEname IN VARCHAR,
 pJob IN VARCHAR,
 pSal IN FLOAT4,
 pComm IN FLOAT4,
pDeptno IN INTEGER,
pMgr IN INTEGER
)
AS
DECLARE
 CURSOR getMax IS SELECT MAX(empno) FROM emp;
 max_empno INTEGER := 10;
BEGIN
 OPEN getMax;
 FETCH getMax INTO max_empno;
 INSERT INTO emp(empno, ename, job, sal, comm, deptno, mgr)
 VALUES(max_empno+1, pEname, pJob, pSal, pComm, pDeptno, pMgr);
 CLOSE getMax;
END;

Listing 1.8-b demonstrates how to invoke the stored procedure from Java:

public void CallExample2(Connection con)
{
 try
 {
 Console c = System.console();
 String commandText = "{call empInsert(?,?,?,?,?,?)}";
 CallableStatement stmt = con.prepareCall(commandText);
 stmt.setObject(1, new String(c.readLine("Employee Name :")));
 stmt.setObject(2, new String(c.readLine("Job :")));
 stmt.setObject(3, new Float(c.readLine("Salary :")));
 stmt.setObject(4, new Float(c.readLine("Commission :")));
 stmt.setObject(5, new Integer(c.readLine("Department No :")));
 stmt.setObject(6, new Integer(c.readLine("Manager")));
 stmt.execute();
 }
 catch(Exception err)
 {
 System.out.println("An error has occurred.");
 System.out.println("See full details below.");
 err.printStackTrace();
 }
}

Each placeholder (?) in the command (commandText) represents a point in
the command that is later replaced with data:

String commandText = "{call EMP_INSERT(?,?,?,?,?,?)}";
CallableStatement stmt = con.prepareCall(commandText);

The setObject() method binds a value to an IN or IN OUT placeholder.
Each call to setObject() specifies a parameter number and a value to
bind to that parameter:

stmt.setObject(1, new String(c.readLine("Employee Name :")));
stmt.setObject(2, new String(c.readLine("Job :")));
stmt.setObject(3, new Float(c.readLine("Salary :")));
stmt.setObject(4, new Float(c.readLine("Commission :")));
stmt.setObject(5, new Integer(c.readLine("Department No :")));
stmt.setObject(6, new Integer(c.readLine("Manager")));

After supplying a value for each placeholder, this method executes the
statement by calling the execute() method.

Executing Stored Procedures with OUT parameters

The next example creates and invokes an SPL stored procedure called
deptSelect. This procedure requires one IN parameter (department number)
and returns two OUT parameters (the department name and location)
corresponding to the department number. The code in Listing 1.9-a
creates the deptSelect procedure:

CREATE OR REPLACE PROCEDURE deptSelect
(
 p_deptno IN INTEGER,
 p_dname OUT VARCHAR,
 p_loc OUT VARCHAR
)
AS
DECLARE
 CURSOR deptCursor IS SELECT dname, loc FROM dept WHERE deptno=p_deptno;
BEGIN
 OPEN deptCursor;
 FETCH deptCursor INTO p_dname, p_loc;

 CLOSE deptCursor;
END;

Listing 1.9-b shows the Java code required to invoke the deptSelect
stored procedure:

public void GetDeptInfo(Connection con)
{
 try
 {
 Console c = System.console();
 String commandText = "{call deptSelect(?,?,?)}";
 CallableStatement stmt = con.prepareCall(commandText);
 stmt.setObject(1, new Integer(c.readLine("Dept No :")));
 stmt.registerOutParameter(2, Types.VARCHAR);
 stmt.registerOutParameter(3, Types.VARCHAR);
 stmt.execute();
 System.out.println("Dept Name: " + stmt.getString(2));
 System.out.println("Location : " + stmt.getString(3));
 }
 catch(Exception err)
 {
 System.out.println("An error has occurred.");
 System.out.println("See full details below.");
 err.printStackTrace();
 }
}

Each placeholder (?) in the command (commandText) represents a point in
the command that is later replaced with data:

String commandText = "{call deptSelect(?,?,?)}";
CallableStatement stmt = con.prepareCall(commandText);

The setObject() method binds a value to an IN or ``IN OUT placeholder.
When calling setObject() you must identify a placeholder (by its ordinal
number) and provide a value to substitute in place of that placeholder:

stmt.setObject(1, new Integer(c.readLine("Dept No :")));

The JDBC type of each OUT parameter must be registered before the
CallableStatement object can be executed. Registering the JDBC type is
done with the registerOutParameter() method.

stmt.registerOutParameter(2, Types.VARCHAR);
stmt.registerOutParameter(3, Types.VARCHAR);

After executing the statement, the CallableStatement’s getter method
retrieves the OUT parameter values: to retrieve a VARCHAR value, use the
getString() getter method.

stmt.execute();
System.out.println("Dept Name: " + stmt.getString(2));
System.out.println("Location : " + stmt.getString(3));

In the current example GetDeptInfo() registers two OUT parameters and
(after executing the stored procedure) retrieves the values returned in
the OUT parameters. Since both OUT parameters are defined as VARCHAR
values, GetDeptInfo() uses the getString() method to retrieve the OUT
parameters.

Executing Stored Procedures with IN OUT parameters

The code in the next example creates and invokes a stored procedure
named empQuery defined with one IN parameter (p_deptno), two IN OUT
parameters (p_empno and p_ename) and three OUT parameters (p_job,
p_hiredate and p_sal). empQuery then returns information about the
employee in the two IN OUT parameters and three OUT parameters.

Listing 1.10-a creates a stored procedure named empQuery:

CREATE OR REPLACE PROCEDURE empQuery
(
 p_deptno IN NUMBER,
 p_empno IN OUT NUMBER,
 p_ename IN OUT VARCHAR2,
 p_job OUT VARCHAR2,
 p_hiredate OUT DATE,
 p_sal OUT NUMBER
)
IS
BEGIN
 SELECT empno, ename, job, hiredate, sal
 INTO p_empno, p_ename, p_job, p_hiredate, p_sal
 FROM emp
 WHERE deptno = p_deptno
 AND (empno = p_empno
 OR ename = UPPER(p_ename));
END;

Listing 1.10-b demonstrates invoking the empQuery procedure, providing
values for the IN parameters, and handling the OUT and IN OUT
parameters:

public void CallSample4(Connection con)
{
 try
 {
 Console c = System.console();
 String commandText = "{call empQuery(?,?,?,?,?,?)}";
 CallableStatement stmt = con.prepareCall(commandText);
 stmt.setInt(1, new Integer(c.readLine("Department No:")));
 stmt.setInt(2, new Integer(c.readLine("Employee No:")));
 stmt.setString(3, new String(c.readLine("Employee Name:")));
 stmt.registerOutParameter(2, Types.INTEGER);
 stmt.registerOutParameter(3, Types.VARCHAR);
 stmt.registerOutParameter(4, Types.VARCHAR);
 stmt.registerOutParameter(5, Types.TIMESTAMP);
 stmt.registerOutParameter(6, Types.NUMERIC);
 stmt.execute();
 System.out.println("Employee No: " + stmt.getInt(2));
 System.out.println("Employee Name: " + stmt.getString(3));
 System.out.println("Job : " + stmt.getString(4));
 System.out.println("Hiredate : " + stmt.getTimestamp(5));
 System.out.println("Salary : " + stmt.getBigDecimal(6));
 }
 catch(Exception err)
 {
 System.out.println("An error has occurred.");
 System.out.println("See full details below.");
 err.printStackTrace();
 }
}

Each placeholder (?) in the command (commandText) represents a point in
the command that is later replaced with data:

String commandText = "{call empQuery(?,?,?,?,?,?)}";
CallableStatement stmt = con.prepareCall(commandText);

The setInt() method is a type-specific setter method that binds an
Integer value to an IN or IN OUT placeholder. The call to setInt()
specifies a parameter number and provides a value to substitute in place
of that placeholder:

stmt.setInt(1, new Integer(c.readLine("Department No:")));
stmt.setInt(2, new Integer(c.readLine("Employee No:")));

The setString() method binds a String value to an IN or IN OUT
placeholder:

stmt.setString(3, new String(c.readLine("Employee Name:")));

Before executing the CallableStatement, you must register the JDBC type
of each OUT parameter by calling the registerOutParameter() method.

stmt.registerOutParameter(2, Types.INTEGER);
stmt.registerOutParameter(3, Types.VARCHAR);
stmt.registerOutParameter(4, Types.VARCHAR);
stmt.registerOutParameter(5, Types.TIMESTAMP);
stmt.registerOutParameter(6, Types.NUMERIC);

Remember, before calling a procedure with an IN parameter, you must
assign a value to that parameter with a setter method. Before calling a
procedure with an OUT parameter, you register the type of that
parameter; then you can retrieve the value returned by calling a getter
method. When calling a procedure that defines an IN OUT parameter, you
must perform all three actions:

	Assign a value to the parameter.

	Register the type of the parameter.

	Retrieve the value returned with a getter method.

Using REF CURSORS with Java

A REF CURSOR is a cursor variable that contains a pointer to a query
result set returned by an OPEN statement. Unlike a static cursor, a REF
CURSOR is not tied to a particular query. You may open the same REF
CURSOR variable any number of times with the OPEN statement
containing different queries; each time, a new result set is created for
that query and made available via the cursor variable. A REF CURSOR can
also pass a result set from one procedure to another.

Advanced Server supports the declaration of both strongly-typed and
weakly-typed REF CURSORs. A strongly-typed cursor must declare the
shape (the type of each column) of the expected result set. You can
only use a strongly-typed cursor with a query that returns the declared
columns; opening the cursor with a query that returns a result set with
a different shape will cause the server to throw an exception. On the
other hand, a weakly-typed cursor can work with a result set of any
shape.

To declare a strongly-typed REF CURSOR:

TYPE <cursor_type_name> IS REF CURSOR RETURN <return_type>;

To declare a weakly-typed REF_CURSOR:

name SYS_REFCURSOR;

.. raw:: latex

 \newpage

Using a REF CURSOR to retrieve a ResultSet

The stored procedure shown in Listing 1.11-a (getEmpNames) builds two
REF CURSORs on the server; the first REF CURSOR contains a list of
commissioned employees in the emp table, while the second REF CURSOR
contains a list of salaried employees in the emp table:

Listing 1.11-a

CREATE OR REPLACE PROCEDURE getEmpNames
(
 commissioned IN OUT SYS_REFCURSOR,
 salaried IN OUT SYS_REFCURSOR
)
IS
BEGIN
 OPEN commissioned FOR SELECT ename FROM emp WHERE comm is NOT NULL;
 OPEN salaried FOR SELECT ename FROM emp WHERE comm is NULL;
END;

The RefCursorSample() method (see Listing 1.11-b) invokes the
getEmpName() stored procedure and displays the names returned in each of
the two REF CURSOR variables:

Listing 1.11-b

public void RefCursorSample(Connection con)
{
 try
 {
 con.setAutoCommit(false);
 String commandText = "{call getEmpNames(?,?)}";
 CallableStatement stmt = con.prepareCall(commandText);
 stmt.registerOutParameter(1, Types.REF);
 stmt.registerOutParameter(2, Types.REF);

 stmt.execute();
 ResultSet commissioned = (ResultSet)stmt.getObject(1);
 System.out.println("Commissioned employees:");
 while(commissioned.next())
 {
 System.out.println(commissioned.getString(1));
 }

 ResultSet salaried = (ResultSet)stmt.getObject(2);
 System.out.println("Salaried employees:");
 while(salaried.next())
 {
 System.out.println(salaried.getString(1));
 }
 }
 catch(Exception err)
 {
 System.out.println("An error has occurred.");
 System.out.println("See full details below.");
 err.printStackTrace();
 }
}

A CallableStatement prepares each REF CURSOR (commissioned and
salaried). Each cursor is returned as an IN OUT parameter of the stored
procedure, getEmpNames():

String commandText = "{call getEmpNames(?,?)}";
CallableStatement stmt = con.prepareCall(commandText);

The call to registerOutParameter() registers the parameter type
(Types.REF) of the first REF CURSOR (commissioned) :

stmt.registerOutParameter(1, Types.REF);

Another call to registerOutParameter() registers the second parameter
type (Types.REF) of the second REF CURSOR (salaried) :

stmt.registerOutParameter(2, Types.REF);

A call to stmt.execute() executes the statement:

stmt.execute();

The getObject() method retrieves the values from the first parameter and
casts the result to a ResultSet. Then, RefCursorSample iterates through
the cursor and prints the name of each commissioned employee:

ResultSet commissioned = (ResultSet)stmt.getObject(1);
while(commissioned.next())
{
 System.out.println(commissioned.getString(1));
}

The same getter method retrieves the ResultSet from the second parameter
and RefCursorExample iterates through that cursor, printing the name of
each salaried employee:

ResultSet salaried = (ResultSet)stmt.getObject(2);
while(salaried.next())
{
 System.out.println(salaried.getString(1));
}

Using BYTEA Data with Java

The BYTEA data type stores a binary string in a sequence of bytes;
digital images and sound files are often stored as binary data. Advanced
Server can store and retrieve binary data via the BYTEA data type.

The following Java sample stores BYTEA data in an Advanced Server
database and then demonstrates how to retrieve that data. The example
requires a bit of setup; Listings 1.12-a, 1.12-b, and 1.12-c create the
server-side environment for the Java example.

Listing 1.12-a creates a table (emp_detail) that stores BYTEA data.
emp_detail contains two columns: the first column stores an employee’s
ID number (type INT) and serves as the primary key for the table; the
second column stores a photograph of the employee in BYTEA format:

CREATE TABLE emp_detail
(
 empno INT4 PRIMARY KEY,
 pic BYTEA
);

Listing 1.12-b creates a procedure (ADD_PIC) that inserts a row into the
emp_detail table:

CREATE OR REPLACE PROCEDURE ADD_PIC(p_empno IN int4, p_photo IN bytea) AS
BEGIN
 INSERT INTO emp_detail VALUES(p_empno, p_photo);
END;

And finally, Listing 1.12-c creates a function (GET_PIC) that returns
the photograph for a given employee:

CREATE OR REPLACE FUNCTION GET_PIC(p_empno IN int4) RETURN BYTEA IS
DECLARE
 photo BYTEA;
BEGIN
 SELECT pic INTO photo from EMP_DETAIL WHERE empno = p_empno;
 RETURN photo;
END;

Inserting BYTEA Data into an Advanced Server Database

Listing 1.13 shows a Java method that invokes the ADD_PIC procedure (see
Listing 1.12-b) to copy a photograph from the client file system to the
emp_detail table on the server:

public void InsertPic(Connection con)
{
 try
 {
 Console c = System.console();
 int empno = Integer.parseInt(c.readLine("Employee No :"));
 String fileName = c.readLine("Image filename :");
 File f = new File(fileName);

 if(!f.exists())
 {
 System.out.println("Image file not found. Terminating...");
 return;
 }

 CallableStatement stmt = con.prepareCall("{call ADD_PIC(?, ?)}");
 stmt.setInt(1, empno);
 stmt.setBinaryStream(2, new FileInputStream(f), (int)f.length());
 stmt.execute();
 System.out.println("Added image for Employee "+empno);
 }
 catch(Exception err)
 {
 System.out.println("An error has occurred.");
 System.out.println("See full details below.");
 err.printStackTrace();
 }
}

InsertPic() prompts the user for an employee number and the name of an
image file:

int empno = Integer.parseInt(c.readLine("Employee No :"));
String fileName = c.readLine("Image filename :");

If the requested file does not exist, InsertPic() displays an error
message and terminates:

File f = new File(fileName);

if(!f.exists())
{
 System.out.println("Image file not found. Terminating...");
 return;
}

Next, InsertPic() prepares a CallableStatement object (stmt) that calls
the ADD_PIC procedure. The first placeholder (?) represents the first
parameter expected by ADD_PIC (p_empno); the second placeholder
represents the second parameter (p_photo). To provide actual values for
those placeholders, InsertPic() calls two setter methods. Since the
first parameter is of type INTEGER, InsertPic() calls the setInt()
method to provide a value for p_empno. The second parameter is of type
BYTEA, so InsertPic() uses a binary setter method; in this case, the
method is setBinaryStream():

CallableStatement stmt = con.prepareCall("{call ADD_PIC(?, ?)}");
stmt.setInt(1, empno);
stmt.setBinaryStream(2 ,new FileInputStream(f), f.length());

Now that the placeholders are bound to actual values, InsertPic()
executes the CallableStatement:

stmt.execute();

If all goes well, InsertPic() displays a message verifying that the
image has been added to the table. If an error occurs, the catch block
displays a message to the user:

System.out.println("Added image for Employee \""+empno);
catch(Exception err)
{
 System.out.println("An error has occurred.");
 System.out.println("See full details below.");
 err.printStackTrace();
}

Retrieving BYTEA Data from an Advanced Server Database

Now that you know how to insert BYTEA data from a Java application,
Listing 1.14 demonstrates how to retrieve BYTEA data from the server:

public static void GetPic(Connection con)
{
 try
 {
 Console c = System.console();
 int empno = Integer.parseInt(c.readLine("Employee No :"));
 CallableStatement stmt = con.prepareCall("{?=call GET_PIC(?)}");
 stmt.setInt(2, empno);
 stmt.registerOutParameter(1, Types.BINARY);
 stmt.execute();
 byte[] b = stmt.getBytes(1);

 String fileName = c.readLine("Destination filename :");
 FileOutputStream fos = new FileOutputStream(new File(fileName));
 fos.write(b);
 fos.close();
 System.out.println("File saved at \""+fileName+"\"");
 }
 catch(Exception err)
 {
 System.out.println("An error has occurred.");
 System.out.println("See full details below.");
 err.printStackTrace();
 }
}

GetPic() starts by prompting the user for an employee ID number:

int empno = Integer.parseInt(c.readLine("Employee No :"));

Next, GetPic() prepares a CallableStatement with one IN parameter and
one OUT parameter. The first parameter is the OUT parameter that will
contain the photograph retrieved from the database. Since the photograph
is BYTEA data, GetPic() registers the parameter as a Type.BINARY. The
second parameter is the IN parameter that holds the employee number (an
INT), so GetPic() uses the setInt() method to provide a value for the
second parameter.

CallableStatement stmt = con.prepareCall("{?=call GET_PIC(?)}");
stmt.setInt(2, empno);
stmt.registerOutParameter(1, Types.BINARY);

Next, GetPic() uses the getBytes getter method to retrieve the BYTEA
data from the CallableStatement:

stmt.execute();
byte[] b = stmt.getBytes(1);

The program prompts the user for the name of the file where it will
store the photograph:

String fileName = c.readLine("Destination filename :");

The FileOutputStream object writes the binary data that contains the
photograph to the destination filename:

FileOutputStream fos = new FileOutputStream(new File(fileName));
fos.write(b);
fos.close();

Finally, GetPic() displays a message confirming that the file has been
saved at the new location:

System.out.println("File saved at \""+fileName+"\"");

Using Object Types and Collections with Java

The SQL CREATE TYPE command is used to create a user-defined object
type, which is stored in the Advanced Server database. The CREATE TYPE
command is also used to create a collection, commonly referred to as
an array, which is also stored in the Advanced Server database.

These user-defined types can then be referenced within SPL procedures,
SPL functions, and Java programs.

The basic object type is created with the CREATE TYPE AS OBJECT command
along with optional usage of the CREATE TYPE BODY command.

A nested table type collection is created using the CREATE TYPE AS
TABLE OF command. A varray type collection is created with the CREATE
TYPE VARRAY command.

Example usage of an object type and a collection are shown in the
following sections.

Listing 1.15 shows a Java method used by both examples to establish the
connection to the Advanced Server database.

public static Connection getEDBConnection() throws
 ClassNotFoundException, SQLException {
 String url = "jdbc:edb://localhost:5444/test";
 String user = "enterprisedb";
 String password = "edb";
 Class.forName("com.edb.Driver");
 Connection conn = DriverManager.getConnection(url, user, password);
 return conn;
}

Using an Object Type

Create the object types in the Advanced Server database. Object type
addr_object_type defines the attributes of an address:

CREATE OR REPLACE TYPE addr_object_type AS OBJECT
(
 street VARCHAR2(30),
 city VARCHAR2(20),
 state CHAR(2),
 zip NUMBER(5)
);

Object type emp_obj_typ defines the attributes of an employee. Note that
one of these attributes is object type ADDR_OBJECT_TYPE as previously
described. The object type body contains a method that displays the
employee information:

CREATE OR REPLACE TYPE emp_obj_typ AS OBJECT
(
 empno NUMBER(4),
 ename VARCHAR2(20),
 addr ADDR_OBJECT_TYPE,
 MEMBER PROCEDURE display_emp(SELF IN OUT emp_obj_typ)
);

CREATE OR REPLACE TYPE BODY emp_obj_typ AS
 MEMBER PROCEDURE display_emp (SELF IN OUT emp_obj_typ)
 IS
 BEGIN
 DBMS_OUTPUT.PUT_LINE('Employee No : ' || SELF.empno);
 DBMS_OUTPUT.PUT_LINE('Name : ' || SELF.ename);
 DBMS_OUTPUT.PUT_LINE('Street : ' || SELF.addr.street);
 DBMS_OUTPUT.PUT_LINE('City/State/Zip: ' || SELF.addr.city || ', ' ||
 SELF.addr.state || ' ' || LPAD(SELF.addr.zip,5,'0'));
 END;
END;

Listing 1.16 is a Java method that includes these user-defined object
types:

public static void testUDT() throws SQLException {
 Connection conn = null;
 try {
 conn = getEDBConnection();
 String commandText = "{call emp_obj_typ.display_emp(?)}";
 CallableStatement stmt = conn.prepareCall(commandText);

 // initialize emp_obj_typ structure
 // create addr_object_type structure
 Struct address = conn.createStruct("addr_object_type",
 new Object[]{"123 MAIN STREET","EDISON","NJ",8817});
 Struct emp = conn.createStruct("emp_obj_typ",
 new Object[]{9001,"JONES", address});

 // set emp_obj_typ type param
 stmt.registerOutParameter(1, Types.STRUCT, "emp_obj_typ");
 stmt.setObject(1, emp);
 stmt.execute();

 // extract emp_obj_typ object
 emp = (Struct)stmt.getObject(1);
 Object[] attrEmp = emp.getAttributes();
 System.out.println("empno: " + attrEmp[0]);
 System.out.println("ename: " + attrEmp[1]);

 // extract addr_object_type attributes
 address = (Struct) attrEmp[2];
 Object[] attrAddress = address.getAttributes();
 System.out.println("street: " + attrAddress[0]);
 System.out.println("city: " + attrAddress[1]);
 System.out.println("state: " + attrAddress[2]);
 System.out.println("zip: " + attrAddress[3]);
 } catch (ClassNotFoundException cnfe) {
 System.err.println("Error: " + cnfe.getMessage());
 } finally {
 if (conn != null) {
 conn.close();
 }
 }
}

A CallableStatement object is prepared based on the display_emp() method
of the emp_obj_typ object type:

String commandText = "{call emp_obj_typ.display_emp(?)}";
CallableStatement stmt = conn.prepareCall(commandText);

createStruct() initializes and creates instances of object types
addr_object_type and emp_obj_typ named address and emp, respectively:

Struct address = conn.createStruct("addr_object_type",
 new Object[]{"123 MAIN STREET","EDISON","NJ",8817});
Struct emp = conn.createStruct("emp_obj_typ",
 new Object[]{9001,"JONES", address});

The call to registerOutParameter() registers the parameter type
(Types.STRUCT) of emp_obj_typ:

stmt.registerOutParameter(1, Types.STRUCT, "emp_obj_typ");

The setObject() method binds the object instance emp to the IN OUT
placeholder.

stmt.setObject(1, emp);

A call to stmt.execute() executes the call to the display_emp() method:

stmt.execute();

getObject() retrieves the emp_obj_typ object type. The attributes of the
emp and address object instances are then retrieved and displayed:

emp = (Struct)stmt.getObject(1);
Object[] attrEmp = emp.getAttributes();
System.out.println("empno: " + attrEmp[0]);
System.out.println("ename: " + attrEmp[1]);

address = (Struct) attrEmp[2];
Object[] attrAddress = address.getAttributes();
System.out.println("street: " + attrAddress[0]);
System.out.println("city: " + attrAddress[1]);
System.out.println("state: " + attrAddress[2]);
System.out.println("zip: " + attrAddress[3]);

Using a Collection

Create collection types NUMBER_ARRAY and CHAR_ARRAY in the Advanced
Server database:

CREATE OR REPLACE TYPE NUMBER_ARRAY AS TABLE OF NUMBER;
CREATE OR REPLACE TYPE CHAR_ARRAY AS TABLE OF VARCHAR(50);

Listing 1.17-a is an SPL function that uses collection types
NUMBER_ARRAY and CHAR_ARRAY as IN parameters and CHAR_ARRAY as the OUT
parameter.

The function concatenates the employee ID from the NUMBER_ARRAY IN
parameter with the employee name in the corresponding row from the
CHAR_ARRAY IN parameter. The resulting concatenated entries are returned
in the CHAR_ARRAY OUT parameter.

CREATE OR REPLACE FUNCTION concatEmpIdName
(
 arrEmpIds NUMBER_ARRAY,
 arrEmpNames CHAR_ARRAY
) RETURN CHAR_ARRAY
AS
DECLARE
 i INTEGER := 0;
 arrEmpIdNames CHAR_ARRAY;
BEGIN
 arrEmpIdNames := CHAR_ARRAY(NULL,NULL);
 FOR i IN arrEmpIds.FIRST..arrEmpIds.LAST LOOP
 arrEmpIdNames(i) := arrEmpIds(i) || ' ' || arrEmpNames(i);
 END LOOP;
 RETURN arrEmpIdNames;
END;

Listing 1.17-b is a Java method that calls the Listing 1.17-a function,
passing and retrieving the collection types:

public static void testTableOfAsInOutParams() throws SQLException {
 Connection conn = null;
 try {
 conn = getEDBConnection();
 String commandText = "{? = call concatEmpIdName(?,?)}";
 CallableStatement stmt = conn.prepareCall(commandText);

 // create collections to specify employee id and name values
 Array empIdArray = conn.createArrayOf("integer",
 new Integer[]{7900, 7902});
 Array empNameArray = conn.createArrayOf("varchar",
 new String[]{"JAMES", "FORD"});

 // set TABLE OF VARCHAR as OUT param
 stmt.registerOutParameter(1, Types.ARRAY);

 // set TABLE OF INTEGER as IN param
 stmt.setObject(2, empIdArray, Types.OTHER);

 // set TABLE OF VARCHAR as IN param
 stmt.setObject(3, empNameArray, Types.OTHER);
 stmt.execute();
 java.sql.Array empIdNameArray = stmt.getArray(1);
 String[] emps = (String[]) empIdNameArray.getArray();

 System.out.println("items length: " + emps.length);
 System.out.println("items[0]: " + emps[0].toString());
 System.out.println("items[1]: " + emps[1].toString());

 } catch (ClassNotFoundException cnfe) {
 System.err.println("Error: " + cnfe.getMessage());
 } finally {
 if (conn != null) {
 conn.close();
 }
 }
}

A CallableStatement object is prepared to invoke the concatEmpIdName()
function:

String commandText = "{? = call concatEmpIdName(?,?)}";
CallableStatement stmt = conn.prepareCall(commandText);

createArrayOf() initializes and creates collections named empIdArray and
empNameArray:

Array empIdArray = conn.createArrayOf("integer",
 new Integer[]{7900, 7902});
Array empNameArray = conn.createArrayOf("varchar",
 new String[]{"JAMES", "FORD"});

The call to registerOutParameter() registers the parameter type
(Types.ARRAY) of the OUT parameter:

stmt.registerOutParameter(1, Types.ARRAY);

The setObject() method binds the collections empIdArray and empNameArray
to the IN placeholders:

stmt.setObject(2, empIdArray, Types.OTHER);
stmt.setObject(3, empNameArray, Types.OTHER);

A call to stmt.execute() invokes the concatEmpIdName() function:

stmt.execute();

getArray() retrieves the collection returned by the function. The first
two rows consisting of the concatenated employee IDs and names are
displayed:

java.sql.Array empIdNameArray = stmt.getArray(1);
String[] emps = (String[]) empIdNameArray.getArray();
System.out.println("items length: " + emps.length);
System.out.println("items[0]: " + emps[0].toString());
System.out.println("items[1]: " + emps[1].toString());

Asynchronous Notification Handling with NoticeListener

The Advanced Server JDBC Connector provides asynchronous notification
handling functionality. A notification is a message generated by the
server when an SPL (or PL/pgSQL) program executes a RAISE NOTICE
statement. Each notification is sent from the server to the client
application. To intercept a notification in a JDBC client, an
application must create a NoticeListener object (or, more typically, an
object derived from NoticeListener).

It is important to understand that a notification is sent to the client
as a result of executing an SPL (or PL/pgSQL) program. To generate a
notification, you must execute an SQL statement that invokes a stored
procedure, function, or trigger: the notification is delivered to the
client as the SQL statement executes. Notifications work with any type
of statement object; CallableStatement objects, PreparedStatement
objects, or simple Statement objects. A JDBC program intercepts a
notification by associating a NoticeListener with a Statement object.
When the Statement object executes an SQL statement that raises a
notice, JDBC invokes the noticeReceived() method in the associated
NoticeListener.

Listing 1.18-a shows an SPL procedure that loops through the emp table
and gives each employee a 10% raise. As each employee is processed,
adjustSalary executes a RAISE NOTICE statement (in this case, the
message contained in the notification reports progress to the client
application):

CREATE OR REPLACE PROCEDURE adjustSalary
IS
 v_empno NUMBER(4);
 v_ename VARCHAR2(10);
 CURSOR emp_cur IS SELECT empno, ename FROM emp;
BEGIN
 OPEN emp_cur;
 LOOP
 FETCH emp_cur INTO v_empno, v_ename;
 EXIT WHEN emp_cur%NOTFOUND;

 UPDATE emp SET sal = sal * 1.10 WHERE empno = v_empno;
 RAISE NOTICE 'Salary increased for %', v_ename;
 END LOOP;
 CLOSE emp_cur;
END;

Listing 1.18-b shows how to create a NoticeListener that intercepts notifications in a JDBC application:

public void NoticeExample(Connection con)
{
 CallableStatement stmt;
 try
 {
 stmt = con.prepareCall("{call adjustSalary()}");

 MyNoticeListener listener = new MyNoticeListener();
 ((BaseStatement)stmt).addNoticeListener(listener);
 stmt.execute();
 System.out.println("Finished");
 }
 catch (SQLException e)
 {
 System.out.println("An error has occurred.");
 System.out.println("See full details below.");
 e.printStackTrace();
 }
}
class MyNoticeListener implements NoticeListener
{
 public MyNoticeListener()
 {
 }

 public void noticeReceived(SQLWarning warn)
 {
 System.out.println("NOTICE: "+ warn.getMessage());
 }
}

The NoticeExample() method is straightforward; it expects a single
argument, a Connection object, from the caller:

public void NoticeExample(Connection con)

NoticeExample() begins by preparing a call to the adjustSalary procedure
shown in example 1.10-a. As you would expect, con.prepareCall() returns
a CallableStatement object. Before executing the CallableStatement, you
must create an object that implements the NoticeListener interface and
add that object to the list of NoticeListeners associated with the
CallableStatement:

CallableStatement stmt = con.prepareCall("{call adjustSalary()}");
MyNoticeListener listener = new MyNoticeListener();
((BaseStatement)stmt).addNoticeListener(listener);

Once the NoticeListener is in place, NoticeExample method executes the
CallableStatement (invoking the adjustSalary procedure on the server)
and displays a message to the user:

stmt.execute();
System.out.println("Finished");

Each time the adjustSalary procedure executes a RAISE NOTICE statement,
the server sends the text of the message ("Salary increased for ...") to
the Statement (or derivative) object in the client application. JDBC
invokes the noticeReceived() method (possibly many times) before the
call to stmt.execute() completes.

class MyNoticeListener implements NoticeListener
{
 public MyNoticeListener()
 {
 }

 public void noticeReceived(SQLWarning warn)
 {
 System.out.println("NOTICE: "+ warn.getMessage());
 }
}

When JDBC calls the noticeReceived() method, it creates an SQLWarning
object that contains the text of the message generated by the RAISE
NOTICE statement on the server.

Notice that each Statement object keeps a list of NoticeListeners`.
When the JDBC driver receives a notification from the server, it
consults the list maintained by the Statement object. If the list is
empty, the notification is saved in the Statement object (you can
retrieve the notifications by calling stmt.getWarnings() once the call
to execute() completes). If the list is not empty, the JDBC driver
delivers an SQLWarning to each listener, in the order in which the
listeners were added to the Statement.

Security and Encryption

	Using SSL
	Configuring the Server

	Configuring the Client
	sslmode Connection Parameters

	Testing the SSL JDBC Connection
	Using SSL without Certificate Validation

	Using Certificate Authentication Without a Password

	Scram Compatibility

Using SSL

In this section, you will learn about:

	Configuring the server

	Configuring the client

	Testing the SSL JDBC Connection

	Using SSL without Certificate Validation

	Using Certificate Authentication (without a password)

	Configuring the Server

	Configuring the Client
	sslmode Connection Parameters

	Testing the SSL JDBC Connection
	Using SSL without Certificate Validation

	Using Certificate Authentication Without a Password

Configuring the Server

For information about configuring PostgreSQL or Advanced Server for SSL, refer to:

https://www.enterprisedb.com/edb-docs/d/postgresql/reference/manual/12.3/ssl-tcp.html

Note

Before you access your SSL enabled server from Java, ensure
that you can log in to your server via edb-psql. The sample output should
look similar to the one shown below if you have established a SSL connection:

$./bin/edb-psql -U enterprisedb -d edb
psql.bin (12.0.1)
SSL connection (protocol: TLSv1.2, cipher: ECDHE-RSA-AES256-GCM-SHA384, bits: 256, compression: off)
Type "help" for help.

edb=#

Configuring the Client

There are a number of connection parameters for configuring the client
for SSL. To know more about the SSL Connection parameters and Additional
Connection Properties, refer to Section
5.2.

In this section, you will learn more about the behavior of ssl
connection parameter when passed with different values. When you pass
the connection parameter ssl=true into the driver, the driver validates
the SSL certificate and verifies the hostname. On contrary to this
behavior, using libpq defaults to a non-validating SSL connection.

You can get better control of the SSL connection using the sslmode
connection parameter. This parameter is the same as the libpq sslmode
parameter and the existing SSL implements the following sslmode connection parameters.

sslmode Connection Parameters

sslmode=require

This mode makes the encryption mandatory and also requires the
connection to fail if it can’t be encrypted. The server is configured to
accept SSL connections for this Host/IP address and that the server
recognizes the client certificate.

Note

In this mode, the JDBC driver accepts all server certificates.

sslmode=verify-ca

If sslmode=verify-ca, the server is verified by checking the certificate
chain up to the root certificate stored on the client.

sslmode=verify-full

If sslmode=verify-full, the server host name is verified to make sure it
matches the name stored in the server certificate. The SSL connection
fails if the server certificate cannot be verified. This mode is
recommended in most security-sensitive environments.

In the case where the certificate validation is failing you can try
sslcert= and LibPQFactory will not send the client certificate. If the
server is not configured to authenticate using the certificate it should
connect.

The location of the client certificate, client key and root certificate
can be overridden with the sslcert, sslkey, and sslrootcert settings
respectively. These default to /defaultdir/postgresql.crt,
/defaultdir/postgresql.pk8, and /defaultdir/root.crt respectively where
defaultdir is ${user.home}/.postgresql/ in unix systems and
%appdata%/postgresql/ on windows.

In this mode, when establishing a SSL connection the JDBC driver will
validate the server’s identity preventing “man in the middle” attacks.
It does this by checking that the server certificate is signed by a
trusted authority, and that the host you are connecting to, is the same
as the hostname in the certificate.

Testing the SSL JDBC Connection

If you are using Java’s default mechanism (not LibPQFactory) to create
the SSL connection, you need to make the server certificate available to
Java, which can be achieved by implementing steps given below:

	Set the following property in the Java program.

props.setProperty(“ssl”,“true”);

Or, you can set the property in the connection url:

String
url=“jdbc:edb://localhost/test?user=fred&password=secret&ssl=true”;

	Convert the server certificate to Java format:

$ openssl x509 -in server.crt -out server.crt.der -outform der

	Import this certificate into Java’s system truststore.

$ keytool -keystore $JAVA_HOME/lib/security/cacerts -alias postgresql
-import -file server.crt.der

Note

The default password for the cacerts keystore is changeit.
The alias to postgresql is not important and you may select any name
you desire.

	If you do not have access to the system cacerts truststore, create
your own truststore as below:

$ keytool -keystore mystore -alias postgresql -import -file server.crt.der

	Start your Java application and test the program.

$ java -Djavax.net.ssl.trustStore=mystore com.mycompany.MyApp

For example:

$java -classpath .:/usr/edb/jdbc/edb-jdbc18.jar–
Djavax.net.ssl.trustStore=mystore pg_test2 public

Note

To troubleshoot connection issues, add
-Djavax.net.debug=ssl to the java command.

Using SSL without Certificate Validation

By default the combination of SSL=true and setting the connection URL
parameter sslfactory=com.edb.ssl.NonValidatingFactory encrypts the
connection but does not validate the SSL certificate. To enforce
certificate validation, you must use a Custom SSLSocketFactory.

For more details about writing a Custom SSLSocketFactory, refer to:

https://jdbc.postgresql.org/documentation/head/ssl-factory.html

Using Certificate Authentication Without a Password

To use certificate authentication without a password, you must:

	Convert the client certificate to DER format.

$ openssl x509 –in postgresql.crt -out postgresql.crt.der -outform
der

	Convert the client key to DER format.

$ openssl pkcs8 -topk8 -outform DER -in postgresql.key -out
postgresql.key.pk8 –nocrypt

	Copy the client files (postgresql.crt.der, postgresql.key.pk8) and root
certificate to the client machine and use the following properties in
your java program to test it:

String url = "jdbc:edb://snvm001:5444/edbstore";
 Properties props = new Properties();
 props.setProperty("user","enterprisedb");
 props.setProperty("ssl","true");
 props.setProperty("sslmode","verify-full");
 props.setProperty("sslcert","postgresql.crt.der");
 props.setProperty("sslkey","postgresql.key.pk8");
 props.setProperty("sslrootcert","root.crt");

	Compile the Java program and test it.

$ java -Djavax.net.ssl.trustStore=mystore -classpath
.:./edb-jdbc18.jar pg_ssl public

Scram Compatibility

The EDB JDBC driver provides SCRAM-SHA-256 support for EDB Postgres Advanced Server versions 10 onwards. For JRE/JDK version 1.8, this support is available from EDB JDBC Connector release 42.2.2.1 onwards; for JRE/JDK version 1.7, this support is available from EDB JDBC Connector release 42.2.5 onwards.

Advanced Server JDBC Connector Logging

The Advanced Server JDBC Connector supports the use of logging to help
resolve issues with the JDBC Connector when used in your application.
The JDBC Connector uses the logging APIs of java.util.logging that was
part of Java since JDK 1.4. For information on java.util.logging, see
The PostgreSQL JDBC Driver [https://jdbc.postgresql.org/documentation/head/logging.html].

Note

Previous versions of the Advanced Server JDBC Connector used a
custom mechanism to enable logging, which is now replaced by the use of
java.util.logging in versions moving forward from community version
42.1.4.1. The older mechanism is no longer available.

Enabling Logging with Connection Properties (static)

You can directly configure logging within the connection properties of the JDBC
Connector. The connection properties related to logging are loggerLevel
and loggerFile.

loggerLevel

Logger level of the driver. Allowed values are OFF, DEBUG, or TRACE. This option enables the java.util.logging.Logger level of the driver to correspond to the following Advanced Server JDBC levels:

	loggerLevel

	java.util.logging

	OFF

	OFF

	DEBUG

	FINE

	TRACE

	FINEST

loggerFile

File name output of the logger. The default is java.util.logging.ConsoleHandler. The following example sets the logging level to TRACE (FINEST) and the log file to EDB-JDBC.LOG:

jdbc:edb://myhost:5444/mydb?loggerLevel=TRACE&loggerFile=EDB-JDBC.LOG

Enabling Logging with logging.properties (dynamic)

You can use logging properties to configure the driver dynamically (for example, when using the JDBC Connector with an application server such as Tomcat, JBoss, WildFly, etc.), which makes it easier to enable/disable logging at runtime. The following example demonstrates configuring logging dynamically:

handlers = java.util.logging.FileHandler
//logging level
.level = OFF

The default file output is in the user’s home directory:

java.util.logging.FileHandler.pattern = %h/EDB-JDBC%u.log
java.util.logging.FileHandler.limit = 5000000
java.util.logging.FileHandler.count = 20
java.util.logging.FileHandler.formatter = java.util.logging.SimpleFormatter java.util.logging.FileHandler.level = FINEST java.util.logging.SimpleFormatter.format=%1$tY-%1$tm-%1$td %1$tH:%1$tM:%1$tS %4$s %2$s %5$s%6$s%n

Use the following command to set the logging level for the JDBC Connector to FINEST (maps to loggerLevel):

com.edb.level=FINEST

Then, execute the application with the logging configuration:

java –jar -Djava.util.logging.config.file=logging.properties run.jar

Reference - JDBC Data Types

The following table lists the JDBC data types supported by Advanced
Server and the JDBC connector. If you are binding to an Advanced Server
type (shown in the middle column) using the setObject() method, supply a
JDBC value of the type shown in the left column. When you retrieve data,
the getObject() method will return the object type listed in the
right-most column:

	JDBC Type

	Advanced Server Type

	getObject() returns

	INTEGER

	INT4

	java.lang.Integer

	TINYINT, SMALLINT

	INT2

	java.lang.Integer

	BIGINT

	INT8

	java.lang.Long

	REAL

	FLOAT4

	java.lang.Float

	DOUBLE, FLOAT

	FLOAT8

	java.lang.Double (Float is same as double)

	DECIMAL, NUMERIC

	NUMERIC

	java.math.BigDecimal

	CHAR

	BPCHAR

	java.lang.String

	VARCHAR, LONGVARCHAR

	VARCHAR

	java.lang.String

	DATE

	DATE

	java.sql.Date

	TIME

	TIME, TIMETZ

	java.sql.Timestamp

	TIMESTAMP

	TIMESTAMP, TIMESTAMPTZ

	java.sql.Timestamp

	BINARY

	BYTEA

	byte[](primitive)

	BOOLEAN, BIT

	BOOL

	java.lang.Boolean

	Types.REF

	REFCURSOR

	java.sql.ResultSet

	Types.REF_CURSOR

	REFCURSOR

	java.sql.ResultSet

	Types.OTHER

	REFCURSOR

	java.sql.ResultSet

	Types.OTHER

	UUID

	java.util.UUID

	Types.SQLXML

	XML

	java.sql.SQLXML

Note

Types.REF_CURSOR is only supported for JRE 4.2.

Types.OTHER is not only used for UUID, but is also used if you
do not specify any specific type and allow the server or the JDBC driver
to determine the type. If the parameter is an instance of java.util.UUID, the driver determines the appropriate internal type
and sends it to the server.

Conclusion

EDB JDBC Connector Guide

Copyright © 2007 - 2020 EnterpriseDB Corporation.

All rights reserved.

EnterpriseDB® Corporation

34 Crosby Drive, Suite 201, Bedford, MA 01730, USA

T +1 781 357 3390 F +1 978 467 1307 E

info@enterprisedb.com

www.enterprisedb.com

	EnterpriseDB and Postgres Enterprise Manager are registered trademarks of EnterpriseDB Corporation. EDB and EDB Postgres are trademarks of EnterpriseDB Corporation. Oracle is a registered trademark of Oracle, Inc. Other trademarks may be trademarks of their respective owners.

	EDB designs, establishes coding best practices, reviews, and verifies input validation for the logon UI for EDB Postgres products where present. EDB follows the same approach for additional input components, however the nature of the product may require that it accepts freeform SQL, WMI or other strings to be entered and submitted by trusted users for which limited validation is possible. In such cases it is not possible to prevent users from entering incorrect or otherwise dangerous inputs.

	EDB reserves the right to add features to products that accept freeform SQL, WMI or other potentially dangerous inputs from authenticated, trusted users in the future, but will ensure all such features are designed and tested to ensure they provide the minimum possible risk, and where possible, require superuser or equivalent privileges.

	EDB does not that warrant that we can or will anticipate all potential threats and therefore our process cannot fully guarantee that all potential vulnerabilities have been addressed or considered.

Index

 A
 | C
 | E
 | F
 | H
 | I
 | J
 | L
 | M
 | P
 | R
 | S
 | T
 | U
 | W

A

 	
 	Adding a Graphical Interface to a Java Program

 	Additional Connection Properties

 	Advanced JDBC Connector Functionality

 	
 	Advanced Server JDBC Connector Compatibility

 	Advanced Server JDBC Connector Logging

 	Advanced Server JDBC Connector Overview

 	Asynchronous Notification Handling with NoticeListener

C

 	
 	centos7

 	centos8

 	Conclusion

 	
 	Configuring the Advanced Server JDBC Connector

 	Configuring the Client

 	Configuring the Server

 	Connecting to the Database

E

 	
 	enable logging with connection properties

 	enable logging with logging.properties

 	executeupdate() syntax examles

 	executing a simple stored procedure

 	Executing SQL Commands with executeUpdate()

 	
 	Executing SQL Statements through Statement Objects

 	Executing Stored Procedures

 	executing stored procedures with in out parameters

 	executing stored procedures with in parameters

 	executing stored procedures with out parameters

F

 	
 	Freeing Resources

H

 	
 	Handling Errors

I

 	
 	inserting bytea data into advanced server database

 	Installing and Configuring the JDBC Connector

 	Installing the Connector on a Debian or Ubuntu Host

 	
 	Installing the Connector on an SLES 12 Host

 	Installing the Connector with an RPM Package

 	invoking stored procedures

J

 	
 	jdbc classes

 	jdbc driver types

 	
 	jdbc drivermanager

 	jdbc interface

L

 	
 	Loading the Advanced Server JDBC Connector

M

 	
 	modifying batch size of statement object

P

 	
 	Preferring Synchronous Secondary Database Servers

R

 	
 	Reducing Client-side Resource Requirements

 	Reference - JDBC Data Types

 	Requirements Overview

 	
 	retrieving bytea data from advanced server database

 	Retrieving Results from a ResultSet Object

 	rhel8

S

 	
 	Scram Compatibility

 	Security and Encryption

 	
 	sslmode connection parameters

 	supported platforms

 	supported server versions

T

 	
 	Testing the SSL JDBC Connection

U

 	
 	Using BYTEA Data with Java

 	Using Certificate Authentication Without a Password

 	using collection

 	using executeupdate() to insert data

 	using named notation with a callablestatement object

 	using object type

 	Using Object Types and Collections with Java

 	
 	Using PreparedStatements to Send SQL Commands

 	using ref cursor to retrieve a resultset

 	Using REF CURSORS with Java

 	Using SSL

 	using ssl without certificate validation

 	Using the Advanced Server JDBC Connector with Java applications

 	Using the Graphical Installer to Install the Connector

W

 	
 	What’s New

 _static/EDB_logo.png
EDB

_images/drivermanager_drivers.png
Application

Postgres Plus JOBC Connector

DriverManager

- Oracle

—

SQL Server

_images/jdbc_class_relationships.png
Resultset

T

Resutset

Resultset

1

Statement

Statement

Connection

e

DriverManager

Postgres Plus
JDBC Connector

Postgres
Database

Statement

_images/core_classes_and_interfaces.png
Connection

|

Statement
Prepared Statement
Callable Statement

%

ResutSet

_images/jdbc_installation_wizard.png
Setup JDBC

Welcome to the EDB Postgres JDBC Setup.

EDB Postgres
Advanced Server

< Back Next >

_images/ready_to_install.png
Ready to Install

Setup i now ready to begin nstaling JDBC on your computer.

_images/jdbc_installation_complete.png
Completing the JDBC Setup Wizard

EnterpriseDB is the leading provider of value-added products and
services for the Postgres community.

Please visit our website at www.enterprisedb. com

EDB Postgres
Advanced Server

< Back Finish Cancel

_images/jdbc_installation_dialog.png
Please spefy the directory where J0BC wil be installed.

T == —]

_images/the_showemployees_window.png
& Browsing table: EMP (from EnterpriseDB) |~ (/&3

empno] ename|_job | _mar_|hiredate] _sal_| comm | deptno
7360 |SMITH |CLERK 7802 [1980-... 800.00 20
7499 |ALLEN [SALE... 7698 1981-..1600.00300.00 30
7521 \WARD |SALE.. 7698 1981-..[1250.00500.00 30
7566 LIONES MANA... 7833 [1981-... 2075.00 20
7654 MARTIN|SALE... 7698 1981-...[1250.001400.00 30
7608 |BLAKE MANA... 7838 [1981-.. 2850.00 20
7782 |CLARK |MANA... 7838 [1981-... 2450.00 10
7788 |SCOTT |ANAL.. 7566 [1987-...|3000.00 20
7830 KNG PRESL 1981-... 5000.00 10
7844 [TURN..|SALE... 7698 1981-..[1500.000.00 30
7876 |ADAMS (CLERK 7788 [1987-...1100.00 20
7900 UAMES (CLERK 7698 [1981-... 950.00 20
7902 |FORD |ANAL.. 7566 [181-...|3000.00 20
7934 MILLER|CLERK 7782 [1982-.. 1300.00 10

_images/selecting_the_connectors_installer.png
‘ StackBuilder Plus 4.2.0

Please select the applications you would like to install.

@ E D B =M= Categories
= Add-ons, tools and utilities

= Database Drivers

[~ EnterpriseDB .Net Connector v4.1.3.1-2

[¥ EnterpriseDB JDBC Connector v42.2,12.1-2

[~ EnterpriseDB OCl Connectorv12.1.2.1-3

.]7 EnterpriseDB ODBC Connector v12.02.0000.01-1

= EnterpriseDB Tools
[-M= Web Development

EDB Postgres
Advanced Server

Client connector APls for JDBC.
Details

< Back Mext = Cancel

_images/starting_stackbuilder_plus.png
EDB Postgres 13
New

Documentation - 13
New

EDB-PSQL - 13
New

Edit pg_hba.conf - 13
New

Edit pg_ident.conf - 13
New

Edit postgresql.conf - 13
New

pgAdmin4 - v4 - 13
New

Reload Configuration - 13
New

StackBuilder Plus - 13
New

