
Die 10 besten
PostgreSQL-Replikati
onsstrategien für Ihr
Unternehmen

Borys Neselovskyi | Sales Engineer, EDB

23 March 2022

© Copyright EnterpriseDB Corporation, 2021. All rights reserved.2

Agenda
• How physical and logical replication works in

PostgreSQL
• Differences between synchronous and

asynchronous replication
• Advantages, disadvantages and challenges in

multi-master replication
• Which replication strategy is more suitable to

different use cases.

1) Yes
2) No

POLL:
Do you currently have external
professional support for your
databases?

2021 Copyright © EnterpriseDB Corporation All Rights Reserved

Replication/HA options (10 solutions/variations)

● Shared disk failover
● File System (block device) replication
● WAL shipping: Archiving
● WAL shipping: Streaming replication
● WAL shipping with Synchronous commit
● Native logical replication
● Trigger based Primary-Standby replication
● SQL-based Replication Middleware
● Asynchronous multi-master Replication
● Synchronous multi-master Replication

Legend:
Native Postgres
External tooling

https://www.postgresql.org/docs/14/diffe
rent-replication-solutions.html

No products mentioned:
None forgotten

https://www.postgresql.org/docs/14/different-replication-solutions.html
https://www.postgresql.org/docs/14/different-replication-solutions.html

1) None
2) Native WAL archiving
3) Native WAL streaming
4) Native synchronous commit
5) Native logical replication
6) 3rd party replication solution: Replicated disks replication
7) 3rd party replication solution: Multi-master replication

POLL:
Which replication solution are you
currently using?

““If your data is important enough to
replicate, then you should also ensure

professional support for the databases.”

Michael Willer
EDB

““Your Data is important. That is why it is crucial to keep data
redundant and save. Configuration of High Availability
Landscapes can be very complex and should be well planned.
Therefore, you should make sure that you have competent and
well-trained personal and professional support for your
databases.”

How PostgreSQL works

postgres (main) postgres (clients)

checkpointer

background writer wal writer

autovacuum launcher

stats collector logical replication launcher

MEMORY
(shared buffers, wal buffers, work mem,

maintenance work mem, ..)

Data files WAL files

“archive_command”

WAL files

not here

Shared disk & Disk replication

Network disk

(data,wal,...)

Postgres
processes

VM1

Postgres install
standby

VM2

Postgres
processes

VM2

Disk Replication Network disk

Postgres install
standby

VM3

Postgres install
standby

VM4

File corruption is a major concern

“Cold standby”

2021 Copyright © EnterpriseDB Corporation All Rights Reserved

Evaluation
Good:
No overhead on primary
“Easy” to set up for the DBA
Can’t lose a transaction (RPO=0?)

Shared disk / Disk replication
Use case
Well, ….? It works

Bad:
- Any failover starts with the database going

into recovery before opening (RTO might be
high)

- Only one server actually accesses the data
- Disk replication has to be perfect (all

updates done in the correct order)
- Data corruption in one place

= data corruption everywhere

WAL Shipping: Archiving

Transaction commits

Transaction commits

Transaction commits

DB switches to new WAL file

archive_command is run
(copies file to shared disk)

Waiting for new WAL files
(checking local pg_wal, running
restore_command, ….)

restore_command picks up new file
(copies file to pg_wal)

New transactions are applied

1 2

3
4 5

21

3
4 5

Shared archive
disk

DB01 DB02

2021 Copyright © EnterpriseDB Corporation All Rights Reserved

Evaluation
Good:
Very low impact on primary server.

Standby can be used for read/only queries (that
don’t need up-to-date information).

WAL Shipping: Archiving

Use case
Easy way to get a copy of the database

Standby doesn’t have to be up-to-date to the
“minute”

Good solution when communication between
the databases isn’t possible due to network. Bad:

Risk of data loss
(checkpoints frequency can be increased -
within reason)

WAL Shipping: Streaming

Physical blocks

Primary database

wal sender

Standby database

wal receiver

Shared disk

WAL archiving
WAL r

esto
re

Transaction commits

1 2
1 2

Transferred and applied

Transaction commits
Transferred and applied

Asynchronous

DB01 DB02

2021 Copyright © EnterpriseDB Corporation All Rights Reserved

Evaluation
Good:
Minor impact on primary server

Standby is almost up-to-date (read/only queries)

RPO close to 0 (“almost” no data loss)

WAL Shipping: Streaming
Use case
Good for almost all Postgres workloads.

Standby is (almost) identical to the primary
database.

Bad:
Still a risk of data loss (though a lot smaller
than with WAL archiving)

Communication between servers is needed

WAL Shipping: Streaming (a.k.a. synchronous commit)

Physical blocks

Primary database

wal sender

Standby database

wal receiver

Shared disk

WAL archiving
WAL r

esto
re

Transaction commits

1 2
1 2

Transferred and applied

Transaction commits
Transferred and applied

Synchronous

DB01 DB02

2022 Copyright © EnterpriseDB Corporation All Rights Reserved

Synchronous Replication
Settings

Parameter synchronous_standby_names:

FIRST 1 (dtm)

FIRST 1 (dtm, ber)

ANY 2 (dtm, ber, lej)

Parameter synchronous_commit:

off/local/remote_write/on/remote_apply

FRA

DTM LEJ

BER

2022 Copyright © EnterpriseDB Corporation All Rights Reserved

Reduce data loss → synchronous replication

17

…

 Shared Buffers
WAL buffers

…

…

Data Directory WAL Data DirectoryWAL

…

 Shared Buffers

WAL
receiver

…

WAL
Sender

…

local

on on

remote_write

remote_apply

commit…

2021 Copyright © EnterpriseDB Corporation All Rights Reserved

Evaluation
Good:
As asynchronous streaming

RPO=0 (no data loss)

WAL Shipping: Synchronous commit
Use case
Same as asynchronous streaming

+ need the standby to be fully up-to-date

Bad:
If standby is unavailable - all commits hang
(adding more databases is a workaround, see
synchronous_server_names for information)

Native logical replication

logical

Primary database
Logical publisher

wal sender (decode)
(“START_REPLICATION”)

Primary database
Logical subscriber

logical replication
worker

Transaction commits

1 2
1 2

Transferred and applied

Transaction commits
Transferred and applied

(A)synchronous

DB01 DB02

2021 Copyright © EnterpriseDB Corporation All Rights Reserved

Evaluation
Good:
Replicating a select set of tables

Low impact on publishing server

Native logical replication
Use case
One or more or tables replicated.

Can span postgres versions and OS
(Major version upgrades)

Consolidate several data sources to one
(BI/Reporting server)

INSERT/UPDATE/DELETE/TRUNCATE

Bad:
No DDL replication
No conflict resolution

REPLICATION IDENTITY is required for updates.
(insert is fine without).

The final four…
● Trigger based Primary-Standby replication
● SQL-based Replication Middleware
● Asynchronous Multimaster Replication
● Synchronous Multimaster Replication

All are non-native

Trigger-based replication
Good:

Easy to understand and (sometimes) easy to set up.

01001
10101
10110
11011
01110
11011
01111

Triggers capture data changes
(Something) picks up the changes and
pushes them to the other database(s).

Bad:

Tends to be fragile

Tends to be slower than WAL-decoding solutions

“Something”

SQL-based replication
Good:

Easy to understand and (sometimes) easy to set up.

Can provide read-only routing as well

DB01 DB02

Proxy captures data changes
Replicates all updates to other servers

Bad:

Which SQL is an update?
Which isn’t?

SQL-proxy

Exe
cu

te
an

d r
ep

ly Replicate SQL

INSERT INTO ….
UPDATE …..
TRUNCATE …
CREATE TABLE
DROP TABLE
….

??????

SELECT myfunction();

??????

Multi-master, active/active, …
Good:

Highly available.

Applications can access and update any DB

Scalable (to a degree).

Bad:

Can be difficult to configure (get assistance)
Distributed systems are generally complex.

No distributed locks (SELECT FOR UPDATE, …)

Beware of conflicts!
(The chosen solution must have solid conflict
handling and avoidance)

Fully synchronous multi-master currently not
available, though some products have synchronous

features

1) None
2) Native WAL archiving
3) Native WAL streaming
4) Native synchronous commit
5) Native logical replication
6) 3rd party replication solution: Replicated disks replication
7) 3rd party replication solution: Multi-master replication

POLL:
Which replication solution would you
want to use?

2022 Copyright © EnterpriseDB Corporation All Rights Reserved

References

Demo script for replication
Script to demo the different types of
replication.
Replication Engine Potpourri
A comparison of several replication
solutions, strengths and weaknesses.
Defining High Availability
A walk-through of what High Availability
looks like for Postgres clusters.
Nominally Bidirectional
Blog post about a setup that you should
never do, and why it doesn’t work

https://github.com/michaelwiller/postgres-replication-scripts
https://www.enterprisedb.com/blog/pg-phriday-replication-engine-potpourri
https://www.enterprisedb.com/blog/pg-phriday-defining-high-availability-postgres-world
https://www.enterprisedb.com/blog/pg-phriday-nominally-bidirectional

Q&A

2021 Copyright © EnterpriseDB Corporation All Rights Reserved

Thank you for joining!

As a thank you for attending, we’ll be
running a prize draw for a €25 voucher!

Keep an eye on your inbox to see if you’re
the lucky winner.

Borys Neselovskyi

borys.neselovskyi@enterprisedb.com
linkedin.com/in/neselovskyi/

You can find more information at:

http://enterprisedb.com
info@enterprisedb.com

mailto:michael.willer@enterprisedb.com
https://www.linkedin.com/in/michaelwiller/
http://enterprisedb.com
mailto:info@enterprisedb.com

