
ASK THE EXPERT:
PERFORM AT YOUR BEST WITH
POSTGRES
19th July, 2022

1

2

OUR SPEAKERS

SPEAKER
Piotr Kolodziej

Senior Sales Engineer,
EMEA

HOST
Kevin Li

Director Sales
Engineer, EMEA

AGENDA

3

● Good Performance: What Does It
Mean?

● What are the key challenges?
● What are the best practices?
● How can EDB help with the tooling
● Demo (PEM)
● Q&A

4

GOOD
PERFORMANCE:
WHAT DOES IT

MEAN?

4

5

 => Speed

=> Throughput

=> Scale

Shorter and shorter response times?
More and more operations per unit of time?
More and more users to be served?
More and more data to be handled?

Is this possible to satisfy all of them at the same time?

6

CAN WE SPEED UP?

Image source: https://openclipart.org/detail/314141/slow-rabbit-fast-hare

Rough estimation as of 2022
RAM access time Few nanoseconds
SQL query execution time (small table, single row via primary key, prepared statement, data
pages in database shared memory) Few microseconds

LAN TCP/IP round-trip latency (eg. app server <-> database) Hundred(s) of microseconds
Single disk access time (flash, SSD) Tens of microseconds or more
Single disk read (magnetic disk) Few milliseconds
Insert to the table with 1 index and commit Hundreds of microseconds

WAN TCP/IP round-trip latency (eg. sync the replica) From milliseconds to hundreds of
milliseconds

Access to the data on the magnetic tape Many minutes

77

WHERE WE MAY SPEND THE TIME

Operation Estimated comparison factor
SQL query execution time (small table, single row via primary key, prepared statement, data
pages in database shared memory) 1

LAN TCP/IP round-trip latency (eg. app server <-> database) x 100

Single disk access time (flash, SSD) x 10-100

Single disk read (magnetic disk) x 1 000

Insert to the table with 1 index and commit x 100

WAN TCP/IP round-trip latency (eg. sync the replica) x 1 000 - 1 000 000

Access to the data on the magnetic tape x 100 000 000 or much more

Image source: https://openclipart.org/detail/314141/slow-rabbit-fast-hare

POLL There is a small query that executes in
5-6 microseconds on average.
Can we expect 99.999% query execution
times will fit 10 ms response time
window?

1) Yes, we are on the safe side
2) No, we are not
3) We can’t evaluate it properly

8

9

Imagine the following situation:

● Average query execution time
○ 5.65 microseconds

○ Sample: 645 535 executions

● The goal (Expectation)
○ All queries have to complete it time less

than 10 milliseconds
○ Acceptable miss rate:
○ 10 queries per 1 million

● Are we on the safe side?

CAN WE BELIEVE AVERAGES WHEN FOCUSED ON
RESPONSE TIME?

OK

Problem

It can be a product of the response times:

10

KEY
CHALLENGES

10

1111

WHAT CAN AFFECT PROCESSING TIME OF THE
SIMPLEST QUERY?

Parse and optimize

Execute

● Non-optimal SQL query plan, eg.
○ Stale statistics used by optimizer
○ Database schema design issues

● Execution costs above the expectations, eg.
○ Data pages swept from shared buffers, conflicting workload
○ Access costs to frequently changed data (MVCC)
○ Performance degradation by heavy UPDATEs or massive

INSERT/DELETE statements
■ Less effective sequential reads
■ Will persist if not vacuumed

● Generic platform performance topics, eg.
○ OS scheduler: waiting for CPU on busy systems
○ SMP/NUMA: CPU cache efficiency, memory access latency
○ Virtual memory management and memory shortages
○ Conflict when an aggressive OS file system caching is set up
○ I/O affected by concurrent activity

select * from pk.test_pk2
where id= 12005
and ts >= timestamp
'2022-07-07 00:00:00'

 id | ts | txt
-------+-------------------------------+---------------
 12005 | 2022-07-09 21:39:04.729068+02 | Test data 111
(1 row)

POLL What CPU usage should be the
maximum when we focus on stable
short response times for small queries?

1) > 95%
2) 80%
3) 60-70%
4) < 50%

12

13

● May be the significant part of overall response time
○ Chatty applications - many small database requests
○ Fetching row by row in separate database calls
○ Not processing arrays of rows with SELECT or DML

statements
○ Not buffering the data of frequent use and very slowly

changing pattern (eg. configuration)
○ Not leveraging database procedural language to group a

set of small SQL statements into one unit of work
● Let’s assume the application server calls the

database 40 times to render the response
○ LAN with 200 µs TCP/IP latency: 8ms spent in the network
○ WAN with 20 ms latency: 800ms spent in the network
○ WAN with 100 ms latency: 4s spent in the network
○ More round-trips, more exposure to network lags

above average latency

LATENCY BETWEEN APPLICATION AND THE DATABASE

LAN with 200 µs
TCP/IP latency

WAN with 20 ms
TCP/IP latency

WAN with 100 ms
TCP/IP latency

14

Handle the workload in a unit of time

● Representing the business activity
● Defined by an application(s)
● Set of operations (queries,

transactions, etc.)

On a specific configuration

● Hardware & network resources
● Software components

DATABASE THROUGHPUT GOALS

Run at the certain scale

● Database size
● Concurrency level
● Relevant to the business

Things to measure

● Achieved number of operations
● Achieved response times
● System and database load

My database cannot handle more workload, should I add more CPUs?

15

WHY ADDING
CPUS MAY NOT
SOLVE THE
PROBLEM

● System architecture
● Infrastructure capacity and capabilities
● Database design and maintenance

practices
● Data volume
● User population
● Non-human devices
● Automated interfaces
● Load profile, business activity
● Availability overhead
● Integrity overhead
● Confidentiality overhead

● Data retention
● Data skew
● Code quality
● Others…

Where is the the bottleneck?
What is the root cause?
What are the factors to consider?

16

BEST
PRACTICES

16

CHOOSE RIGHT STORAGE FOR YOUR DATABASE

17

● Revolutionary change between magnetic disks (HDDs) and modern SSDs (and Flash, NVM)
● Disk I/O pains could be reduced if not even removed in some cases
● Select the right disks and consider to store:

○ Hot data with frequent random access: prefer SSDs
○ Warm data with infrequent random access: SSDs or a set of “high performance” HDDs*
○ Cold data with rare random access: may use a set of high capacity HDDs
○ Archive data with almost no random access: candidate to use high capacity HDD
○ Disk-based backup: may use a set of high capacity HDDs optimized for throughput

● Workload profiles may differ
○ OLTP: Significant size of “Hot data”, frequently changed
○ Data Warehouse: Significant amount of “Warm data”, may have “Cold data” and “Archive data”

■ Data warehouses may also contain some “Hot data”

*High performance HDD: Much lower capacity and higher rpm rate than high capacity HDD

18

Pre-defined database load generators

● Eg. HammerDB, pgbench
● TPC-C, TPC-H, other benchmarks

Good for

● Stress test the infrastructure
● Tune OS & database to some extent
● Compare the infrastructures
● Learn the impact of an infrastructure change

Limitations

● Will not verify your application performance
and scalability

Application testing tools

● Define and run with tools like Apache Jmeter,
LoadRunner, WebLOAD, etc.

Good for

● End-to-end testing of application, database and
the infrastructure

● Scalability pattern of the application
● Identify and resolve system bottlenecks before

going live
● Change impact analysis

Limitations

● Prepare and maintain the adequate workload
definition and test data set

VERIFY DATABASE PERFORMANCE BEFORE GOING LIVE
OR BEFORE THE CHANGE

19

● Platform level
○ CPU usage
○ Memory usage
○ I/O, network

ANALYZE THE DATABASE LOAD
(OBSERVE, ORIENT, RECOMMEND ACTIONS)

● EDB Postgres kernel extensions
○ Wait States
○ SQL Profiler
○ Dynamic Runtime

Instrumentation Tools
Architecture (DRITA)

Follow
practices

EDB
Postgres

Enterprise
Manager

● Postgres kernel
○ Configuration
○ Schema metadata
○ Server level performance metadata
○ Session level metadata

Static analysis,
recommended practices

Platform and database runtime
metrics, events and alerts

Tune infrastructure, database server,
SQL and database structure

20

● Team of people supported by effective tools
● Resources to run the tests and analysis
● Time, time and time: it is a continuous process
● Ability and empowerment to introduce the changes
● Design and coding hygiene

WHAT DO YOU NEED TO PRACTICE
GOOD DATABASE PERFORMANCE

21

● Logical database design
● Application code quality: queries, DMLs, etc.
● Database server configuration and tuning
● Application architecture, topology, database

connection management
● Application - database traffic nature
● Database calls pragmatics: how do they relate to

the business activity?
● Workload management (queuing, scheduling)

PROACTIVE APPROACH (HYGIENE OF THE
DATABASE PERFORMANCE)

22

● Logical database design: To scale you may need to go
out of the box

● Application code quality: queries, DMLs, etc.
● Database server configuration and tuning
● Application architecture, topology, database connection

management
● Application - database traffic nature
● Database calls pragmatics: how do they relate to the

business activity?
● Workload management (queuing, scheduling)

PROACTIVE APPROACH (HYGIENE OF THE
DATABASE PERFORMANCE)

23

Table EXAMPLE

LOGICAL DESIGN: HOW WE CAN SCALE A TABLE
WITH VARIOUS DATA “TEMPERATURES”?
Column 1
Column 2
Column 3

Column 21
Column 22
Column 23

Column 47
Column 48
Column 49

…

…

“Warm”: Non modifiable data, accessed very frequently, avg size 200 bytes per row in total

“Cold”: Non modifiable data, accessed very rarely, avg size 800 bytes per row in total

“Hot”: Frequently updated, not indexed, avg size: 20 bytes per row in total

Scale
Million of

rows
(1GB)

Tens millions
of rows

(tens GB)

Hundreds
millions of rows
(hundreds GB)

Buffering efficiency: 80% capacity practically not usable

Tiering archive partitions to archive storage
class if backdated updates are still possible

Incremental backup / restore efficiency

Change of up to 20 bytes require handling of 1kB row
(buffer pressure, pressure for background writes, MVCC to read Column 1..21)

I/O throughput: 80% practically not usable

24

Table EXAMPLE

WHEN 1:1 RELATIONSHIP MAY MAKE SENSE

Column 1
Column 2
Column 3

Column 21
Column 22
Column 23

Column 47
Column 48
Column 49

…

…

Scale
Million of

rows
(1GB)

Tens millions
of rows

(tens GB)

Hundreds
millions of rows
(hundreds GB)

Table EXAMPLE1

Column 1 (PK)
Column 2
Column 3

Column 21
…

Table EXAMPLE3

Column 1 (PK)
Column 22
Column 23

Column 47
…

Table EXAMPLE2

Column 1 (PK)
Column 48
Column 49

Most of the workload Limit the frequent
update impact Cold data is separated

“Warm”: Non modifiable data, accessed very frequently, avg size 200 bytes per row in total

“Cold”: Non modifiable data, accessed very rarely, avg size 800 bytes per row in total

“Hot”: Frequently updated, not indexed, avg size: 20 bytes per row in total

25

HOW EDB
CAN HELP

25

26

HOW EDB MAY HELP TO DIAGNOSE AND OPTIMIZE
THE DATABASE PERFORMANCE

Follow practices
EDB

Postgres
Enterprise
Manager

Base hygiene support

● Static analysis and recommended practices
○ Tuning Wizard
○ Postgres Expert

● Database configuration and schema design

Continuous database runtime diagnostics

● Monitoring facilities
○ Performance metrics: Capacity Manager
○ Charts, probes, alerts, dashboards
○ Postgres Log Analytics Expert
○ Performance Diagnostics tool

● Database and infrastructure level
● Persistence and historical data access

Optimize structure and SQL

● SQL Profiler
○ Workload filter
○ Comprehensive analysis

● Index Advisor

Relevant for:

● Application development, unit
tests, performance tests with
PL/pgSQL and SPL debugger

● Production troubleshooting and
tuning

EDB Professional Services
Supporting You with all important tasks

27

DEMO

27

THANK YOU FOR
ATTENDING!

28

