

What are ACID properties in RDBMS?

Doug Ortiz May 2023

© EnterpriseDB Corporation 2023 - All Rights Reserved

What are ACID properties in <u>RDBMS?</u>

Corporation 202

(III) ED

Welcome

DB

Housekeeping Items

Slides and recording will be available within 24 hours

Doug Ortiz Senior Postgres DevOps Engineer

Technologies

- Cloud
- Big Data, Data Analytics, Databases
- DevOps and Platform Engineering

Original Co-Author of Open Source Projects:

- edb-deployment (aka postgres-deployment)
- edb-ansible

Experience in:

- Multi-Cloud
- Software Architecture and Development
- DevOps
- Microservices, Containerization, and K8s
- Automation
- Database Technologies

https://www.linkedin.com/in/doug-ortiz-illustris/ https://www.youtube.com/@techbits-dougortiz

https://dougortiz.blogspot.com/

https://github.com/DougOr/

in

© EnterpriseDB Corporation 2023 - All Rights Reserved

Agenda

- 1. Introduction
- 2. ACID Properties
 - a. Atomicity
 - b. Consistency
 - c. Isolation
 - d. Durability
- 3. Demo
- 4. Takeaways
- 5. Maximizing ACID properties in Postgres
- 6. Q&A

EDB

Let's review...

What ACID properties are

What does ACID stand for?

1 - Atomicity

3 - Isolation

2 - Consistency

4 - Durability

Definition

Guarantees that a transaction is treated as a single, indivisible unit of work.

Atomicity guarantees that transactions are all-or-nothing operations.

Characteristics

- 1. Indivisible
- 2. Consistent
- 3. Isolated

D₿

Role of Transaction Logs

Transaction logs a.k.a.

- Redo Log
- Write Ahead Log (WAL)

Role

- 1. Durability and recovery
- 2. Undo and rollback
- 3. Redo and commit

Real-world examples

- 1. Fund transfers
- 2. E-commerce

transactions

3. Reservation systems

Consistency

Definition

Ensures that a database remains in a valid state before and after a transaction.

Consistency guarantees that the data is accurate, valid, and consistently available across the entire database by enforcing data integrity rules and constraints to prevent inconsistencies and anomalies.

Consistency

B

How it is accomplished

- 1. Constraints for data integrity
- 2. Triggers for consistency enforcement
- Foreign keys and referential integrity for maintaining data integrity

Consistency

Implementation

Methods

1. Primary

2. Foreign

keys

keys

3. Constraints

4. Triggers

Definition

Ensures that concurrent transactions do not interfere with each other.

Provides a level of separation between each transaction, allowing them to execute as if they were the only transaction running.

- 1. Read committed
- 2. Repeatable read
- 3. Serializable
- 4. Read uncommitted Not supported in Postgres

Impact

- 2. Data modification conflicts
- 3. Performance

trade-offs

Techniques

- Locks
- Optimistic
 - Concurrency Control -OCC
- Multiversion
 - Concurrency Control -MVCC
- Snapshot isolation

Trade offs

- Higher isolation levels
 - Provide stronger consistency guarantees
 - May lead to more blocking and decreased concurrency
- Lower isolation levels
 - Provider higher concurrency
 - May result in phenomena such as:
 - Dirty reads
 - Non-repeatable reads

Definition

Guarantees that once a transaction is committed, changes are permanent and will survive system failures.

This is ensured by utilizing Transaction Logs or Write-Ahead Logs (WAL) to record changes made during a transaction.

Encompasses

1. Write durability

2. Crash recovery

Mechanisms

- 1. Transaction logs
- 2. Key aspects
 - a. Log records
 - b. Write-ahead
 - Logging (WAL)

B[™]

Maintaining durability

- Record all changes made to the database
 - Committed
 - Un-committed
- Checkpoints
 - Points in the transaction log that ensure that all the data pages have been written to disk
 - Provide a consistent state for recovery

Strategies

)B

- Full backups
- Incremental backups
- Point-in-time recovery (PITR)
- Recovery Point Object (RPO)
- Replication
- High availability
- Implement and test Disaster recovery procedures

Takeaways

26

© EnterpriseDB Corporation 2023 - All Rights Reserved

Maximizing ACID in Postgres

- Use transactions
- Define constraints
- Optimize database design
- Choose the right isolation level
- Handle concurrent access
- Implement error handling and rollback mechanisms
- Regularly
 - Backup and perform PITR
 - Monitor and tune performance
- Stay updated with Postgres releases
- Disaster
 - Planning and documenting
 - Recovery drills

References

• Wikipedia - ACID Definition

https://en.wikipedia.org/wiki/ ACID

• IBM - ACID properties

https://www.ibm.com/docs/ en/cics-ts/5.4?topic=process ing-acid-properties-transactio ns

 Geeks for Geeks - ACID properties in DBMS

> https://www.geeksforgeeks. org/acid-properties-in-dbms/

THANK YOU

30

All Rights Reserved

Enterprised B Corporation 2023

UD EDB