
EDB Postgres Advanced Server
Version 14

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. Built at 2024-05-20T15:18:34

20
20
20
20
21
21
21
22
22
23
23
24
24
24
24
26
26
26
26
26
27
28
30
32
34
36
38
40
41
43
45
47
48
50
50
52
54
56
58
60
60
61
69
69
70
72
74
77

1 EDB Postgres Advanced Server
2 EDB Postgres Advanced Server release notes
2.1 EDB Postgres Advanced Server 14.12.0 release notes
2.2 EDB Postgres Advanced Server 14.11.0 release notes
2.3 EDB Postgres Advanced Server 14.10.0 release notes
2.4 EDB Postgres Advanced Server 14.9.1 release notes
2.5 Version 14.9.0
2.6 Version 14.8.0
2.7 Version 14.7.0
2.8 Version 14.6.0
2.9 Version 14.5.0
2.10 Version 14.4.0
2.11 Version 14.3.0
2.12 Version 14.2.1
2.13 Version 14.1.0
3 Supported platforms
4 Requirements
5 Limitations
6 Deployment options
7 Installing EDB Postgres Advanced Server
7.1 Installing EDB Postgres Advanced Server on Linux x86 (amd64)
7.1.1 Installing EDB Postgres Advanced Server on RHEL 9 or OL 9 x86_64
7.1.2 Installing EDB Postgres Advanced Server on RHEL 8 or OL 8 x86_64
7.1.3 Installing EDB Postgres Advanced Server on AlmaLinux 9 or Rocky Linux 9 x86_64
7.1.4 Installing EDB Postgres Advanced Server on AlmaLinux 8 or Rocky Linux 8 x86_64
7.1.5 Installing EDB Postgres Advanced Server on RHEL 7 or OL 7 x86_64
7.1.6 Installing EDB Postgres Advanced Server on CentOS 7 x86_64
7.1.7 Installing EDB Postgres Advanced Server on SLES 15 x86_64
7.1.8 Installing EDB Postgres Advanced Server on SLES 12 x86_64
7.1.9 Installing EDB Postgres Advanced Server on Ubuntu 22.04 x86_64
7.1.10 Installing EDB Postgres Advanced Server on Ubuntu 20.04 x86_64
7.1.11 Installing EDB Postgres Advanced Server on Debian 11 x86_64
7.1.12 Installing EDB Postgres Advanced Server on Debian 10 x86_64
7.2 Installing EDB Postgres Advanced Server on Linux IBM Power (ppc64le)
7.2.1 Installing EDB Postgres Advanced Server on RHEL 9 ppc64le
7.2.2 Installing EDB Postgres Advanced Server on RHEL 8 ppc64le
7.2.3 Installing EDB Postgres Advanced Server on SLES 15 ppc64le
7.2.4 Installing EDB Postgres Advanced Server on SLES 12 ppc64le
7.2.5 Installing EDB Postgres Advanced Server on RHEL 7 ppc64le
7.3 EDB Postgres Advanced Server installation for Windows
7.3.1 Installing EDB Postgres Advanced Server with the interactive installer
7.3.1.1 Performing a graphical installation on Windows
7.3.1.2 Invoking the graphical installer from the command line
7.3.1.2.1 Performing an unattended installation
7.3.1.2.2 Performing an installation with limited privileges
7.3.1.2.3 Reference: Command line options
7.3.1.3 Using StackBuilder Plus
7.3.2 Managing an EDB Postgres Advanced Server installation

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 2

77
78
78
79
82
82
83
88
89
96
96
96
97
97
97
98
99

104
104
105
105
105
108
108
109
110
110
110
110
113
114
114
114
114
115
115
115
116
117
117
118
118
119
119
119
126
127
127

7.3.2.1 Using the Windows services applet
7.3.2.2 Using pg_ctl to control EDB Postgres Advanced Server
7.3.2.3 Controlling server startup behavior on Windows
7.3.2.4 Configuring EDB Postgres Advanced Server
7.4 Linux installation details
7.4.1 Default component locations
7.4.2 Available native packages
7.4.3 Installing on Linux using a local repository
7.4.4 Managing an EDB Postgres Advanced Server installation
8 EDB Postgres Advanced Server upgrade
8.1 Upgrade considerations
8.2 Upgrading an installation with pg_upgrade
8.2.1 Performing an upgrade
8.2.1.1 Linking versus copying
8.2.2 Invoking pg_upgrade
8.2.2.1 Command line options: Reference
8.2.3 Upgrading to EDB Postgres Advanced Server 14
8.2.4 Upgrading a pgAgent installation
8.2.5 pg_upgrade troubleshooting
8.2.6 Reverting to the old cluster
8.3 Performing a minor version update of an RPM installation
8.4 Using StackBuilder Plus to perform a minor version update
9 Uninstalling EDB Postgres Advanced Server
9.1 Uninstalling EDB Postgres Advanced Server on Linux
9.2 Uninstalling EDB Postgres Advanced Server on Windows
10 Troubleshooting
10.1 Linux installation troubleshootig
10.1.1 Installation troubleshooting
10.1.2 Enabling core dumps
10.2 Windows installation troubleshooting
11 Connecting to your database
12 Managing your database connections
13 Connecting to external data sources
14 Database Compatibility for Oracle Developers
14.1 Configuration parameters compatible with Oracle databases
14.1.1 edb_redwood_date
14.1.2 edb_redwood_raw_names
14.1.3 edb_redwood_strings
14.1.4 edb_stmt_level_tx
14.1.5 oracle_home
14.2 About the examples
14.3 SQL tutorial
14.3.1 Sample database
14.3.1.1 Sample database installation
14.3.1.2 Sample database description
14.3.2 Creating a new table
14.3.3 Populating a table With rows
14.3.4 Querying a table

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 3

129
131
132
132
133
133
133
134
134
135
137
140
140
140
141
141
142
145
145
147
149
151
155
157
158
159
160
162
163
163
164
165
166
167
168
169
171
172
173
175
176
178
179
180
180
180
181
181

14.3.5 Joins between tables
14.3.6 Aggregate functions
14.3.7 Updates
14.3.8 Deletions
14.3.9 The SQL language
14.4 Advanced concepts
14.4.1 Views
14.4.2 Foreign keys
14.4.3 The ROWNUM pseudo-column
14.4.4 Synonyms
14.4.5 Hierarchical queries
14.4.5.1 Defining the parent/child relationship
14.4.5.2 Selecting the root nodes
14.4.5.3 Organization tree in the sample application
14.4.5.4 Node level
14.4.5.5 Ordering the siblings
14.4.5.6 Retrieving the root node with CONNECT_BY_ROOT
14.4.5.7 Retrieving a path with SYS_CONNECT_BY_PATH
14.4.6 Multidimensional analysis
14.4.6.1 ROLLUP extension
14.4.6.2 CUBE extension
14.4.6.3 GROUPING SETS extension
14.4.6.4 GROUPING function
14.4.6.5 GROUPING_ID function
14.5 Profile management
14.5.1 Creating a new profile
14.5.1.1 Creating a password function
14.5.2 Altering a profile
14.5.3 Dropping a profile
14.5.4 Associating a profile with an existing role
14.5.5 Unlocking a locked account
14.5.6 Creating a new role associated with a profile
14.5.7 Backing up profile management functions
14.6 Optimizer hints
14.6.1 Default optimization modes
14.6.2 Access method hints
14.6.3 Specifying a join order
14.6.4 Joining relations hints
14.6.5 Global hints
14.6.6 Using the APPEND optimizer hint
14.6.7 Parallelism hints
14.6.8 Conflicting hints
14.7 dblink_ora
14.7.1 dblink_ora functions and procedures
14.7.1.1 dblink_ora_connect()
14.7.1.2 dblink_ora_status()
14.7.1.3 dblink_ora_disconnect()
14.7.1.4 dblink_ora_record()

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 4

181
181
181
182
182
183
183
183
183
184
184
184
184
184
185
186
187
187
188
189
189
192
192
193
193
193
194
196
200
202
203
210
221
221
224
230
231
234
235
237
237
237
243
244
245
247
247
247

14.7.1.5 dblink_ora_call()
14.7.1.6 dblink_ora_exec()
14.7.1.7 dblink_ora_copy()
14.7.2 Calling dblink_ora functions
14.8 Open Client Library
14.9 Oracle catalog views
14.10 Tools and utilities
14.11 ECPGPlus
14.12 System catalog tables
15 Database Compatibility for Oracle Developers: Reference
15.1 The SQL language
15.1.1 SQL syntax
15.1.1.1 Lexical structure
15.1.1.2 Identifiers and key words
15.1.1.3 Constants
15.1.1.4 Comments
15.1.2 Data types
15.1.2.1 Numeric types
15.1.2.2 Character types
15.1.2.3 Binary data
15.1.2.4 Date/time types
15.1.2.5 Boolean types
15.1.2.6 XML type
15.1.3 Functions and operators
15.1.3.1 Logical operators
15.1.3.2 Comparison operators
15.1.3.3 Mathematical functions and operators
15.1.3.4 String functions and operators
15.1.3.5 Pattern matching string functions
15.1.3.6 Pattern matching using the LIKE operator
15.1.3.7 Data type formatting functions
15.1.3.8 Date/time functions and operators
15.1.3.9 Sequence manipulation functions
15.1.3.10 Conditional expressions
15.1.3.11 Aggregate functions
15.1.3.12 Subquery expressions
15.1.3.13 Identifier functions
15.1.3.14 Bitwise functions
15.2 System catalog tables
16 Database Compatibility for Oracle Developers: Built-in Package
16.1 Packages
16.1.1 Package components
16.1.2 Creating packages
16.1.3 Referencing a package
16.1.4 Using packages with user-defined types
16.1.5 Dropping a package
16.2 Built-in packages
16.2.1 DBMS_ALERT

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 5

253
254
256
258
259
260
261
261
262
263
265
265
266
266
267
268
268
270
271
272
273
273
273
274
274
275
276
276
277
277
277
278
279
280
280
281
282
282
283
283
284
284
285
285
286
286
286
287

16.2.2 DBMS_AQ
16.2.2.1 ENQUEUE
16.2.2.2 DEQUEUE
16.2.2.3 REGISTER
16.2.2.4 UNREGISTER
16.2.3 DBMS_AQADM
16.2.3.1 ALTER_QUEUE
16.2.3.2 ALTER_QUEUE_TABLE
16.2.3.3 CREATE_QUEUE
16.2.3.4 CREATE_QUEUE_TABLE
16.2.3.5 DROP_QUEUE
16.2.3.6 DROP_QUEUE_TABLE
16.2.3.7 PURGE_QUEUE_TABLE
16.2.3.8 START_QUEUE
16.2.3.9 STOP_QUEUE
16.2.4 DBMS_CRYPTO
16.2.4.1 DECRYPT
16.2.4.2 ENCRYPT
16.2.4.3 HASH
16.2.4.4 MAC
16.2.4.5 RANDOMBYTES
16.2.4.6 RANDOMINTEGER
16.2.4.7 RANDOMNUMBER
16.2.5 DBMS_JOB
16.2.5.1 BROKEN
16.2.5.2 CHANGE
16.2.5.3 INTERVAL
16.2.5.4 NEXT_DATE
16.2.5.5 REMOVE
16.2.5.6 RUN
16.2.5.7 SUBMIT
16.2.5.8 WHAT
16.2.6 DBMS_LOB
16.2.6.1 APPEND
16.2.6.2 COMPARE
16.2.6.3 CONVERTTOBLOB
16.2.6.4 CONVERTTOCLOB
16.2.6.5 COPY
16.2.6.6 ERASE
16.2.6.7 GET_STORAGE_LIMIT
16.2.6.8 GETLENGTH
16.2.6.9 INSTR
16.2.6.10 READ
16.2.6.11 SUBSTR
16.2.6.12 TRIM
16.2.6.13 WRITE
16.2.6.14 WRITEAPPEND
16.2.7 DBMS_LOCK

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 6

287
288
288
289
290
291
297
298
299
300
301
302
302
303
304
304
305
305
307
320
324
337
344
345
345
347
348
349
350
350
351
352
352
353
353
354
355
355
356
357
358
358
359
359
360
361
362
363

16.2.8 DBMS_MVIEW
16.2.8.1 GET_MV_DEPENDENCIES
16.2.8.2 REFRESH
16.2.8.3 REFRESH_ALL_MVIEWS
16.2.8.4 REFRESH_DEPENDENT
16.2.9 DBMS_OUTPUT
16.2.10 DBMS_PIPE
16.2.10.1 CREATE_PIPE
16.2.10.2 NEXT_ITEM_TYPE
16.2.10.3 PACK_MESSAGE
16.2.10.4 PURGE
16.2.10.5 RECEIVE_MESSAGE
16.2.10.6 REMOVE_PIPE
16.2.10.7 RESET_BUFFER
16.2.10.8 SEND_MESSAGE
16.2.10.9 UNIQUE_SESSION_NAME
16.2.10.10 UNPACK_MESSAGE
16.2.10.11 Comprehensive example
16.2.11 DBMS_PROFILER
16.2.12 DBMS_RANDOM
16.2.13 DBMS_REDACT
16.2.14 DBMS_RLS
16.2.15 DBMS_SCHEDULER
16.2.15.1 Using calendar syntax to specify a repeating interval
16.2.15.2 CREATE_JOB
16.2.15.3 CREATE_PROGRAM
16.2.15.4 CREATE_SCHEDULE
16.2.15.5 DEFINE_PROGRAM_ARGUMENT
16.2.15.6 DISABLE
16.2.15.7 DROP_JOB
16.2.15.8 DROP_PROGRAM
16.2.15.9 DROP_PROGRAM_ARGUMENT
16.2.15.10 DROP_SCHEDULE
16.2.15.11 ENABLE
16.2.15.12 EVALUATE_CALENDAR_STRING
16.2.15.13 RUN_JOB
16.2.15.14 SET_JOB_ARGUMENT_VALUE
16.2.16 DBMS_SESSION
16.2.17 DBMS_SQL
16.2.17.1 BIND_VARIABLE
16.2.17.2 BIND_VARIABLE_CHAR
16.2.17.3 BIND_VARIABLE_RAW
16.2.17.4 CLOSE_CURSOR
16.2.17.5 COLUMN_VALUE
16.2.17.6 COLUMN_VALUE_CHAR
16.2.17.7 COLUMN_VALUE_RAW
16.2.17.8 DEFINE_COLUMN
16.2.17.9 DEFINE_COLUMN_CHAR

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 7

364
365
365
366
367
368
369
370
371
372
383
383
384
385
385
386
387
387
388
389
390
391
404
419
423
426
433
436
436
458
461
481
482
482
482
482
483
483
483
484
484
484
485
485
486
486
486
487

16.2.17.10 DEFINE_COLUMN_RAW
16.2.17.11 DESCRIBE_COLUMNS
16.2.17.12 EXECUTE
16.2.17.13 EXECUTE_AND_FETCH
16.2.17.14 FETCH_ROWS
16.2.17.15 IS_OPEN
16.2.17.16 LAST_ROW_COUNT
16.2.17.17 OPEN_CURSOR
16.2.17.18 PARSE
16.2.18 DBMS_UTILITY
16.2.19 UTL_ENCODE
16.2.19.1 BASE64_DECODE
16.2.19.2 BASE64_ENCODE
16.2.19.3 MIMEHEADER_DECODE
16.2.19.4 MIMEHEADER_ENCODE
16.2.19.5 QUOTED_PRINTABLE_DECODE
16.2.19.6 QUOTED_PRINTABLE_ENCODE
16.2.19.7 TEXT_DECODE
16.2.19.8 TEXT_ENCODE
16.2.19.9 UUDECODE
16.2.19.10 UUENCODE
16.2.20 UTL_FILE
16.2.21 UTL_HTTP
16.2.22 UTL_MAIL
16.2.23 UTL_RAW
16.2.24 UTL_SMTP
16.2.25 UTL_URL
17 Database Compatibility for Oracle Developers: Tools and Utilities
17.1 EDB*Loader
17.2 EDB*Wrap
17.3 Dynamic runtime instrumentation tools architecture (DRITA)
18 Database compatibility for Oracle developers: catalog views
18.1 Oracle catalog views
18.1.1 ALL_ALL_TABLES
18.1.2 ALL_CONS_COLUMNS
18.1.3 ALL_CONSTRAINTS
18.1.4 ALL_COL_PRIVS
18.1.5 ALL_DB_LINKS
18.1.6 ALL_DEPENDENCIES
18.1.7 ALL_DIRECTORIES
18.1.8 ALL_IND_COLUMNS
18.1.9 ALL_INDEXES
18.1.10 ALL_JOBS
18.1.11 ALL_OBJECTS
18.1.12 ALL_PART_KEY_COLUMNS
18.1.13 ALL_PART_TABLES
18.1.14 ALL_POLICIES
18.1.15 ALL_QUEUES

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 8

487
488
488
488
489
489
489
490
491
491
492
492
492
492
493
493
493
494
494
494
495
495
495
495
496
496
497
497
498
498
498
499
499
499
500
500
500
500
501
501
502
503
503
503
504
504
505
505

18.1.16 ALL_QUEUE_TABLES
18.1.17 ALL_SEQUENCES
18.1.18 ALL_SOURCE
18.1.19 ALL_SUBPART_KEY_COLUMNS
18.1.20 ALL_SYNONYMS
18.1.21 ALL_TAB_COLUMNS
18.1.22 ALL_TAB_PARTITIONS
18.1.23 ALL_TAB_SUBPARTITIONS
18.1.24 ALL_TAB_PRIVS
18.1.25 ALL_TABLES
18.1.26 ALL_TRIGGERS
18.1.27 ALL_TYPES
18.1.28 ALL_USERS
18.1.29 ALL_VIEW_COLUMNS
18.1.30 ALL_VIEWS
18.1.31 DBA_ALL_TABLES
18.1.32 DBA_CONS_COLUMNS
18.1.33 DBA_CONSTRAINTS
18.1.34 DBA_COL_PRIVS
18.1.35 DBA_DB_LINKS
18.1.36 DBA_DIRECTORIES
18.1.37 DBA_DEPENDENCIES
18.1.38 DBA_IND_COLUMNS
18.1.39 DBA_INDEXES
18.1.40 DBA_JOBS
18.1.41 DBA_OBJECTS
18.1.42 DBA_PART_KEY_COLUMNS
18.1.43 DBA_PART_TABLES
18.1.44 DBA_POLICIES
18.1.45 DBA_PROFILES
18.1.46 DBA_QUEUES
18.1.47 DBA_QUEUE_TABLES
18.1.48 DBA_ROLE_PRIVS
18.1.49 DBA_ROLES
18.1.50 DBA_SEQUENCES
18.1.51 DBA_SOURCE
18.1.52 DBA_SUBPART_KEY_COLUMNS
18.1.53 DBA_SYNONYMS
18.1.54 DBA_TAB_COLUMNS
18.1.55 DBA_TAB_PARTITIONS
18.1.56 DBA_TAB_SUBPARTITIONS
18.1.57 DBA_TAB_PRIVS
18.1.58 DBA_TABLES
18.1.59 DBA_TRIGGERS
18.1.60 DBA_TYPES
18.1.61 DBA_USERS
18.1.62 DBA_VIEW_COLUMNS
18.1.63 DBA_VIEWS

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 9

505
505
506
506
507
507
507
508
508
509
509
510
510
510
511
511
511
511
512
512
513
513
514
514
515
515
515
516
516
516
516
516
516
517
517
517
517
518
518
520
520
520
521
521
521
524
524
525

18.1.64 USER_ALL_TABLES
18.1.65 USER_CONS_COLUMNS
18.1.66 USER_CONSTRAINTS
18.1.67 USER_COL_PRIVS
18.1.68 USER_DB_LINKS
18.1.69 USER_DEPENDENCIES
18.1.70 USER_INDEXES
18.1.71 USER_JOBS
18.1.72 USER_OBJECTS
18.1.73 USER_PART_TABLES
18.1.74 USER_POLICIES
18.1.75 USER_QUEUES
18.1.76 USER_QUEUE_TABLES
18.1.77 USER_ROLE_PRIVS
18.1.78 USER_SEQUENCES
18.1.79 USER_SOURCE
18.1.80 USER_SUBPART_KEY_COLUMNS
18.1.81 USER_SYNONYMS
18.1.82 USER_TAB_COLUMNS
18.1.83 USER_TAB_PARTITIONS
18.1.84 USER_TAB_SUBPARTITIONS
18.1.85 USER_TAB_PRIVS
18.1.86 USER_TABLES
18.1.87 USER_TRIGGERS
18.1.88 USER_TYPES
18.1.89 USER_USERS
18.1.90 USER_VIEW_COLUMNS
18.1.91 USER_VIEWS
18.1.92 V$VERSION
18.1.93 PRODUCT_COMPONENT_VERSION
18.2 System catalog views
18.2.1 PG_USER
19 Database Compatibility: Stored Procedural Language
19.1 Basic SPL elements
19.1.1 Case sensitivity
19.1.2 Identifiers
19.1.3 Qualifiers
19.1.4 Constants
19.1.5 User-defined PL/SQL subtypes
19.1.6 Character set
19.2 SPL programs
19.2.1 SPL block structure
19.2.2 Anonymous blocks
19.2.3 Procedures overview
19.2.3.1 Creating a procedure
19.2.3.2 Calling a procedure
19.2.3.3 Deleting a procedure
19.2.4 Functions overview

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 10

525
528
528
529
530
531
531
532
533
534
535
536
541
541
544
548
549
549
550
550
550
551
555
555
556
557
558
559
559
560
561
562
562
564
565
566
566
566
566
567
568
569
570
570
571
571
572
573

19.2.4.1 Creating a function
19.2.4.2 Calling a function
19.2.4.3 Deleting a function
19.2.5 Procedure and function parameters
19.2.5.1 Positional versus named parameter notation
19.2.5.2 Parameter modes
19.2.5.3 Using default values in parameters
19.2.6 Subprograms: subprocedures and subfunctions
19.2.6.1 Creating a subprocedure
19.2.6.2 Creating a subfunction
19.2.6.3 Block relationships
19.2.6.4 Invoking subprograms
19.2.6.5 Using forward declarations
19.2.6.6 Overloading subprograms
19.2.6.7 Accessing subprogram variables
19.2.7 Compilation errors in procedures and functions
19.2.8 Program security
19.2.8.1 EXECUTE privilege
19.2.8.2 Database object name resolution
19.2.8.3 Database object privileges
19.2.8.4 Definer's versus invoker's rights
19.2.8.5 Security example
19.3 Variable declarations
19.3.1 Declaring a variable
19.3.2 Using %TYPE in variable declarations
19.3.3 Using %ROWTYPE in record declarations
19.3.4 User-defined record types and record variables
19.4 Basic statements
19.4.1 Assignment
19.4.2 DELETE
19.4.3 INSERT
19.4.4 NULL
19.4.5 Using the RETURNING INTO clause
19.4.6 SELECT INTO
19.4.7 UPDATE
19.4.8 Obtaining the result status
19.5 Control structures
19.5.1 IF statement
19.5.1.1 IF-THEN
19.5.1.2 IF-THEN-ELSE
19.5.1.3 IF-THEN-ELSE IF
19.5.1.4 IF-THEN-ELSIF-ELSE
19.5.2 RETURN statement
19.5.3 GOTO statement
19.5.4 CASE expression
19.5.4.1 Selector CASE expression
19.5.4.2 Searched CASE expression
19.5.5 CASE statement

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 11

573
575
576
576
576
576
577
577
578
579
580
581
582
582
583
586
591
592
592
593
593
594
594
595
595
596
596
597
598
598
599
599
600
600
600
600
600
601
601
602
602
602
603
605
606
607
609
612

19.5.5.1 Selector CASE statement
19.5.5.2 Searched CASE statement
19.5.6 Loops
19.5.6.1 LOOP
19.5.6.2 EXIT
19.5.6.3 CONTINUE
19.5.6.4 WHILE
19.5.6.5 FOR (integer variant)
19.5.7 Exception handling
19.5.8 User-defined exceptions
19.5.9 PRAGMA EXCEPTION_INIT
19.5.10 RAISE_APPLICATION_ERROR
19.6 Transaction control
19.6.1 COMMIT
19.6.2 ROLLBACK
19.6.3 PRAGMA AUTONOMOUS_TRANSACTION
19.7 Dynamic SQL
19.8 Static cursors
19.8.1 Declaring a cursor
19.8.2 Opening a cursor
19.8.3 Fetching rows from a cursor
19.8.4 Closing a cursor
19.8.5 Using %ROWTYPE with cursors
19.8.6 Cursor attributes
19.8.6.1 %ISOPEN
19.8.6.2 %FOUND
19.8.6.3 %NOTFOUND
19.8.6.4 %ROWCOUNT
19.8.6.5 Summary of cursor states and attributes
19.8.7 Cursor FOR loop
19.8.8 Parameterized cursors
19.9 REF CURSOR and cursor variables
19.9.1 REF CURSOR overview
19.9.2 Declaring a cursor variable
19.9.2.1 Declaring a SYS_REFCURSOR cursor variable
19.9.2.2 Declaring a user-defined REF CURSOR type variable
19.9.3 Opening a cursor variable
19.9.4 Fetching rows From a cursor variable
19.9.5 Closing a cursor variable
19.9.6 Usage restrictions
19.9.7 Examples
19.9.7.1 Returning a REF CURSOR from a function
19.9.7.2 Modularizing cursor operations
19.9.8 Dynamic queries with REF CURSOR
19.10 Collections
19.10.1 Associative arrays
19.10.2 Nested tables
19.10.3 Varrays

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 12

614
614
614
615
615
617
617
618
618
618
619
620
620
620
621
623
623
624
625
625
627
627
628
628
628
631
632
632
633
633
633
634
634
636
636
639
640
640
640
640
640
640
641
642
644
644
645
645

19.11 Collection methods
19.11.1 COUNT
19.11.2 DELETE
19.11.3 EXISTS
19.11.4 EXTEND
19.11.5 FIRST
19.11.6 LAST
19.11.7 LIMIT
19.11.8 NEXT
19.11.9 PRIOR
19.11.10 TRIM
19.12 Working with collections
19.12.1 TABLE()
19.12.2 Using the MULTISET UNION operator
19.12.3 Using the FORALL statement
19.12.4 Using the BULK COLLECT clause
19.12.4.1 SELECT BULK COLLECT
19.12.4.2 FETCH BULK COLLECT
19.12.4.3 EXECUTE IMMEDIATE BULK COLLECT
19.12.4.4 RETURNING BULK COLLECT
19.12.5 Errors and messages
19.13 Triggers
19.13.1 Trigger overview
19.13.2 Types of triggers
19.13.3 Creating triggers
19.13.4 Trigger variables
19.13.5 Transactions and exceptions
19.13.6 Compound triggers
19.13.7 Trigger examples
19.13.7.1 Before statement-level trigger
19.13.7.2 After statement-level trigger
19.13.7.3 Before row-level trigger
19.13.7.4 After row-level trigger
19.13.7.5 INSTEAD OF trigger
19.13.7.6 Compound triggers
19.14 Packages
19.15 Object types and objects
19.15.1 Basic object concepts
19.15.1.1 Attributes
19.15.1.2 Methods
19.15.1.3 Overloading methods
19.15.2 Object type components
19.15.2.1 Object type specification syntax
19.15.2.2 Object type body syntax
19.15.3 Creating object types
19.15.3.1 Member methods
19.15.3.2 Static methods
19.15.3.3 Constructor methods

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 13

647
647
649
649
649
650
652
653
655
657
657
658
660
661
662
663
666
667
668
669
670
671
672
673
674
681
683
687
689
690
692
695
699
702
703
704
705
706
708
709
715
715
722
727
729
730
731
732

19.15.4 Creating object instances
19.15.5 Referencing an object
19.15.6 Dropping an object type
20 Database Compatibility for Oracle Developers: SQL
20.1 ALTER DIRECTORY
20.2 ALTER INDEX
20.3 ALTER PROCEDURE
20.4 ALTER PROFILE
20.5 ALTER QUEUE
20.6 ALTER QUEUE TABLE
20.7 ALTER ROLE… IDENTIFIED BY
20.8 ALTER ROLE: Managing database link and DBMS_RLS privileges
20.9 ALTER SEQUENCE
20.10 ALTER SESSION
20.11 ALTER SYNONYM
20.12 ALTER TABLE
20.13 ALTER TRIGGER
20.14 ALTER TABLESPACE
20.15 ALTER USER… IDENTIFIED BY
20.16 ALTER USER|ROLE… PROFILE MANAGEMENT CLAUSES
20.17 CALL
20.18 COMMENT
20.19 COMMIT
20.20 CREATE DATABASE
20.21 CREATE PUBLIC DATABASE LINK
20.22 CREATE DIRECTORY
20.23 CREATE FUNCTION
20.24 CREATE INDEX
20.25 CREATE MATERIALIZED VIEW
20.26 CREATE PACKAGE
20.27 CREATE PACKAGE BODY
20.28 CREATE PROCEDURE
20.29 CREATE PROFILE
20.30 CREATE QUEUE
20.31 CREATE QUEUE TABLE
20.32 CREATE ROLE
20.33 CREATE SCHEMA
20.34 CREATE SEQUENCE
20.35 CREATE SYNONYM
20.36 CREATE TABLE
20.37 CREATE TABLE AS
20.38 CREATE TRIGGER
20.39 CREATE TYPE
20.40 CREATE TYPE BODY
20.41 CREATE USER
20.42 CREATE USER|ROLE… PROFILE MANAGEMENT CLAUSES
20.43 CREATE VIEW
20.44 DELETE

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 14

734
734
735
736
737
738
739
740
741
741
742
743
744
745
746
746
747
748
749
749
753
755
757
759
759
760
761
768
769
770
770
771
773
773
774
774
775
777
778
778
782
782
783
784
784
785
791
792

20.45 DROP DATABASE LINK
20.46 DROP DIRECTORY
20.47 DROP FUNCTION
20.48 DROP INDEX
20.49 DROP PACKAGE
20.50 DROP PROCEDURE
20.51 DROP PROFILE
20.52 DROP QUEUE
20.53 DROP QUEUE TABLE
20.54 DROP SYNONYM
20.55 DROP ROLE
20.56 DROP SEQUENCE
20.57 DROP TABLE
20.58 DROP TABLESPACE
20.59 DROP TRIGGER
20.60 DROP TYPE
20.61 DROP USER
20.62 DROP VIEW
20.63 EXEC
20.64 GRANT
20.65 INSERT
20.66 LOCK
20.67 REVOKE
20.68 ROLLBACK
20.69 ROLLBACK TO SAVEPOINT
20.70 SAVEPOINT
20.71 SELECT
20.72 SET CONSTRAINTS
20.73 SET ROLE
20.74 SET TRANSACTION
20.75 TRUNCATE
20.76 UPDATE
21 Database Compatibility: Table Partitioning
21.1 Selecting a partition type
21.1.1 Interval range partitioning
21.1.2 Automatic list partitioning
21.2 Using partition pruning
21.2.1 Example: Partition pruning
21.3 Partitioning commands compatible with Oracle Databases
21.3.1 CREATE TABLE...PARTITION BY
21.3.1.1 Example: PARTITION BY LIST
21.3.1.2 Example: AUTOMATIC LIST PARTITION
21.3.1.3 Example: PARTITION BY RANGE
21.3.1.4 Example: INTERVAL RANGE PARTITION
21.3.1.5 Example: PARTITION BY HASH
21.3.1.6 Example: PARTITION BY HASH...PARTITIONS num...
21.3.1.7 Example: PARTITION BY RANGE, SUBPARTITION BY LIST
21.3.1.8 Example: CREATING UNIQUE INDEX on PARTITION TABLE

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 15

793
795
796
797
798
800
801
802
803
804
806
807
810
811
813
815
816
817
818
819
819
820
821
821
822
822
823
829
829
830
830
831
832
832
833
834
835
835
837
840
843
844
845
845
845
846
847
847

21.3.1.9 Example: CREATING SUBPARTITION TEMPLATE
21.3.2 ALTER TABLE...ADD PARTITION
21.3.2.1 Example: Adding a partition to a LIST partitioned table
21.3.2.2 Example - Adding a partition to a RANGE partitioned table
21.3.2.3 Example: Adding a partition with SUBPARTITIONS num...IN PARTITION DESCRIPTION
21.3.3 ALTER TABLE...ADD SUBPARTITION
21.3.3.1 Example: Adding a subpartition to a LIST/RANGE partitioned table
21.3.3.2 Example: Adding a subpartition to a RANGE/LIST partitioned table
21.3.4 ALTER TABLE...SPLIT PARTITION
21.3.4.1 Example: Splitting a LIST partition
21.3.4.2 Example: Splitting a RANGE partition
21.3.4.3 Example: Splitting a RANGE/LIST partition
21.3.5 ALTER TABLE...SPLIT SUBPARTITION
21.3.5.1 Example: Splitting a lIST subpartition
21.3.5.2 Example: Splitting a RANGE subpartition
21.3.6 ALTER TABLE...EXCHANGE PARTITION
21.3.6.1 Example: Exchanging a table for a partition
21.3.7 ALTER TABLE...MOVE PARTITION
21.3.7.1 Example: Moving a partition to a different tablespace
21.3.8 ALTER TABLE...RENAME PARTITION
21.3.8.1 Example: Renaming a partition
21.3.9 ALTER TABLE...SET INTERVAL
21.3.9.1 Example: Setting an interval range partition
21.3.10 ALTER TABLE...SET [PARTITIONING] AUTOMATIC
21.3.10.1 Example: Setting an AUTOMATIC list partition
21.3.11 ALTER TABLE...SET SUBPARTITION TEMPLATE
21.3.11.1 Example: Setting a SUBPARTITION TEMPLATE
21.3.12 DROP TABLE
21.3.13 ALTER TABLE...DROP PARTITION
21.3.13.1 Example: Deleting a partition
21.3.14 ALTER TABLE...DROP SUBPARTITION
21.3.14.1 Example: Deleting a subpartition
21.3.15 TRUNCATE TABLE
21.3.15.1 Example: Emptying a table
21.3.16 ALTER TABLE...TRUNCATE PARTITION
21.3.16.1 Example: Emptying a partition
21.3.17 ALTER TABLE...TRUNCATE SUBPARTITION
21.3.17.1 Example: Emptying a subpartition
21.3.18 Accessing a PARTITION or SUBPARTITION
21.4 Handling stray values in a LIST or RANGE partitioned table
21.5 Specifying multiple partitioning keys in a RANGE partitioned table
21.6 Retrieving information about a partitioned table
21.6.1 Table partitioning views reference
21.6.1.1 ALL_PART_TABLES
21.6.1.2 ALL_TAB_PARTITIONS
21.6.1.3 ALL_TAB_SUBPARTITIONS
21.6.1.4 ALL_PART_KEY_COLUMNS
21.6.1.5 ALL_SUBPART_KEY_COLUMNS

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 16

847
848
852
857
864
874
877
898
898
898
903
905
906
906
906
908
914
917
921
921
923
930
930
931
931
937
941
941
941
943
952
952
952
953
953
954
954
954
954
955
955
955
956
956
956
957
957
957

22 ECPGPlus
22.1 ECPGPlus overview
22.2 Using embedded SQL
22.3 Using descriptors
22.4 Building and executing dynamic SQL statements
22.5 Error handling
22.6 Reference
23 EDB Postgres Language Pack
23.1 Supported database server versions
23.2 Installing and configuring Language Pack
23.3 Using the procedural languages
23.4 Uninstalling Language Pack
24 EDB Postgres Advanced Server Security Features
24.1 Protecting against SQL injection attacks
24.1.1 SQL/Protect overview
24.1.2 Configuring SQL/Protect
24.1.3 Common maintenance operations
24.1.4 Backing up and restoring a SQL/Protect database
24.2 Virtual private database
24.3 sslutils
24.4 Data redaction
25 EDB Postgres Advanced Server
25.1 Introduction
25.1.1 Conventions used
25.1.2 About the examples
25.2 Enhanced compatibility features
25.3 Database administration
25.3.1 Configuration parameters
25.3.1.1 Setting configuration parameters
25.3.1.2 Summary of configuration parameters
25.3.1.3 Configuration parameters by functionality
25.3.1.3.1 Top performance-related parameters
25.3.1.3.1.1 shared_buffers
25.3.1.3.1.2 work_mem
25.3.1.3.1.3 maintenance_work_mem
25.3.1.3.1.4 wal_buffers
25.3.1.3.1.5 checkpoint_segments
25.3.1.3.1.6 checkpoint_completion_target
25.3.1.3.1.7 checkpoint_timeout
25.3.1.3.1.8 max_wal_size
25.3.1.3.1.9 min_wal_size
25.3.1.3.1.10 bgwriter_delay
25.3.1.3.1.11 seq_page_cost
25.3.1.3.1.12 random_page_cost
25.3.1.3.1.13 effective_cache_size
25.3.1.3.1.14 synchronous_commit
25.3.1.3.1.15 edb_max_spins_per_delay
25.3.1.3.1.16 pg_prewarm.autoprewarm

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 17

958
958
959
960
960
961
962
962
962
962
963
963
963
963
964
964
964
965
965
965
966
966
967
973
979
980
983
984
985
985
988
990
991
991
993
994
995

1004
1007
1011
1012
1013
1013
1015
1018
1023
1037
1043

25.3.1.3.1.17 pg_prewarm.autoprewarm_interval
25.3.1.3.2 Resource usage/memory
25.3.1.3.3 Resource usage/EDB Resource Manager
25.3.1.3.4 Query tuning
25.3.1.3.5 Query tuning/planner method configuration
25.3.1.3.6 Reporting and logging/what to log
25.3.1.3.7 Auditing settings
25.3.1.3.7.1 edb_audit
25.3.1.3.7.2 edb_audit_directory
25.3.1.3.7.3 edb_audit_filename
25.3.1.3.7.4 edb_audit_rotation_day
25.3.1.3.7.5 edb_audit_rotation_size
25.3.1.3.7.6 edb_audit_rotation_seconds
25.3.1.3.7.7 edb_audit_connect
25.3.1.3.7.8 edb_audit_disconnect
25.3.1.3.7.9 edb_audit_statement
25.3.1.3.7.10 edb_audit_tag
25.3.1.3.7.11 edb_audit_destination
25.3.1.3.7.12 edb_log_every_bulk_value
25.3.1.3.8 Client connection defaults/locale and formatting
25.3.1.3.9 Client connection defaults/statement behavior
25.3.1.3.10 Client connection defaults/other defaults
25.3.1.3.11 Compatibility options
25.3.1.3.12 Customized options
25.3.1.3.13 Ungrouped
25.3.1.3.14 Audit archiver
25.3.2 Index Advisor
25.3.2.1 Index Advisor components
25.3.2.2 Index Advisor configuration
25.3.2.3 Using Index Advisor
25.3.2.4 Reviewing the Index Advisor recommendations
25.3.2.5 Index Advisor limitations
25.3.3 SQL Profiler
25.3.4 pgsnmpd
25.3.5 EDB audit logging
25.3.5.1 Audit logging configuration parameters
25.3.5.2 Selecting SQL statements to audit
25.3.5.3 Enabling audit logging
25.3.5.4 Audit log file
25.3.5.5 Using error codes to filter audit logs
25.3.5.6 Using command tags to filter audit logs
25.3.5.7 Redacting passwords in audit logs
25.3.5.8 Audit log archiving
25.3.5.9 Object auditing
25.3.6 Unicode Collation Algorithm
25.4 EDB Resource Manager
25.5 libpq C library
25.6 Debugger

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 18

1049
1056
1071
1074
1077
1079
1081
1082
1091

25.7 Performance analysis and tuning
25.8 EDB clone schema
25.9 Enhanced SQL and other miscellaneous features
25.10 System catalog tables
25.11 EDB Postgres Advanced Server exceptions
26 Quick start for CentOS or RHEL 7
27 Quick start for RHEL/Rocky Linux/AlmaLinux 8
28 Quick start for Windows
29 EDB pgAdmin4 Quick Start Linux

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 19

1 EDB Postgres Advanced Server

With EDB Postgres Advanced Server, we continue to lead as the only worldwide company to deliver innovative and low-cost, open-source-derived database solutions with commercial quality, ease of
use, compatibility, scalability, and performance for small or large-scale enterprises.

2 EDB Postgres Advanced Server release notes

EDB Postgres Advanced Server 14 is built on open-source PostgreSQL 14, which introduces myriad enhancements that enable databases to scale up and scale out in more efficient ways. PostgreSQL 14
has significant performance improvements, which includes an improved indexing and lookup system, a level up on query planning when using extended statistics, improved performance for queries that
use aggregates or partitioned tables, and providing more ways to monitor activity within a PostgreSQL database. And along with highly requested features like parallelized vacuuming, incremental
sorting, PostgreSQL 14 has a multitude of other new features and capabilities.

The EDB Postgres Advanced Server (EDB Postgres Advanced Server) documentation describes the latest version of EDB Postgres Advanced Server 14 including minor releases and patches. The release
notes in this section provide information on what was new in each release.

Version Release date Upstream merges

14.12.0 09 May 2024 14.12

14.11.0 08 Feb 2024 14.11

14.10.0 09 Nov 2023 14.10

14.9.1 25 Sep 2023

14.9.0 21 Aug 2023 14.9

14.8.0 11 May 2023 14.8

14.7.0 10 Feb 2023 14.7

14.6.0 10 Nov 2022 14.6

14.5.0 11 Aug 2022 14.5

14.4.0 16 Jun 2022 14.4

14.3.0 12 May 2022 14.3

14.2.1 10 Feb 2022 14.2

14.1.0 01 Dec 2021 14.0, 14.1

Support announcements

Backup and Recovery Tool (BART) incompatibility

The EDB Backup and Recovery Tool (BART) isn't supported by EDB Postgres Advanced Server or PostgreSQL version 14 and later. We strongly recommend that you move to Barman or PgBackRest as
your backup recovery tool.

2.1 EDB Postgres Advanced Server 14.12.0 release notes

Released: 9 May 2024

EDB Postgres Advanced Server 14.12.0 includes the following enhancements and bug fixes:

Type Description Addresses

Upstream merge Merged with community PostgreSQL 14.12. This release includes a fix for CVE-2024-4317. See the PostgreSQL 14.12 Release Notes for more
information.

CVE-2024-4317

Bug fix Fixed an issue for edb_filter_log . Now it correctly redacts the password when the tab is used before the keyword. #36220

Bug fix Fixed an issue for edb_audit on Windows. Now it correctly rotates the log files based on days configured in edb_audit_rotation_day . #99282

Bug fix Fixed an issue to fetch all the attributes correctly from the sub link in CONNECT BY processing to avoid the server crash. #102746

Bug fix Added conditional free path in add_path() to avoid the rare possible server crashes when the free path is still in use, specially in the FDWs. #86497

Bug fix Fixed a crash issue for edbldr . Now edbldr loads data into multiple tables with different encodings from the target database.

2.2 EDB Postgres Advanced Server 14.11.0 release notes

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 20

https://www.postgresql.org/docs/14/release-14-12.html
https://www.postgresql.org/docs/14/release-14-11.html
https://www.postgresql.org/docs/14/release-14-10.html
https://www.postgresql.org/docs/14/release-14-9.html
https://www.postgresql.org/docs/14/release-14-8.html
https://www.postgresql.org/docs/14/release-14-7.html
https://www.postgresql.org/docs/14/release-14-6.html
https://www.postgresql.org/docs/14/release-14-5.html
https://www.postgresql.org/docs/14/release-14-4.html
https://www.postgresql.org/docs/14/release-14-3.html
https://www.postgresql.org/docs/14/release-14-2.html
https://www.postgresql.org/docs/14/release-14.html
https://www.postgresql.org/docs/14/release-14-1.html
https://www.enterprisedb.com/docs/supported-open-source/barman/
https://www.enterprisedb.com/docs/supported-open-source/pgbackrest/
https://www.enterprisedb.com/docs/security/assessments/cve-2024-4317
https://www.postgresql.org/docs/release/14.12/
https://www.enterprisedb.com/docs/security/assessments/cve-2024-4317
http://www.postgresql.org/
http://www.postgresql.org/

Released: 8 Feb 2024

EDB Postgres Advanced Server 14.11.0 includes the following enhancements and bug fixes:

Type Description Category

Upstream
merge

Merged with community PostgreSQL 14.11. Important: this release includes a CVE with a score of 8.0. See the PostgreSQL 14.11 Release Notes for more
information.

2.3 EDB Postgres Advanced Server 14.10.0 release notes

Released: 09 Nov 2023

EDB Postgres Advanced Server 14.10.0 includes the following enhancements and bug fixes:

Type Description Addresses

Bug fix Fixed a high memory usage issue due to the re-transformation of a DECODE expression.

Bug fix Fixed split partition failure issue due to case-sensitive partition name in edb_partition . #97109

2.4 EDB Postgres Advanced Server 14.9.1 release notes

Released: 22 Sep 2023

EDB Postgres Advanced Server 14.9.1 includes the following enhancements and bug fixes:

Type Description Addresses

Bug fix Hexadecimal values are now allowed as record and field delimiter in EDB*Loader. #91832

Bug fix Fixed memory leak in sub-transaction with usage of EXCEPTION in package. #94255

Bug fix Fixed the cache lookup error for event triggers with proper initialization of the variables in SPL.

Bug fix Fixed the buffer overrun hazard in EDB*Wrap code.

2.5 Version 14.9.0

Released: 21 Aug 2023

Updated: 30 Aug 2023

Upgrading

After you upgrade to this version of EDB Postgres Advanced Server, you need to run edb_sqlpatch on all your databases to complete the upgrade. This application checks that your
databases system objects are up to date with this version. See the EDB SQL Patch documentation for more information on how to deploy this tool.

After applying patches

Users making use of the UTL_MAIL package now require EXECUTE permission on the UTL_SMTP and UTL_TCP packages in addition to EXECUTE permission on UTL_MAIL.

Users making use of the UTL_SMTP package now require EXECUTE permission on the UTL_TCP packages in addition to EXECUTE permission on UTL_SMTP.

EDB Postgres Advanced Server 14.9.0 includes the following enhancements and bug fixes:

Type Description Addresses

Security fix EDB Postgres Advanced Server (EPAS) SECURITY DEFINER functions and procedures may be hijacked via search_path. CVE-2023-41117

Security fix EDB Postgres Advanced Server (EPAS) dbms_aq helper function may run arbitrary SQL as a superuser. CVE-2023-41119

Security fix EDB Postgres Advanced Server (EPAS) permissions bypass via accesshistory() CVE-2023-41113

Security fix EDB Postgres Advanced Server (EPAS) UTL_FILE permission bypass CVE-2023-41118

Security fix EDB Postgres Advanced Server (EPAS) permission bypass for materialized views CVE-2023-41116

Security fix EDB Postgres Advanced Server (EPAS) authenticated users may fetch any URL CVE-2023-41114

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 21

https://www.postgresql.org/docs/release/14.11/
https://www.enterprisedb.com/docs/tools/edb_sqlpatch
https://www.enterprisedb.com/docs/security/advisories/cve202341117/
https://www.enterprisedb.com/docs/security/advisories/cve202341119/
https://www.enterprisedb.com/docs/security/advisories/cve202341113/
https://www.enterprisedb.com/docs/security/advisories/cve202341118/
https://www.enterprisedb.com/docs/security/advisories/cve202341116/
https://www.enterprisedb.com/docs/security/advisories/cve202341114/

Security fix EDB Postgres Advanced Server (EPAS) permission bypass for large objects CVE-2023-41115

Security fix EDB Postgres Advanced Server (EPAS) DBMS_PROFILER data may be removed without permission CVE-2023-41120

Bug fix Allowed subtypes in INDEX BY clause of the packaged collection. #1371

Bug fix Fixed %type resolution when pointing to a packaged type field. #1243

Bug fix Profile: Fixed upgrade when REUSE constraints were ENABLED / DISABLED . #92739

Bug fix Set correct collation for packaged cursor parameters. #92739

Bug fix Rolled back autonomous transaction creating pg_temp in case of error. #91614

Bug fix Added checks to ensure required WAL logging in EXCHANGE PARTITION command.

Bug fix Dumped/restored the sequences created for GENERATED AS IDENTITY constraint. #90658

Bug fix Skipped updating the last DDL time for the parent table in CREATE INDEX. #91270

Bug fix Removed existing package private procedure or function entries from the edb_last_ddl_time while replacing the package
body.

Type Description Addresses

Addresses

Entries in the Addresses column are either CVE numbers or, if preceded by #, a customer case number.

2.6 Version 14.8.0

EDB Postgres Advanced Server 14.8.0 includes the following enhancements and bug fixes:

Type Description Categor
y

Upstream
merge

Merged with community PostgreSQL 14.8. See the PostgreSQL 14.8 Release Notes for more information.

Enhancement SQL Profiler and Index Advisor are now extensions and can be downloaded from EDB Repos.

Bug fix Fixed an issue in which "PASSWORD EXPIRE AT" was dumped when the password status wasn't expired. This fix prevents marking the user account as expired after an
upgrade.

Profile

Bug fix Fixed the password profile behavior after the password grace time has changed.

Bug fix Fixed unexpected error for edb_enable_pruning parameter. [Support ticket: #89863]

Bug fix Fixed an issue when a user enters Ctrl-c (SIGINT) to cancel the load in EDB*Loader. [Support ticket: #88734]

Bug fix Set correct object descriptions for redaction policy to make pg_dump work cleanly with --clean and --if-exists options.

Bug fix Fixed pg_dump to dump password verify function for the user profile.

Bug fix Fixed assertion failure while terminating the process within the autonomous transaction.

Bug fix Fixed corner-case uninitialized-variable issues in SPL.

Bug fix Fixed memory leakage in anonymous blocks that use cast expressions. [Support ticket: #88816]

Bug fix Fixed EOF error from newly created dynamic partition when using edb_partition .

Bug fix Fixed an issue whereby pg_dump was dumping permissions of sequences. [Support ticket: #89466]

Bug fix Fixed query jumble to take edb_wrap into consideration while generating queryid .

Bug fix Fixed compiler warning in userenv() .

2.7 Version 14.7.0

EDB Postgres Advanced Server 14.7.0 includes the following enhancements and bug fixes:

Type Description

Upstream merge Merged with community PostgreSQL 14.7.0. See the community Release Notes for details.

Bug fix Fix possible server crash with autonomous transaction and temp table. [Support tickets: #89602 and #82695]

Bug fix Allow the password expiry feature to work with SCRAM authentication. [Support ticket: #89340]

Bug fix Fix Bulk API for update on an invisible tuple. [Support ticket: #86900]

Bug fix Fix command tag for the partition objects. [Support ticket: #86598]

Bug fix Fix dynamic partitioning to avoid duplicate partitions in high concurrency. [Support ticket: #89194]

Bug fix edb_audit : Add leader_pid and query_id to XML logs.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 22

https://www.enterprisedb.com/docs/security/advisories/cve202341115/
https://www.enterprisedb.com/docs/security/advisories/cve202341120/
https://www.postgresql.org/docs/release/14.8/
https://repos.enterprisedb.com/
https://www.postgresql.org/docs/release/14.7/

2.8 Version 14.6.0

EDB Postgres Advanced Server 14.6.0 includes the following enhancements and bug fixes:

Type Description ID

C
a
t
e
g
o
r
y

Upstream
merge

Merged with community PostgreSQL 14.6. See the community Release Notes for details.

Enhancement Enhance edb_filter_log.redact_password_commands so that passwords used in the CREATE/ALTER ROLE, CREATE/ALTER USER, and CREATE/ALTER GROUP syntax
will get redacted when using optional parameters. [Support Ticket: #86366]

DB-
1984

Enhancement Improve an error when you alter the table column dependent on the package variable. [Support Ticket: #85027] DB-
1950

Bug fix
Fix edbwrap to work under the FIPS-enabled system. This fix allows initdb to work with a FIPS-enabled system. [Support Ticket: #81283, #81673, #77660, #81457,
#85713, #86663, #87246]

DB-
1746

e
d
b
w
r
a
p

Bug fix Fix abnormal behavior of edb-audit by enabling shared memory access to an edb-audit background worker. [Support Ticket: #86002] DB-
1978

Bug fix Fix IMPORT FOREIGN SCHEMA failure when the remote database is community PostgreSQL. [Support Ticket: #86156] EXT-
29

p
o
s
t
g
r
e
s
_
f
d
w

Bug fix
EDB Postgres Advanced Server now provides the edb_fix_pg_proc.sql script to fix system function behavior on the existing v14 clusters created between 14.1.0 and
14.5.0. The script is inside <install_dir>/share/postgresql/ directory and you must run it manually. The edb_redwood_date setting is disabled in the
system_functions.sql file to avoid the same issue in the future.

DB-
2023

Bug fix Fix crash in type conversion function due to null input. DB-
1547

e
d
b
l
d
r

2.9 Version 14.5.0

EDB Postgres Advanced Server 14.5.0 includes the following bug fixes:

Type Description ID Catego
ry

Upstream
merge

Merged with community PostgreSQL 14.5. See the community Release Notes for details.

Bug fix For the re-entrant block, initialize all variables of type collection declared in that block to NULL to avoid incorrect results when the block is executed in a loop.
[Support Ticket: #83856]

DB-
1870

Bug fix Disable index_advisor if it is a physical replica. [Support Ticket: #83312] DB-
1819

Bug fix Fix unexpected failure when the PLpgSQL procedure with OUT parameters is called twice. [Support Ticket: #83289] DB-
1818

Bug fix Fix unexpected behavior of autonomous transactions with explicit COMMIT command in SPL block. [Support Ticket: #82695] DB-
1787

Bug fix Correct check to forbid UPDATE of declarative partitioned tables. DB-
237

edbldr

Bug fix Fix the reindexdb test by skipping the SYS schema. DB-
1783

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 23

https://www.postgresql.org/docs/release/14.6/
https://www.postgresql.org/docs/release/14.5/

Bug fix Fix invalid results from ecpg with NOT. [Support Ticket: #83334] DB-
1822 ecpg

Bug fix Fix the pg_amcheck test by skipping SYS schema. DB-
1785

Type Description ID Catego
ry

2.10 Version 14.4.0

EDB Postgres Advanced Server 14.4.0 includes the following bug fixes:

Type Description ID Category

Upstream merge Merged with community PostgreSQL 14.4. See the community Release Notes for details.

Bug fix Fix server crash while executing the function which returns TABLE and requires casting on attributes. [Support Ticket:
#81924]

DB-1778

Bug fix Fix \dn command query. [Support Ticket: #83263] DB-1777 psql

2.11 Version 14.3.0

EDB Postgres Advanced Server 14.3.0 includes the following bug fixes:

Type Description ID Category

Upstream merge Merged with community PostgreSQL 14.3. See the community Release Notes for details.

Bug fix Add syntax check for TABLE(...) clause. [Support Ticket: #81624] DB-1752

Bug fix Add an appropriate cast for const TIMESTAMP and TIMESTAMPTZ to the query pushed to the remote servers. [Support Ticket: #72928] DB-1493 oci_dblink

Bug fix Do not push expressions to remote servers involving INTERVAL data type since representation in EPAS/PostgreSQL is different. DB-1493 oci_dblink

Bug fix Fix NLS_TIMESTAMP_TZ_FORMAT setting in the remote connection so that timestamptz data gets the correct representation. DB-1493 oci_dblink

Bug fix Add logic of encoding conversion at the time of writing the data on the remote servers. DB-181 dblink_ora

Bug fix Fix possible server crash in the partition-wise join when PARALLEL hint is used [Support Ticket: #81246]. DB-1741

Bug fix Fix failing EXCHANGE ... PARTITION command for the newly added table when both are in the same transaction [Support Ticket:
#80298].

DB-1721 edb_partitioning

Bug fix Add restriction to use of include(@) & exclude(-) operator [Support Ticket: #70399]. DB-1690 edb_audit

Bug fix Fix warnings for the pldbgapi during initdb. DB-1186

2.12 Version 14.2.1

EDB Postgres Advanced Server 14.2.10 includes the following bug fixes:

Type Description ID Category

Upstream merge Merged with community PostgreSQL 14.2. See the community Release Notes for details.

Bug fix Fix encoding conversion at the time of writing data to a remote server. [Support Ticket: #76625] DB-1617 dblink_oci

Bug fix Add pg_dump support for security-relevant columns of edb_policy. DB-1438

Bug fix Prevent possible crash after implicit rollback handling Bind and Describe messages. DB-1451

Bug fix Fix ENQUEUE, DROP QUEUE, DROP QUEUE TABLE when default_with_rowids is enabled. [Support Ticket:
#74632]

DB-1500 dbms_aq

2.13 Version 14.1.0

New features, enhancements, bug fixes, and other changes in EDB Postgres Advanced Server 14 include:

Type Category Description

Upstream
merge

See the PostgreSQL 14 Release Notes for more information. See also PostgreSQL 14 Open Items.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 24

https://www.postgresql.org/docs/release/14.4/
https://www.postgresql.org/docs/release/14.3/
https://www.postgresql.org/docs/14/release-14-2.html
https://www.postgresql.org/docs/14/release-14.html
https://wiki.postgresql.org/wiki/PostgreSQL_14_Open_Items

Feature
Oracle
compatibility

Added the SUBPARTITION TEMPLATE clause, so that there is no need to specify the subpartition descriptor or each partition. Specify the TEMPLATE once and it
gets applied to every partition automatically.

Feature Oracle
compatibility

Enabled access to a partition by PARTITION (<partname>) or subpartition by SUBPARTITION (<subpartname>) clause, which allows the use of such
clauses for SELECT , UPDATE , INSERT , and DELETE queries.

Feature Oracle
compatibility

Added support for USERENV() , a function providing user environment and session related details.

Feature Oracle
compatibility

Added support for bitwise AND and OR functions and aggregates operation on a numeric data type and added bitwise & and \ operators for the numeric data
types.

Feature Oracle
compatibility

Added support for the NOCYCLE and ENABLE keywords.

Feature
Oracle
compatibility

Generalized CONNECT_BY syntax support:
- Allow the use of multiple PRIOR expressions.
- Use AND/OR with multiple conditions to allow any combination of Unary, Binary or Prior expressions.
- Use of Unary expressions.
- Make PRIOR optional with CONNECT BY query.
- Enhance the function to detect the cycle, so that it can work with multiple PRIOR expressions.
- Support PRIOR in the target list.

Feature
Oracle
compatibility

Enhanced NVL2 to use ANYCOMPATIBLE pseudo-type. Allows the NVL2 function to support considerably more argument-type combinations. For example, the
NVL2 version can match a call with one INTEGER and multiple BIGINT arguments and the INTEGER is automatically promoted to BIGINT . With the previous
ANYELEMENT version, you had to cast the INTEGER explicitly.

Feature Oracle
compatibility

Added traceability for when an object is created and last modified by a DDL operation.

Feature Oracle
compatibility

When a user tries to create a sequence with an upper boundary out of range, a warning message is logged.

Feature Oracle
compatibility

When a user creates a sequence specifying the NOORDER keyword, the keyword is considered a NOOP keyword and a warning message is logged which states that
specifying the NOORDER keyword has no beneficial effect in EDB Postgres Advanced and is ignored.

Feature Oracle
compatibility

Trailing zeros with TO_CHAR(numeric) are removed to be more compatible with Oracle.

Feature Oracle
compatibility

Added support for using an alias on table names in INSERT statements for accessing a partition or subpartition with SELECT , INSERT , UPDATE , or DELETE
statements, so that the alias can be used to qualify the table columns. For example, INSERT INTO table_name t (t.col1) VALUES (10);

Feature
Oracle
compatibility

Enhanced DBMS_SQL package functions to accept NUMBER instead of INTEGER so that both INTEGER to NUMBER functions can accept both NUMBER and
INTEGER type values. Since these functions are compatible with both NUMBER and INTEGER , EDB Postgres Advanced Server restricts the input range within the
INTEGER 's limit.

Feature Security
Added support for selective auditing of objects for specific DML statements such as SELECT , INSERT , UPDATE , or DELETE and to specify either include (@) or
exclude (-) particular statement type for a relation. For more information see Object Auditing.

Feature Security
Added capability to control the space consumed by the audit log directory and to manage the audit log files, which can be configured through a new
edb_audit_archiver configuration parameter. The edb_audit_archiver parameter helps in compressing the old audit log files by specifying the

compression command and executing the command before removing the old audit log files.

Feature Security Provided an option to audit the SET commands. To enable this you need to modify the log_statement GUC.

Feature General
functionality

Enabled creation of ROWID columns with IMPORT FOREIGN SCHEMA .

Feature General
functionality

Began using global sequences for ROWID so that they are unique across the database and can be used on the partitioned tables.

Feature General
functionality

Allowed dynamic partition creation to non-owner insert queries.

Feature General
functionality

Extended \h support to work with EDB Postgres Advanced Server objects so that users can see the syntax on a psql prompt.

Feature General
functionality

Added tab-completion support for EDB Postgres Advanced Server syntaxes.

Type Category Description

Included components

The following components are included and have been tested in the EDB Postgres Advanced Server 14.1.0:

Database Server 14.1.0
Clone Schema 1.16
Parallel Clone 1.9
index advisor
pgAgent 4.2.2
pldebugger 1.1
plperl
Plpython 3
pltcl
SSLUtils 1.3
SQL Profiler 4.0
SQL Protect

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 25

3 Supported platforms

EDB Postgres Advanced Server v14 supports installations on Linux and Windows platforms. See Product Compatibility for details.

4 Requirements

Hardware requirements

The following installation requirements assume you select the default options during the installation process. The minimum hardware requirements to install and run EDB Postgres Advanced Server are:

1 GHz processor
2 GB of RAM
512 MB of HDD

Additional disk space is required for data or supporting components.

Software requirements

User privileges

To perform an EDB Postgres Advanced Server installation on a Linux system you must have superuser or administrator or sudo privileges.

To perform an EDB Postgres Advanced Server installation on a Windows system you must have administrator privilege. If you are installing EDB Postgres Advanced Server on a Windows system that is
configured with User Account Control enabled, you can assume sufficient privileges to invoke the graphical installer by right clicking on the name of the installer and selecting Run as
administrator from the context menu.

Windows-specific software requirements

Apply the Windows operating system updates before invoking the installer. If the installer encounters errors during the installation process, exit the installation and ensure that your Windows version is
up-to-date before restarting the installer.

5 Limitations

The following limitations apply:

EDB recommends you don't store the data directory of a production database on an NFS file system. If you plan to go against this recommendation, see the 19.2.2.1. NFS section in the
PostgreSQL documentation for guidance about configuration.
The LLVM JIT package is supported on RHEL or CentOS x86 only.

6 Deployment options

You can deploy and install EDB products using the following methods:

BigAnimal is a fully managed database-as-a-service with built-in Oracle compatibility, running in your cloud account and operated by the Postgres experts. BigAnimal makes it easy to set up,
manage, and scale your databases. Provision PostgreSQL or EDB Postgres Advanced Server with Oracle compatibility.

EDB PostgreSQL for Kubernetes is an operator designed by EnterpriseDB to manage PostgreSQL workloads on any supported Kubernetes cluster running in private, public, hybrid, or multi-cloud
environments. EDB PostgreSQL for Kubernetes adheres to DevOps principles and concepts such as declarative configuration and immutable infrastructure.

Installation using native packages or installers:

Installing EDB Postgres Advanced Server

7 Installing EDB Postgres Advanced Server

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 26

https://www.enterprisedb.com/platform-compatibility#epas
https://www.postgresql.org/docs/14/creating-cluster.html#CREATING-CLUSTER-FILESYSTEM
https://www.enterprisedb.com/docs/biganimal/latest
https://www.enterprisedb.com/docs/postgres_for_kubernetes/latest/

Select a link to access the applicable installation instructions:

Linux x86-64 (amd64)

Red Hat Enterprise Linux (RHEL) and derivatives

RHEL 9, RHEL 8, RHEL 7

Oracle Linux (OL) 9, Oracle Linux (OL) 8, Oracle Linux (OL) 7

Rocky Linux 9, Rocky Linux 8

AlmaLinux 9, AlmaLinux 8

CentOS 7

SUSE Linux Enterprise (SLES)

SLES 15, SLES 12

Debian and derivatives

Ubuntu 22.04, Ubuntu 20.04

Debian 11, Debian 10

Linux IBM Power (ppc64le)

Red Hat Enterprise Linux (RHEL) and derivatives

RHEL 9, RHEL 8, RHEL 7

SUSE Linux Enterprise (SLES)

SLES 15, SLES 12

Windows

Windows Server 2019

7.1 Installing EDB Postgres Advanced Server on Linux x86 (amd64)

Operating system-specific install instructions are described in the corresponding documentation:

Red Hat Enterprise Linux (RHEL) and derivatives

RHEL 9

RHEL 8

RHEL 7

Oracle Linux (OL) 9

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 27

Oracle Linux (OL) 8

Oracle Linux (OL) 7

Rocky Linux 9

Rocky Linux 8

AlmaLinux 9

AlmaLinux 8

CentOS 7

SUSE Linux Enterprise (SLES)

SLES 15

SLES 12

Debian and derivatives

Ubuntu 22.04

Ubuntu 20.04

Debian 11

Debian 10

7.1.1 Installing EDB Postgres Advanced Server on RHEL 9 or OL 9 x86_64

Prerequisites

Before you begin the installation process:

Set up the EDB repository.

Setting up the repository is a one-time task. If you have already set up your repository, you don't need to perform this step.

To determine if your repository exists, enter this command:

dnf repolist | grep enterprisedb

If no output is generated, the repository isn't installed.

To set up the EDB repository:

1. Go to EDB repositories.

2. Select the button that provides access to the EDB repository.

3. Select the platform and software that you want to download.

4. Follow the instructions for setting up the EDB repository.

Install the EPEL repository:

sudo dnf -y install https://dl.fedoraproject.org/pub/epel/epel-release-latest-9.noarch.rpm

If you are also installing PostGIS, enable additional repositories to resolve dependencies:

ARCH=$(/bin/arch) subscription-manager repos --enable "codeready-builder-for-rhel-9-${ARCH}-rpms"

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 28

https://www.enterprisedb.com/repos-downloads

Note

If you are using a public cloud RHEL image, subscription manager may not be enabled and enabling it may incur unnecessary charges. Equivalent packages may be available
under a different name such as codeready-builder-for-rhel-9-rhui-rpms . Consult the documentation for the RHEL image you are using to determine how to install
codeready-builder .

Install the package

sudo dnf -y install edb-as<xx>-server

Where <xx> is the version of the EDB Postgres Advanced Server you're installing. For example, if you're installing version 14, the package name is edb-as14-server .

To install an individual component:

sudo dnf -y install <package_name>

Where package_name can be any of the available packages from the available package list.

Installing the server package creates an operating system user named enterprisedb. The user is assigned a user ID (UID) and a group ID (GID). The user has no default password. Use the passwd
command to assign a password for the user. The default shell for the user is bash , and the user's home directory is /var/lib/edb/as14 .

Initial configuration

Getting started with your cluster involves logging in, ensuring the installation and initial configuration was successful, connecting to your cluster, and creating the user password.

First, you need to initialize and start the database cluster. The edb-as-14-setup script creates a cluster in Oracle-compatible mode with the edb sample database in the cluster. To create a
cluster in Postgres mode, see Initializing the cluster in Postgres mode.

sudo PGSETUP_INITDB_OPTIONS="-E UTF-8" /usr/edb/as14/bin/edb-as-14-setup initdb

sudo systemctl start edb-as-14

To work in your cluster, log in as the enterprisedb user. Connect to the database server using the psql command-line client. Alternatively, you can use a client of your choice with the appropriate
connection string.

sudo su - enterprisedb

psql edb

The server runs with the peer or ident permission by default. You can change the authentication method by modifying the pg_hba.conf file.

Before changing the authentication method, assign a password to the database superuser, enterprisedb. For more information on changing the authentication, see Modifying the pg_hba.conf file.

Experiment

Now you're ready to create and connect to a database, create a table, insert data in a table, and view the data from the table.

First, use psql to create a database named hr to hold human resource information.

CREATE DATABASE

Connect to the hr database inside psql:

\c hr

psql (14.0.0, server 14.0.0)

ALTER ROLE enterprisedb IDENTIFIED BY password;

running in psql
CREATE DATABASE
hr;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 29

You are now connected to database "hr" as user "enterprisedb".

Create columns to hold department numbers, unique department names, and locations:

CREATE TABLE public.dept (deptno numeric(2) NOT NULL CONSTRAINT dept_pk
PRIMARY KEY, dname varchar(14) CONSTRAINT dept_dname_uq UNIQUE, loc
varchar(13));

CREATE TABLE

Insert values into the dept table:

INSERT INTO dept VALUES (10,'ACCOUNTING','NEW YORK');

INSERT 0 1

INSERT into dept VALUES (20,'RESEARCH','DALLAS');

INSERT 0 1

View the table data by selecting the values from the table:

SELECT * FROM dept;

deptno | dname | loc
--------+------------+----------
10 | ACCOUNTING | NEW YORK
20 | RESEARCH | DALLAS
(2 rows)

7.1.2 Installing EDB Postgres Advanced Server on RHEL 8 or OL 8 x86_64

Prerequisites

Before you begin the installation process:

Set up the EDB repository.

Setting up the repository is a one-time task. If you have already set up your repository, you don't need to perform this step.

To determine if your repository exists, enter this command:

dnf repolist | grep enterprisedb

If no output is generated, the repository isn't installed.

To set up the EDB repository:

1. Go to EDB repositories.

2. Select the button that provides access to the EDB repository.

3. Select the platform and software that you want to download.

4. Follow the instructions for setting up the EDB repository.

Install the EPEL repository:

sudo dnf -y install https://dl.fedoraproject.org/pub/epel/epel-release-latest-8.noarch.rpm

If you're also installing PostGIS, enable additional repositories to resolve dependencies:

ARCH=$(/bin/arch) subscription-manager repos --enable "codeready-builder-for-rhel-8-${ARCH}-rpms"

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 30

https://www.enterprisedb.com/repos-downloads

Note

If you're using a public cloud RHEL image, subscription manager might not be enabled. Enabling it might incur unnecessary charges. Equivalent packages might be available
under a different name, such as codeready-builder-for-rhel-8-rhui-rpms . To determine how to install codeready-builder , consult the documentation for the RHEL
image you're using.

Install the package

sudo dnf -y install edb-as<xx>-server

Where <xx> is the version of the EDB Postgres Advanced Server you're installing. For example, if you're installing version 14, the package name is edb-as14-server .

To install an individual component:

sudo dnf -y install <package_name>

Where package_name can be any of the available packages from the available package list.

Installing the server package creates an operating system user named enterprisedb. The user is assigned a user ID (UID) and a group ID (GID). The user has no default password. Use the passwd
command to assign a password for the user. The default shell for the user is bash , and the user's home directory is /var/lib/edb/as14 .

Initial configuration

Getting started with your cluster involves logging in, ensuring the installation and initial configuration was successful, connecting to your cluster, and creating the user password.

First, you need to initialize and start the database cluster. The edb-as-14-setup script creates a cluster in Oracle-compatible mode with the edb sample database in the cluster. To create a
cluster in Postgres mode, see Initializing the cluster in Postgres mode.

sudo PGSETUP_INITDB_OPTIONS="-E UTF-8" /usr/edb/as14/bin/edb-as-14-setup initdb

sudo systemctl start edb-as-14

To work in your cluster, log in as the enterprisedb user. Connect to the database server using the psql command-line client. Alternatively, you can use a client of your choice with the appropriate
connection string.

sudo su - enterprisedb

psql edb

The server runs with the peer or ident permission by default. You can change the authentication method by modifying the pg_hba.conf file.

Before changing the authentication method, assign a password to the database superuser, enterprisedb. For more information on changing the authentication, see Modifying the pg_hba.conf file.

Experiment

Now you're ready to create and connect to a database, create a table, insert data in a table, and view the data from the table.

First, use psql to create a database named hr to hold human resource information.

CREATE DATABASE

Connect to the hr database inside psql:

\c hr

psql (14.0.0, server 14.0.0)

ALTER ROLE enterprisedb IDENTIFIED BY password;

running in psql
CREATE DATABASE
hr;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 31

You are now connected to database "hr" as user "enterprisedb".

Create columns to hold department numbers, unique department names, and locations:

CREATE TABLE public.dept (deptno numeric(2) NOT NULL CONSTRAINT dept_pk
PRIMARY KEY, dname varchar(14) CONSTRAINT dept_dname_uq UNIQUE, loc
varchar(13));

CREATE TABLE

Insert values into the dept table:

INSERT INTO dept VALUES (10,'ACCOUNTING','NEW YORK');

INSERT 0 1

INSERT into dept VALUES (20,'RESEARCH','DALLAS');

INSERT 0 1

View the table data by selecting the values from the table:

SELECT * FROM dept;

deptno | dname | loc
--------+------------+----------
10 | ACCOUNTING | NEW YORK
20 | RESEARCH | DALLAS
(2 rows)

7.1.3 Installing EDB Postgres Advanced Server on AlmaLinux 9 or Rocky Linux 9 x86_64

Prerequisites

Before you begin the installation process:

Set up the EDB repository.

Setting up the repository is a one-time task. If you have already set up your repository, you don't need to perform this step.

To determine if your repository exists, enter this command:

dnf repolist | grep enterprisedb

If no output is generated, the repository isn't installed.

To set up the EDB repository:

1. Go to EDB repositories.

2. Select the button that provides access to the EDB repository.

3. Select the platform and software that you want to download.

4. Follow the instructions for setting up the EDB repository.

Install the EPEL repository:

sudo dnf -y install epel-release

Enable additional repositories to resolve dependencies:

sudo dnf config-manager --set-enabled crb

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 32

https://www.enterprisedb.com/repos-downloads

Install the package

sudo dnf -y install edb-as<xx>-server

Where <xx> is the version of the EDB Postgres Advanced Server you're installing. For example, if you're installing version 14, the package name is edb-as14-server .

To install an individual component:

sudo dnf -y install <package_name>

Where package_name can be any of the available packages from the available package list.

Installing the server package creates an operating system user named enterprisedb. The user is assigned a user ID (UID) and a group ID (GID). The user has no default password. Use the passwd
command to assign a password for the user. The default shell for the user is bash , and the user's home directory is /var/lib/edb/as14 .

Initial configuration

Getting started with your cluster involves logging in, ensuring the installation and initial configuration was successful, connecting to your cluster, and creating the user password.

First, you need to initialize and start the database cluster. The edb-as-14-setup script creates a cluster in Oracle-compatible mode with the edb sample database in the cluster. To create a
cluster in Postgres mode, see Initializing the cluster in Postgres mode.

sudo PGSETUP_INITDB_OPTIONS="-E UTF-8" /usr/edb/as14/bin/edb-as-14-setup initdb

sudo systemctl start edb-as-14

To work in your cluster, log in as the enterprisedb user. Connect to the database server using the psql command-line client. Alternatively, you can use a client of your choice with the appropriate
connection string.

sudo su - enterprisedb

psql edb

The server runs with the peer or ident permission by default. You can change the authentication method by modifying the pg_hba.conf file.

Before changing the authentication method, assign a password to the database superuser, enterprisedb. For more information on changing the authentication, see Modifying the pg_hba.conf file.

Experiment

Now you're ready to create and connect to a database, create a table, insert data in a table, and view the data from the table.

First, use psql to create a database named hr to hold human resource information.

CREATE DATABASE

Connect to the hr database inside psql:

\c hr

psql (14.0.0, server 14.0.0)
You are now connected to database "hr" as user "enterprisedb".

Create columns to hold department numbers, unique department names, and locations:

CREATE TABLE public.dept (deptno numeric(2) NOT NULL CONSTRAINT dept_pk
PRIMARY KEY, dname varchar(14) CONSTRAINT dept_dname_uq UNIQUE, loc
varchar(13));

ALTER ROLE enterprisedb IDENTIFIED BY password;

running in psql
CREATE DATABASE
hr;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 33

CREATE TABLE

Insert values into the dept table:

INSERT INTO dept VALUES (10,'ACCOUNTING','NEW YORK');

INSERT 0 1

INSERT into dept VALUES (20,'RESEARCH','DALLAS');

INSERT 0 1

View the table data by selecting the values from the table:

SELECT * FROM dept;

deptno | dname | loc
--------+------------+----------
10 | ACCOUNTING | NEW YORK
20 | RESEARCH | DALLAS
(2 rows)

7.1.4 Installing EDB Postgres Advanced Server on AlmaLinux 8 or Rocky Linux 8 x86_64

Prerequisites

Before you begin the installation process:

Set up the EDB repository.

Setting up the repository is a one-time task. If you have already set up your repository, you don't need to perform this step.

To determine if your repository exists, enter this command:

dnf repolist | grep enterprisedb

If no output is generated, the repository isn't installed.

To set up the EDB repository:

1. Go to EDB repositories.

2. Select the button that provides access to the EDB repository.

3. Select the platform and software that you want to download.

4. Follow the instructions for setting up the EDB repository.

Install the EPEL repository:

sudo dnf -y install epel-release

Enable additional repositories to resolve dependencies:

sudo dnf config-manager --set-enabled powertools

Install the package

sudo dnf -y install edb-as<xx>-server

Where <xx> is the version of the EDB Postgres Advanced Server you're installing. For example, if you're installing version 14, the package name is edb-as14-server .

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 34

https://www.enterprisedb.com/repos-downloads

To install an individual component:

sudo dnf -y install <package_name>

Where package_name can be any of the available packages from the available package list.

Installing the server package creates an operating system user named enterprisedb. The user is assigned a user ID (UID) and a group ID (GID). The user has no default password. Use the passwd
command to assign a password for the user. The default shell for the user is bash , and the user's home directory is /var/lib/edb/as14 .

Initial configuration

Getting started with your cluster involves logging in, ensuring the installation and initial configuration was successful, connecting to your cluster, and creating the user password.

First, you need to initialize and start the database cluster. The edb-as-14-setup script creates a cluster in Oracle-compatible mode with the edb sample database in the cluster. To create a
cluster in Postgres mode, see Initializing the cluster in Postgres mode.

sudo PGSETUP_INITDB_OPTIONS="-E UTF-8" /usr/edb/as14/bin/edb-as-14-setup initdb

sudo systemctl start edb-as-14

To work in your cluster, log in as the enterprisedb user. Connect to the database server using the psql command-line client. Alternatively, you can use a client of your choice with the appropriate
connection string.

sudo su - enterprisedb

psql edb

The server runs with the peer or ident permission by default. You can change the authentication method by modifying the pg_hba.conf file.

Before changing the authentication method, assign a password to the database superuser, enterprisedb. For more information on changing the authentication, see Modifying the pg_hba.conf file.

Experiment

Now you're ready to create and connect to a database, create a table, insert data in a table, and view the data from the table.

First, use psql to create a database named hr to hold human resource information.

CREATE DATABASE

Connect to the hr database inside psql:

\c hr

psql (14.0.0, server 14.0.0)
You are now connected to database "hr" as user "enterprisedb".

Create columns to hold department numbers, unique department names, and locations:

CREATE TABLE public.dept (deptno numeric(2) NOT NULL CONSTRAINT dept_pk
PRIMARY KEY, dname varchar(14) CONSTRAINT dept_dname_uq UNIQUE, loc
varchar(13));

CREATE TABLE

Insert values into the dept table:

INSERT INTO dept VALUES (10,'ACCOUNTING','NEW YORK');

ALTER ROLE enterprisedb IDENTIFIED BY password;

running in psql
CREATE DATABASE
hr;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 35

INSERT 0 1

INSERT into dept VALUES (20,'RESEARCH','DALLAS');

INSERT 0 1

View the table data by selecting the values from the table:

SELECT * FROM dept;

deptno | dname | loc
--------+------------+----------
10 | ACCOUNTING | NEW YORK
20 | RESEARCH | DALLAS
(2 rows)

7.1.5 Installing EDB Postgres Advanced Server on RHEL 7 or OL 7 x86_64

Prerequisites

Before you begin the installation process:

Set up the EDB repository.

Setting up the repository is a one-time task. If you have already set up your repository, you don't need to perform this step.

To determine if your repository exists, enter this command:

dnf repolist | grep enterprisedb

If no output is generated, the repository isn't installed.

To set up the EDB repository:

1. Go to EDB repositories.

2. Select the button that provides access to the EDB repository.

3. Select the platform and software that you want to download.

4. Follow the instructions for setting up the EDB repository.

Install the EPEL repository:

sudo yum -y install https://dl.fedoraproject.org/pub/epel/epel-release-latest-7.noarch.rpm

Enable additional repositories to resolve dependencies:

subscription-manager repos --enable "rhel-*-optional-rpms" --enable "rhel-*-extras-rpms" --enable "rhel-ha-for-rhel-*-server-rpms"

Install the package

sudo yum -y install edb-as<xx>-server

Where <xx> is the version of the EDB Postgres Advanced Server you're installing. For example, if you're installing version 14, the package name is edb-as14-server .

To install an individual component:

sudo yum -y install <package_name>

Where package_name can be any of the available packages from the available package list.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 36

https://www.enterprisedb.com/repos-downloads

Installing the server package creates an operating system user named enterprisedb. The user is assigned a user ID (UID) and a group ID (GID). The user has no default password. Use the passwd
command to assign a password for the user. The default shell for the user is bash , and the user's home directory is /var/lib/edb/as14 .

Initial configuration

Getting started with your cluster involves logging in, ensuring the installation and initial configuration was successful, connecting to your cluster, and creating the user password.

First, you need to initialize and start the database cluster. The edb-as-14-setup script creates a cluster in Oracle-compatible mode with the edb sample database in the cluster. To create a
cluster in Postgres mode, see Initializing the cluster in Postgres mode.

sudo PGSETUP_INITDB_OPTIONS="-E UTF-8" /usr/edb/as14/bin/edb-as-14-setup initdb

sudo systemctl start edb-as-14

To work in your cluster, log in as the enterprisedb user. Connect to the database server using the psql command-line client. Alternatively, you can use a client of your choice with the appropriate
connection string.

sudo su - enterprisedb

psql edb

The server runs with the peer or ident permission by default. You can change the authentication method by modifying the pg_hba.conf file.

Before changing the authentication method, assign a password to the database superuser, enterprisedb. For more information on changing the authentication, see Modifying the pg_hba.conf file.

Experiment

Now you're ready to create and connect to a database, create a table, insert data in a table, and view the data from the table.

First, use psql to create a database named hr to hold human resource information.

CREATE DATABASE

Connect to the hr database inside psql:

\c hr

psql (14.0.0, server 14.0.0)
You are now connected to database "hr" as user "enterprisedb".

Create columns to hold department numbers, unique department names, and locations:

CREATE TABLE public.dept (deptno numeric(2) NOT NULL CONSTRAINT dept_pk
PRIMARY KEY, dname varchar(14) CONSTRAINT dept_dname_uq UNIQUE, loc
varchar(13));

CREATE TABLE

Insert values into the dept table:

INSERT INTO dept VALUES (10,'ACCOUNTING','NEW YORK');

INSERT 0 1

INSERT into dept VALUES (20,'RESEARCH','DALLAS');

ALTER ROLE enterprisedb IDENTIFIED BY password;

running in psql
CREATE DATABASE
hr;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 37

INSERT 0 1

View the table data by selecting the values from the table:

SELECT * FROM dept;

deptno | dname | loc
--------+------------+----------
10 | ACCOUNTING | NEW YORK
20 | RESEARCH | DALLAS
(2 rows)

7.1.6 Installing EDB Postgres Advanced Server on CentOS 7 x86_64

Prerequisites

Before you begin the installation process:

Set up the EDB repository.

Setting up the repository is a one-time task. If you have already set up your repository, you don't need to perform this step.

To determine if your repository exists, enter this command:

dnf repolist | grep enterprisedb

If no output is generated, the repository isn't installed.

To set up the EDB repository:

1. Go to EDB repositories.

2. Select the button that provides access to the EDB repository.

3. Select the platform and software that you want to download.

4. Follow the instructions for setting up the EDB repository.

Install the EPEL repository:

sudo yum -y install https://dl.fedoraproject.org/pub/epel/epel-release-latest-7.noarch.rpm

Install the package

sudo yum -y install edb-as<xx>-server

Where <xx> is the version of the EDB Postgres Advanced Server you're installing. For example, if you're installing version 14, the package name is edb-as14-server .

To install an individual component:

sudo yum -y install <package_name>

Where package_name can be any of the available packages from the available package list.

Installing the server package creates an operating system user named enterprisedb. The user is assigned a user ID (UID) and a group ID (GID). The user has no default password. Use the passwd
command to assign a password for the user. The default shell for the user is bash , and the user's home directory is /var/lib/edb/as14 .

Initial configuration

Getting started with your cluster involves logging in, ensuring the installation and initial configuration was successful, connecting to your cluster, and creating the user password.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 38

https://www.enterprisedb.com/repos-downloads

First, you need to initialize and start the database cluster. The edb-as-14-setup script creates a cluster in Oracle-compatible mode with the edb sample database in the cluster. To create a
cluster in Postgres mode, see Initializing the cluster in Postgres mode.

sudo PGSETUP_INITDB_OPTIONS="-E UTF-8" /usr/edb/as14/bin/edb-as-14-setup initdb

sudo systemctl start edb-as-14

To work in your cluster, log in as the enterprisedb user. Connect to the database server using the psql command-line client. Alternatively, you can use a client of your choice with the appropriate
connection string.

sudo su - enterprisedb

psql edb

The server runs with the peer or ident permission by default. You can change the authentication method by modifying the pg_hba.conf file.

Before changing the authentication method, assign a password to the database superuser, enterprisedb. For more information on changing the authentication, see Modifying the pg_hba.conf file.

Experiment

Now you're ready to create and connect to a database, create a table, insert data in a table, and view the data from the table.

First, use psql to create a database named hr to hold human resource information.

CREATE DATABASE

Connect to the hr database inside psql:

\c hr

psql (14.0.0, server 14.0.0)
You are now connected to database "hr" as user "enterprisedb".

Create columns to hold department numbers, unique department names, and locations:

CREATE TABLE public.dept (deptno numeric(2) NOT NULL CONSTRAINT dept_pk
PRIMARY KEY, dname varchar(14) CONSTRAINT dept_dname_uq UNIQUE, loc
varchar(13));

CREATE TABLE

Insert values into the dept table:

INSERT INTO dept VALUES (10,'ACCOUNTING','NEW YORK');

INSERT 0 1

INSERT into dept VALUES (20,'RESEARCH','DALLAS');

INSERT 0 1

View the table data by selecting the values from the table:

SELECT * FROM dept;

deptno | dname | loc
--------+------------+----------
10 | ACCOUNTING | NEW YORK

ALTER ROLE enterprisedb IDENTIFIED BY password;

running in psql
CREATE DATABASE
hr;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 39

20 | RESEARCH | DALLAS
(2 rows)

7.1.7 Installing EDB Postgres Advanced Server on SLES 15 x86_64

Prerequisites

Before you begin the installation process:

Set up the EDB repository.

Setting up the repository is a one-time task. If you have already set up your repository, you don't need to perform this step.

To determine if your repository exists, enter this command:

zypper lr -E | grep enterprisedb

If no output is generated, the repository isn't installed.

To set up the EDB repository:

1. Go to EDB repositories.

2. Select the button that provides access to the EDB repository.

3. Select the platform and software that you want to download.

4. Follow the instructions for setting up the EDB repository.

Activate the required SUSE module:

sudo SUSEConnect -p PackageHub/15.4/x86_64

Refresh the metadata:

sudo zypper refresh

Install the package

sudo zypper -n install edb-as<xx>-server

Where <xx> is the version of the EDB Postgres Advanced server you are installing. For example, if you are installing version 14, the package name would be edb-as14-server .

To install an individual component:

sudo zypper -n install <package_name>

Where package_name can be any of the available packages from the available package list.

Initial configuration

Getting started with your cluster involves logging in, ensuring the installation and initial configuration was successful, connecting to your cluster, and creating the user password.

First, you need to initialize and start the database cluster. The edb-as-14-setup script creates a cluster in Oracle-compatible mode with the edb sample database in the cluster. To create a
cluster in Postgres mode, see Initializing the cluster in Postgres mode.

sudo PGSETUP_INITDB_OPTIONS="-E UTF-8" /usr/edb/as14/bin/edb-as-14-setup initdb

sudo systemctl start edb-as-14

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 40

https://www.enterprisedb.com/repos-downloads

To work in your cluster, log in as the enterprisedb user. Connect to the database server using the psql command-line client. Alternatively, you can use a client of your choice with the appropriate
connection string.

sudo su - enterprisedb

psql edb

The server runs with the peer or ident permission by default. You can change the authentication method by modifying the pg_hba.conf file.

Before changing the authentication method, assign a password to the database superuser, enterprisedb. For more information on changing the authentication, see Modifying the pg_hba.conf file.

Experiment

Now you're ready to create and connect to a database, create a table, insert data in a table, and view the data from the table.

First, use psql to create a database named hr to hold human resource information.

CREATE DATABASE

Connect to the hr database inside psql:

\c hr

psql (14.0.0, server 14.0.0)
You are now connected to database "hr" as user "enterprisedb".

Create columns to hold department numbers, unique department names, and locations:

CREATE TABLE public.dept (deptno numeric(2) NOT NULL CONSTRAINT dept_pk
PRIMARY KEY, dname varchar(14) CONSTRAINT dept_dname_uq UNIQUE, loc
varchar(13));

CREATE TABLE

Insert values into the dept table:

INSERT INTO dept VALUES (10,'ACCOUNTING','NEW YORK');

INSERT 0 1

INSERT into dept VALUES (20,'RESEARCH','DALLAS');

INSERT 0 1

View the table data by selecting the values from the table:

SELECT * FROM dept;

deptno | dname | loc
--------+------------+----------
10 | ACCOUNTING | NEW YORK
20 | RESEARCH | DALLAS
(2 rows)

7.1.8 Installing EDB Postgres Advanced Server on SLES 12 x86_64

ALTER ROLE enterprisedb IDENTIFIED BY password;

running in psql
CREATE DATABASE
hr;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 41

Prerequisites

Before you begin the installation process:

Set up the EDB repository.

Setting up the repository is a one-time task. If you have already set up your repository, you don't need to perform this step.

To determine if your repository exists, enter this command:

zypper lr -E | grep enterprisedb

If no output is generated, the repository isn't installed.

To set up the EDB repository:

1. Go to EDB repositories.

2. Select the button that provides access to the EDB repository.

3. Select the platform and software that you want to download.

4. Follow the instructions for setting up the EDB repository.

Activate the required SUSE module:

sudo SUSEConnect -p PackageHub/12.5/x86_64
sudo SUSEConnect -p sle-sdk/12.5/x86_64

Refresh the metadata:

sudo zypper refresh

Install the package

sudo zypper -n install edb-as<xx>-server

Where <xx> is the version of the EDB Postgres Advanced server you are installing. For example, if you are installing version 14, the package name would be edb-as14-server .

To install an individual component:

sudo zypper -n install <package_name>

Where package_name can be any of the available packages from the available package list.

Initial configuration

Getting started with your cluster involves logging in, ensuring the installation and initial configuration was successful, connecting to your cluster, and creating the user password.

First, you need to initialize and start the database cluster. The edb-as-14-setup script creates a cluster in Oracle-compatible mode with the edb sample database in the cluster. To create a
cluster in Postgres mode, see Initializing the cluster in Postgres mode.

sudo PGSETUP_INITDB_OPTIONS="-E UTF-8" /usr/edb/as14/bin/edb-as-14-setup initdb

sudo systemctl start edb-as-14

To work in your cluster, log in as the enterprisedb user. Connect to the database server using the psql command-line client. Alternatively, you can use a client of your choice with the appropriate
connection string.

sudo su - enterprisedb

psql edb

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 42

https://www.enterprisedb.com/repos-downloads

The server runs with the peer or ident permission by default. You can change the authentication method by modifying the pg_hba.conf file.

Before changing the authentication method, assign a password to the database superuser, enterprisedb. For more information on changing the authentication, see Modifying the pg_hba.conf file.

Experiment

Now you're ready to create and connect to a database, create a table, insert data in a table, and view the data from the table.

First, use psql to create a database named hr to hold human resource information.

CREATE DATABASE

Connect to the hr database inside psql:

\c hr

psql (14.0.0, server 14.0.0)
You are now connected to database "hr" as user "enterprisedb".

Create columns to hold department numbers, unique department names, and locations:

CREATE TABLE public.dept (deptno numeric(2) NOT NULL CONSTRAINT dept_pk
PRIMARY KEY, dname varchar(14) CONSTRAINT dept_dname_uq UNIQUE, loc
varchar(13));

CREATE TABLE

Insert values into the dept table:

INSERT INTO dept VALUES (10,'ACCOUNTING','NEW YORK');

INSERT 0 1

INSERT into dept VALUES (20,'RESEARCH','DALLAS');

INSERT 0 1

View the table data by selecting the values from the table:

SELECT * FROM dept;

deptno | dname | loc
--------+------------+----------
10 | ACCOUNTING | NEW YORK
20 | RESEARCH | DALLAS
(2 rows)

7.1.9 Installing EDB Postgres Advanced Server on Ubuntu 22.04 x86_64

Prerequisites

Before you begin the installation process:

Set up the EDB repository.

ALTER ROLE enterprisedb IDENTIFIED BY password;

running in psql
CREATE DATABASE
hr;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 43

Setting up the repository is a one-time task. If you have already set up your repository, you don't need to perform this step.

To determine if your repository exists, enter this command:

apt-cache search enterprisedb

If no output is generated, the repository isn't installed.

To set up the EDB repository:

1. Go to EDB repositories.

2. Select the button that provides access to the EDB repository.

3. Select the platform and software that you want to download.

4. Follow the instructions for setting up the EDB repository.

Install the package

sudo apt-get -y install edb-as<xx>-server

Where <xx> is the version of the EDB Postgres Advanced Server you're installing. For example, if you're installing version 14, the package name is edb-as14-server .

To install an individual component:

sudo apt-get -y install <package_name>

Where package_name can be any of the available packages from the available package list.

Initial configuration

This section steps you through getting started with your cluster including logging in, ensuring the installation was successful, connecting to your cluster, and creating the user password.

To work in your cluster, log in as the enterprisedb user. Connect to the database server using the psql command-line client. Alternatively, you can use a client of your choice with the appropriate
connection string.

sudo su - enterprisedb

psql edb

The server runs with the peer or ident permission by default. You can change the authentication method by modifying the pg_hba.conf file.

Before changing the authentication method, assign a password to the database superuser, enterprisedb. For more information on changing the authentication, see Modifying the pg_hba.conf file.

Experiment

Now you're ready to create and connect to a database, create a table, insert data in a table, and view the data from the table.

First, use psql to create a database named hr to hold human resource information.

CREATE DATABASE

Connect to the hr database inside psql:

\c hr

ALTER ROLE enterprisedb IDENTIFIED BY password;

running in psql
CREATE DATABASE
hr;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 44

https://www.enterprisedb.com/repos-downloads

psql (14.0.0, server 14.0.0)
You are now connected to database "hr" as user "enterprisedb".

Create columns to hold department numbers, unique department names, and locations:

CREATE TABLE public.dept (deptno numeric(2) NOT NULL CONSTRAINT dept_pk
PRIMARY KEY, dname varchar(14) CONSTRAINT dept_dname_uq UNIQUE, loc
varchar(13));

CREATE TABLE

Insert values into the dept table:

INSERT INTO dept VALUES (10,'ACCOUNTING','NEW YORK');

INSERT 0 1

INSERT into dept VALUES (20,'RESEARCH','DALLAS');

INSERT 0 1

View the table data by selecting the values from the table:

SELECT * FROM dept;

deptno | dname | loc
--------+------------+----------
10 | ACCOUNTING | NEW YORK
20 | RESEARCH | DALLAS
(2 rows)

7.1.10 Installing EDB Postgres Advanced Server on Ubuntu 20.04 x86_64

Prerequisites

Before you begin the installation process:

Set up the EDB repository.

Setting up the repository is a one-time task. If you have already set up your repository, you don't need to perform this step.

To determine if your repository exists, enter this command:

apt-cache search enterprisedb

If no output is generated, the repository isn't installed.

To set up the EDB repository:

1. Go to EDB repositories.

2. Select the button that provides access to the EDB repository.

3. Select the platform and software that you want to download.

4. Follow the instructions for setting up the EDB repository.

Install the package

sudo apt-get -y install edb-as<xx>-server

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 45

https://www.enterprisedb.com/repos-downloads

Where <xx> is the version of the EDB Postgres Advanced Server you're installing. For example, if you're installing version 14, the package name is edb-as14-server .

To install an individual component:

sudo apt-get -y install <package_name>

Where package_name can be any of the available packages from the available package list.

Initial configuration

This section steps you through getting started with your cluster including logging in, ensuring the installation was successful, connecting to your cluster, and creating the user password.

To work in your cluster, log in as the enterprisedb user. Connect to the database server using the psql command-line client. Alternatively, you can use a client of your choice with the appropriate
connection string.

sudo su - enterprisedb

psql edb

The server runs with the peer or ident permission by default. You can change the authentication method by modifying the pg_hba.conf file.

Before changing the authentication method, assign a password to the database superuser, enterprisedb. For more information on changing the authentication, see Modifying the pg_hba.conf file.

Experiment

Now you're ready to create and connect to a database, create a table, insert data in a table, and view the data from the table.

First, use psql to create a database named hr to hold human resource information.

CREATE DATABASE

Connect to the hr database inside psql:

\c hr

psql (14.0.0, server 14.0.0)
You are now connected to database "hr" as user "enterprisedb".

Create columns to hold department numbers, unique department names, and locations:

CREATE TABLE public.dept (deptno numeric(2) NOT NULL CONSTRAINT dept_pk
PRIMARY KEY, dname varchar(14) CONSTRAINT dept_dname_uq UNIQUE, loc
varchar(13));

CREATE TABLE

Insert values into the dept table:

INSERT INTO dept VALUES (10,'ACCOUNTING','NEW YORK');

INSERT 0 1

INSERT into dept VALUES (20,'RESEARCH','DALLAS');

INSERT 0 1

ALTER ROLE enterprisedb IDENTIFIED BY password;

running in psql
CREATE DATABASE
hr;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 46

View the table data by selecting the values from the table:

SELECT * FROM dept;

deptno | dname | loc
--------+------------+----------
10 | ACCOUNTING | NEW YORK
20 | RESEARCH | DALLAS
(2 rows)

7.1.11 Installing EDB Postgres Advanced Server on Debian 11 x86_64

Prerequisites

Before you begin the installation process:

Set up the EDB repository.

Setting up the repository is a one-time task. If you have already set up your repository, you don't need to perform this step.

To determine if your repository exists, enter this command:

apt-cache search enterprisedb

If no output is generated, the repository isn't installed.

To set up the EDB repository:

1. Go to EDB repositories.

2. Select the button that provides access to the EDB repository.

3. Select the platform and software that you want to download.

4. Follow the instructions for setting up the EDB repository.

Install the package

sudo apt-get -y install edb-as<xx>-server

Where <xx> is the version of the EDB Postgres Advanced Server you're installing. For example, if you're installing version 14, the package name is edb-as14-server .

To install an individual component:

sudo apt-get -y install <package_name>

Where package_name can be any of the available packages from the available package list.

Initial configuration

This section steps you through getting started with your cluster including logging in, ensuring the installation was successful, connecting to your cluster, and creating the user password.

To work in your cluster, log in as the enterprisedb user. Connect to the database server using the psql command-line client. Alternatively, you can use a client of your choice with the appropriate
connection string.

sudo su - enterprisedb

psql edb

The server runs with the peer or ident permission by default. You can change the authentication method by modifying the pg_hba.conf file.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 47

https://www.enterprisedb.com/repos-downloads

Before changing the authentication method, assign a password to the database superuser, enterprisedb. For more information on changing the authentication, see Modifying the pg_hba.conf file.

Experiment

Now you're ready to create and connect to a database, create a table, insert data in a table, and view the data from the table.

First, use psql to create a database named hr to hold human resource information.

CREATE DATABASE

Connect to the hr database inside psql:

\c hr

psql (14.0.0, server 14.0.0)
You are now connected to database "hr" as user "enterprisedb".

Create columns to hold department numbers, unique department names, and locations:

CREATE TABLE public.dept (deptno numeric(2) NOT NULL CONSTRAINT dept_pk
PRIMARY KEY, dname varchar(14) CONSTRAINT dept_dname_uq UNIQUE, loc
varchar(13));

CREATE TABLE

Insert values into the dept table:

INSERT INTO dept VALUES (10,'ACCOUNTING','NEW YORK');

INSERT 0 1

INSERT into dept VALUES (20,'RESEARCH','DALLAS');

INSERT 0 1

View the table data by selecting the values from the table:

SELECT * FROM dept;

deptno | dname | loc
--------+------------+----------
10 | ACCOUNTING | NEW YORK
20 | RESEARCH | DALLAS
(2 rows)

7.1.12 Installing EDB Postgres Advanced Server on Debian 10 x86_64

Prerequisites

Before you begin the installation process:

Set up the EDB repository.

Setting up the repository is a one-time task. If you have already set up your repository, you don't need to perform this step.

ALTER ROLE enterprisedb IDENTIFIED BY password;

running in psql
CREATE DATABASE
hr;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 48

To determine if your repository exists, enter this command:

apt-cache search enterprisedb

If no output is generated, the repository isn't installed.

To set up the EDB repository:

1. Go to EDB repositories.

2. Select the button that provides access to the EDB repository.

3. Select the platform and software that you want to download.

4. Follow the instructions for setting up the EDB repository.

Install the package

sudo apt-get -y install edb-as<xx>-server

Where <xx> is the version of the EDB Postgres Advanced Server you're installing. For example, if you're installing version 14, the package name is edb-as14-server .

To install an individual component:

sudo apt-get -y install <package_name>

Where package_name can be any of the available packages from the available package list.

Initial configuration

This section steps you through getting started with your cluster including logging in, ensuring the installation was successful, connecting to your cluster, and creating the user password.

To work in your cluster, log in as the enterprisedb user. Connect to the database server using the psql command-line client. Alternatively, you can use a client of your choice with the appropriate
connection string.

sudo su - enterprisedb

psql edb

The server runs with the peer or ident permission by default. You can change the authentication method by modifying the pg_hba.conf file.

Before changing the authentication method, assign a password to the database superuser, enterprisedb. For more information on changing the authentication, see Modifying the pg_hba.conf file.

Experiment

Now you're ready to create and connect to a database, create a table, insert data in a table, and view the data from the table.

First, use psql to create a database named hr to hold human resource information.

CREATE DATABASE

Connect to the hr database inside psql:

\c hr

ALTER ROLE enterprisedb IDENTIFIED BY password;

running in psql
CREATE DATABASE
hr;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 49

https://www.enterprisedb.com/repos-downloads

psql (14.0.0, server 14.0.0)
You are now connected to database "hr" as user "enterprisedb".

Create columns to hold department numbers, unique department names, and locations:

CREATE TABLE public.dept (deptno numeric(2) NOT NULL CONSTRAINT dept_pk
PRIMARY KEY, dname varchar(14) CONSTRAINT dept_dname_uq UNIQUE, loc
varchar(13));

CREATE TABLE

Insert values into the dept table:

INSERT INTO dept VALUES (10,'ACCOUNTING','NEW YORK');

INSERT 0 1

INSERT into dept VALUES (20,'RESEARCH','DALLAS');

INSERT 0 1

View the table data by selecting the values from the table:

SELECT * FROM dept;

deptno | dname | loc
--------+------------+----------
10 | ACCOUNTING | NEW YORK
20 | RESEARCH | DALLAS
(2 rows)

7.2 Installing EDB Postgres Advanced Server on Linux IBM Power (ppc64le)

Operating system-specific install instructions are described in the corresponding documentation:

Red Hat Enterprise Linux (RHEL)

RHEL 9

RHEL 8

RHEL 7

SUSE Linux Enterprise (SLES)

SLES 15

SLES 12

7.2.1 Installing EDB Postgres Advanced Server on RHEL 9 ppc64le

Prerequisites

Before you begin the installation process:

Set up the EDB repository.

Setting up the repository is a one-time task. If you have already set up your repository, you don't need to perform this step.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 50

To determine if your repository exists, enter this command:

dnf repolist | grep enterprisedb

If no output is generated, the repository isn't installed.

To set up the EDB repository:

1. Go to EDB repositories.

2. Select the button that provides access to the EDB repository.

3. Select the platform and software that you want to download.

4. Follow the instructions for setting up the EDB repository.

Install the EPEL repository:

sudo dnf -y install https://dl.fedoraproject.org/pub/epel/epel-release-latest-9.noarch.rpm

Refresh the cache:

sudo dnf makecache

If you are also installing PostGIS, enable additional repositories to resolve dependencies:

ARCH=$(/bin/arch) subscription-manager repos --enable "codeready-builder-for-rhel-9-${ARCH}-rpms"

Note

If you are using a public cloud RHEL image, subscription manager may not be enabled and enabling it may incur unnecessary charges. Equivalent packages may be available
under a different name such as codeready-builder-for-rhel-9-rhui-rpms . Consult the documentation for the RHEL image you are using to determine how to install
codeready-builder .

Install the package

sudo dnf -y install edb-as<xx>-server

Where <xx> is the version of the EDB Postgres Advanced Server you're installing. For example, if you're installing version 14, the package name is edb-as14-server .

To install an individual component:

sudo dnf -y install <package_name>

Where package_name can be any of the available packages from the available package list.

Installing the server package creates an operating system user named enterprisedb. The user is assigned a user ID (UID) and a group ID (GID). The user has no default password. Use the passwd
command to assign a password for the user. The default shell for the user is bash , and the user's home directory is /var/lib/edb/as14 .

Initial configuration

Getting started with your cluster involves logging in, ensuring the installation and initial configuration was successful, connecting to your cluster, and creating the user password.

First, you need to initialize and start the database cluster. The edb-as-14-setup script creates a cluster in Oracle-compatible mode with the edb sample database in the cluster. To create a
cluster in Postgres mode, see Initializing the cluster in Postgres mode.

sudo PGSETUP_INITDB_OPTIONS="-E UTF-8" /usr/edb/as14/bin/edb-as-14-setup initdb

sudo systemctl start edb-as-14

To work in your cluster, log in as the enterprisedb user. Connect to the database server using the psql command-line client. Alternatively, you can use a client of your choice with the appropriate
connection string.

sudo su - enterprisedb

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 51

https://www.enterprisedb.com/repos-downloads

psql edb

The server runs with the peer or ident permission by default. You can change the authentication method by modifying the pg_hba.conf file.

Before changing the authentication method, assign a password to the database superuser, enterprisedb. For more information on changing the authentication, see Modifying the pg_hba.conf file.

Experiment

Now you're ready to create and connect to a database, create a table, insert data in a table, and view the data from the table.

First, use psql to create a database named hr to hold human resource information.

CREATE DATABASE

Connect to the hr database inside psql:

\c hr

psql (14.0.0, server 14.0.0)
You are now connected to database "hr" as user "enterprisedb".

Create columns to hold department numbers, unique department names, and locations:

CREATE TABLE public.dept (deptno numeric(2) NOT NULL CONSTRAINT dept_pk
PRIMARY KEY, dname varchar(14) CONSTRAINT dept_dname_uq UNIQUE, loc
varchar(13));

CREATE TABLE

Insert values into the dept table:

INSERT INTO dept VALUES (10,'ACCOUNTING','NEW YORK');

INSERT 0 1

INSERT into dept VALUES (20,'RESEARCH','DALLAS');

INSERT 0 1

View the table data by selecting the values from the table:

SELECT * FROM dept;

deptno | dname | loc
--------+------------+----------
10 | ACCOUNTING | NEW YORK
20 | RESEARCH | DALLAS
(2 rows)

7.2.2 Installing EDB Postgres Advanced Server on RHEL 8 ppc64le

Prerequisites

ALTER ROLE enterprisedb IDENTIFIED BY password;

running in psql
CREATE DATABASE
hr;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 52

Before you begin the installation process:

Set up the EDB repository.

Setting up the repository is a one-time task. If you have already set up your repository, you don't need to perform this step.

To determine if your repository exists, enter this command:

dnf repolist | grep enterprisedb

If no output is generated, the repository isn't installed.

To set up the EDB repository:

1. Go to EDB repositories.

2. Select the button that provides access to the EDB repository.

3. Select the platform and software that you want to download.

4. Follow the instructions for setting up the EDB repository.

Install the EPEL repository:

sudo dnf -y install https://dl.fedoraproject.org/pub/epel/epel-release-latest-8.noarch.rpm

Refresh the cache:

sudo dnf makecache

If you're also installing PostGIS, enable additional repositories to resolve dependencies:

ARCH=$(/bin/arch) subscription-manager repos --enable "codeready-builder-for-rhel-8-${ARCH}-rpms"

Note

If you're using a public cloud RHEL image, subscription manager might not be enabled. Enabling it might incur unnecessary charges. Equivalent packages might be available
under a different name, such as codeready-builder-for-rhel-8-rhui-rpms . To determine how to install codeready-builder , consult the documentation for the RHEL
image you're using.

Install the package

sudo dnf -y install edb-as<xx>-server

Where <xx> is the version of the EDB Postgres Advanced Server you're installing. For example, if you're installing version 14, the package name is edb-as14-server .

To install an individual component:

sudo dnf -y install <package_name>

Where package_name can be any of the available packages from the available package list.

Installing the server package creates an operating system user named enterprisedb. The user is assigned a user ID (UID) and a group ID (GID). The user has no default password. Use the passwd
command to assign a password for the user. The default shell for the user is bash , and the user's home directory is /var/lib/edb/as14 .

Initial configuration

Getting started with your cluster involves logging in, ensuring the installation and initial configuration was successful, connecting to your cluster, and creating the user password.

First, you need to initialize and start the database cluster. The edb-as-14-setup script creates a cluster in Oracle-compatible mode with the edb sample database in the cluster. To create a
cluster in Postgres mode, see Initializing the cluster in Postgres mode.

sudo PGSETUP_INITDB_OPTIONS="-E UTF-8" /usr/edb/as14/bin/edb-as-14-setup initdb

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 53

https://www.enterprisedb.com/repos-downloads

sudo systemctl start edb-as-14

To work in your cluster, log in as the enterprisedb user. Connect to the database server using the psql command-line client. Alternatively, you can use a client of your choice with the appropriate
connection string.

sudo su - enterprisedb

psql edb

The server runs with the peer or ident permission by default. You can change the authentication method by modifying the pg_hba.conf file.

Before changing the authentication method, assign a password to the database superuser, enterprisedb. For more information on changing the authentication, see Modifying the pg_hba.conf file.

Experiment

Now you're ready to create and connect to a database, create a table, insert data in a table, and view the data from the table.

First, use psql to create a database named hr to hold human resource information.

CREATE DATABASE

Connect to the hr database inside psql:

\c hr

psql (14.0.0, server 14.0.0)
You are now connected to database "hr" as user "enterprisedb".

Create columns to hold department numbers, unique department names, and locations:

CREATE TABLE public.dept (deptno numeric(2) NOT NULL CONSTRAINT dept_pk
PRIMARY KEY, dname varchar(14) CONSTRAINT dept_dname_uq UNIQUE, loc
varchar(13));

CREATE TABLE

Insert values into the dept table:

INSERT INTO dept VALUES (10,'ACCOUNTING','NEW YORK');

INSERT 0 1

INSERT into dept VALUES (20,'RESEARCH','DALLAS');

INSERT 0 1

View the table data by selecting the values from the table:

SELECT * FROM dept;

deptno | dname | loc
--------+------------+----------
10 | ACCOUNTING | NEW YORK
20 | RESEARCH | DALLAS
(2 rows)

7.2.3 Installing EDB Postgres Advanced Server on SLES 15 ppc64le

ALTER ROLE enterprisedb IDENTIFIED BY password;

running in psql
CREATE DATABASE
hr;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 54

Prerequisites

Before you begin the installation process:

Set up the EDB repository.

Setting up the repository is a one-time task. If you have already set up your repository, you don't need to perform this step.

To determine if your repository exists, enter this command:

zypper lr -E | grep enterprisedb

If no output is generated, the repository isn't installed.

To set up the EDB repository:

1. Go to EDB repositories.

2. Select the button that provides access to the EDB repository.

3. Select the platform and software that you want to download.

4. Follow the instructions for setting up the EDB repository.

Activate the required SUSE module:

sudo SUSEConnect -p PackageHub/15.4/ppc64le

Refresh the metadata:

sudo zypper refresh

Install the package

sudo zypper -n install edb-as<xx>-server

Where <xx> is the version of the EDB Postgres Advanced server you are installing. For example, if you are installing version 14, the package name would be edb-as14-server .

To install an individual component:

sudo zypper -n install <package_name>

Where package_name can be any of the available packages from the available package list.

Initial configuration

Getting started with your cluster involves logging in, ensuring the installation and initial configuration was successful, connecting to your cluster, and creating the user password.

First, you need to initialize and start the database cluster. The edb-as-14-setup script creates a cluster in Oracle-compatible mode with the edb sample database in the cluster. To create a
cluster in Postgres mode, see Initializing the cluster in Postgres mode.

sudo PGSETUP_INITDB_OPTIONS="-E UTF-8" /usr/edb/as14/bin/edb-as-14-setup initdb

sudo systemctl start edb-as-14

To work in your cluster, log in as the enterprisedb user. Connect to the database server using the psql command-line client. Alternatively, you can use a client of your choice with the appropriate
connection string.

sudo su - enterprisedb

psql edb

The server runs with the peer or ident permission by default. You can change the authentication method by modifying the pg_hba.conf file.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 55

https://www.enterprisedb.com/repos-downloads

Before changing the authentication method, assign a password to the database superuser, enterprisedb. For more information on changing the authentication, see Modifying the pg_hba.conf file.

Experiment

Now you're ready to create and connect to a database, create a table, insert data in a table, and view the data from the table.

First, use psql to create a database named hr to hold human resource information.

CREATE DATABASE

Connect to the hr database inside psql:

\c hr

psql (14.0.0, server 14.0.0)
You are now connected to database "hr" as user "enterprisedb".

Create columns to hold department numbers, unique department names, and locations:

CREATE TABLE public.dept (deptno numeric(2) NOT NULL CONSTRAINT dept_pk
PRIMARY KEY, dname varchar(14) CONSTRAINT dept_dname_uq UNIQUE, loc
varchar(13));

CREATE TABLE

Insert values into the dept table:

INSERT INTO dept VALUES (10,'ACCOUNTING','NEW YORK');

INSERT 0 1

INSERT into dept VALUES (20,'RESEARCH','DALLAS');

INSERT 0 1

View the table data by selecting the values from the table:

SELECT * FROM dept;

deptno | dname | loc
--------+------------+----------
10 | ACCOUNTING | NEW YORK
20 | RESEARCH | DALLAS
(2 rows)

7.2.4 Installing EDB Postgres Advanced Server on SLES 12 ppc64le

Prerequisites

Before you begin the installation process:

Set up the EDB repository.

Setting up the repository is a one-time task. If you have already set up your repository, you don't need to perform this step.

ALTER ROLE enterprisedb IDENTIFIED BY password;

running in psql
CREATE DATABASE
hr;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 56

To determine if your repository exists, enter this command:

zypper lr -E | grep enterprisedb

If no output is generated, the repository isn't installed.

To set up the EDB repository:

1. Go to EDB repositories.

2. Select the button that provides access to the EDB repository.

3. Select the platform and software that you want to download.

4. Follow the instructions for setting up the EDB repository.

Activate the required SUSE module:

sudo SUSEConnect -p PackageHub/12.5/ppc64le
sudo SUSEConnect -p sle-sdk/12.5/ppc64le

Refresh the metadata:

sudo zypper refresh

Install the package

sudo zypper -n install edb-as<xx>-server

Where <xx> is the version of the EDB Postgres Advanced server you are installing. For example, if you are installing version 14, the package name would be edb-as14-server .

To install an individual component:

sudo zypper -n install <package_name>

Where package_name can be any of the available packages from the available package list.

Initial configuration

Getting started with your cluster involves logging in, ensuring the installation and initial configuration was successful, connecting to your cluster, and creating the user password.

First, you need to initialize and start the database cluster. The edb-as-14-setup script creates a cluster in Oracle-compatible mode with the edb sample database in the cluster. To create a
cluster in Postgres mode, see Initializing the cluster in Postgres mode.

sudo PGSETUP_INITDB_OPTIONS="-E UTF-8" /usr/edb/as14/bin/edb-as-14-setup initdb

sudo systemctl start edb-as-14

To work in your cluster, log in as the enterprisedb user. Connect to the database server using the psql command-line client. Alternatively, you can use a client of your choice with the appropriate
connection string.

sudo su - enterprisedb

psql edb

The server runs with the peer or ident permission by default. You can change the authentication method by modifying the pg_hba.conf file.

Before changing the authentication method, assign a password to the database superuser, enterprisedb. For more information on changing the authentication, see Modifying the pg_hba.conf file.

Experiment

ALTER ROLE enterprisedb IDENTIFIED BY password;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 57

https://www.enterprisedb.com/repos-downloads

Now you're ready to create and connect to a database, create a table, insert data in a table, and view the data from the table.

First, use psql to create a database named hr to hold human resource information.

CREATE DATABASE

Connect to the hr database inside psql:

\c hr

psql (14.0.0, server 14.0.0)
You are now connected to database "hr" as user "enterprisedb".

Create columns to hold department numbers, unique department names, and locations:

CREATE TABLE public.dept (deptno numeric(2) NOT NULL CONSTRAINT dept_pk
PRIMARY KEY, dname varchar(14) CONSTRAINT dept_dname_uq UNIQUE, loc
varchar(13));

CREATE TABLE

Insert values into the dept table:

INSERT INTO dept VALUES (10,'ACCOUNTING','NEW YORK');

INSERT 0 1

INSERT into dept VALUES (20,'RESEARCH','DALLAS');

INSERT 0 1

View the table data by selecting the values from the table:

SELECT * FROM dept;

deptno | dname | loc
--------+------------+----------
10 | ACCOUNTING | NEW YORK
20 | RESEARCH | DALLAS
(2 rows)

7.2.5 Installing EDB Postgres Advanced Server on RHEL 7 ppc64le

Prerequisites

Before you begin the installation process:

Set up the EDB repository.

Setting up the repository is a one-time task. If you have already set up your repository, you don't need to perform this step.

To determine if your repository exists, enter this command:

dnf repolist | grep enterprisedb

If no output is generated, the repository isn't installed.

To set up the EDB repository:

1. Go to EDB repositories.

running in psql
CREATE DATABASE
hr;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 58

https://www.enterprisedb.com/repos-downloads

2. Select the button that provides access to the EDB repository.

3. Select the platform and software that you want to download.

4. Follow the instructions for setting up the EDB repository.

Install the EPEL repository:

sudo yum -y install https://dl.fedoraproject.org/pub/epel/epel-release-latest-7.noarch.rpm

Refresh the cache:

sudo dnf makecache

Enable additional repositories to resolve dependencies:

subscription-manager repos --enable "rhel-*-optional-rpms" --enable "rhel-*-extras-rpms" --enable "rhel-ha-for-rhel-*-server-rpms"

Install the package

sudo yum -y install edb-as<xx>-server

Where <xx> is the version of the EDB Postgres Advanced Server you're installing. For example, if you're installing version 14, the package name is edb-as14-server .

To install an individual component:

sudo yum -y install <package_name>

Where package_name can be any of the available packages from the available package list.

Installing the server package creates an operating system user named enterprisedb. The user is assigned a user ID (UID) and a group ID (GID). The user has no default password. Use the passwd
command to assign a password for the user. The default shell for the user is bash , and the user's home directory is /var/lib/edb/as14 .

Initial configuration

Getting started with your cluster involves logging in, ensuring the installation and initial configuration was successful, connecting to your cluster, and creating the user password.

First, you need to initialize and start the database cluster. The edb-as-14-setup script creates a cluster in Oracle-compatible mode with the edb sample database in the cluster. To create a
cluster in Postgres mode, see Initializing the cluster in Postgres mode.

sudo PGSETUP_INITDB_OPTIONS="-E UTF-8" /usr/edb/as14/bin/edb-as-14-setup initdb

sudo systemctl start edb-as-14

To work in your cluster, log in as the enterprisedb user. Connect to the database server using the psql command-line client. Alternatively, you can use a client of your choice with the appropriate
connection string.

sudo su - enterprisedb

psql edb

The server runs with the peer or ident permission by default. You can change the authentication method by modifying the pg_hba.conf file.

Before changing the authentication method, assign a password to the database superuser, enterprisedb. For more information on changing the authentication, see Modifying the pg_hba.conf file.

Experiment

Now you're ready to create and connect to a database, create a table, insert data in a table, and view the data from the table.

ALTER ROLE enterprisedb IDENTIFIED BY password;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 59

First, use psql to create a database named hr to hold human resource information.

CREATE DATABASE

Connect to the hr database inside psql:

\c hr

psql (14.0.0, server 14.0.0)
You are now connected to database "hr" as user "enterprisedb".

Create columns to hold department numbers, unique department names, and locations:

CREATE TABLE public.dept (deptno numeric(2) NOT NULL CONSTRAINT dept_pk
PRIMARY KEY, dname varchar(14) CONSTRAINT dept_dname_uq UNIQUE, loc
varchar(13));

CREATE TABLE

Insert values into the dept table:

INSERT INTO dept VALUES (10,'ACCOUNTING','NEW YORK');

INSERT 0 1

INSERT into dept VALUES (20,'RESEARCH','DALLAS');

INSERT 0 1

View the table data by selecting the values from the table:

SELECT * FROM dept;

deptno | dname | loc
--------+------------+----------
10 | ACCOUNTING | NEW YORK
20 | RESEARCH | DALLAS
(2 rows)

7.3 EDB Postgres Advanced Server installation for Windows

The installation section provides detailed information about:

Graphical installation options available through the interactive setup wizard on Windows.
Managing an EDB Postgres Advanced Server installation.

7.3.1 Installing EDB Postgres Advanced Server with the interactive installer

You can use the EDB Postgres Advanced Server interactive installer to install EDB Postgres Advanced Server on Windows. The interactive installer is available from the EDB website at:

https://www.enterprisedb.com/advanced-downloads

You can invoke the graphical installer in different installation modes to perform an EDB Postgres Advanced Server installation:

For information about using the graphical installer, see Performing a Graphical Installation on Windows.
For information about performing an unattended installation, see Performing an Unattended Installation.
For information about performing an installation with limited privileges, see Performing an Installation with Limited Privileges.
For information about the command line options you can include when invoking the installer, see Reference - Command Line Options.

running in psql
CREATE DATABASE
hr;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 60

https://www.enterprisedb.com/advanced-downloads

During the installation, the graphical installer copies a number of temporary files to the location specified by the TEMP environment variable. You can optionally specify an alternate location for the
temporary files by modifying the TEMP environment variable.

If invoking the installer from the command line, you can set the value of the variable on the command line. Use the command:

SET TEMP=temp_file_location

Where temp_file_location specifies the alternate location for the temporary files and must match the permissions with the TEMP environment variable.

Note

If you are invoking the installer to perform a system upgrade, the installer preserves the configuration options specified during the previous installation.

Setting cluster preferences during a graphical installation

During an installation, the graphical installer invokes the PostgreSQL initdb utility to initialize a cluster. If you are using the graphical installer, you can use the INITDBOPTS environment variable
to specify your initdb preferences. Before invoking the graphical installer, set the value of INITDBOPTS at the command line, specifying one or more cluster options. For example:

SET INITDBOPTS= -k -E=UTF-8

If you specify values in INITDBOPTS that are also provided by the installer (such as the –D option, which specifies the installation directory), the value specified in the graphical installer supersedes
the value if specified in INITDBOPTS .

For more information about using initdb cluster configuration options, see the PostgreSQL Core Documentation available at:

https://www.postgresql.org/docs/current/static/app-initdb.html

In addition to the cluster configuration options documented in the PostgreSQL core documentation, EDB Postgres Advanced Server supports the following initdb options:

--no-redwood-compat

--no-redwood-compat instructs the server to create the cluster in PostgreSQL mode. When the cluster is created in PostgreSQL mode, the name of the database superuser is postgres and the
name of the default database is postgres . A small subset of Advanced Server features compatible with Oracle databases are available with this mode. However, we recommend using Advanced
Server in redwood compatibility mode to have access to all its Oracle compatibility features.

--redwood-like

--redwood-like instructs the server to use an escape character (an empty string ('')) following the LIKE (or PostgreSQL compatible ILIKE) operator in a SQL statement that is compatible with
Oracle syntax.

--icu-short-form

--icu-short-form creates a cluster that uses a default ICU (International Components for Unicode) collation for all databases in the cluster. For more information about Unicode collations, see
Basic Unicode collation algorithm concepts.

7.3.1.1 Performing a graphical installation on Windows

A graphical installation is a quick and easy way to install EDB Postgres Advanced Server 14 on a Windows system. Use the wizard's dialogs to specify information about your system and system usage;
when you have completed the dialogs, the installer performs an installation based on the selections made during the setup process.

To invoke the wizard, you must have administrator privileges. Assume administrator privileges, and double-click the edb-as14-server-14.x.x-x-windows-x64 executable file.

Note

To install EDB Postgres Advanced Server on some versions of Windows, you may be required to right click on the file icon and select Run as Administrator from the context menu to
invoke the installer with Administrator privileges.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 61

https://www.postgresql.org/docs/current/static/app-initdb.html

Fig. 1: The EDB Postgres Advanced Server installer Welcome window

Click Next to continue.

The EnterpriseDB License Agreement opens.

Fig. 2: The EnterpriseDB License Agreement

Carefully review the license agreement before highlighting the appropriate radio button; click Next to continue.

The Installation Directory window opens.

Fig. 3: The Installation Directory window

By default, the EDB Postgres Advanced Server installation directory is:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 62

C:\Program Files\edb\as14

You can accept the default installation location, and click Next to continue, or optionally click the File Browser icon to open the Browse For Folder dialog to choose an alternate
installation directory.

Note

The data directory of a production database should not be stored on an NFS file system.

Fig. 4: The Select Components window

The Select Components window contains a list of optional components that you can install with the EDB Postgres Advanced Server Setup wizard. You can omit a module from the EDB Postgres
Advanced Server installation by deselecting the box next to the components name.

The Setup wizard can install the following components while installing EDB Postgres Advanced Server 14:

EDB Postgres Advanced Server

Select the EDB Postgres Advanced Server option to install EDB Postgres Advanced Server 14.

pgAdmin 4

Select the pgAdmin 4 option to install the pgAdmin 4 client. pgAdmin 4 provides a powerful graphical interface for database management and monitoring.

StackBuilder Plus

The StackBuilder Plus utility is a graphical tool that can update installed products, or download and add supporting modules (and the resulting dependencies) after your EDB Postgres Advanced
Server setup and installation completes. See Using StackBuilder Plus for more information about StackBuilder Plus.

Command Line Tools

The Command Line Tools option installs command line tools and supporting client libraries including:

libpq
psql
EDB*Loader
ecpgPlus
pg_basebackup, pg_dump, and pg_restore
pg_bench
and more.

Note

The Command Line Tools are required if you are installing EDB Postgres Advanced Server or pgAdmin 4.

After selecting the components you wish to install, click Next to open the Additional Directories window.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 63

Fig. 5: The Additional Directories window

By default, the EDB Postgres Advanced Server data files are saved to:

C:\Program Files\edb\as14\data

The default location of the EDB Postgres Advanced Server Write-Ahead Log (WAL) Directory is:

C:\Program Files\edb\as14\data\pg_wal

EDB Postgres Advanced Server uses write-ahead logs to promote transaction safety and speed transaction processing; when you make a change to a table, the change is stored in shared memory and a
record of the change is written to the write-ahead log. When you perform a COMMIT , EDB Postgres Advanced Server writes contents of the write-ahead log to disk.

Accept the default file locations, or use the File Browser icon to select an alternate location; click Next to continue to the EDB Postgres Advanced Server Dialect window.

Fig. 6: The EDB Postgres Advanced Server Dialect window

Use the drop-down listbox on the EDB Postgres Advanced Server Dialect window to choose a server dialect. The server dialect specifies the compatibility features supported by EDB
Postgres Advanced Server.

By default, EDB Postgres Advanced Server installs in Compatible with Oracle mode; you can choose between Compatible with Oracle and Compatible with PostgreSQL
installation modes.

Compatible with Oracle

If you select Compatible with Oracle , the installation includes the following features:

Data dictionary views that is compatible with Oracle databases.
Oracle data type conversions.
Date values displayed in a format compatible with Oracle syntax.
Support for Oracle-styled concatenation rules (if you concatenate a string value with a NULL value, the returned value is the value of the string).
Schemas (dbo and sys) compatible with Oracle databases added to the SEARCH_PATH .
Support for the following Oracle built-in packages:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 64

Package Functionality compatible with Oracle databases

dbms_alert Provides the capability to register for, send, and receive alerts.

dbms_job Provides the capability for the creation, scheduling, and managing of jobs.

dbms_lob Provides the capability to manage on large objects.

dbms_output Provides the capability to send messages to a message buffer, or get messages from the message buffer.

dbms_pipe Provides the capability to send messages through a pipe within or between sessions connected to the same database cluster.

dbms_rls Enables the implementation of Virtual Private Database on certain EDB Postgres Advanced Server database objects.

dbms_sql Provides an application interface to the EDB dynamic SQL functionality.

dbms_utility Provides various utility programs.

dbms_aqadm Provides supporting procedures for Advanced Queueing functionality.

dbms_aq Provides message queueing and processing for EDB Postgres Advanced Server.

dbms_profiler Collects and stores performance information about the PL/pgSQL and SPL statements that are executed during a performance profiling session.

dbms_random Provides a number of methods to generate random values.

dbms_redact Enables the redacting or masking of data that is returned by a query.

dbms_lock Provides support for the DBMS_LOCK.SLEEP procedure.

dbms_schedule
r

Provides a way to create and manage jobs, programs, and job schedules.

dbms_crypto Provides functions and procedures to encrypt or decrypt RAW, BLOB or CLOB data. You can also use DBMS_CRYPTO functions to generate cryptographically strong random
values.

dbms_mview Provides a way to manage and refresh materialized views and their dependencies.

dbms_session Provides support for the DBMS_SESSION.SET_ROLE procedure.

utl_encode Provides a way to encode and decode data.

utl_http Provides a way to use the HTTP or HTTPS protocol to retrieve information found at an URL.

utl_file Provides the capability to read from, and write to files on the operating system’s file system.

utl_smtp Provides the capability to send e-mails over the Simple Mail Transfer Protocol (SMTP).

utl_mail Provides the capability to manage e-mail.

utl_url Provides a way to escape illegal and reserved characters within an URL.

utl_raw Provides a way to manipulate or retrieve the length of raw data types.

This is not a comprehensive list of the compatibility features for Oracle included when EDB Postgres Advanced Server is installed in Compatible with Oracle mode; for more information, see the
Database Compatibility for Oracle Developers Built-in Package Guide available from the EDB website at:

https://www.enterprisedb.com/docs

If you choose to install in Compatible with Oracle mode, the EDB Postgres Advanced Server superuser name is enterprisedb .

Compatible with PostgreSQL

If you select Compatible with PostgreSQL , EDB Postgres Advanced Server exhibits compatibility with PostgreSQL version 14. If you choose to install in Compatible with PostgreSQL
mode, the default EDB Postgres Advanced Server superuser name is postgres .

For detailed information about PostgreSQL functionality, visit the official PostgreSQL website at:

http://www.postgresql.org

After specifying a configuration mode, click Next to continue to the Password window.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 65

https://www.enterprisedb.com/docs
http://www.postgresql.org

Fig. 7: The Password window

EDB Postgres Advanced Server uses the password specified on the Password window for the database superuser. The specified password must conform to any security policies existing on the EDB
Postgres Advanced Server host.

After you enter a password in the Password field, confirm the password in the Retype Password field, and click Next to continue.

The Additional Configuration window opens.

Fig. 8: The Additional Configuration window

Use the fields on the Additional Configuration window to specify installation details:

Use the Port field to specify the port number that EDB Postgres Advanced Server should listen to for connection requests from client applications. The default is 5444 .
If the Locale field is set to [Default locale] , EDB Postgres Advanced Server uses the system locale as the working locale. Use the drop-down listbox next to Locale to specify an
alternate locale for EDB Postgres Advanced Server.
By default, the Setup wizard installs corresponding sample data for the server dialect specified by the compatibility mode (Oracle or PostgreSQL) . Clear the check box next to
Install sample tables and procedures if you don't wish to have sample data installed.

After verifying the information on the Additional Configuration window, click Next to open the Dynatune Dynamic Tuning: Server Utilization window.

The graphical Setup wizard facilitates performance tuning via the Dynatune Dynamic Tuning feature. Dynatune functionality allows EDB Postgres Advanced Server to make optimal usage of the
system resources available on the host machine on which it is installed.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 66

Fig. 9: The Dynatune Dynamic Tuning: Server Utilization window

The edb_dynatune configuration parameter determines how EDB Postgres Advanced Server allocates system resources. Use the radio buttons on the Server Utilization window to set the
initial value of the edb_dynatune configuration parameter:

Select Development to set the value of edb_dynatune to 33 . A low value dedicates the least amount of the host machine’s resources to the database server. This is a good choice for a
development machine.
Select General Purpose to set the value of edb_dynatune to 66 . A mid-range value dedicates a moderate amount of system resources to the database server. This would be a good
setting for an application server with a fixed number of applications running on the same host as EDB Postgres Advanced Server.
Select Dedicated to set the value of edb_dynatune to 100 . A high value dedicates most of the system resources to the database server. This is a good choice for a dedicated server host.

After the installation is complete, you can adjust the value of edb_dynatune by editing the postgresql.conf file, located in the data directory of your EDB Postgres Advanced Server
installation. After editing the postgresql.conf file, you must restart the server for your changes to take effect.

Select the appropriate setting for your system, and click Next to continue to the Dynatune Dynamic Tuning: Workload Profile window.

Fig. 10: The Dynatune Dynamic Tuning: Workload Profile window

Use the radio buttons on the Workload Profile window to specify the initial value of the edb_dynatune_profile configuration parameter. The edb_dynatune_profile parameter
controls performance-tuning aspects based on the type of work that the server performs.

Select Transaction Processing (OLTP systems) to specify an edb_dynatune_profile value of oltp . Recommended when EDB Postgres Advanced Server is supporting heavy
online transaction processing.
Select General Purpose (OLTP and reporting workloads) to specify an edb_dynatune_profile value of mixed . Recommended for servers that provide a mix of
transaction processing and data reporting.
Select Reporting (Complex queries or OLAP workloads) to specify an edb_dynatune_profile value of reporting . Recommended for database servers used for heavy
data reporting.

After the installation is complete, you can adjust the value of edb_dynatune_profile by editing the postgresql.conf file, located in the data directory of your EDB Postgres Advanced
Server installation. After editing the postgresql.conf file, you must restart the server for your changes to take effect.

For more information about edb_dynatune and other performance-related topics, see the EDB Postgres Advanced Server Guide available from the EDB website at:

https://www.enterprisedb.com/docs

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 67

https://www.enterprisedb.com/docs

Click Next to continue.

By default, EDB Postgres Advanced Server is configured to start the service when the system boots. The Pre Installation Summary opens.

Fig. 11: The Pre Installation Summary

The Pre Installation Summary provides an overview of the options specified during the Setup process. Review the options before clicking Next ; click Back to navigate back through the
dialogs and update any options.

The Ready to Install window confirms that the installer has the information it needs about your configuration preferences to install EDB Postgres Advanced Server. Click Next to continue.

Fig. 12: The Ready to Install window

Fig. 13: Installing EDB Postgres Advanced Server

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 68

As each supporting module is unpacked and installed, the module’s installation is confirmed with a progress bar.

Before the Setup wizard completes the EDB Postgres Advanced Server installation, it offers to Launch StackBuilder Plus at exit?

Fig. 14: The Setup wizard offers to Launch StackBuilder Plus at exit

You can clear the StackBuilder Plus check box and click Finish to complete the EDB Postgres Advanced Server installation, or accept the default and proceed to StackBuilder Plus.

EDB Postgres StackBuilder Plus is included with the installation of EDB Postgres Advanced Server and its core supporting components. StackBuilder Plus is a graphical tool that can update installed
products, or download and add supporting modules (and the resulting dependencies) after your EDB Postgres Advanced Server setup and installation completes. See Using StackBuilder Plus for more
information about StackBuilder Plus.

7.3.1.2 Invoking the graphical installer from the command line

The command line options of the EDB Postgres Advanced Server installer offer functionality for Windows systems that reside in situations where a graphical installation may not work because of limited
resources or privileges. You can:

Include the --mode unattended option when invoking the installer to perform an installation without user input.
Invoke the installer with the --extract-only option to perform a minimal installation when you don’t hold the privileges required to perform a complete installation.

Not all command line options are suitable for all situations. For a complete reference guide to the command line options, see Reference - Command Line Options.

Note

If you are invoking the installer from the command line to perform a system upgrade, the installer ignores command line options and preserves the configuration of the previous installation.

7.3.1.2.1 Performing an unattended installation

To specify that the installer should run without user interaction, include the --mode unattended command line option. In unattended mode, the installer uses one of the following sources for
configuration parameters:

Command line options (specified when invoking the installer)
Parameters specified in an option file
EDB Postgres Advanced Server installation defaults

You can embed the non-interactive EDB Postgres Advanced Server installer within another application installer; during the installation process, a progress bar allows the user to view the progression of
the installation.

You must have administrative privileges to install EDB Postgres Advanced Server using the --mode unattended option. If you are using the --mode unattended option to install EDB Postgres
Advanced Server with a client, the calling client must be invoked with superuser or administrative privileges.

To start the installer in unattended mode, navigate to the directory that contains the executable file, and enter:

edb-as14-server-14.x.x-x-windows-x64.exe --mode unattended --superpassword
database_superuser_password --servicepassword system_password

When invoking the installer, include the --servicepassword option to specify an operating system password for the user installing EDB Postgres Advanced Server.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 69

Use the --superpassword option to specify a password that conforms to the password security policies defined on the host; enforced password policies on your system may not accept the default
password (enterprisedb) .

7.3.1.2.2 Performing an installation with limited privileges

To perform an abbreviated installation of EDB Postgres Advanced Server without access to administrative privileges, invoke the installer from the command line and include the --extract-only
option. The --extract-only option extracts the binary files in an unaltered form, allowing you to experiment with a minimal installation of EDB Postgres Advanced Server.

If you invoke the installer with the --extract-only options, you can either manually create a cluster and start the service, or run the installation script. To manually create the cluster, you must:

Use initdb to initialize the cluster
Configure the cluster
Use pg_ctl to start the service

For more information about the initdb and pg_ctl commands, see the PostgreSQL Core Documentation at:

https://www.postgresql.org/docs/current/static/app-initdb.html

https://www.postgresql.org/docs/current/static/app-pg-ctl.html

If you include the --extract-only option, the installer steps through a shortened form of the Setup wizard. During the brief installation process, the installer generates an installation script that
can be later used to complete a more complete installation. You must have administrative privileges to invoke the installation script.

The installation script:

Initializes the database cluster if the cluster is empty.
Configures the server to start at boot-time.
Establishes initial values for Dynatune (dynamic tuning) variables.

The scripted EDB Postgres Advanced Server installation does not create menu shortcuts or provide access to EDB Postgres StackBuilder Plus, and no modifications are made to registry files.

To perform a limited installation and generate an installation script, download and unpack the EDB Postgres Advanced Server installer. Navigate into the directory that contains the installer, and invoke
the installer with the command:

edb-as14-server-14.x.x-x-windows.exe --extract-only yes

A dialog opens, prompting you to choose an installation language. Select a language for the installation from the drop-down listbox, and click OK to continue. The Setup Wizard opens.

Fig. 15: The Welcome window

Click Next to continue.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 70

https://www.postgresql.org/docs/current/static/app-initdb.html
https://www.postgresql.org/docs/current/static/app-pg-ctl.html

Fig. 16: Specify an installation directory

On Windows, the default EDB Postgres Advanced Server installation directory is:

C:\Program Files\edb\as14

You can accept the default installation location and click Next to continue to the Ready to Install window, or optionally click the File Browser icon to choose an alternate installation
directory.

Fig. 17: The Setup wizard is ready to install EDB Postgres Advanced Server

Click Next to proceed with the EDB Postgres Advanced Server installation. During the installation, progress bars and popups mark the installation progress. The installer notifies you when the
installation is complete.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 71

Fig. 18: The EDB Postgres Advanced Server installation is complete

After completing the minimal installation, you can execute a script to initialize a cluster and start the service. The script is (by default) located in:

C:\Program Files\edb

7.3.1.2.3 Reference: Command line options

You can optionally include the following parameters for an EDB Postgres Advanced Server installation on the command line, or in a configuration file when invoking the EDB Postgres Advanced Server
installer.

--create_samples { yes | no }

Use the --create_samples option to specify whether the installer should create the sample tables and procedures for the database dialect specified with the --databasemode parameter. The
default is yes .

--databasemode { oracle | postgresql }

Use the --databasemode parameter to specify a database dialect. The default is oracle .

--datadir data_directory

Use the --datadir parameter to specify a location for the cluster's data directory. data_directory is the name of the directory; include the complete path to the desired directory.

--debuglevel { 0 | 1 | 2 | 3 | 4 }

Use the --debuglevel parameter to set the level of detail written to the debug_log file (see --debugtrace). Higher values produce more detail in a longer trace file. The default is 2 .

--debugtrace debug_log

Use the --debugtrace parameter to troubleshoot installation problems. debug_log is the name of the file that contains troubleshooting details.

--disable-components component_list

Use the --disable-components parameter to specify a list of EDB Postgres Advanced Server components to exclude from the installation. By default, component_list contains '' (the empty
string). component_list is a comma-separated list containing one or more of the following components:

dbserver

EDB Postgres Advanced Server 14.

pgadmin4

The EDB Postgres pgAdmin 4 provides a powerful graphical interface for database management and monitoring.

--enable_acledit { 1 | 0 }

The --enable_acledit 1 option instructs the installer to grant permission to the user specified by the --serviceaccount option to access the EDB Postgres Advanced Server binaries and
data directory. By default, this option is disabled if --enable_acledit 0 is specified or if the --enable_acledit option is completely omitted.

Note

Specification of this option is valid only when installing on Windows. The --enable_acledit 1 option should be specified when a discretionary access control list
(DACL) needs to be set for allowing access to objects on which EDB Postgres Advanced Server is to be installed. See the following for information on a DACL: https://msdn.microsoft.com/en-
us/library/windows/desktop/aa446597(v=vs.85).aspx

In order to perform future operations such as upgrading EDB Postgres Advanced Server, access to the data directory must exist for the service account user specified by the --serviceaccount
option. By specifying the --enable_acledit 1 option, access to the data directory by the service account user is provided.

--enable-components component_list

Although this option is listed when you run the installer with the --help option, the --enable-components parameter has absolutely no effect on which components are installed. All
components are installed regardless of what is specified in component_list . In order to install only specific selected components, you must use the --disable-components parameter
previously described in this section to list the components you don't want to install.

--extract-only { yes | no }

Include the --extract-only parameter to indicate that the installer should extract the EDB Postgres Advanced Server binaries without performing a complete installation. Superuser privileges are

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 72

https://msdn.microsoft.com/en-us/library/windows/desktop/aa446597(v=vs.85).aspx

not required for the --extract-only option. The default value is no .

--help

Include the --help parameter to view a list of the optional parameters.

--installer-language { en | ja | zh_CN | zh_TW | ko }

Use the --installer-language parameter to specify an installation language for EDB Postgres Advanced Server. The default is en .

en specifies English.

ja specifies Japanese

zh_CN specifies Chinese Simplified.

zh_TW specifies Traditional Chinese.

ko specifies Korean.

--install_runtimes { yes | no }

Include --install_runtimes to specify whether the installer should install the Microsoft Visual C++ runtime libraries. Default is yes .

--locale locale

Specifies the locale for the EDB Postgres Advanced Server cluster. By default, the installer uses the locale detected by initdb .

--mode { unattended }

Use the --mode unattended parameter to specify that the installer should perform an installation that requires no user input during the installation process.

--optionfile config_file

Use the --optionfile parameter to specify the name of a file that contains the installation configuration parameters. config_file must specify the complete path to the configuration
parameter file.

--prefix installation_dir/as14

Use the --prefix parameter to specify an installation directory for EDB Postgres Advanced Server. The installer appends a version-specific sub-directory (that is, as14) to the specified directory.
The default installation directory is:

C:\Program Files\edb\as14

--serverport port_number

Use the --serverport parameter to specify a listener port number for EDB Postgres Advanced Server.

If you are installing EDB Postgres Advanced Server in unattended mode, and don't specify a value using the --serverport parameter, the installer uses port 5444 , or the first available port after
port 5444 as the default listener port.

--server_utilization {33 | 66 | 100}

Use the --server_utilization parameter to specify a value for the edb_dynatune configuration parameter. The edb_dynatune configuration parameter determines how EDB Postgres
Advanced Server allocates system resources.

A value of 33 is appropriate for a system used for development. A low value dedicates the least amount of the host machine’s resources to the database server.
A value of 66 is appropriate for an application server with a fixed number of applications. A mid-range value dedicates a moderate amount of system resources to the database server. The
default value is 66.
A value of 100 is appropriate for a host machine that is dedicated to running EDB Postgres Advanced Server. A high value dedicates most of the system resources to the database server.

When the installation is complete, you can adjust the value of edb_dynatune by editing the postgresql.conf file, located in the data directory of your EDB Postgres Advanced Server
installation. After editing the postgresql.conf file, you must restart the server for the changes to take effect.

--serviceaccount user_account_name

Use the --serviceaccount parameter to specify the name of the user account that owns the server process.

If --databasemode is set to oracle (the default), the default value of --serviceaccount is enterprisedb .

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 73

If --databasemode is postgresql , the default value of --serviceaccount is set to postgres .

For security reasons, the --serviceaccount parameter must specify the name of an account that does not hold administrator privileges.

If you specify both the --serviceaccount option and the --enable_acledit 1 option when invoking the installer, the database service and pgAgent uses the same service account, thereby
having the required permissions to access the EDB Postgres Advanced Server binaries and data directory.

Note

If you don't include the --serviceaccount option when invoking the installer, the NetworkService account owns the database service, and the pgAgent service is owned by either
enterprisedb or postgres (depending on the installation mode).

--servicename service_name

Use the --servicename parameter to specify the name of the EDB Postgres Advanced Server service. The default is edb-as-14 .

--servicepassword user_password

Use --servicepassword to specify the OS system password. If unspecified, the value of --servicepassword defaults to the value of --superpassword .

--superaccount super_user_name

Use the --superaccount parameter to specify the user name of the database superuser.

If --databasemode is set to oracle (the default), the default value of --superaccount is enterprisedb .
If --databasemode is set to postgresql , the default value of --superaccount is set to postgres .

--superpassword superuser_password

Use --superpassword to specify the database superuser password. If you are installing in non-interactive mode, --superpassword defaults to enterprisedb .

--unattendedmodeui { none | minimal | minimalWithDialogs }

Use the --unattendedmodeui parameter to specify installer behavior during an unattended installation.

Include --unattendedmodeui none to specify that the installer should not display progress bars during the EDB Postgres Advanced Server installation.

Include --unattendedmodeui minimal to specify that the installer should display progress bars during the installation process. This is the default behavior.

Include --unattendedmodeui minimalWithDialogs to specify that the installer should display progress bars and report any errors encountered during the installation process (in additional
dialogs).

--version

Include the --version parameter to retrieve version information about the installer:

EDB Postgres Advanced Server 14.0.3-1 --- Built on 2020-10-23 00:12:44 IB: 20.6.0-202008110127

--workload_profile {oltp | mixed | reporting}

Use the --workload_profile parameter to specify an initial value for the edb_dynatune_profile configuration parameter. edb_dynatune_profile controls aspects of performance-
tuning based on the type of work that the server performs.

Specify oltp if the EDB Postgres Advanced Server installation is used to support heavy online transaction processing workloads.
The default value is oltp .
Specify mixed if EDB Postgres Advanced Server provides a mix of transaction processing and data reporting.
Specify reporting if EDB Postgres Advanced Server is used for heavy data reporting.

After the installation is complete, you can adjust the value of edb_dynatune_profile by editing the postgresql.conf file, located in the data directory of your EDB Postgres Advanced
Server installation. After editing the postgresql.conf file, you must restart the server for the changes to take effect.

For more information about edb_dynatune and other performance-related topics, see the EDB Postgres Advanced Server Guide available at:

https://www.enterprisedb.com/docs

7.3.1.3 Using StackBuilder Plus

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 74

https://www.enterprisedb.com/docs

The StackBuilder Plus utility provides a graphical interface that simplifies the process of updating, downloading, and installing modules that complement your EDB Postgres Advanced Server
installation. When you install a module with StackBuilder Plus, StackBuilder Plus automatically resolves any software dependencies.

You can invoke StackBuilder Plus at any time after the installation has completed by selecting the StackBuilder Plus menu option from the Apps menu. Enter your system password (if
prompted), and the StackBuilder Plus welcome window opens.

Fig. 19: The StackBuilder Plus welcome window

Use the drop-down listbox on the welcome window to select your EDB Postgres Advanced Server installation.

StackBuilder Plus requires Internet access; if your installation of EDB Postgres Advanced Server resides behind a firewall (with restricted Internet access), StackBuilder Plus can download program
installers through a proxy server. The module provider determines if the module can be accessed through an HTTP proxy or an FTP proxy; currently, all updates are transferred via an HTTP proxy and the
FTP proxy information is not used.

If the selected EDB Postgres Advanced Server installation has restricted Internet access, use the Proxy Servers on the Welcome window to open the Proxy servers dialog.

Fig. 20: The Proxy Servers dialog

Enter the IP address and port number of the proxy server in the HTTP proxy on the Proxy Servers dialog. Currently, all StackBuilder Plus modules are distributed via HTTP proxy (FTP proxy
information is ignored). Click OK to continue.

Fig. 21: The StackBuilder Plus module selection window

The tree control on the StackBuilder Plus module selection window displays a node for each module category.

Expand a module, and highlight a component name in the tree control to review a detailed description of the component. To add one or more components to the installation or to upgrade a component,

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 75

check the box to the left of a module name and click Next .

StackBuilder Plus confirms the packages selected.

Fig. 22: A summary window displays a list of selected packages

Use the browse icon (...) to the right of the Download directory field to open a file selector, and choose an alternate location to store the downloaded installers. Click Next to connect to the
server and download the required installation files.

When the download completes, a window opens that confirms the installation files have been downloaded and are ready for installation.

Fig. 23: Confirmation that the download process is complete

You can check the box next to Skip Installation , and select Next to exit StackBuilder Plus without installing the downloaded files, or leave the box unchecked and click Next to start the
installation process.

Each downloaded installer has different requirements. As the installers execute, they may prompt you to confirm acceptance of license agreements, to enter passwords, and provide configuration
information.

During the installation process, you may be prompted by one (or more) of the installers to restart your system. Select No or Restart Later until all installations are completed. When the last
installation has completed, reboot the system to apply all of the updates.

You may occasionally encounter packages that don’t install successfully. If a package fails to install, StackBuilder Plus will alert you to the installation error with a popup dialog, and write a message to
the log file at %TEMP% .

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 76

Fig. 24: StackBuilder Plus confirms the completed installation

When the installation is complete, StackBuilder Plus will alert you to the success or failure of the installations of the requested packages. If you were prompted by an installer to restart your computer,
reboot now.

7.3.2 Managing an EDB Postgres Advanced Server installation

Unless otherwise noted, the commands and paths noted in the following section assume that you have performed an installation with the interactive installer.

Starting and stopping EDB Postgres Advanced Server and supporting components

A service is a program that runs in the background and requires no user interaction (in fact, a service provides no user interface); a service can be configured to start at boot time, or manually on
demand. Services are best controlled using the platform-specific operating system service control utility. Many of the EDB Postgres Advanced Server supporting components are services.

The following table lists the names of the services that control EDB Postgres Advanced Server and services that control EDB Postgres Advanced Server supporting components:

EDB Postgres Advanced Server component
name

Windows service name

EDB Postgres Advanced Server edb-as-14

pgAgent
EDB Postgres Advanced Server 14 Scheduling
Agent

PgBouncer edb-pgbouncer-1.14

Slony edb-slony-replication-14

You can use the command line or the Windows Services applet to control EDB Postgres Advanced Server's database server and the services of EDB Postgres Advanced Server's supporting components
on a Windows host.

7.3.2.1 Using the Windows services applet

The Windows operating system includes a graphical service controller that offers control of EDB Postgres Advanced Server and the services associated with EDB Postgres Advanced Server components.
The Services utility can be accessed through the Administrative Tools section of the Windows Control Panel .

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 77

Fig. 1: The EDB Postgres Advanced Server service in the Windows Services window

The Services window displays an alphabetized list of services; the edb-as-14 service controls EDB Postgres Advanced Server.

Use the Stop the service option to stop the instance of EDB Postgres Advanced Server. Any user (or client application) connected to the EDB Postgres Advanced Server instance is abruptly
disconnected if you stop the service.
Use the Start the service option to start the EDB Postgres Advanced Server service.
Use the Pause the service option to tell EDB Postgres Advanced Server to reload the server configuration parameters without disrupting user sessions for many of the configuration
parameters. See Configuring EDB Postgres Advanced Server for more information about the parameters that can be updated with a server reload.
Use the Restart the service option to stop and then start the EDB Postgres Advanced Server. Any user sessions are terminated when you stop the service. This option is useful to reset
server parameters that only take effect on server start.

7.3.2.2 Using pg_ctl to control EDB Postgres Advanced Server

You can use the pg_ctl utility to control an EDB Postgres Advanced Server service from the command line on any platform. pg_ctl allows you to start, stop, or restart the EDB Postgres Advanced
Server database server, reload the configuration parameters, or display the status of a running server. To invoke the utility, assume the identity of the cluster owner, navigate into the home directory of
EDB Postgres Advanced Server, and issue the command:

./bin/pg_ctl -D data_directory action

data_directory

data_directory is the location of the data controlled by the EDB Postgres Advanced Server cluster.

action

action specifies the action taken by the pg_ctl utility. Specify:

start to start the service.
stop to stop the service.
restart to stop and then start the service.
reload sends the server a SIGHUP signal, reloading configuration parameters
status to discover the current status of the service.

For more information about using the pg_ctl utility, or the command line options available, see the official PostgreSQL Core Documentation available at:

https://www.postgresql.org/docs/current/static/app-pg-ctl.html

7.3.2.3 Controlling server startup behavior on Windows

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 78

https://www.postgresql.org/docs/current/static/app-pg-ctl.html

You can use the Windows Services utility to control the startup behavior of the server. Right click on the name of the service you wish to update, and select Properties from the context menu to
open the Properties dialog.

Use the drop-down listbox in the Startup type field to specify how the EDB Postgres Advanced Server service behaves when the host starts.

Fig. 2: Specifying EDB Postgres Advanced Server's startup behavior

Specify Automatic (Delayed Start) to instruct the service controller to start after boot.
Specify Automatic to instruct the service controller to start and stop the server whenever the system starts or stops.
Specify Manual to instruct the service controller that the server must be started manually.
Specify Disabled to instruct the service controller to disable the service; after disabling the service, you must stop the service or restart the server to make the change take effect. Once
disabled, the server’s status cannot be changed until Startup type is reset to Automatic (Delayed Start) , Automatic , or Manual .

7.3.2.4 Configuring EDB Postgres Advanced Server

You can easily update parameters that determine the behavior of EDB Postgres Advanced Server and supporting components by modifying the following configuration files:

The postgresql.conf file determines the initial values of EDB Postgres Advanced Server configuration parameters.
The pg_hba.conf file specifies your preferences for network authentication and authorization.
The pg_ident.conf file maps operating system identities (user names) to EDB Postgres Advanced Server identities (roles) when using ident -based authentication.

For more information about Modifying the postgresql.conf file and Modifying the pg_hba.conf file, see Setting parameters.

You can use your editor of choice to open a configuration file, or on Windows navigate through the EDB Postgres menu to open a file.

Fig. 1: Accessing the configuration files through the Windows system menu

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 79

Setting EDB Postgres Advanced Server environment variables

The graphical installer provides a script that simplifies the task of setting environment variables for Windows users. The script sets the environment variables for your current shell session; when your
shell session ends, the environment variables are destroyed. You may wish to invoke pgplus_env.bat from your system-wide shell startup script, so that environment variables are automatically
defined for each shell session.

The pgplus_env script is created during the EDB Postgres Advanced Server installation process and reflects the choices made during installation. To invoke the script, open a command line and
enter:

C:\Program Files\edb\as14\pgplus_env.bat

As the pgplus_env.bat script executes, it sets the following environment variables:

PATH="C:\Program Files\edb\as14\bin";%PATH%
EDBHOME=C:\Program Files\edb\as14
PGDATA=C:\Program Files\edb\as14\data
PGDATABASE=edb
REM @SET PGUSER=enterprisedb
PGPORT=5444
PGLOCALEDIR=C:\Program Files\edb\as14\share\locale

If you have used an installer created by EDB to install PostgreSQL, the pg_env script performs the same function:

C:\Progra~1\PostgreSQL\14\pg_env.bat

As the pg_env.bat script executes on PostgreSQL, it sets the following environment variables:

PATH="C:\Program Files\PostgreSQL\14\bin";%PATH%
PGDATA=C:\Program Files\PostgreSQL\14\data
PGDATABASE=postgres
PGUSER=postgres
PGPORT=5432
PGLOCALEDIR=C:\Program Files\PostgreSQL\14\share\locale

Connecting to EDB Postgres Advanced Server with edb-psql

edb-psql is a command line client application that allows you to execute SQL commands and view the results. To open the edb-psql client, the client must be in your search path. The executable
resides in the bin directory, under your EDB Postgres Advanced Server installation.

Use the following command and options to start the edb-psql client:

psql -d edb -U enterprisedb

Fig. 2: Connecting to the server

Where:

-d specifies the database to which edb-psql will connect.

-U specifies the identity of the database user that will be used for the session.

If you have performed an installation with the interactive installer, you can access the edb-psql client by selecting EDB-PSQL from the EDB Postgres menu. When the client opens, provide
connection information for your session.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 80

edb-psql is a symbolic link to a binary called psql , a modified version of the PostgreSQL community psql , with added support for Advanced Server features. For more information about using
the command line client, see the PostgreSQL Core Documentation at:

https://www.postgresql.org/docs/current/static/app-psql.html

Connecting to EDB Postgres Advanced Server with the pgAdmin 4 client

pgAdmin 4 provides an interactive graphical interface that you can use to manage your database and database objects. Easy-to-use dialogs and online help simplify tasks such as object creation, role
management, and granting or revoking privileges. The tabbed browser panel provides quick access to information about the object currently selected in the pgAdmin tree control.

The client is distributed with the graphical installer. To open pgAdmin, select pgAdmin4 from the EDB Postgres menu. The client opens in your default browser.

Fig. 1: The pgAdmin 4 client Dashboard

To connect to the EDB Postgres Advanced Server database server, expand the Servers node of the Browser tree control, and right click on the EDB Postgres Advanced Server node.
When the context menu opens, select Connect Server . The Connect to Server dialog opens.

Fig. 2: The Connect to Server dialog

Provide the password associated with the database superuser in the Password field, and click OK to connect.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 81

https://www.postgresql.org/docs/current/static/app-psql.html

Fig. 3: Connecting to an EDB Postgres Advanced Server database

When the client connects, you can use the Browser tree control to retrieve information about existing database objects, or to create new objects. For more information about using the pgAdmin
client, use the Help drop-down menu to access the online help files.

7.4 Linux installation details

If you need access to the EDB Postgres Advanced Server components after installation, see Default component locations.

For information on available native packages from the EDB repository, see Available native packages.

To set up a local repository and install EDB Postgres Advanced server, see Installing using a local EDB repository.

For information about managing start/stop/restart of services, managing authentication, and initializing new clusters see Managing an EDB Postgres Advanced Server installation.

7.4.1 Default component locations

The package managers for the various Linux variations install EDB Postgres Advanced Server components in different locations. If you need to access the components after installation, see:

RHEL/OL/Rocky Linux/AlmaLinux/CentOS/SLES Locations
Debian/Ubuntu Locations

RHEL/OL/Rocky Linux/AlmaLinux/CentOS/SLES Locations

The RPM installers place EDB Postgres Advanced Server components in the directories listed in the table below:

Component Location

Executables /usr/edb/as14/bin

Libraries /usr/edb/as14/lib

Cluster configuration files /var/lib/edb/as14

Documentation /usr/edb/as14/share/doc

Contrib /usr/edb/as14/share/contrib

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 82

Data /var/lib/edb/as14/data

Logs /var/log/edb/as14

Lock files /var/lock/edb/as14

Backup area /var/lib/edb/as14/backups

Templates /usr/edb/as14/share

Procedural Languages
/usr/edb/as14/lib or
/usr/edb/as14/lib64

Development Headers /usr/edb/as14/include

Shared data /usr/edb/as14/share

SGML Documentation /usr/edb/as14/share/doc

Component Location

Debian/Ubuntu Locations

The Debian package manager places EDB Postgres Advanced Server and supporting components in the directories listed in the following table:

Component Location

Server /usr/lib/edb-as/14/

Data and Configuration
Directory

/var/lib/edb-as/14/main

/etc/edb-as/14/main/

pgAgent /usr/lib/edb-as/14

Pgpool /usr/edb/pgpool4.1/

Postgis /usr/lib/edb-as/14/

PGSNMPD /usr/lib/edb-as/14

Slony Replication /usr/lib/edb-as/14

pgBouncer /usr/edb/pgbouncer1.14/

pgBouncer Configuration Files
/etc/edb/pgbouncer1.14/pgbouncer.ini

/etc/edb/pgbouncer1.14/userlist.txt

SQL-Profiler /usr/lib/edb-as/14/lib

SQL-Protect /usr/lib/edb-as/14/lib

SSLUTILS /usr/lib/edb-as/14/lib

PL-PERL /usr/lib/edb-as/14/lib

PL-PYTHON /usr/lib/edb-as/14/lib

PLTCL /usr/lib/edb-as/14/lib

EFM /usr/edb/efm-4.1/

JDBC /usr/edb/jdbc

MTK /usr/edb/migrationtoolkit/

7.4.2 Available native packages

EDB provides a number of native packages in the EDB repository. The packages vary slightly for the various Linux variations, see:

RHEL/OL/Rocky Linux/AlmaLinux/CentOS/SLES Packages
Debian/Ubuntu Packages

RHEL/OL/Rocky Linux/AlmaLinux/CentOS/SLES Packages

EDB Postgres Advanced Server RPM packages

The tables that follow list the RPM packages that are available from EDB. You can also use the yum search or dnf search command to access a list of the packages that are currently available
from your configured repository. Open a command line, assume superuser privileges, and enter:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 83

On RHEL or CentOS 7:

yum search <package>

On RHEL or Rocky Linux or AlmaLinux 8:

dnf search <package>

Where package is the search term that specifies the name (or partial name) of a package.

Note: The available package list is subject to change.

Package name Package installs

edb-as14-server This package installs core components of the EDB Postgres Advanced Server database server.

edb-as14-server-
client

Client programs and utilities that you can use to access and manage EDB Postgres Advanced Server.

edb-as14-server-
contrib

Installs contributed tools and utilities that are distributed with EDB Postgres Advanced Server. Files for these modules are installed in:

Documentation: /usr/edb/as14/share/doc

Loadable modules: /usr/edb/as14/lib

Binaries: /usr/edb/as14/bin

edb-as14-server-
core

Includes the programs needed to create the core functionality behind the EDB Postgres Advanced Server database.

edb-as14-server-
devel

Installs the header files and libraries needed to compile C or C++ applications that directly interact with an EDB Postgres Advanced Server server and the ecpg or ecpgPlus C
preprocessor.

edb-as14-server-
docs

Installs the readme file.

edb-as14-server-
edb-modules

Installs supporting modules for EDB Postgres Advanced Server

edb-as14-server-
indexadvisor

Installs EDB Postgres Advanced Server's Index Advisor feature. The Index Advisor utility helps determine which columns you should index to improve performance in a given
workload.

edb-as14-server-
libs

Provides the essential shared libraries for any EDB Postgres Advanced Server client program or interface.

edb-as14-server-
llvmjit

This package contains support for Just in Time (JIT) compiling parts of EDBAS queries.

edb-as14-server-
pldebugger

This package implements an API for debugging PL/pgSQL functions on EDB Postgres Advanced Server.

edb-as14-server-
plperl

Installs the PL/Perl procedural language for EDB Postgres Advanced Server. The edb-as14-server-plperl package is dependent on the platform-supplied version of
Perl.

edb-as14-server-
plpython3

Installs the PL/Python procedural language for EDB Postgres Advanced Server. The PL/Python2 support is no longer available from EDB Postgres Advanced Server version 14
onwards.

edb-as14-server-
pltcl

Installs the PL/Tcl procedural language for EDB Postgres Advanced Server. The edb-as14-pltcl package is dependent on the platform-supplied version of TCL.

edb-as14-server-
sqlprofiler

This package installs EDB Postgres Advanced Server's SQL Profiler feature. SQL Profiler helps identify and optimize SQL code.

edb-as14-server-
sqlprotect

This package installs EDB Postgres Advanced Server's SQL Protect feature. SQL Protect provides protection against SQL injection attacks.

edb-as14-server-
sslutils

This package installs functionality that provides SSL support.

edb-as14-server-
cloneschema

This package installs the EDB Clone Schema extension. For more information about EDB Clone Schema, see the EDB Postgres Advanced Server Guide.

edb-as14-server-
parallel-clone

This package installs functionality that supports the EDB Clone Schema extension.

edb-as14-
pgagent

Installs pgAgent; pgAgent is a job scheduler for EDB Postgres Advanced Server. Before installing this package, you must install EPEL; for detailed information about installing
EPEL, see Linux installation troubleshooting.

edb-as14-
edbplus

The edb-edbplus package contains the files required to install the EDB*Plus command line client. EDB*Plus commands are compatible with Oracle's SQL*Plus.

edb-as14-
pgsnmpd

SNMP (Simple Network Management Protocol) is a protocol that allows you to supervise an apparatus connected to the network.

edb-as14-
pgpool41-
extensions

This package creates pgPool extensions required by the server for use with pgpool.

edb-as14-
postgis3

Installs POSTGIS meta RPMs.

edb-as14-
postgis3-core

This package provides support for geographic objects to the PostgreSQL object-relational database. In effect, PostGIS "spatially enables" the PostgreSQL server, allowing it to be
used as a backend spatial database for geographic information systems (GIS), much like ESRI's SDE or Oracle's Spatial extension.

edb-as14-
postgis3-docs

This package installs pdf documentation of PostGIS.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 84

edb-as14-
postgis-jdbc

This package installs the essential jdbc driver for PostGIS.

edb-as14-
postgis3-utils

This package installs the utilities for PostGIS.

edb-as14-
postgis3-gui

This package provides a GUI for PostGIS.

edb-as14-slony-
replication

Installs the meta RPM for Slony-I.

edb-as14-slony-
replication-core

Slony-I builds a primary-standby system that includes all features and capabilities needed to replicate large databases to a reasonably limited number of standby systems.

edb-as14-slony-
replication-docs

This package contains the Slony project documentation (in pdf form).

edb-as14-slony-
replication-tools

This package contains the Slony altperl tools and utilities that are useful when deploying Slony replication environments. Before installing this package, you must install EPEL;
for detailed information about installing EPEL, see Linux installation troubleshooting.

edb-as14-libicu These packages contain supporting library files.

Package name Package installs

The following table lists the packages for EDB Postgres Advanced Server 14 supporting components.

Package name Package installs

edb-pgpool41

This package contains the pgPool-II installer. The pgpool-II utility package acts as a middleman between client applications and Server database servers. pgpool-II functionality is
transparent to client applications; client applications connect to pgpool-II instead of directly to EDB Postgres Advanced Server, and pgpool-II manages the connection. EDB
supports the following pgpool-II features:
- Load balancing
- Connection pooling
- High availability
- Connection limits

pgpool-II runs as a service on Linux systems, and is not supported on Windows systems.

edb-jdbc The edb-jdbc package includes the .jar files needed for Java programs to access an EDB Postgres Advanced Server database.

edb-
migrationtoolkit

The edb-migrationtoolkit package installs Migration Toolkit, facilitating migration to an EDB Postgres Advanced Server database from Oracle, PostgreSQL, MySQL,
Sybase and SQL Server.

edb-oci The edb-oci package installs the EDB Open Client library, allowing applications that use the Oracle Call Interface API to connect to an EDB Postgres Advanced Server
database.

edb-oci-devel This package installs the OCI include files; install this package if you are developing C/C++ applications that require these files.

edb-odbc This package installs the driver needed for applications to access an EDB Postgres Advanced Server system via ODBC.

edb-odbc-devel This package installs the ODBC include files; install this package if you are developing C/C++ applications that require these files.

edb-
pgbouncer114

This package contains PgBouncer (a lightweight connection pooler). This package requires the libevent package.

ppas-xdb This package contains the xDB installer; xDB provides asynchronous cross-database replication.

ppas-xdb-
console

This package provides support for xDB.

ppas-xdb-libs This package provides support for xDB.

ppas-xdb-
publisher

This package provides support for xDB.

ppas-xdb-
subscriber

This package provides support for xDB.

edb-pem The edb-pem package installs Management Tool that efficiently manages, monitor, and tune large Postgres deployments from a single remote GUI console.

edb-pem-agent This package is an agent component of Postgres Enterprise Manager.

edb-pem-docs This package contains documentation for various languages, which are in HTML format.

edb-pem-server This package contains server components of Postgres Enterprise Manager.

edb-pgadmin4 This package is a management tool for PostgreSQL capable of hosting the Python application and presenting it to the user as a desktop application.

edb-pgadmin4-
desktop-
common

This package installs the desktop components of pgAdmin4 for all window managers.

edb-pgadmin4-
desktop-gnome

This package installs the gnome desktop components of pgAdmin4

edb-pgadmin4-
docs

This package contains documentation of pgAdmin4.

edb-pgadmin4-
web

This package contains the required files to run pgAdmin4 as a web application.

edb-efm40 This package installs EDB Failover Manager that adds fault tolerance to database clusters to minimize downtime when a primary database fails by keeping data online in high
availability configurations.

edb-rs This package is a java-based replication framework that provides asynchronous replication across Postgres and EPAS database servers. It supports primary-standby, primary-
primary, and hybrid configurations.

edb-rs-client This package is a java-based command-line tool that is used to configure and operate a replication network via different commands by interacting with the EPRS server.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 85

edb-rs-
datavalidator

This package is a java-based command-line tool that provides row and column level data comparison of a source and target database table. The supported RDBMS servers include
PostgreSQL, EPAS, Oracle, and MS SQL Server.

edb-rs-libs This package contains certain libraries that are commonly used by ERPS Server, EPRS Client, and Monitoring modules.

edb-rs-monitor This package is a java-based application that provides monitoring capabilities to ensure a smooth functioning of the EPRS replication cluster.

edb-rs-server This package is a java-based replication framework that provides asynchronous replication across Postgres and EPAS database servers. It supports primary-standby, primary-
primary, and hybrid configurations.

edb-bart This package installs the Backup and Recovery Tool (BART) to support online backup and recovery across local and remote PostgreSQL and EDB EDB Postgres Advanced Servers.

libevent-edb This package contains supporting library files.

libiconv-edb This package contains supporting library files.

libevent-edb-
devel

This package contains supporting library files.

Package name Package installs

Debian/Ubuntu Packages

EDB Postgres Advanced Server Debian packages

The table that follows lists some of the Debian packages that are available from EDB. You can also use the apt list command to access a list of the packages that are currently available from your
configured repository. Open a command line, assume superuser privileges, and enter:

apt list edb*

Note

The available package list is subject to change.

Package name Package installs

edb-as14-server Installs core components of the EDB Postgres Advanced Server database server.

edb-as14-
server-client

Includes client programs and utilities that you can use to access and manage EDB Postgres Advanced Server.

edb-as14-
server-core

Includes the programs needed to create the core functionality behind the EDB Postgres Advanced Server database.

edb-as14-
server-dev

The edb-as14-server-dev package contains the header files and libraries needed to compile C or C++ applications that directly interact with an EDB Postgres Advanced
Server server and the ecpg or ecpgPlus C preprocessor.

edb-as14-
server-doc

Installs the readme file.

edb-as14-
server-edb-
modules

Installs supporting modules for EDB Postgres Advanced Server.

edb-as14-
server-
indexadvisor

Installs EDB Postgres Advanced Server's Index Advisor feature. The Index Advisor utility helps determine which columns you should index to improve performance in a given
workload.

edb-as14-
server-
pldebugger

This package implements an API for debugging PL/pgSQL functions on EDB Postgres Advanced Server.

edb-as14-
server-
plpython3

Installs the PL/Python procedural language for EDB Postgres Advanced Server. PL/Python2 support is no longer available from EDB Postgres Advanced Server version 14
onwards.

edb-as14-
server-pltcl

Installs the PL/Tcl procedural language for EDB Postgres Advanced Server. The edb-as14-pltcl package is dependent on the platform-supplied version of TCL.

edb-as14-
server-
sqlprofiler

This package installs EDB Postgres Advanced Server's SQL Profiler feature. SQL Profiler helps identify and optimize SQL code.

edb-as14-
server-
sqlprotect

This package installs EDB Postgres Advanced Server's SQL Protect feature. SQL Protect provides protection against SQL injection attacks.

edb-as14-
server-sslutils

This package installs functionality that provides SSL support.

edb-as14-
server-
cloneschema

This package installs the EDB Clone Schema extension. For more information about EDB Clone Schema, see the EDB Postgres Advanced Server Guide.

edb-as14-
server-parallel-
clone

This package installs functionality that supports the EDB Clone Schema extension.

edb-as14-
edbplus

The edb-edbplus package contains the files required to install the EDB*Plus command line client. EDB*Plus commands are compatible with Oracle's SQL*Plus.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 86

edb-as14-
pgsnmpd

SNMP (Simple Network Management Protocol) is a protocol that allows you to supervise an apparatus connected to the network.

edb-as14-
pgadmin4

pgAdmin 4 provides a graphical management interface for EDB Postgres Advanced Server and PostgreSQL databases.

edb-as14-
pgadmin-
apache

Apache support module for pgAdmin 4.

edb-as14-
pgadmin4-
common

pgAdmin 4 supporting files.

edb-as14-
pgadmin4-doc

pgAdmin 4 documentation module.

edb-as14-
pgpool41-
extensions

This package creates pgPool extensions required by the server.

edb-as14-
postgis3

This package installs POSTGIS support for geospatial data.

edb-as14-
postgis3-scripts

This package installs POSTGIS support for geospatial data.

edb-as14-
postgis3-doc

This package provides support for POSTGIS.

edb-as14-
postgis3-gui

This package provides a GUI for POSTGIS.

edb-as14-
postgis-jdbc

This package provides support for POSTGIS.

edb-as14-
postgis-scripts

This package provides support for POSTGIS.

edb-as14-
pgagent

This package installs pgAgent; pgAgent is a job scheduler for EDB Postgres Advanced Server. Before installing this package, you must install EPEL; for detailed information about
installing EPEL, see Linux installation troubleshooting.

edb-as14-slony-
replication

This package installs the meta RPM for Slony-I.

edb-as14-slony-
replication-core

This package contains core portions of Slony-I to build a primary-standby system that includes all features and capabilities needed to replicate large databases to a reasonably
limited number of standby systems.

edb-as14-slony-
replication-docs

This package contains the Slony project documentation (in pdf form).

edb-as14-slony-
replication-
tools

This package contains the Slony altperl tools and utilities that are useful when deploying Slony replication environments. Before installing this package, you must install EPEL;
for detailed information about installing EPEL, see Linux installation troubleshooting.

edb-as14-hdfs-
fdw

The Hadoop Data Adapter allows you to query and join data from Hadoop environments with your Postgres or EDB Postgres Advanced Server instances. It is YARN Ready certified
with HortonWorks, and provides optimizations for performance with predicate pushdown support.

edb-as14-hdfs-
fdw-doc

Documentation for the Hadoop Data Adapter.

edb-as14-
mongo-fdw

This EDB EDB Postgres Advanced Server extension implements a Foreign Data Wrapper for MongoDB.

edb-as14-
mongo-fdw-doc

Documentation for the Foreign Data Wrapper for MongoDB.

edb-as14-
mysql-fdw

This EDB EDB Postgres Advanced Server extension implements a Foreign Data Wrapper for MySQL.

edb-pgpool41

This package contains the pgPool-II installer. The pgpool-II utility package acts as a middleman between client applications and Server database servers. pgpool-II functionality is
transparent to client applications; client applications connect to pgpool-II instead of directly to EDB Postgres Advanced Server, and pgpool-II manages the connection. EDB
supports the following pgpool-II features:
- Load balancing
- Connection pooling
- High availability
- Connection limits

pgpool-II runs as a service on Linux systems, and is not supported on Windows systems.

edb-jdbc The edb-jdbc package includes the .jar files needed for Java programs to access an EDB Postgres Advanced Server database.

edb-
migrationtoolkit

The edb-migrationtoolkit package installs Migration Toolkit, facilitating migration to an EDB Postgres Advanced Server database from Oracle, PostgreSQL, MySQL,
Sybase and SQL Server.

edb-
pgbouncer114

This package contains PgBouncer (a lightweight connection pooler). This package requires the libevent package.

edb-efm40 This package installs EDB Failover Manager that adds fault tolerance to database clusters to minimize downtime when a primary database fails by keeping data online in high
availability configurations.

Package name Package installs

Updating an RPM installation

If you have an existing EDB Postgres Advanced Server RPM installation, you can use yum or dnf to upgrade your repository configuration file and update to a more recent product version. To update
the edb.repo file, assume superuser privileges and enter:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 87

On RHEL or CentOS 7:

yum upgrade edb-repo

On RHEL or Rocky Linux or AlmaLinux 8:

dnf upgrade edb-repo

yum or dnf updates the edb.repo file to enable access to the current EDB repository, configured to connect with the credentials specified in your edb.repo file. Then, you can use yum or
dnf to upgrade all packages whose names include the expression edb :

On RHEL or CentOS 7:

yum upgrade edb*

On RHEL or Rocky Linux or AlmaLinux 8:

dnf upgrade edb*

Note

The yum upgrade or dnf upgrade command perform an update only between minor releases; to update between major releases, you must use pg_upgrade .

For more information about using yum commands and options, enter yum --help on your command line.

For more information about using dnf commands and options, visit:

https://docs.fedoraproject.org/en-US/quick-docs/dnf/

7.4.3 Installing on Linux using a local repository

You can create a local repository to act as a host for the EDB Postgres Advanced Server native packages if the server on which you wish to install EDB Postgres Advanced Server (or supporting
components) cannot directly access the EDB repository. This is a high-level listing of the steps requires; modify the process for your individual network.

To create and use a local repository, you must:

Use yum or dnf to install the epel-release , yum-utils , and createrepo packages.

On RHEL or CentOS 7.x:

On RHEL or Rocky Linux or AlmaLinux 8.x:

Create a directory in which to store the repository:

mkdir /srv/repos

Copy the RPM installation packages to your local repository. You can download the individual packages or use a tarball to populate the repository. The packages are available from the EDB
repository at https://repos.enterprisedb.com/.

Sync the RPM packages and create the repository.

reposync -r edbas14 -p /srv/repos
createrepo /srv/repos

Install your preferred webserver on the host that acts as your local repository, and ensure that the repository directory is accessible to the other servers on your network.

On each isolated database server, configure yum or dnf to pull updates from the mirrored repository on your local network. For example, you might create a repository configuration file called
/etc/yum.repos.d/edb-repo with connection information that specifies:

yum install epel-release
yum install yum-utils
yum install createrepo

dnf install epel-release
dnf install yum-utils
dnf install createrepo

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 88

https://docs.fedoraproject.org/en-US/quick-docs/dnf/
https://repos.enterprisedb.com/

[edbas14]
name=EnterprisEDB Postgres Advanced Server 14
baseurl=https://yum.your_domain.com/edbas14
enabled=1
gpgcheck=0

After specifying the location and connection information for your local repository, you can use yum or dnf commands to install EDB Postgres Advanced Server and its supporting components on the
isolated servers. For example:

On RHEL or CentOS 7:

yum -y install edb-as14-server

On RHEL or Rocky Linux or AlmaLinux 8:

dnf -y install edb-as14-server

For more information about creating a local yum repository, visit:

https://wiki.centos.org/HowTos/CreateLocalRepos

7.4.4 Managing an EDB Postgres Advanced Server installation

Unless otherwise noted, the commands and paths noted in the following section assume that you have performed an installation using the native packages.

Starting and stopping services

A service is a program that runs in the background and requires no user interaction (in fact, a service provides no user interface); a service can be configured to start at boot time, or manually on
demand. Services are best controlled using the platform-specific operating system service control utility. Many of the EDB Postgres Advanced Server supporting components are services.

The following table lists the names of the services that control EDB Postgres Advanced Server and services that control EDB Postgres Advanced Server supporting components:

EDB Postgres Advanced Server component
name

Linux service Name Debian service name

EDB Postgres Advanced Server edb-as-14 edb-as@14-main

pgAgent edb-pgagent-14 edb-as14-pgagent

PgBouncer edb-pgbouncer-1.14 edb-pgbouncer114

pgPool-II edb-pgpool-4.1 edb-pgpool41

Slony edb-slony-replication-14 edb-as14-slony-replication

EFM edb-efm-4.0 edb-efm-4.0

You can use the Linux command line to control EDB Postgres Advanced Server's database server and the services of EDB Postgres Advanced Server's supporting components. The commands that control
the EDB Postgres Advanced Server service on a Linux platform are host specific.

Controlling a service on RHEL/CentOS 7.x or RHEL/Rocky Linux/AlmaLinux 8.x

If your installation of EDB Postgres Advanced Server resides on version 7.x | 8.x of RHEL and CentOS, you must use the systemctl command to control the EDB Postgres Advanced Server service and
supporting components.

The systemctl command must be in your search path and must be invoked with superuser privileges. To use the command, open a command line, and enter:

systemctl <action> <service_name>

Where:

service_name specifies the name of the service.

action specifies the action taken by the service command. Specify:

start to start the service.
stop to stop the service.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 89

https://wiki.centos.org/HowTos/CreateLocalRepos

restart to stop and then start the service.
status to discover the current status of the service.

Controlling a service on Debian 10.x or Ubuntu 18.04 | 20.04

If your installation of EDB Postgres Advanced Server resides on version 18.04 | 20.04 of Ubuntu, assume superuser privileges and invoke the following commands (using bundled scripts) to manage the
service. Use the following commands to:

Discover the current status of a service:

/usr/edb/as14/bin/epas_ctlcluster 14 main status

Stop a service:

/usr/edb/as14/bin/epas_ctlcluster 14 main stop

Restart a service:

/usr/edb/as14/bin/epas_ctlcluster 14 main restart

Reload a service:

/usr/edb/as14/bin/epas_ctlcluster 14 main reload

Control the component services:

systemctl restart edb-as@14-main

Using pg_ctl to control EDB Postgres Advanced Server

You can use the pg_ctl utility to control an EDB Postgres Advanced Server service from the command line on any platform. pg_ctl allows you to start, stop, or restart the EDB Postgres Advanced
Server database server, reload the configuration parameters, or display the status of a running server. To invoke the utility, assume the identity of the cluster owner, navigate into the home directory of
EDB Postgres Advanced Server, and issue the command:

./bin/pg_ctl -D <data_directory> <action>

data_directory is the location of the data controlled by the EDB Postgres Advanced Server cluster.

action specifies the action taken by the pg_ctl utility. Specify:

start to start the service.
stop to stop the service.
restart to stop and then start the service.
reload sends the server a SIGHUP signal, reloading configuration parameters
status to discover the current status of the service.

For more information about using the pg_ctl utility, or the command line options available, see the official PostgreSQL Core Documentation available at:

https://www.postgresql.org/docs/current/static/app-pg-ctl.html

Choosing Between pg_ctl and the service Command

You can use the pg_ctl utility to manage the status of an EDB Postgres Advanced Server cluster, but it is important to note that pg_ctl does not alert the operating system service controller to
changes in the status of a server, so it is beneficial to use the service command whenever possible.

Configuring component services to autostart at system reboot

After installing, configuring, and starting the services of EDB Postgres Advanced Server supporting components on a Linux system, you must manually configure your system to autostart the service
when your system reboots. To configure a service to autostart on a Linux system, open a command line, assume superuser privileges, and enter the following command.

On a Redhat-compatible Linux system, enter:

/sbin/chkconfig <service_name> on

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 90

https://www.postgresql.org/docs/current/static/app-pg-ctl.html

Where service_name specifies the name of the service.

Connecting to EDB Postgres Advanced Server with edb-psql

edb-psql is a command line client application that allows you to execute SQL commands and view the results. To open the edb-psql client, the client must be in your search path. The executable
resides in the bin directory, under your EDB Postgres Advanced Server installation.

Use the following command and options to start the edb-psql client:

psql -d edb -U enterprisedb

Where:

-d specifies the database to which edb-psql connects.

-U specifies the identity of the database user to use for the session.

edb-psql is a symbolic link to a binary called psql , a modified version of the PostgreSQL community psql , with added support for Advanced Server features. For more information about using
the command line client, see the PostgreSQL Core Documentation at:

https://www.postgresql.org/docs/current/static/app-psql.html

Managing authentication on a Debian or Ubuntu host

By default, the server is running with the peer or md5 permission on a Debian or Ubuntu host. You can change the authentication method by modifying the pg_hba.conf file, located under
/etc/edb-as/14/main/ .

For more information about modifying the pg_hba.conf file, see the PostgreSQL core documentation available at:

https://www.postgresql.org/docs/current/auth-pg-hba-conf.html

Configuring a package installation

The packages that install the database server component create a unit file (on version 7.x or 8.x hosts) and service startup scripts.

Creating a database cluster and starting the service

The PostgreSQL initdb command creates a database cluster; when installing EDB Postgres Advanced Server with an RPM package, the initdb executable is in /usr/edb/asx.x/bin . After
installing EDB Postgres Advanced Server, you must manually configure the service and invoke initdb to create your cluster. When invoking initdb , you can:

Specify environment options on the command line.
Include the systemd service manager on RHEL/CentOS 7.x or RHEL/Rocky Linux/AlmaLinux 8.x and use a service configuration file to configure the environment.

To review the initdb documentation, visit:

https://www.postgresql.org/docs/current/static/app-initdb.html

After specifying any options in the service configuration file, you can create the database cluster and start the service; these steps are platform specific.

On RHEL/CentOS 7.x or RHEL/Rocky Linux/AlmaLinux 8.x

To invoke initdb on a RHEL/CentOS 7.x or Rocky Linux/AlmaLinux 8.x system, with the options specified in the service configuration file, assume the identity of the operating system superuser:

su - root

To initialize a cluster with the non-default values, you can use the PGSETUP_INITDB_OPTIONS environment variable by invoking the edb-as-14-setup cluster initialization script that resides
under EPAS_Home/bin .

To invoke initdb export the PGSETUP_INITDB_OPTIONS environment variable with the following command:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 91

https://www.postgresql.org/docs/current/static/app-psql.html
https://www.postgresql.org/docs/current/auth-pg-hba-conf.html
https://www.postgresql.org/docs/current/static/app-initdb.html

PGSETUP_INITDB_OPTIONS="-E UTF-8" /usr/edb/as14/bin/edb-as-14-setup initdb

After creating the cluster, use systemctl to start, stop, or restart the service:

systemctl { start | stop | restart } edb-as-14

On Debian 10.x or Ubuntu 18.04 | 20.04

You can initialize multiple clusters using the bundled scripts. To create a new cluster, assume root privileges, and invoke the bundled script:

/usr/bin/epas_createcluster 14 main2

To start a new cluster, use the following command:

/usr/bin/epas_ctlcluster 14 main2 start

To list all the available clusters, use the following command:

/usr/bin/epas_lsclusters

Note

The data directory is created under /var/lib/edb-as/14/main2 and configuration directory is created under /etc/edb-as/14/main/ .

Specifying cluster options with INITDBOPTS

You can use the INITDBOPTS variable to specify your cluster configuration preferences. By default, the INITDBOPTS variable is commented out in the service configuration file; unless modified,
when you run the service startup script, the new cluster is created in a mode compatible with Oracle databases. Clusters created in this mode contain a database named edb , and have a database
superuser named enterprisedb .

Initializing the cluster in Oracle mode

If you initialize the database using Oracle compatibility mode, the installation includes:

Data dictionary views compatible with Oracle databases.
Oracle data type conversions.
Date values displayed in a format compatible with Oracle syntax.
Support for Oracle-styled concatenation rules (if you concatenate a string value with a NULL value, the returned value is the value of the string).
Support for the following Oracle built-in packages.

Package Functionality compatible with Oracle databases

dbms_alert Provides the capability to register for, send, and receive alerts.

dbms_job Provides the capability for the creation, scheduling, and managing of jobs.

dbms_lob Provides the capability to manage on large objects.

dbms_output Provides the capability to send messages to a message buffer, or get messages from the message buffer.

dbms_pipe Provides the capability to send messages through a pipe within or between sessions connected to the same database cluster.

dbms_rls Enables the implementation of Virtual Private Database on certain EDB Postgres Advanced Server database objects.

dbms_sql Provides an application interface to the EDB dynamic SQL functionality.

dbms_utility Provides various utility programs.

dbms_aqadm Provides supporting procedures for Advanced Queueing functionality.

dbms_aq Provides message queueing and processing for EDB Postgres Advanced Server.

dbms_profiler Collects and stores performance information about the PL/pgSQL and SPL statements that are executed during a performance profiling session.

dbms_random Provides a number of methods to generate random values.

dbms_redact Enables the redacting or masking of data that is returned by a query.

dbms_lock Provides support for the DBMS_LOCK.SLEEP procedure.

dbms_schedule
r

Provides a way to create and manage jobs, programs, and job schedules.

dbms_crypto Provides functions and procedures to encrypt or decrypt RAW, BLOB or CLOB data. You can also use DBMS_CRYPTO functions to generate cryptographically strong random
values.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 92

dbms_mview Provides a way to manage and refresh materialized views and their dependencies.

dbms_session Provides support for the DBMS_SESSION.SET_ROLE procedure.

utl_encode Provides a way to encode and decode data.

utl_http Provides a way to use the HTTP or HTTPS protocol to retrieve information found at an URL.

utl_file Provides the capability to read from, and write to files on the operating system’s file system.

utl_smtp Provides the capability to send e-mails over the Simple Mail Transfer Protocol (SMTP).

utl_mail Provides the capability to manage e-mail.

utl_url Provides a way to escape illegal and reserved characters within an URL.

utl_raw Provides a way to manipulate or retrieve the length of raw data types.

Package Functionality compatible with Oracle databases

Initializing the cluster in Postgres mode

Clusters created in PostgreSQL mode don't include compatibility features. To create a new cluster in PostgreSQL mode, remove the pound sign (#) in front of the INITDBOPTS variable, enabling the
"--no-redwood-compat" option. Clusters created in PostgreSQL mode contain a database named postgres and have a database superuser named postgres .

You may also specify multiple initdb options. For example, the following statement:

INITDBOPTS="--no-redwood-compat -U alice --locale=en_US.UTF-8"

Creates a database cluster (without compatibility features for Oracle) that contains a database named postgres that is owned by a user named alice ; the cluster uses UTF-8 encoding.

If you initialize the database using "--no-redwood-compat" mode, the installation includes the following package:

Package Functionality noncompatible with Oracle databases

dbms_aqadm Provides supporting procedures for Advanced Queueing functionality.

dbms_aq Provides message queueing and processing for EDB Postgres Advanced Server.

edb_bulkload Provides direct/conventional data loading capability when loading huge amount of data into a database.

edb_gen Provides miscellaneous packages to run built-in packages.

edb_objects Provides Oracle compatible objects such as packages, procedures etc.

waitstates Provides monitor session blocking.

edb_dblink_libpq Provides link to foreign databases via libpq.

edb_dblink_oci Provides link to foreign databases via OCI.

snap_tables Creates tables to hold wait information. Included with DRITA scripts.

snap_functions Creates functions to return a list of snap ids and the time the snapshot was taken. Included with DRITA
scripts.

sys_stats Provides OS performance statistics.

In addition to the cluster configuration options documented in the PostgreSQL core documentation, EDB Postgres Advanced Server supports the following initdb options:

--no-redwood-compat

Include the --no-redwood-compat keywords to instruct the server to create the cluster in PostgreSQL mode. When the cluster is created in PostgreSQL mode, the name of the database superuser
is postgres and the name of the default database is postgres . The few Advanced Server’s features compatible with Oracle databases will be available with this mode. However, we recommend
using the Advanced server in redwood compatibility mode to use all its features.

--redwood-like

Include the --redwood-like keywords to instruct the server to use an escape character (an empty string ('')) following the LIKE (or PostgreSQL-compatible ILIKE) operator in a SQL statement
that is compatible with Oracle syntax.

--icu-short-form

Include the --icu-short-form keywords to create a cluster that uses a default ICU (International Components for Unicode) collation for all databases in the cluster. For more information about
Unicode collations, refer to the EDB Postgres Advanced Server Guide available at:

https://www.enterprisedb.com/docs

For more information about using initdb , and the available cluster configuration options, see the PostgreSQL Core Documentation available at:

https://www.postgresql.org/docs/current/static/app-initdb.html

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 93

https://www.enterprisedb.com/docs
https://www.postgresql.org/docs/current/static/app-initdb.html

You can also view online help for initdb by assuming superuser privileges and entering:

/path_to_initdb_installation_directory/initdb --help

Where path_to_initdb_installation_directory specifies the location of the initdb binary file.

Modifying the data directory location

On RHEL/CentOS 7.x or RHEL/Rocky Linux/AlmaLinux 8.x

On a RHEL/CentOS 7.x or RHEL/Rocky Linux/AlmaLinux 8.x host, the unit file is named edb-as-14.service and resides in /usr/lib/systemd/system . The unit file contains references to
the location of the EDB Postgres Advanced Server data directory. You should avoid making any modifications directly to the unit file because it may be overwritten during package upgrades.

By default, data files reside under /var/lib/edb/as14/data directory. To use a data directory that resides in a non-default location, perform the following steps:

Create a copy of the unit file under the /etc directory:

cp /usr/lib/systemd/system/edb-as-14.service /etc/systemd/system/

After copying the unit file to the new location, create the service file /etc/systemd/system/edb-as-14.service .

Update the following values with new location of data directory in the /lib/systemd/system/edb-as-14.service file:

Environment=PGDATA=/var/lib/edb/as14/data
PIDFile=/var/lib/edb/as14/data/postmaster.pid

Delete the entire content of /etc/systemd/system/edb-as-14.service file, except the following line:

.include /lib/systemd/system/edb-as-14.service

Run the following command to initialize the cluster at the new location:

PGSETUP_INITDB_OPTIONS="-E UTF-8" /usr/edb/as14/bin/edb-as-14-setup initdb

Use the following command to reload systemd , updating the modified service scripts:

systemctl daemon-reload

Start the EDB Postgres Advanced Server service with the following command:

systemctl start edb-as-14

Configuring SELinux policy to change the data directory location on RHEL/CentOS 7.x or RHEL/Rocky Linux/AlmaLinux 8.x

By default, the data files resides under /var/lib/edb/as14/data directory. To change the default data directory location depending on individual environment preferences, you must configure
the SELinux policy and perform the following steps:

Stop the server using the following command:

systemctl stop edb-as-14

Check the status of SELinux using the getenforce or sestatus command:

getenforce
Enforcing

sestatus
SELinux status: enabled
SELinuxfs mount: /sys/fs/selinux
SELinux root directory: /etc/selinux
Loaded policy name: targeted
Current mode: enforcing
Mode from config file: enforcing

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 94

Policy MLS status: enabled
Policy deny_unknown status: allowed
Max kernel policy version: 31

Use the following command to view the SELinux context of the default database location:

ls -lZ /var/lib/edb/as14/data
drwx------. enterprisedb enterprisedb unconfined_u:object_r:var_lib_t:s0 log

Create a new directory for a new location of the database using the following command:

mkdir /opt/edb

Use the following command to move the data directory to /opt/edb :

mv /var/lib/edb/as14/data /opt/edb/

Create a file edb-as-14.service under /etc/systemd/system directory to include the location of a new data directory:

.include /lib/systemd/system/edb-as-14.service
[Service]
Environment=PGDATA=/opt/edb/data
PIDFile=/opt/edb/data/postmaster.pid

Use the semanage utility to set the context mapping for /opt/edb/ . The mapping is written to /etc/selinux/targeted/contexts/files/file.contexts.local file.

semanage fcontext --add --equal /var/lib/edb/as14/data /opt/edb

Apply the context mapping using restorecon utility:

restorecon -rv /opt/edb/

Reload systemd to modify the service script using the following command:

systemctl daemon-reload

Now, the /opt/edb location has been labeled correctly with the context, use the following command to start the service:

systemctl start edb-as-14

Starting multiple postmasters with different clusters

You can configure EDB Postgres Advanced Server to use multiple postmasters, each with its own database cluster. The steps required are version specific to the Linux host.

On RHEL/CentOS 7.x or RHEL/Rocky Linux/AlmaLinux 8.x

The edb-as14-server-core RPM for version 7.x | 8.x contains a unit file that starts the EDB Postgres Advanced Server instance. The file allows you to start multiple services, with unique data
directories and that monitor different ports. You must have root access to invoke or modify the script.

The example that follows creates an EDB Postgres Advanced Server installation with two instances; the secondary instance is named secondary :

Make a copy of the default file with the new name. As noted at the top of the file, all modifications must reside under /etc . You must pick a name that is not already used in
/etc/systemd/system .

cp /usr/lib/systemd/system/edb-as-14.service /etc/systemd/system/secondary-edb-as-14.service

Edit the file, changing PGDATA to point to the new data directory that you will create the cluster against.

Create the target PGDATA with user enterprisedb .

Run initdb , specifying the setup script:

/usr/edb/as14/bin/edb-as-14-setup initdb secondary-edb-as-14

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 95

Edit the postgresql.conf file for the new instance, specifying the port, the IP address, TCP/IP settings, etc.

Make sure that new cluster runs after a reboot:

systemctl enable secondary-edb-as-14

Start the second cluster with the following command:

systemctl start secondary-edb-as-14

8 EDB Postgres Advanced Server upgrade

This section provides information about upgrading EDB Postgres Advanced Server, including:

pg_upgrade to upgrade from an earlier version of EDB Postgres Advanced Server to EDB Postgres Advanced Server 14.
yum to perform a minor version upgrade on a Linux host.
StackBuilder Plus to perform a minor version upgrade on a Windows host.

8.1 Upgrade considerations

Consider the following when upgrading EDB Postgres Advanced Server:

The pg_upgrade utility cannot upgrade a partitioned table if a foreign key refers to the partitioned table.
If you are upgrading from the version 9.4 server or a lower version of EDB Postgres Advanced Server, and you use partitioned tables that include a SUBPARTITION BY clause, you must use
pg_dump and pg_restore to upgrade an existing EDB Postgres Advanced Server installation to a later version of EDB Postgres Advanced Server. To upgrade, you must:

1. Use pg_dump to preserve the content of the subpartitioned table.
2. Drop the table from the EDB Postgres Advanced Server 9.4 database or a lower version of EDB Postgres Advanced Server database.
3. Use pg_upgrade to upgrade the rest of the EDB Postgres Advanced Server database to a more recent version.
4. Use pg_restore to restore the subpartitioned table to the latest upgraded EDB Postgres Advanced Server database.

If you perform an upgrade of the EDB Postgres Advanced Server installation, you must rebuild any hash-partitioned table on the upgraded server.
If you are using an ODBC, JDBC, OCI, or .NET driver to connect to your database applications and upgrading to a new major version of EDB Postgres Advanced Server, upgrade your driver to the
latest version when upgrading EDB Postgres Advanced Server.

8.2 Upgrading an installation with pg_upgrade

While minor upgrades between versions are fairly simple and require only the installation of new executables, past major version upgrades has been both expensive and time consuming.
pg_upgrade facilitates migration between any version of EDB Postgres Advanced Server (version 9.0 or later), and any subsequent release of EDB Postgres Advanced Server that is supported on the

same platform.

Without pg_upgrade , to migrate from an earlier version of EDB Postgres Advanced Server to EDB Postgres Advanced Server 14, you must export all of your data using pg_dump , install the new
release, run initdb to create a new cluster, and then import your old data.

pg_upgrade can reduce both the amount of time required and the disk space required for many major-version upgrades.

The pg_upgrade utility performs an in-place transfer of existing data between EDB Postgres Advanced Server and any subsequent version.

Several factors determine if an in-place upgrade is practical:

The on-disk representation of user-defined tables must not change between the original version and the upgraded version.
The on-disk representation of data types must not change between the original version and the upgraded version.
To upgrade between major versions of EDB Postgres Advanced Server with pg_upgrade , both versions must share a common binary representation for each data type. Therefore, you cannot
use pg_upgrade to migrate from a 32-bit to a 64-bit Linux platform.

Before performing a version upgrade, pg_upgrade verifies that the two clusters (the old cluster and the new cluster) are compatible.

If the upgrade involves a change in the on-disk representation of database objects or data, or involves a change in the binary representation of data types, pg_upgrade can't perform the upgrade; to
upgrade, you have to pg_dump the old data and then import that data into the new cluster.

The pg_upgrade executable is distributed with EDB Postgres Advanced Server 14, and is installed as part of the Database Server component; no additional installation or configuration steps
are required.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 96

8.2.1 Performing an upgrade

To upgrade an earlier version of EDB Postgres Advanced Server to the current version, you must:

Install the current version of EDB Postgres Advanced Server. The new installation must contain the same supporting server components as the old installation.
Empty the target database or create a new target cluster with initdb .
Place the pg_hba.conf file for both databases in trust authentication mode (to avoid authentication conflicts).
Shut down the old and new EDB Postgres Advanced Server services.
Invoke the pg_upgrade utility.

When pg_upgrade starts, it performs a compatibility check to ensure that all required executables are present and contain the expected version numbers. The verification process also checks the old
and new $PGDATA directories to ensure that the expected files and subdirectories are in place. If the verification process succeeds, pg_upgrade starts the old postmaster and runs
pg_dumpall --schema-only to capture the metadata contained in the old cluster. The script produced by pg_dumpall is used in a later step to recreate all user-defined objects in the new

cluster.

Note that the script produced by pg_dumpall recreates only user-defined objects and not system-defined objects. The new cluster already contains the system-defined objects created by the latest
version of EDB Postgres Advanced Server.

After extracting the metadata from the old cluster, pg_upgrade performs the bookkeeping tasks required to sync the new cluster with the existing data.

pg_upgrade runs the pg_dumpall script against the new cluster to create (empty) database objects of the same shape and type as those found in the old cluster. Then, pg_upgrade links or
copies each table and index from the old cluster to the new cluster.

If you are upgrading to EDB Postgres Advanced Server 14 and have installed the edb_dblink_oci or edb_dblink_libpq extension, you must drop the extension before performing an upgrade.
To drop the extension, connect to the server with the psql or PEM client, and invoke the commands:

DROP EXTENSION edb_dblink_oci;
DROP EXTENSION edb_dblink_libpq;

When you have completed upgrading, you can use the CREATE EXTENSION command to add the current versions of the extensions to your installation.

8.2.1.1 Linking versus copying

When invoking pg_upgrade , you can use a command-line option to specify whether pg_upgrade should copy or link each table and index in the old cluster to the new cluster.

Linking is much faster because pg_upgrade simply creates a second name (a hard link) for each file in the cluster; linking also requires no extra workspace because pg_upgrade does not make a
copy of the original data. When linking the old cluster and the new cluster, the old and new clusters share the data; note that after starting the new cluster, your data can no longer be used with the
previous version of EDB Postgres Advanced Server.

If you choose to copy data from the old cluster to the new cluster, pg_upgrade still reduces the amount of time required to perform an upgrade compared to the traditional dump/restore
procedure. pg_upgrade uses a file-at-a-time mechanism to copy data files from the old cluster to the new cluster (versus the row-by-row mechanism used by dump/restore). When you use
pg_upgrade , you avoid building indexes in the new cluster; each index is simply copied from the old cluster to the new cluster. Finally, using a dump/restore procedure to upgrade requires a

great deal of workspace to hold the intermediate text-based dump of all of your data, while pg_upgrade requires very little extra workspace.

Data that is stored in user-defined tablespaces is not copied to the new cluster; it stays in the same location in the file system, but is copied into a subdirectory whose name reflects the version number
of the new cluster. To manually relocate files that are stored in a tablespace after upgrading, move the files to the new location and update the symbolic links (located in the pg_tblspc directory
under your cluster's data directory) to point to the files.

8.2.2 Invoking pg_upgrade

When invoking pg_upgrade , you must specify the location of the old and new cluster's PGDATA and executable (/bin) directories, as well as the name of the EDB Postgres Advanced Server
superuser, and the ports on which the installations are listening. A typical call to invoke pg_upgrade to migrate from EDB Postgres Advanced Server 13 to EDB Postgres Advanced Server 14 takes the
form:

pg_upgrade
--old-datadir <path_to_13_data_directory>
--new-datadir <path_to_14_data_directory>
--user <superuser_name>
--old-bindir <path_to_13_bin_directory>
--new-bindir <path_to_14_bin_directory>
--old-port <13_port> --new-port <14_port>

Where:

--old-datadir path_to_13_data_directory

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 97

Use the --old-datadir option to specify the complete path to the data directory within the EDB Postgres Advanced Server 13 installation.

--new-datadir path_to_14_data_directory

Use the --new-datadir option to specify the complete path to the data directory within the EDB Postgres Advanced Server 14 installation.

--username superuser_name

Include the --username option to specify the name of the EDB Postgres Advanced Server superuser. The superuser name should be the same in both versions of EDB Postgres Advanced Server. By
default, when EDB Postgres Advanced Server is installed in Oracle mode, the superuser is named enterprisedb . If installed in PostgreSQL mode, the superuser is named postgres .

If the EDB Postgres Advanced Server superuser name is not the same in both clusters, the clusters will not pass the pg_upgrade consistency check.

--old-bindir path_to_13_bin_directory

Use the --old-bindir option to specify the complete path to the bin directory in the EDB Postgres Advanced Server 13 installation.

--new-bindir path_to_14_bin_directory

Use the --new-bindir option to specify the complete path to the bin directory in the EDB Postgres Advanced Server 14 installation.

--old-port 13_port

Include the --old-port option to specify the port on which EDB Postgres Advanced Server 13 listens for connections.

--new-port 14_port

Include the --new-port option to specify the port on which EDB Postgres Advanced Server 14 listens for connections.

8.2.2.1 Command line options: Reference

pg_upgrade accepts the following command line options; each option is available in a long form or a short form:

-b path_to_old_bin_directory
--old-bindir path_to_old_bin_directory

Use the -b or --old-bindir keyword to specify the location of the old cluster's executable directory.

-B path_to_new_bin_directory
--new-bindir path_to_new_bin_directory

Use the -B or --new-bindir keyword to specify the location of the new cluster's executable directory.

-c
--check

Include the -c or --check keyword to specify that pg_upgrade should perform a consistency check on the old and new cluster without performing a version upgrade.

-d path_to_old_data_directory
--old-datadir path_to_old_data_directory

Use the -d or --old-datadir keyword to specify the location of the old cluster's data directory.

-D path_to_new_data_directory
--new-datadir path_to_new_data_directory

Use the -D or --new-datadir keyword to specify the location of the new cluster's data directory.

Data that is stored in user-defined tablespaces is not copied to the new cluster; it stays in the same location in the file system, but is copied into a subdirectory whose name reflects the version number
of the new cluster. To manually relocate files that are stored in a tablespace after upgrading, you must move the files to the new location and update the symbolic links (located in the pg_tblspc
directory under your cluster's data directory) to point to the files.

-j
--jobs

Include the -j or --jobs keyword to specify the number of simultaneous processes or threads to use during the upgrade.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 98

-k
--link

Include the -k or --link keyword to create a hard link from the new cluster to the old cluster. See Linking versus Copying for more information about using a symbolic link.

-o options
--old-options options

Use the -o or --old-options keyword to specify options to pass to the old postgres command. Enclose options in single or double quotes to ensure that they are passed as a group.

-O options
--new-options options

Use the -O or --new-options keyword to specify options to pass to the new postgres command. Enclose options in single or double quotes to ensure that they are passed as a group.

-p old_port_number
--old-port old_port_number

Include the -p or --old-port keyword to specify the port number of the EDB Postgres Advanced Server installation that you are upgrading.

-P new_port_number
--new-port new_port_number

Include the -P or --new-port keyword to specify the port number of the new EDB Postgres Advanced Server installation.

Note

If the original EDB Postgres Advanced Server installation is using port number 5444 when you invoke the EDB Postgres Advanced Server 14 installer, the installer recommends using listener
port 5445 for the new installation of EDB Postgres Advanced Server.

-r
--retain

During the upgrade process, pg_upgrade creates four append-only log files; when the upgrade is completed, pg_upgrade deletes these files. Include the -r or --retain option to specify
that the server should retain the pg_upgrade log files.

-U user_name
--username user_name

Include the -U or --username keyword to specify the name of the EDB Postgres Advanced Server database superuser. The same superuser must exist in both clusters.

-v
--verbose

Include the -v or --verbose keyword to enable verbose output during the upgrade process.

-V
--version

Use the -V or --version keyword to display version information for pg_upgrade .

-?
-h
--help

Use -?, -h, or --help options to display pg_upgrade help information.

8.2.3 Upgrading to EDB Postgres Advanced Server 14

You can use pg_upgrade to upgrade from an existing installation of EDB Postgres Advanced Server into the cluster built by the EDB Postgres Advanced Server 14 installer or into an alternate cluster
created using the initdb command.

The basic steps to perform an upgrade into an empty cluster created with the initdb command are the same as the steps to upgrade into the cluster created by the EDB Postgres Advanced Server 14
installer, but you can omit Step 2 (Empty the edb database) , and substitute the location of the alternate cluster when specifying a target cluster for the upgrade.

If a problem occurs during the upgrade process, you can revert to the previous version. See Reverting to the old cluster Section for detailed information about this process.

You must be an operating system superuser or Windows Administrator to perform an EDB Postgres Advanced Server upgrade.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 99

Step 1 - Install the new server

Install EDB Postgres Advanced Server 14, specifying the same non-server components that were installed during the previous EDB Postgres Advanced Server installation. The new cluster and the old
cluster must reside in different directories.

Step 2 - Empty the target database

The target cluster must not contain any data; you can create an empty cluster using the initdb command, or you can empty a database that was created during the installation of EDB Postgres
Advanced Server 14. If you have installed EDB Postgres Advanced Server in PostgreSQL mode, the installer creates a single database named postgres ; if you have installed EDB Postgres Advanced
Server in Oracle mode, it creates a database named postgres and a database named edb .

The easiest way to empty the target database is to drop the database and then create a new database. Before invoking the DROP DATABASE command, you must disconnect any users and halt any
services that are currently using the database.

On Windows, navigate through the Control Panel to the Services manager, highlight each service in the Services list, and select Stop .

On Linux, open a terminal window, assume superuser privileges, and manually stop each service; for example, invoke the following command to stop the pgAgent service:

service edb-pgagent-14 stop

After stopping any services that are currently connected to EDB Postgres Advanced Server, you can use the EDB-PSQL command line client to drop and create a database. When the client opens,
connect to the template1 database as the database superuser; if prompted, provide authentication information. Then, use the following command to drop your database:

DROP DATABASE <database_name>;

Where database_name is the name of the database.

Then, create an empty database based on the contents of the template1 database.

CREATE DATABASE <database_name>;

Step 3 - Set both servers in trust mode

During the upgrade process, pg_upgrade connects to the old and new servers several times; to make the connection process easier, you can edit the pg_hba.conf file, setting the authentication
mode to trust . To modify the pg_hba.conf file, navigate through the Start menu to the EDB Postgres menu; to the EDB Postgres Advanced Server menu, and open the Expert
Configuration menu; select the Edit pg_hba.conf menu option to open the pg_hba.conf file.

You must allow trust authentication for the previous EDB Postgres Advanced Server installation and EDB Postgres Advanced Server 14 servers. Edit the pg_hba.conf file for both installations of EDB
Postgres Advanced Server as shown in the following figure.

Fig. 1: Configuring EDB Postgres Advanced Server to use trust authentication

After editing each file, save the file and exit the editor.

If the system is required to maintain md5 authentication mode during the upgrade process, you can specify user passwords for the database superuser in a password file (pgpass.conf on Windows,
.pgpass on Linux). For more information about configuring a password file, see the PostgreSQL Core Documentation, available at:

https://www.postgresql.org/docs/current/static/libpq-pgpass.html

Step 4 - Stop all component services and servers

Before you invoke pg_upgrade , you must stop any services that belong to the original EDB Postgres Advanced Server installation, EDB Postgres Advanced Server 14, or the supporting components.
This ensures that a service doesn't attempt to access either cluster during the upgrade process.

The services that are most likely to be running in your installation are:

Service On Linux On Windows

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 100

https://www.postgresql.org/docs/current/static/libpq-pgpass.html

EDB Postgres Advanced Server 9.6 edb-as-9.6 edb-as-9.6

EDB Postgres Advanced Server 10 edb-as-10 edb-as-10

EDB Postgres Advanced Server 11 edb-as-11 edb-as-11

EDB Postgres Advanced Server 12 edb-as-12 edb-as-12

EDB Postgres Advanced Server 13 edb-as-13 edb-as-13

EDB Postgres Advanced Server 14 edb-as-14 edb-as-14

EDB Postgres Advanced Server 9.6 Scheduling Agent
(pgAgent)

edb-pgagent-9.6 EDB Postgres Advanced Server 9.6 Scheduling
Agent

Infinite Cache 9.6 edb-icache N/A

Infinite Cache 10 edb-icache N/A

PgBouncer Pgbouncer Pgbouncer

PgBouncer 1.6 ppas-pgbouncer-1.6 or ppas-pgbouncer16 ppas-pgbouncer-1.6

PgBouncer 1.7 edb-pgbouncer-1.7 edb-pgbouncer-1.7

PgPool ppas-pgpool N/A

PgPool 3.4 ppas-pgpool-3.4 or ppas-pgpool34 N/A

pgPool-II edb-pgpool-3.5 N/A

Slony 9.6 edb-slony-replication-9.6 edb-slony-replication-9.6

xDB Publication Server 9.0 edb-xdbpubserver-90 Publication Service 90

xDB Publication Server 9.1 edb-xdbpubserver-91 Publication Service 91

xDB Subscription Server edb-xdbsubserver-90 Subscription Service 90

xDB Subscription Server edb-xdbsubserver-91 Subscription Service 91

EDB Replication Server v6.x edb-xdbpubserver Publication Service for xDB Replication Server

EDB Subscription Server v6.x edb-xdbsubserver Subscription Service for xDB Replication Server

Service On Linux On Windows

To stop a service on Windows:

Open the Services applet; highlight each EDB Postgres Advanced Server or supporting component service displayed in the list, and select Stop .

To stop a service on Linux:

Open a terminal window and manually stop each service at the command line.

Step 5 For Linux only - Assume the identity of the cluster owner

If you are using Linux, assume the identity of the EDB Postgres Advanced Server cluster owner. (The following example assumes EDB Postgres Advanced Server was installed in the default, compatibility
with Oracle database mode, thus assigning enterprisedb as the cluster owner. If installed in compatibility with PostgreSQL database mode, postgres is the cluster owner.)

su - enterprisedb

Enter the EDB Postgres Advanced Server cluster owner password if prompted. Then, set the path to include the location of the pg_upgrade executable:

export PATH=$PATH:/usr/edb/as14/bin

During the upgrade process, pg_upgrade writes a file to the current working directory of the enterprisedb user; you must invoke pg_upgrade from a directory where the enterprisedb
user has write privileges. After performing the above commands, navigate to a directory in which the enterprisedb user has sufficient privileges to write a file.

cd /tmp

Proceed to Step 6.

Step 5 For Windows only - Assume the identity of the cluster owner

If you are using Windows, open a terminal window, assume the identity of the EDB Postgres Advanced Server cluster owner and set the path to the pg_upgrade executable.

If the --serviceaccount service_account_user parameter was specified during the initial installation of EDB Postgres Advanced Server, then service_account_user is the EDB
Postgres Advanced Server cluster owner and is the user to be given with the RUNAS command.

RUNAS /USER:service_account_user "CMD.EXE"
SET PATH=%PATH%;C:\Program Files\edb\as14\bin

During the upgrade process, pg_upgrade writes a file to the current working directory of the service account user; you must invoke pg_upgrade from a directory where the service account user
has write privileges. After performing the above commands, navigate to a directory in which the service account user has sufficient privileges to write a file.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 101

cd %TEMP%

Proceed to Step 6.

If the --serviceaccount parameter was omitted during the initial installation of EDB Postgres Advanced Server, then the default owner of the EDB Postgres Advanced Server service and the
database cluster is NT AUTHORITY\NetworkService .

When NT AUTHORITY\NetworkService is the service account user, the RUNAS command may not be usable as it prompts for a password and the NT AUTHORITY\NetworkService
account is not assigned a password. Thus, there is typically a failure with an error message such as, “Unable to acquire user password”.

Under this circumstance a Windows utility program named PsExec must be used to run CMD.EXE as the service account NT AUTHORITY\NetworkService .

The PsExec program must be obtained by downloading PsTools , which is available at the following site:

https://technet.microsoft.com/en-us/sysinternals/bb897553.aspx.

You can then use the following command to run CMD.EXE as NT AUTHORITY\NetworkService and then set the path to the pg_upgrade executable.

psexec.exe -u "NT AUTHORITY\NetworkService" CMD.EXE
SET PATH=%PATH%;C:\Program Files\edb\as14\bin

During the upgrade process, pg_upgrade writes a file to the current working directory of the service account user; you must invoke pg_upgrade from a directory where the service account user
has write privileges. After performing the above commands, navigate to a directory in which the service account user has sufficient privileges to write a file.

cd %TEMP%

Proceed with Step 6.

Step 6 - Perform a consistency check

Before attempting an upgrade, perform a consistency check to assure that the old and new clusters are compatible and properly configured. Include the --check option to instruct pg_upgrade to
perform the consistency check.

The following example demonstrates invoking pg_upgrade to perform a consistency check on Linux:

pg_upgrade -d /var/lib/edb/as13/data
-D /var/lib/edb/as14/data -U enterprisedb
-b /usr/edb/as13/bin -B /usr/edb/as14/bin -p 5444 -P 5445 --check

If the command is successful, it returns *Clusters are compatible* .

If you are using Windows, you must quote any directory names that contain a space:

pg_upgrade.exe
-d "C:\Program Files\ PostgresPlus\13AS\data"
-D "C:\Program Files\edb\as14\data" -U enterprisedb
-b "C:\Program Files\PostgresPlus\13AS\bin"
-B "C:\Program Files\edb\as14\bin" -p 5444 -P 5445 --check

During the consistency checking process, pg_upgrade logs any discrepancies that it finds to a file located in the directory from which pg_upgrade was invoked. When the consistency check
completes, review the file to identify any missing components or upgrade conflicts. You must resolve any conflicts before invoking pg_upgrade to perform a version upgrade.

If pg_upgrade alerts you to a missing component, you can use StackBuilder Plus to add the component that contains the component. Before using StackBuilder Plus, you must restart the EDB
Postgres Advanced Server 14 service. After restarting the service, open StackBuilder Plus by navigating through the Start menu to the EDB Postgres Advanced Server 14 menu, and
selecting StackBuilder Plus . Follow the onscreen advice of the StackBuilder Plus wizard to download and install the missing components.

When pg_upgrade has confirmed that the clusters are compatible, you can perform a version upgrade.

Step 7 - Run pg_upgrade

After confirming that the clusters are compatible, you can invoke pg_upgrade to upgrade the old cluster to the new version of EDB Postgres Advanced Server.

On Linux:

pg_upgrade -d /var/lib/edb/as13/data
-D /var/lib/edb/as14/data -U enterprisedb
-b /usr/edb/as13/bin -B /usr/edb/as14/bin -p 5444 -P 5445

On Windows:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 102

https://technet.microsoft.com/en-us/sysinternals/bb897553.aspx

pg_upgrade.exe -d "C:\Program Files\PostgresPlus\13AS\data"
-D "C:\Program Files\edb\as14\data" -U enterprisedb
-b "C:\Program Files\PostgresPlus\13AS\bin"
-B "C:\Program Files\edb\as14\bin" -p 5444 -P 5445

pg_upgrade displays the progress of the upgrade onscreen:

$ pg_upgrade -d /var/lib/edb/as13/data -D /var/lib/edb/as14/data -U
enterprisedb -b /usr/edb/as13/bin -B /usr/edb/as14/bin -p 5444 -P 5445
Performing Consistency Checks

Checking current, bin, and data directories ok
Checking cluster versions ok
Checking database user is a superuser ok
Checking for prepared transactions ok
Checking for reg* system OID user data types ok
Checking for contrib/isn with bigint-passing mismatch ok
Creating catalog dump ok
Checking for presence of required libraries ok
Checking database user is a superuser ok
Checking for prepared transactions ok

If pg_upgrade fails after this point, you must re-initdb the
new cluster before continuing.

Performing Upgrade

Analyzing all rows in the new cluster ok
Freezing all rows on the new cluster ok
Deleting files from new pg_clog ok
Copying old pg_clog to new server ok
Setting next transaction ID for new cluster ok
Resetting WAL archives ok
Setting frozenxid counters in new cluster ok
Creating databases in the new cluster ok
Adding support functions to new cluster ok
Restoring database schema to new cluster ok
Removing support functions from new cluster ok
Copying user relation files ok

Setting next OID for new cluster ok
Creating script to analyze new cluster ok
Creating script to delete old cluster ok

Upgrade Complete

Optimizer statistics are not transferred by pg_upgrade so,
once you start the new server, consider running:
 analyze_new_cluster.sh

Running this script will delete the old cluster's data files:
 delete_old_cluster.sh

While pg_upgrade runs, it may generate SQL scripts that handle special circumstances that it has encountered during your upgrade. For example, if the old cluster contains large objects, you may
need to invoke a script that defines the default permissions for the objects in the new cluster. When performing the pre-upgrade consistency check pg_upgrade alerts you to any script that you may
be required to run manually.

You must invoke the scripts after pg_upgrade completes. To invoke the scripts, connect to the new cluster as a database superuser with the EDB-PSQL command line client, and invoke each script
using the \i option:

\i complete_path_to_script/script.sql

It is generally unsafe to access tables referenced in rebuild scripts until the rebuild scripts have completed; accessing the tables could yield incorrect results or poor performance. Tables not referenced
in rebuild scripts can be accessed immediately.

If pg_upgrade fails to complete the upgrade process, the old cluster is unchanged, except that $PGDATA/global/pg_control is renamed to pg_control.old and each tablespace is
renamed to tablespace.old . To revert to the pre-invocation state:

1. Delete any tablespace directories created by the new cluster.
2. Rename $PGDATA/global/pg_control , removing the .old suffix.
3. Rename the old cluster tablespace directory names, removing the .old suffix.
4. Remove any database objects (from the new cluster) that may have been moved before the upgrade failed.

After performing these steps, resolve any upgrade conflicts encountered before attempting the upgrade again.

When the upgrade is complete, pg_upgrade may also recommend vacuuming the new cluster and provides a script that allows you to delete the old cluster.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 103

Note

Before removing the old cluster, ensure that the cluster has been upgraded as expected, and that you have preserved a backup of the cluster in case you need to revert to a previous version.

Step 8 - Restore the authentication settings in the pg_hba.conf file

If you modified the pg_hba.conf file to permit trust authentication, update the contents of the pg_hba.conf file to reflect your preferred authentication settings.

Step 9 - Move and identify user-defined tablespaces (Optional)

If you have data stored in a user-defined tablespace, you must manually relocate tablespace files after upgrading; move the files to the new location and update the symbolic links (located in the
pg_tblspc directory under your cluster's data directory) to point to the files.

8.2.4 Upgrading a pgAgent installation

If your existing EDB Postgres Advanced Server installation uses pgAgent, you can use a script provided with the EDB Postgres Advanced Server 14 installer to update pgAgent. The script is named
dbms_job.upgrade.script.sql , and is located in the /share/contrib/ directory under your EDB Postgres Advanced Server installation.

If you are using pg_upgrade to upgrade your installation, you should:

1. Perform the upgrade.
2. Invoke the dbms_job.upgrade.script.sql script to update the catalog files. If your existing pgAgent installation was performed with a script, the update converts the installation to an

extension.

8.2.5 pg_upgrade troubleshooting

The troubleshooting tips in this section address problems you may encounter when using pg_upgrade .

Upgrade Error - There seems to be a postmaster servicing the cluster

If pg_upgrade reports that a postmaster is servicing the cluster, stop all EDB Postgres Advanced Server services and try the upgrade again.

Upgrade Error - fe_sendauth: no password supplied

If pg_upgrade reports an authentication error that references a missing password, modify the pg_hba.conf files in the old and new cluster to enable trust authentication, or configure the
system to use a pgpass.conf file.

Upgrade Error - New cluster is not empty; exiting

If pg_upgrade reports that the new cluster is not empty, empty the new cluster. The target cluster may not contain any user-defined databases.

Upgrade Error - Failed to load library

If the original EDB Postgres Advanced Server cluster included libraries that are not included in the EDB Postgres Advanced Server 14 cluster, pg_upgrade alerts you to the missing component during
the consistency check by writing an entry to the loadable_libraries.txt file in the directory from which you invoked pg_upgrade . Generally, for missing libraries that are not part of a major
component upgrade, perform the following steps:

1. Restart the EDB Postgres Advanced Server service.

Use StackBuilder Plus to download and install the missing module. Then:

2. Stop the EDB Postgres Advanced Server service.

3. Resume the upgrade process: invoke pg_upgrade to perform consistency checking.

4. When you have resolved any remaining problems noted in the consistency checks, invoke pg_upgrade to perform the data migration from the old cluster to the new cluster.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 104

8.2.6 Reverting to the old cluster

The method used to revert to a previous cluster varies with the options specified when invoking pg_upgrade :

If you specified the --check option when invoking pg_upgrade , an upgrade has not been performed, and no modifications have been made to the old cluster; you can re-use the old cluster
at any time.
If you included the --link option when invoking pg_upgrade , the data files are shared between the old and new cluster after the upgrade completes. If you have started the server that is
servicing the new cluster, the new server has written to those shared files and it is unsafe to use the old cluster.
If you ran pg_upgrade without the --link specification or have not started the new server, the old cluster is unchanged, except that the .old suffix has been appended to the
$PGDATA/global/pg_control and tablespace directories.

To reuse the old cluster, delete the tablespace directories created by the new cluster and remove the .old suffix from $PGDATA/global/pg_control and the old cluster tablespace
directory names and restart the server that services the old cluster.

8.3 Performing a minor version update of an RPM installation

If you used an RPM package to install EDB Postgres Advanced Server or its supporting components, you can use yum to perform a minor version upgrade to a more recent version. To review a list of the
package updates that are available for your system, open a command line, assume root privileges, and enter the command:

yum check-update <package_name>

Where package_name is the search term for which you want to search for updates. You can include wildcard values in the search term. To use yum update to install an updated package, use the
command:

yum update <package_name>

Where package_name is the name of the package you wish to update. Include wild-card values in the update command to update multiple related packages with a single command. For example, use
the following command to update all packages whose names include the expression edb :

yum update edb*

Note

The yum update command performs an update only between minor releases; to update between major releases, you must use pg_upgrade .

For more information about using yum commands and options, enter yum --help on your command line.

8.4 Using StackBuilder Plus to perform a minor version update

StackBuilder Plus is supported only on Windows systems.

The StackBuilder Plus utility provides a graphical interface that simplifies the process of updating, downloading, and installing modules that complement your EDB Postgres Advanced Server
installation. When you install a module with StackBuilder Plus, StackBuilder Plus automatically resolves any software dependencies.

You can invoke StackBuilder Plus at any time after the installation has completed by selecting the StackBuilder Plus menu option from the Apps menu. Enter your system password (if
prompted), and the StackBuilder Plus welcome window opens.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 105

Fig. 1: The StackBuilder Plus welcome window

Use the drop-down listbox on the welcome window to select your EDB Postgres Advanced Server installation.

StackBuilder Plus requires Internet access; if your installation of EDB Postgres Advanced Server resides behind a firewall (with restricted Internet access), StackBuilder Plus can download program
installers through a proxy server. The module provider determines if the module can be accessed through an HTTP proxy or an FTP proxy; currently, all updates are transferred via an HTTP proxy and the
FTP proxy information is not used.

If the selected EDB Postgres Advanced Server installation has restricted Internet access, use the Proxy Servers on the Welcome window to open the Proxy servers dialog (shown in the
following figure).

Fig. 2: The Proxy servers dialog

Enter the IP address and port number of the proxy server in the HTTP proxy on the Proxy servers dialog. Currently, all StackBuilder Plus modules are distributed via HTTP proxy (FTP proxy
information is ignored). Click OK to continue.

Fig. 3: The StackBuilder Plus module selection window

The tree control on the StackBuilder Plus module selection window (shown in the figure) displays a node for each module category.

To add a new component to the selected EDB Postgres Advanced Server installation or to upgrade a component, check the box to the left of the module name and click Next . If prompted, enter your
email address and password on the StackBuilder Plus registration window.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 106

Fig. 4: A summary window displays a list of selected packages

StackBuilder Plus confirms the packages selected. The Selected packages dialog displays the name and version of the installer; click Next to continue.

When the download completes, a window opens that confirms the installation files have been downloaded and are ready for installation.

Fig. 5: Confirmation that the download process is complete

You can check the box next to Skip Installation , and select Next to exit StackBuilder Plus without installing the downloaded files, or leave the box unchecked and click Next to start the
installation process.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 107

Fig. 6: StackBuilder Plus confirms the completed installation

When the upgrade is complete, StackBuilder Plus alerts you to the success or failure of the installation of the requested package. If you were prompted by an installer to restart your computer, reboot
now.

Note

If the update fails to install, StackBuilder Plus alerts you to the installation error with a popup dialog and writes a message to the log file at %TEMP% .

9 Uninstalling EDB Postgres Advanced Server

This section provides detailed information about uninstalling the EDB Postgres Advanced server on specific platforms.

9.1 Uninstalling EDB Postgres Advanced Server on Linux

Note that after uninstalling EDB Postgres Advanced Server, the cluster data files remain intact and the service user persists. You may manually remove the cluster data and service user from the
system.

Uninstalling on RHEL/OL/AlmaLinux/Rocky Linux

You can use variations of the rpm, yum or dnf command to remove installed packages. Note that removing a package does not damage the EDB Postgres Advanced Server data directory.

Include the -e option when invoking the rpm command to remove an installed package; the command syntax is:

rpm -e <package_name>

Where package_name is the name of the package that you would like to remove.

You can use the yum remove or dnf remove command to remove a package installed by yum or dnf . To remove a package, open a terminal window, assume superuser privileges, and enter the
command:

On RHEL or CentOS 7:

yum remove <package_name>

On RHEL or Rocky Linux or AlmaLinux 8:

dnf remove <package_name>

Where package_name is the name of the package that you want to remove.

yum and RPM don't remove a package that is required by another package. If you attempt to remove a package that satisfies a package dependency, yum or RPM provides a warning.

Note

In RHEL or Rocky Linux or AlmaLinux 8, removing a package also removes all its dependencies that are not required by other packages. To override this default behavior of RHEL or Rocky
Linux or AlmaLinux 8, you must disable the clean_requirements_on_remove parameter in the /etc/yum.conf file.

To uninstall EDB Postgres Advanced Server and its dependent packages; use the following command:

On RHEL or CentOS 7:

yum remove edb-as14-server*

On RHEL or Rocky Linux or AlmaLinux 8:

dnf remove edb-as14-server*

Uninstalling on Debian or Ubuntu

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 108

To uninstall EDB Postgres Advanced Server, invoke the following command. The configuration files and data directory remains intact.

apt-get remove edb-as14-server*

To uninstall EDB Postgres Advanced Server, configuration files, and data directory, invoke the following command:

apt-get purge edb-as14-server*

9.2 Uninstalling EDB Postgres Advanced Server on Windows

Note that after uninstalling EDB Postgres Advanced Server, the cluster data files remain intact and the service user persists. You may manually remove the cluster data and service user from the system.

Using EDB Postgres Advanced Server uninstallers at the command line

The EDB Postgres Advanced Server interactive installer creates an uninstaller that you can use to remove EDB Postgres Advanced Server or components that reside on a Windows host. The uninstaller is
created in C:\Program Files\edb\as14 . To open the uninstaller, assume superuser privileges, navigate into the directory that contains the uninstaller, and enter:

uninstall-edb-as14-server.exe

The uninstaller opens.

Fig. 1: The EDB Postgres Advanced Server uninstaller

You can remove the Entire application (the default), or select the radio button next to Individual components to select components for removal; if you select Individual
components , a dialog prompts you to select the components you wish to remove. After making your selection, click Next .

Fig. 2: Acknowledge that dependent components are removed first

If you have elected to remove components that are dependent on EDB Postgres Advanced Server, those components are removed first; click Yes to acknowledge that you wish to continue.

Progress bars are displayed as the software is removed. When the uninstallation is complete, an Info dialog opens to confirm that EDB Postgres Advanced Server (and/or its components) has been
removed.

Fig. 3: The uninstallation is complete

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 109

10 Troubleshooting

This section provides detailed information about:

Troubleshooting installations and enabling core dumps on the Linux platforms.
Troubleshooting installations on Windows platform.

10.1 Linux installation troubleshootig

This section provides detailed information about:

Troubleshooting installations on the Linux platforms.
Enabling core dumps on the Linux platforms.

10.1.1 Installation troubleshooting

Difficulty displaying Java-based applications

If you encounter difficulty displaying Java-based server features (controls or text not being displayed correctly, or blank windows), upgrading to the latest libxcb-xlib libraries should correct the
problem on most distributions. See the Java bug database for other possible workarounds.

The installation fails to complete eue to existing data directory contents

If an installation fails to complete due to an existing content in the data directory, the server writes an error message to the server logs:

A data directory is neither empty, or a recognisable data directory.

If you encounter a similar message, you should confirm that the data directory is empty; the presence of files (including the system-generated lost+found folder) prevents the installation from
completing. Either remove the files from the data directory, or specify a different location for the data directory before re-invoking the installer to complete the installation.

Difficulty installing the EPEL release package

If you encounter difficulty when installing the EPEL release package, you can use the following command to install the epel-release package on RHEL/CentOS 7.x and RHEL/Rocky
Linux/AlmaLinux 8.x:

yum -y install https://dl.fedoraproject.org/pub/epel/epel-release-latest-7.noarch.rpm

dnf -y install https://dl.fedoraproject.org/pub/epel/epel-release-latest-8.noarch.rpm

You might need to enable the [extras] repository definition in the CentOS-Base.repo file (located in /etc/yum.repos.d). If yum cannot access a repository that contains epel-
release , an error message appears:

No package epel available.
Error: Nothing to do

If you receive this error, you can download the EPEL rpm package, and install it manually. To manually install EPEL , download the rpm package, assume superuser privileges, navigate into the
directory that contains the package, and install EPEL with the command:

yum -y install epel-release

dnf -y install epel-release

10.1.2 Enabling core dumps

You can use core dumps to diagnose or debug errors. A core dump is a file containing a process's address space (memory) when the process terminates unexpectedly. Core dumps may be produced on-
demand (such as by a debugger) or automatically upon termination.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 110

http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=6532373

Enabling core dumps on a RHEL or CentOS or Rocky Linux or AlmaLinux host

On RHEL/CentOS 7.x or RHEL/Rocky Linux/AlmaLinux 8.x, core file creation is disabled by default. To enable the core file generation, follow the following commands:

Identify the system's current limit using the ulimit -c or ulimit -a command. 0 indicates that core file generation is disabled.

ulimit -c
0

ulimit -a
core file size (blocks, -c) 0
data seg size (kbytes, -d) unlimited
scheduling priority (-e) 0
file size (blocks, -f) unlimited
pending signals (-i) 3756
max locked memory (kbytes, -l) 64
max memory size (kbytes, -m) unlimited
open files (-n) 1024
pipe size (512 bytes, -p) 8
POSIX message queues (bytes, -q) 819200
real-time priority (-r) 0
stack size (kbytes, -s) 8192
cpu time (seconds, -t) unlimited
max user processes (-u) 3756
virtual memory (kbytes, -v) unlimited
file locks (-x) unlimited

Create a new directory to store the core dumps and modify kernel.core_pattern to store the dumps in a specified directory:

mkdir -p /var/coredumps
chmod a+w /var/coredumps

sysctl kernel.core_pattern=/var/coredumps/core-%e-%p
kernel.core_pattern = /var/coredumps/core-%e-%p

Use the following command to persist the kernel.core_pattern setting across reboots:

echo 'kernel.core_pattern=/var/coredumps/core-%e-%p' >> /etc/sysctl.conf

Enable core dumps in /etc/security/limits.conf to allow a user to create core files. Each line describes a limit for a user in the following form:

<domain> <type> <item> <value>
 * soft core unlimited

Use * to enable the core dump size to unlimited.

Set the limit of core file size to UNLIMITED by using the following command:

ulimit -c unlimited

ulimit -c
unlimited

To set a core limit for the services, add the following setting in /usr/lib/systemd/system/edb-as-14.service .

[Service]
LimitCore=Infinity

Reload the service configuration:

systemctl daemon-reload

Modify the global default limit using systemd , add the following setting in /etc/systemd/system.conf .

DefaultLimitCORE=Infinity

Restart the systemd :

systemctl daemon-reexec

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 111

Stop and then start EDB Postgres Advanced Server:

systemctl stop edb-as-14
systemctl start edb-as-14

Now, the core dumps are enabled, install the gdb tool and debug packages using the following command:

yum install gdb
debuginfo-install edb-as14 edb-as14-server-contrib edb-as14-server edb-as14-libs

Replace the path to a core dump file before proceeding to get a backtrace using the bt command to analyze output:

gdb /usr/edb/as14/bin /var/coredumps/core-edb-postgres-65499
(gdb) bt full

Enabling core dumps on a Debian or Ubuntu host

On Debian 10 or Ubuntu 18, 20, core file creation is disabled by default. To enable the core file generation, follow the following commands:

Identify the system's current limit using the ulimit -c or ulimit -a command. 0 indicates that core file generation is disabled.

ulimit -c
0

ulimit -a
core file size (blocks, -c) 0
data seg size (kbytes, -d) unlimited
scheduling priority (-e) 0
file size (blocks, -f) unlimited
pending signals (-i) 7617
max locked memory (kbytes, -l) 65536
max memory size (kbytes, -m) unlimited
open files (-n) 1024
pipe size (512 bytes, -p) 8
POSIX message queues (bytes, -q) 819200
real-time priority (-r) 0
stack size (kbytes, -s) 8192
cpu time (seconds, -t) unlimited
max user processes (-u) 7617
virtual memory (kbytes, -v) unlimited
file locks (-x) unlimited

Create a new directory to store the core dumps and modify kernel.core_pattern to store the dumps in a specified directory:

mkdir -p /var/coredumps
chmod a+w /var/coredumps

sysctl kernel.core_pattern=/var/coredumps/core-%e-%p
kernel.core_pattern = /var/coredumps/core-%e-%p

Use the following command to persist the kernel.core_pattern setting across reboots:

echo 'kernel.core_pattern=/var/coredumps/core-%e-%p' >> /etc/sysctl.conf

Enable core dumps in /etc/security/limits.conf to allow a user to create core files. Each line describes a limit for a user in the following form:

<domain> <type> <item> <value>
 * soft core unlimited

Use * to enable the core dump size to unlimited.

Set the limit of core file size to UNLIMITED by using the following command:

ulimit -c unlimited

ulimit -c
unlimited

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 112

To set a core limit for the services, add the following setting in /lib/systemd/system/edb-as@.service .

[Service]
LimitCore=Infinity

Reload the service configuration:

systemctl daemon-reload

Modify the global default limit using systemd , add the following setting in /etc/systemd/system.conf .

DefaultLimitCORE=Infinity

Restart the systemd :

systemctl daemon-reexec

Stop and then start EDB Postgres Advanced Server:

systemctl stop edb-as@14.service
systemctl start edb-as@14.service

Now, the core dumps are enabled, install the gdb tool and debug symbols using the following command:

apt-get install gdb
apt-get install edb-as14 edb-as-contrib edb-as14-server edb-debugger-dbgsym

Replace the path to a core dump file before proceeding to get a backtrace using the bt command to analyze output:

gdb /usr/lib/edb-as/14/bin /var/coredumps/core-edb-postgres-21638
(gdb) bt full

Note

The debug info packages name on a Debian or Ubuntu host may vary and include -dbgsym or -dbg suffix. For more information about setting sources.list and installing the
debug info packages, visit Debian or Ubuntu wiki at https://wiki.debian.org/HowToGetABacktrace or https://wiki.ubuntu.com/Debug%20Symbol%20Packages respectively.
The core files can be huge depending on the memory usage, enabling the core dumps on a system may fill up its mass storage over time.

10.2 Windows installation troubleshooting

Difficulty displaying Java-based applications

If you encounter difficulty displaying Java-based server features (controls or text not being displayed correctly, or blank windows), upgrading to the latest libxcb-xlib libraries should correct the
problem on most distributions. See the Java bug database for other possible workarounds.

- -mode unattended authentication errors

Authentication errors from component modules during unattended installations may indicate that the specified values of --servicepassword or --superpassword may be incorrect.

Errors during an EDB Postgres Advanced Server installation

If you encounter an error during the installation process, exit the installation, and ensure that your version of Windows is up-to-date. After applying any outstanding operating system updates, re-invoke
the EDB Postgres Advanced Server installer.

The installation fails to complete due to existing data directory contents

If an installation fails to complete due to existing content in the data directory, the server writes an error message to the server logs:

A data directory is neither empty, or a recognisable data directory .

If you encounter a similar message, confirm that the data directory is empty; the presence of files (including the system-generated lost+found folder) prevents the installation from completing.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 113

https://wiki.debian.org/HowToGetABacktrace
https://wiki.ubuntu.com/Debug%20Symbol%20Packages
http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=6532373

Either remove the files from the data directory, or specify a different location for the data directory before re-invoking the installer to complete the installation.

11 Connecting to your database

We package and support a number of components to connect to your EDB Postgres Advanced Server database server. These EDB components are enhanced versions of the corresponding PostgreSQL
components and are intended to support additional EDB Postgres Advanced Server capabilities.

The EDB components for connecting to your database include:

EDB JDBC Connector — provides connectivity between a Java application and a Postgres database server.

EDB .NET Connector — provides connectivity between a .NET client application and a Postgres database server

EDB OCL Connector — provides an API similar to the Oracle Call Interface that you can use to interact with a Postgres database server.

EDB ODBC Connector — allows an ODBC-compliant client application to connect to a Postgres database server

12 Managing your database connections

We package and support a number of open source components to manage your connections to your EDB Postgres Advanced Server database server. These EDB components are enhanced versions of
the corresponding PostgreSQL components and are intended to support additional EDB Postgres Advanced Server capabilities.

The EDB components for managing your database connections include:

EDB PgBouncer — a lightweight connection pooling utility for Postgres installations

EDB Pgpool-II — acts as middleware between client applications and a Postgres database server

13 Connecting to external data sources

We package and support a number of open source components to connect your Postgres database server to external data sources. These EDB components are enhanced versions of the corresponding
PostgreSQL components and are intended to support additional EDB Postgres Advanced Server capabilities.

The EDB components for connecting to external databases include:

EDB Hadoop Foreign Data Wrapper — accesses data that resides on a Hadoop file system from a Postgres database server

MongoDB Foreign Data Wrapper — accesses data that resides on a MongoDB database from a Postgres database server

MySQL Foreign Data Wrapper — accesses data that resides on a MySQL database from a Postgres database server

14 Database Compatibility for Oracle Developers

Database compatibility for Oracle means that an application runs in an Oracle environment as well as in the EDB Postgres Advanced Server environment with minimal or no changes to the application
code. Developing an application that's compatible with Oracle databases in the EDB Postgres Advanced Server requires special attention to the features used when constructing the application. For
example, developing a compatible application means choosing compatible:

System and built-in functions for use in SQL statements and procedural logic
Stored procedure language (SPL) when creating database server-side application logic for stored procedures, functions, triggers, and packages
Data types that are compatible with Oracle databases
SQL statements that are compatible with Oracle SQL
System catalog views that are compatible with Oracle’s data dictionary

For detailed information about the compatible SQL syntax, data types, and views, see SQL reference.

The compatibility offered by the procedures and functions that are part of the Built-in packages is documented in Built-in packages.

For information about using the compatible tools and utilities (EDB*Plus, EDB*Loader, DRITA, and EDB*Wrap) that are included with an EDB Postgres Advanced Server installation, see Tools, utilities,
and components.

For applications written using the Oracle Call Interface (OCI), EDB’s Open Client Library (OCL) provides interoperability with these applications. For detailed information about using the Open Client
Library, see EDB OCL Connector.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 114

https://www.enterprisedb.com/docs/jdbc_connector/latest/
https://www.enterprisedb.com/docs/net_connector/latest/
https://www.enterprisedb.com/docs/jdbc_connector/latest/
https://www.enterprisedb.com/docs/odbc_connector/latest/
https://www.enterprisedb.com/docs/pgbouncer/latest/
https://www.enterprisedb.com/docs/pgpool/latest/
https://www.enterprisedb.com/docs/jdbc_connector/latest/installing/
https://www.enterprisedb.com/docs/mongo_data_adapter/latest/
https://www.enterprisedb.com/docs/mysql_data_adapter/latest/
https://www.enterprisedb.com/docs/ocl_connector/latest/

14.1 Configuration parameters compatible with Oracle databases

EDB Postgres Advanced Server supports developing and running applications compatible with PostgreSQL and Oracle. You can alter some system behaviors to act in a more PostgreSQL- or in a more
Oracle-compliant manner. You control these behaviors by using configuration parameters.

edb_redwood_date — Controls whether or not a time component is stored in DATE columns. For behavior compatible with Oracle databases, set edb_redwood_date to TRUE . See
edb_redwood_date.
edb_redwood_raw_names — Controls whether database object names appear in uppercase or lowercase letters when viewed from Oracle system catalogs. For behavior compatible with

Oracle databases, edb_redwood_raw_names is set to its default value of FALSE . To view database object names as they are actually stored in the PostgreSQL system catalogs, set
edb_redwood_raw_names to TRUE . See edb_redwood_raw_names.
edb_redwood_strings — Equates NULL to an empty string for purposes of string concatenation operations. For behavior compatible with Oracle databases, set
edb_redwood_strings to TRUE . See edb_redwood_strings.
edb_stmt_level_tx — Isolates automatic rollback of an aborted SQL command to statement level rollback only – the entire, current transaction is not automatically rolled back as is the

case for default PostgreSQL behavior. For behavior compatible with Oracle databases, set edb_stmt_level_tx to TRUE ; however, use only when absolutely necessary. See
edb_stmt_level_tx.
oracle_home — Point EDB Postgres Advanced Server to the correct Oracle installation directory. See oracle_home.

14.1.1 edb_redwood_date

DATE can appear as the data type of a column in the commands. To translate it to TIMESTAMP when the table definition is stored in the database, set the configuration parameter
edb_redwood_date to TRUE . In this case, a time component is stored in the column with the date. This is consistent with Oracle’s DATE data type.

If edb_redwood_date is set to FALSE , the column’s data type in a CREATE TABLE or ALTER TABLE command remains as a native PostgreSQL DATE data type. It's stored as such in the
database. The PostgreSQL DATE data type stores only the date without a time component in the column.

Regardless of the setting of edb_redwood_date , when DATE appears as a data type in any other context, it's always internally translated to a TIMESTAMP and thus can handle a time component
if present. These contexts include the data type of a variable in an SPL declaration section or the data type of a formal parameter in an SPL procedure or SPL function or the return type of an SPL
function.

14.1.2 edb_redwood_raw_names

When edb_redwood_raw_names is set to its default value of FALSE , database object names such as table names, column names, trigger names, program names, and user names appear in
uppercase letters when viewed from Oracle catalogs. For a complete list of supported catalog views, see Catalog views. In addition, quotation marks enclose names that were created with enclosing
quotation marks.

When edb_redwood_raw_names is set to TRUE , the database object names are displayed exactly as stored in the PostgreSQL system catalogs when viewed from the Oracle catalogs. Thus, names
created without quotation marks appear in lowercase as expected in PostgreSQL. Names created in quotation marks appear exactly as they were created but without the quotation marks.

For example, the following user name is created, and then a session is started with that user:

CREATE USER reduser IDENTIFIED BY password;
edb=# \c - reduser
Password for user reduser:
You are now connected to database "edb" as user "reduser".

When connected to the database as reduser , the following tables are created:

CREATE TABLE all_lower (col INTEGER);
CREATE TABLE ALL_UPPER (COL INTEGER);
CREATE TABLE "Mixed_Case" ("Col" INTEGER);

When viewed from the Oracle catalog USER_TABLES with edb_redwood_raw_names set to the default value FALSE , the names appear in upper case. The exception is the Mixed_Case
name, which appears as created and also in quotation marks.

edb=> SELECT * FROM USER_TABLES;
 schema_name | table_name | tablespace_name | status | temporary
--------------+--------------+-----------------+--------+-----------
 REDUSER | ALL_LOWER | | VALID | N
 REDUSER | ALL_UPPER | | VALID | N
 REDUSER | "Mixed_Case" | | VALID | N
(3 rows)

When viewed with edb_redwood_raw_names set to TRUE , the names appear in lower case except for the Mixed_Case name. That name appears as created but without the quotation marks.

edb=> SET edb_redwood_raw_names TO true;
SET

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 115

edb=> SELECT * FROM USER_TABLES;
 schema_name | table_name | tablespace_name | status | temporary
--------------+------------+-----------------+--------+-----------
 reduser | all_lower | | VALID | N
 reduser | all_upper | | VALID | N
 reduser | Mixed_Case | | VALID | N
(3 rows)

These names now match the case when viewed from the PostgreSQL pg_tables catalog.

edb=> SELECT schemaname, tablename, tableowner FROM pg_tables WHERE
tableowner = 'reduser';
 schemaname | tablename | tableowner
-------------+------------+------------
 reduser | all_lower | reduser
 reduser | all_upper | reduser
 reduser | Mixed_Case | reduser
(3 rows)

14.1.3 edb_redwood_strings

In Oracle, when a string is concatenated with a null variable or null column, the result is the original string. However, in PostgreSQL, concatenation of a string with a null variable or null column gives a
null result. If the edb_redwood_strings parameter is set to TRUE , the concatenation operation results in the original string as done by Oracle. If edb_redwood_strings is set to FALSE ,
the native PostgreSQL behavior is maintained.

The following example illustrates the difference.

The sample application contains a table of employees. This table has a column named comm that's null for most employees. The following query is run with edb_redwood_string set to FALSE .
The concatenation of a null column with non-empty strings produces a final result of null, so only employees that have a commission appear in the query result. The output line for all other employees is
null.

SET edb_redwood_strings TO off;

SELECT RPAD(ename,10) || ' ' || TO_CHAR(sal,'99,999.99') || ' ' ||
TO_CHAR(comm,'99,999.99') "EMPLOYEE COMPENSATION" FROM emp;

 EMPLOYEE COMPENSATION

 ALLEN 1,600.00 300.00
 WARD 1,250.00 500.00

 MARTIN 1,250.00 1,400.00

 TURNER 1,500.00 .00

(14 rows)

The following is the same query executed when edb_redwood_strings is set to TRUE . Here, the value of a null column is treated as an empty string. The concatenation of an empty string with a
non-empty string produces the non-empty string. This result is consistent with the results produced by Oracle for the same query.

SET edb_redwood_strings TO on;

SELECT RPAD(ename,10) || ' ' || TO_CHAR(sal,'99,999.99') || ' ' ||
TO_CHAR(comm,'99,999.99') "EMPLOYEE COMPENSATION" FROM emp;

 EMPLOYEE COMPENSATION

SMITH 800.00
ALLEN 1,600.00 300.00
WARD 1,250.00 500.00
JONES 2,975.00
MARTIN 1,250.00 1,400.00
BLAKE 2,850.00
CLARK 2,450.00
SCOTT 3,000.00
KING 5,000.00

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 116

TURNER 1,500.00 .00
ADAMS 1,100.00
JAMES 950.00
FORD 3,000.00
MILLER 1,300.00
(14 rows)

14.1.4 edb_stmt_level_tx

In Oracle, when a runtime error occurs in a SQL command, all the updates on the database caused by that single command are rolled back. This is called statement level transaction isolation. For
example, if a single UPDATE command successfully updates five rows but an attempt to update a sixth row results in an exception, the updates to all six rows made by this UPDATE command are
rolled back. The effects of prior SQL commands that weren't yet committed or rolled back are pending until a COMMIT or ROLLBACK command is executed.

In PostgreSQL, if an exception occurs while executing a SQL command, all the updates on the database since the start of the transaction are rolled back. In addition, the transaction is left in an aborted
state, and either a COMMIT or ROLLBACK command must be issued before another transaction can start.

If edb_stmt_level_tx is set to TRUE , then an exception doesn't automatically roll back prior uncommitted database updates, emulating the Oracle behavior. If edb_stmt_level_tx is set to
FALSE , then an exception rolls back uncommitted database updates.

Note

Use edb_stmt_level_tx set to TRUE only when necessary, as this setting can have a negative performance impact.

The following example run in PSQL shows that when edb_stmt_level_tx is FALSE , the abort of the second INSERT command also rolls back the first INSERT command. In PSQL, the
command \set AUTOCOMMIT off must be issued, otherwise every statement commits automatically, which defeats the purpose of showing the effect of edb_stmt_level_tx .

\set AUTOCOMMIT off
SET edb_stmt_level_tx TO off;

INSERT INTO emp (empno,ename,deptno) VALUES (9001, 'JONES', 40);
INSERT INTO emp (empno,ename,deptno) VALUES (9002, 'JONES', 00);
ERROR: insert or update on table "emp" violates foreign key constraint
"emp_ref_dept_fk"
DETAIL: Key (deptno)=(0) is not present in table "dept".

COMMIT;
SELECT empno, ename, deptno FROM emp WHERE empno > 9000;

empno | ename | deptno
-------+-------+--------
(0 rows)

In the following example, with edb_stmt_level_tx set to TRUE , the first INSERT command wasn't rolled back after the error on the second INSERT command. At this point, the first
INSERT command can either be committed or rolled back.

\set AUTOCOMMIT off
SET edb_stmt_level_tx TO on;

INSERT INTO emp (empno,ename,deptno) VALUES (9001, 'JONES', 40);
INSERT INTO emp (empno,ename,deptno) VALUES (9002, 'JONES', 00);
ERROR: insert or update on table "emp" violates foreign key constraint
"emp_ref_dept_fk"
DETAIL: Key (deptno)=(0) is not present in table "dept".

SELECT empno, ename, deptno FROM emp WHERE empno > 9000;

empno | ename | deptno
-------+-------+--------
9001 | JONES | 40
(1 row)

COMMIT;

You can issue a ROLLBACK command instead of the COMMIT command. In that case, the insertion of employee number 9001 is rolled back as well.

14.1.5 oracle_home

Before creating a link to an Oracle server, you must direct EDB Postgres Advanced Server to the correct Oracle home directory. Set the LD_LIBRARY_PATH environment variable on Linux (or PATH

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 117

on Windows) to the lib directory of the Oracle client installation directory.

Alternatively, you can also set the value of the oracle_home configuration parameter in the postgresql.conf file. The value specified in the oracle_home configuration parameter overrides
the LD_LIBRARY_PATH environment variable in Linux and PATH environment variable in Windows.

Note

The oracle_home configuration parameter must provide the correct path to the Oracle client, i.e., OCI library.

To set the oracle_home configuration parameter in the postgresql.conf file, add the following line:

oracle_home = 'lib_directory'

Substitute the name of the oracle_home path to the Oracle client installation directory that contains libclntsh.so in Linux and oci.dll in Windows for lib_directory .

After setting the oracle_home configuration parameter, you must restart the server for the changes to take effect. Restart the server:

On Linux, using the systemctl command or pg_ctl services.
On Windows, from the Windows Services console.

14.2 About the examples

The examples are use the PSQL program. The prompt that normally appears when using PSQL is omitted in these examples to provide extra clarity for the point being demonstrated.

Examples and output from examples are shown in a fixed-width, white font on a dark background.

Also note the following points:

During installation of the EDB Postgres Advanced Server, you must make selections for configuration and defaults compatible with Oracle databases to reproduce the same results as the
examples. You can verify a default compatible configuration by issuing the following commands in PSQL and returning the results shown:

SHOW edb_redwood_date;

 edb_redwood_date

 on

SHOW datestyle;

 DateStyle

 Redwood, DMY

SHOW edb_redwood_strings;

 edb_redwood_strings

 on

The examples use the sample tables, dept , emp , and jobhist , created and loaded when EDB Postgres Advanced Server was installed. The emp table is installed with triggers that you
must disable to reproduce the same results as the examples. Log into EDB Postgres Advanced Server as the enterprisedb superuser and disable the triggers by issuing the following
command:

ALTER TABLE emp DISABLE TRIGGER USER;

You can later reactivate the triggers on the emp table with the following command:

```text
ALTER TABLE emp ENABLE TRIGGER USER;
```

14.3 SQL tutorial

EDB Postgres Advanced Server is a relational database management system (RDBMS). That means it's a system for managing data stored in relations. A relation is essentially a mathematical term for a
table. The notion of storing data in tables is so commonplace today that it might seem obvious, but there are a number of other ways of organizing databases. Files and directories on Unix-like operating
systems form an example of a hierarchical database. A more modern development is the object-oriented database.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 118

Each table is a named collection of rows. Each row of a given table has the same set of named columns, and each column is of a specific data type. Whereas columns have a fixed order in each row, it's
important to remember that SQL doesn't guarantee the order of the rows in the table in any way (although you can explicitly sort them for display).

Tables are grouped into databases, and a collection of databases managed by a single EDB Postgres Advanced Server instance constitutes a database cluster.

14.3.1 Sample database

Throughout this tutorial, we work with a sample database to help explain database concepts, from basic to advanced.

14.3.1.1 Sample database installation

When EDB Postgres Advanced Server is installed, a sample database named edb is automatically created. This sample database contains the tables and programs used in this tutorial after you execute
the script edb-sample.sql , located in the /usr/edb/as14/share directory.

This script does the following:

Creates the sample tables and programs in the currently connected database
Grants all permissions on the tables to the PUBLIC group

The tables and programs are created in the first schema of the search path in which the current user has permission to create tables and procedures. You can display the search path by issuing the
command:

SHOW SEARCH_PATH;

You can alter the search path using commands in PSQL.

14.3.1.2 Sample database description

The sample database represents employees in an organization. It contains three types of records: employees, departments, and historical records of employees.

Each employee has an identification number, name, hire date, salary, and manager. Some employees earn a commission in addition to their salary. All employee-related information is stored in the
emp table.

The sample company is regionally diverse, so the database keeps track of the location of the departments. Each company employee is assigned to a department. Each department is identified by a
unique department number and a short name. Each department is associated with one location. All department-related information is stored in the dept table.

The company also tracks information about jobs held by the employees. Some employees have been with the company for a long time and have held different positions, received raises, switched
departments, and so on. When a change in employee status occurs, the company records the end date of the former position. A new job record is added with the start date and the new job title,
department, salary, and the reason for the status change. All employee history is maintained in the jobhist table.

The following is an entity relationship diagram of the sample database tables.

Fig. 1: Sample Database Tables

The following is the edb-sample.sql script.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 119

--
-- Script that creates the 'sample' tables, views, procedures,
-- functions, triggers, etc.
--
-- Start new transaction - commit all or nothing
--
BEGIN;
/
--
-- Create and load tables used in the documentation examples.
--
-- Create the 'dept' table
--
CREATE TABLE dept (
 deptno NUMBER(2) NOT NULL CONSTRAINT dept_pk PRIMARY KEY,
 dname VARCHAR2(14) CONSTRAINT dept_dname_uq UNIQUE,
 loc VARCHAR2(13)
);
--
-- Create the 'emp' table
--
CREATE TABLE emp (
 empno NUMBER(4) NOT NULL CONSTRAINT emp_pk PRIMARY KEY,
 ename VARCHAR2(10),
 job VARCHAR2(9),
 mgr NUMBER(4),
 hiredate DATE,
 sal NUMBER(7,2) CONSTRAINT emp_sal_ck CHECK (sal > 0),
 comm NUMBER(7,2),
 deptno NUMBER(2) CONSTRAINT emp_ref_dept_fk
 REFERENCES dept(deptno)
);
--
-- Create the 'jobhist' table
--
CREATE TABLE jobhist (
 empno NUMBER(4) NOT NULL,
 startdate DATE NOT NULL,
 enddate DATE,
 job VARCHAR2(9),
 sal NUMBER(7,2),
 comm NUMBER(7,2),
 deptno NUMBER(2),
 chgdesc VARCHAR2(80),
 CONSTRAINT jobhist_pk PRIMARY KEY (empno, startdate),
 CONSTRAINT jobhist_ref_emp_fk FOREIGN KEY (empno)
 REFERENCES emp(empno) ON DELETE CASCADE,
 CONSTRAINT jobhist_ref_dept_fk FOREIGN KEY (deptno)
 REFERENCES dept (deptno) ON DELETE SET NULL,
 CONSTRAINT jobhist_date_chk CHECK (startdate <= enddate)
);
--
-- Create the 'salesemp' view
--
CREATE OR REPLACE VIEW salesemp AS
 SELECT empno, ename, hiredate, sal, comm FROM emp WHERE job = 'SALESMAN';
--
-- Sequence to generate values for function 'new_empno'.
--
CREATE SEQUENCE next_empno START WITH 8000 INCREMENT BY 1;
--
-- Issue PUBLIC grants
--
GRANT ALL ON emp TO PUBLIC;
GRANT ALL ON dept TO PUBLIC;
GRANT ALL ON jobhist TO PUBLIC;
GRANT ALL ON salesemp TO PUBLIC;
GRANT ALL ON next_empno TO PUBLIC;
--
-- Load the 'dept' table
--
INSERT INTO dept VALUES (10,'ACCOUNTING','NEW YORK');
INSERT INTO dept VALUES (20,'RESEARCH','DALLAS');
INSERT INTO dept VALUES (30,'SALES','CHICAGO');
INSERT INTO dept VALUES (40,'OPERATIONS','BOSTON');
--
-- Load the 'emp' table
--
INSERT INTO emp VALUES (7369,'SMITH','CLERK',7902,'17-DEC-80',800,NULL,20);

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 120

INSERT INTO emp VALUES (7499,'ALLEN','SALESMAN',7698,'20-FEB-81',1600,300,30);
INSERT INTO emp VALUES (7521,'WARD','SALESMAN',7698,'22-FEB-81',1250,500,30);
INSERT INTO emp VALUES (7566,'JONES','MANAGER',7839,'02-APR-81',2975,NULL,20);
INSERT INTO emp VALUES (7654,'MARTIN','SALESMAN',7698,'28-SEP-81',1250,1400,30);
INSERT INTO emp VALUES (7698,'BLAKE','MANAGER',7839,'01-MAY-81',2850,NULL,30);
INSERT INTO emp VALUES (7782,'CLARK','MANAGER',7839,'09-JUN-81',2450,NULL,10);
INSERT INTO emp VALUES (7788,'SCOTT','ANALYST',7566,'19-APR-87',3000,NULL,20);
INSERT INTO emp VALUES (7839,'KING','PRESIDENT',NULL,'17-NOV-81',5000,NULL,10);
INSERT INTO emp VALUES (7844,'TURNER','SALESMAN',7698,'08-SEP-81',1500,0,30);
INSERT INTO emp VALUES (7876,'ADAMS','CLERK',7788,'23-MAY-87',1100,NULL,20);
INSERT INTO emp VALUES (7900,'JAMES','CLERK',7698,'03-DEC-81',950,NULL,30);
INSERT INTO emp VALUES (7902,'FORD','ANALYST',7566,'03-DEC-81',3000,NULL,20);
INSERT INTO emp VALUES (7934,'MILLER','CLERK',7782,'23-JAN-82',1300,NULL,10);
--
-- Load the 'jobhist' table
--
INSERT INTO jobhist VALUES (7369,'17-DEC-80',NULL,'CLERK',800,NULL,20,'New Hire');
INSERT INTO jobhist VALUES (7499,'20-FEB-81',NULL,'SALESMAN',1600,300,30,'New Hire');
INSERT INTO jobhist VALUES (7521,'22-FEB-81',NULL,'SALESMAN',1250,500,30,'New Hire');
INSERT INTO jobhist VALUES (7566,'02-APR-81',NULL,'MANAGER',2975,NULL,20,'New Hire');
INSERT INTO jobhist VALUES (7654,'28-SEP-81',NULL,'SALESMAN',1250,1400,30,'New Hire');
INSERT INTO jobhist VALUES (7698,'01-MAY-81',NULL,'MANAGER',2850,NULL,30,'New Hire');
INSERT INTO jobhist VALUES (7782,'09-JUN-81',NULL,'MANAGER',2450,NULL,10,'New Hire');
INSERT INTO jobhist VALUES (7788,'19-APR-87','12-APR-88','CLERK',1000,NULL,20,'New Hire');
INSERT INTO jobhist VALUES (7788,'13-APR-88','04-MAY-89','CLERK',1040,NULL,20,'Raise');
INSERT INTO jobhist VALUES (7788,'05-MAY-90',NULL,'ANALYST',3000,NULL,20,'Promoted to Analyst');
INSERT INTO jobhist VALUES (7839,'17-NOV-81',NULL,'PRESIDENT',5000,NULL,10,'New Hire');
INSERT INTO jobhist VALUES (7844,'08-SEP-81',NULL,'SALESMAN',1500,0,30,'New Hire');
INSERT INTO jobhist VALUES (7876,'23-MAY-87',NULL,'CLERK',1100,NULL,20,'New Hire');
INSERT INTO jobhist VALUES (7900,'03-DEC-81','14-JAN-83','CLERK',950,NULL,10,'New Hire');
INSERT INTO jobhist VALUES (7900,'15-JAN-83',NULL,'CLERK',950,NULL,30,'Changed to Dept 30');
INSERT INTO jobhist VALUES (7902,'03-DEC-81',NULL,'ANALYST',3000,NULL,20,'New Hire');
INSERT INTO jobhist VALUES (7934,'23-JAN-82',NULL,'CLERK',1300,NULL,10,'New Hire');
--
-- Populate statistics table and view (pg_statistic/pg_stats)
--
ANALYZE dept;
ANALYZE emp;
ANALYZE jobhist;
--
-- Procedure that lists all employees' numbers and names
-- from the 'emp' table using a cursor.
--
CREATE OR REPLACE PROCEDURE list_emp
IS
 v_empno NUMBER(4);
 v_ename VARCHAR2(10);
 CURSOR emp_cur IS
 SELECT empno, ename FROM emp ORDER BY empno;
BEGIN
 OPEN emp_cur;
 DBMS_OUTPUT.PUT_LINE('EMPNO ENAME');
 DBMS_OUTPUT.PUT_LINE('----- -------');
 LOOP
 FETCH emp_cur INTO v_empno, v_ename;
 EXIT WHEN emp_cur%NOTFOUND;
 DBMS_OUTPUT.PUT_LINE(v_empno || ' ' || v_ename);
 END LOOP;
 CLOSE emp_cur;
END;
/
--
-- Procedure that selects an employee row given the employee
-- number and displays certain columns.
--
CREATE OR REPLACE PROCEDURE select_emp (
 p_empno IN NUMBER
)
IS
 v_ename emp.ename%TYPE;
 v_hiredate emp.hiredate%TYPE;
 v_sal emp.sal%TYPE;
 v_comm emp.comm%TYPE;
 v_dname dept.dname%TYPE;
 v_disp_date VARCHAR2(10);
BEGIN
 SELECT ename, hiredate, sal, NVL(comm, 0), dname
 INTO v_ename, v_hiredate, v_sal, v_comm, v_dname
 FROM emp e, dept d

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 121

 WHERE empno = p_empno
 AND e.deptno = d.deptno;
 v_disp_date := TO_CHAR(v_hiredate, 'MM/DD/YYYY');
 DBMS_OUTPUT.PUT_LINE('Number : ' || p_empno);
 DBMS_OUTPUT.PUT_LINE('Name : ' || v_ename);
 DBMS_OUTPUT.PUT_LINE('Hire Date : ' || v_disp_date);
 DBMS_OUTPUT.PUT_LINE('Salary : ' || v_sal);
 DBMS_OUTPUT.PUT_LINE('Commission: ' || v_comm);
 DBMS_OUTPUT.PUT_LINE('Department: ' || v_dname);
EXCEPTION
 WHEN NO_DATA_FOUND THEN
 DBMS_OUTPUT.PUT_LINE('Employee ' || p_empno || ' not found');
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE('The following is SQLERRM:');
 DBMS_OUTPUT.PUT_LINE(SQLERRM);
 DBMS_OUTPUT.PUT_LINE('The following is SQLCODE:');
 DBMS_OUTPUT.PUT_LINE(SQLCODE);
END;
/
--
-- Procedure that queries the 'emp' table based on
-- department number and employee number or name. Returns
-- employee number and name as IN OUT parameters and job,
-- hire date, and salary as OUT parameters.
--
CREATE OR REPLACE PROCEDURE emp_query (
 p_deptno IN NUMBER,
 p_empno IN OUT NUMBER,
 p_ename IN OUT VARCHAR2,
 p_job OUT VARCHAR2,
 p_hiredate OUT DATE,
 p_sal OUT NUMBER
)
IS
BEGIN
 SELECT empno, ename, job, hiredate, sal
 INTO p_empno, p_ename, p_job, p_hiredate, p_sal
 FROM emp
 WHERE deptno = p_deptno
 AND (empno = p_empno
 OR ename = UPPER(p_ename));
END;
/
--
-- Procedure to call 'emp_query_caller' with IN and IN OUT
-- parameters. Displays the results received from IN OUT and
-- OUT parameters.
--
CREATE OR REPLACE PROCEDURE emp_query_caller
IS
 v_deptno NUMBER(2);
 v_empno NUMBER(4);
 v_ename VARCHAR2(10);
 v_job VARCHAR2(9);
 v_hiredate DATE;
 v_sal NUMBER;
BEGIN
 v_deptno := 30;
 v_empno := 0;
 v_ename := 'Martin';
 emp_query(v_deptno, v_empno, v_ename, v_job, v_hiredate, v_sal);
 DBMS_OUTPUT.PUT_LINE('Department : ' || v_deptno);
 DBMS_OUTPUT.PUT_LINE('Employee No: ' || v_empno);
 DBMS_OUTPUT.PUT_LINE('Name : ' || v_ename);
 DBMS_OUTPUT.PUT_LINE('Job : ' || v_job);
 DBMS_OUTPUT.PUT_LINE('Hire Date : ' || v_hiredate);
 DBMS_OUTPUT.PUT_LINE('Salary : ' || v_sal);
EXCEPTION
 WHEN TOO_MANY_ROWS THEN
 DBMS_OUTPUT.PUT_LINE('More than one employee was selected');
 WHEN NO_DATA_FOUND THEN
 DBMS_OUTPUT.PUT_LINE('No employees were selected');
END;
/
--
-- Function to compute yearly compensation based on semimonthly
-- salary.
--
CREATE OR REPLACE FUNCTION emp_comp (

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 122

 p_sal NUMBER,
 p_comm NUMBER
) RETURN NUMBER
IS
BEGIN
 RETURN (p_sal + NVL(p_comm, 0)) * 24;
END;
/
--
-- Function that gets the next number from sequence, 'next_empno',
-- and ensures it is not already in use as an employee number.
--
CREATE OR REPLACE FUNCTION new_empno RETURN NUMBER
IS
 v_cnt INTEGER := 1;
 v_new_empno NUMBER;
BEGIN
 WHILE v_cnt > 0 LOOP
 SELECT next_empno.nextval INTO v_new_empno FROM dual;
 SELECT COUNT(*) INTO v_cnt FROM emp WHERE empno = v_new_empno;
 END LOOP;
 RETURN v_new_empno;
END;
/
--
-- EDB-SPL function that adds a new clerk to table 'emp'. This function
-- uses package 'emp_admin'.
--
CREATE OR REPLACE FUNCTION hire_clerk (
 p_ename VARCHAR2,
 p_deptno NUMBER
) RETURN NUMBER
IS
 v_empno NUMBER(4);
 v_ename VARCHAR2(10);
 v_job VARCHAR2(9);
 v_mgr NUMBER(4);
 v_hiredate DATE;
 v_sal NUMBER(7,2);
 v_comm NUMBER(7,2);
 v_deptno NUMBER(2);
BEGIN
 v_empno := new_empno;
 INSERT INTO emp VALUES (v_empno, p_ename, 'CLERK', 7782,
 TRUNC(SYSDATE), 950.00, NULL, p_deptno);
 SELECT empno, ename, job, mgr, hiredate, sal, comm, deptno INTO
 v_empno, v_ename, v_job, v_mgr, v_hiredate, v_sal, v_comm, v_deptno
 FROM emp WHERE empno = v_empno;
 DBMS_OUTPUT.PUT_LINE('Department : ' || v_deptno);
 DBMS_OUTPUT.PUT_LINE('Employee No: ' || v_empno);
 DBMS_OUTPUT.PUT_LINE('Name : ' || v_ename);
 DBMS_OUTPUT.PUT_LINE('Job : ' || v_job);
 DBMS_OUTPUT.PUT_LINE('Manager : ' || v_mgr);
 DBMS_OUTPUT.PUT_LINE('Hire Date : ' || v_hiredate);
 DBMS_OUTPUT.PUT_LINE('Salary : ' || v_sal);
 DBMS_OUTPUT.PUT_LINE('Commission : ' || v_comm);
 RETURN v_empno;
EXCEPTION
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE('The following is SQLERRM:');
 DBMS_OUTPUT.PUT_LINE(SQLERRM);
 DBMS_OUTPUT.PUT_LINE('The following is SQLCODE:');
 DBMS_OUTPUT.PUT_LINE(SQLCODE);
 RETURN -1;
END;
/
--
-- PostgreSQL PL/pgSQL function that adds a new salesman
-- to table 'emp'.
--
CREATE OR REPLACE FUNCTION hire_salesman (
 p_ename VARCHAR,
 p_sal NUMERIC,
 p_comm NUMERIC
) RETURNS NUMERIC
AS $$
DECLARE
 v_empno NUMERIC(4);
 v_ename VARCHAR(10);

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 123

 v_job VARCHAR(9);
 v_mgr NUMERIC(4);
 v_hiredate DATE;
 v_sal NUMERIC(7,2);
 v_comm NUMERIC(7,2);
 v_deptno NUMERIC(2);
BEGIN
 v_empno := new_empno();
 INSERT INTO emp VALUES (v_empno, p_ename, 'SALESMAN', 7698,
 CURRENT_DATE, p_sal, p_comm, 30);
 SELECT INTO
 v_empno, v_ename, v_job, v_mgr, v_hiredate, v_sal, v_comm, v_deptno
 empno, ename, job, mgr, hiredate, sal, comm, deptno
 FROM emp WHERE empno = v_empno;
 RAISE INFO 'Department : %', v_deptno;
 RAISE INFO 'Employee No: %', v_empno;
 RAISE INFO 'Name : %', v_ename;
 RAISE INFO 'Job : %', v_job;
 RAISE INFO 'Manager : %', v_mgr;
 RAISE INFO 'Hire Date : %', v_hiredate;
 RAISE INFO 'Salary : %', v_sal;
 RAISE INFO 'Commission : %', v_comm;
 RETURN v_empno;
EXCEPTION
 WHEN OTHERS THEN
 RAISE INFO 'The following is SQLERRM:';
 RAISE INFO '%', SQLERRM;
 RAISE INFO 'The following is SQLSTATE:';
 RAISE INFO '%', SQLSTATE;
 RETURN -1;
END;
$$ LANGUAGE 'plpgsql';
/
--
-- Rule to INSERT into view 'salesemp'
--
CREATE OR REPLACE RULE salesemp_i AS ON INSERT TO salesemp
DO INSTEAD
 INSERT INTO emp VALUES (NEW.empno, NEW.ename, 'SALESMAN', 7698,
 NEW.hiredate, NEW.sal, NEW.comm, 30);
--
-- Rule to UPDATE view 'salesemp'
--
CREATE OR REPLACE RULE salesemp_u AS ON UPDATE TO salesemp
DO INSTEAD
 UPDATE emp SET empno = NEW.empno,
 ename = NEW.ename,
 hiredate = NEW.hiredate,
 sal = NEW.sal,
 comm = NEW.comm
 WHERE empno = OLD.empno;
--
-- Rule to DELETE from view 'salesemp'
--
CREATE OR REPLACE RULE salesemp_d AS ON DELETE TO salesemp
DO INSTEAD
 DELETE FROM emp WHERE empno = OLD.empno;
--
-- After statement-level trigger that displays a message after
-- an insert, update, or deletion to the 'emp' table. One message
-- per SQL command is displayed.
--
CREATE OR REPLACE TRIGGER user_audit_trig
 AFTER INSERT OR UPDATE OR DELETE ON emp
DECLARE
 v_action VARCHAR2(24);
BEGIN
 IF INSERTING THEN
 v_action := ' added employee(s) on ';
 ELSIF UPDATING THEN
 v_action := ' updated employee(s) on ';
 ELSIF DELETING THEN
 v_action := ' deleted employee(s) on ';
 END IF;
 DBMS_OUTPUT.PUT_LINE('User ' || USER || v_action ||
TO_CHAR(SYSDATE,'YYYY-MM-DD'));
END;
/
--

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 124

-- Before row-level trigger that displays employee number and
-- salary of an employee that is about to be added, updated,
-- or deleted in the 'emp' table.
--
CREATE OR REPLACE TRIGGER emp_sal_trig
 BEFORE DELETE OR INSERT OR UPDATE ON emp
 FOR EACH ROW
DECLARE
 sal_diff NUMBER;
BEGIN
 IF INSERTING THEN
 DBMS_OUTPUT.PUT_LINE('Inserting employee ' || :NEW.empno);
 DBMS_OUTPUT.PUT_LINE('..New salary: ' || :NEW.sal);
 END IF;
 IF UPDATING THEN
 sal_diff := :NEW.sal - :OLD.sal;
 DBMS_OUTPUT.PUT_LINE('Updating employee ' || :OLD.empno);
 DBMS_OUTPUT.PUT_LINE('..Old salary: ' || :OLD.sal);
 DBMS_OUTPUT.PUT_LINE('..New salary: ' || :NEW.sal);
 DBMS_OUTPUT.PUT_LINE('..Raise : ' || sal_diff);
 END IF;
 IF DELETING THEN
 DBMS_OUTPUT.PUT_LINE('Deleting employee ' || :OLD.empno);
 DBMS_OUTPUT.PUT_LINE('..Old salary: ' || :OLD.sal);
 END IF;
END;
/
--
-- Package specification for the 'emp_admin' package.
--
CREATE OR REPLACE PACKAGE emp_admin
IS
 FUNCTION get_dept_name (
 p_deptno NUMBER
) RETURN VARCHAR2;
 FUNCTION update_emp_sal (
 p_empno NUMBER,
 p_raise NUMBER
) RETURN NUMBER;
 PROCEDURE hire_emp (
 p_empno NUMBER,
 p_ename VARCHAR2,
 p_job VARCHAR2,
 p_sal NUMBER,
 p_hiredate DATE,
 p_comm NUMBER,
 p_mgr NUMBER,
 p_deptno NUMBER
);
 PROCEDURE fire_emp (
 p_empno NUMBER
);
END emp_admin;
/
--
-- Package body for the 'emp_admin' package.
--
CREATE OR REPLACE PACKAGE BODY emp_admin
IS
 --
 -- Function that queries the 'dept' table based on the department
 -- number and returns the corresponding department name.
 --
 FUNCTION get_dept_name (
 p_deptno IN NUMBER
) RETURN VARCHAR2
 IS
 v_dname VARCHAR2(14);
 BEGIN
 SELECT dname INTO v_dname FROM dept WHERE deptno = p_deptno;
 RETURN v_dname;
 EXCEPTION
 WHEN NO_DATA_FOUND THEN
 DBMS_OUTPUT.PUT_LINE('Invalid department number ' || p_deptno);
 RETURN '';
 END;
 --
 -- Function that updates an employee's salary based on the
 -- employee number and salary increment/decrement passed

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 125

 -- as IN parameters. Upon successful completion the function
 -- returns the new updated salary.
 --
 FUNCTION update_emp_sal (
 p_empno IN NUMBER,
 p_raise IN NUMBER
) RETURN NUMBER
 IS
 v_sal NUMBER := 0;
 BEGIN
 SELECT sal INTO v_sal FROM emp WHERE empno = p_empno;
 v_sal := v_sal + p_raise;
 UPDATE emp SET sal = v_sal WHERE empno = p_empno;
 RETURN v_sal;
 EXCEPTION
 WHEN NO_DATA_FOUND THEN
 DBMS_OUTPUT.PUT_LINE('Employee ' || p_empno || ' not found');
 RETURN -1;
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE('The following is SQLERRM:');
 DBMS_OUTPUT.PUT_LINE(SQLERRM);
 DBMS_OUTPUT.PUT_LINE('The following is SQLCODE:');
 DBMS_OUTPUT.PUT_LINE(SQLCODE);
 RETURN -1;
 END;
 --
 -- Procedure that inserts a new employee record into the 'emp' table.
 --
 PROCEDURE hire_emp (
 p_empno NUMBER,
 p_ename VARCHAR2,
 p_job VARCHAR2,
 p_sal NUMBER,
 p_hiredate DATE,
 p_comm NUMBER,
 p_mgr NUMBER,
 p_deptno NUMBER
)
 AS
 BEGIN
 INSERT INTO emp(empno, ename, job, sal, hiredate, comm, mgr, deptno)
 VALUES(p_empno, p_ename, p_job, p_sal,
 p_hiredate, p_comm, p_mgr, p_deptno);
 END;
 --
 -- Procedure that deletes an employee record from the 'emp' table based
 -- on the employee number.
 --
 PROCEDURE fire_emp (
 p_empno NUMBER
)
 AS
 BEGIN
 DELETE FROM emp WHERE empno = p_empno;
 END;
END;
/
COMMIT;

14.3.2 Creating a new table

Create a new table by specifying the table name, along with all column names and their types. The following is a simplified version of the emp sample table with the minimal information needed to
define a table.

CREATE TABLE emp (
 empno NUMBER(4),
 ename VARCHAR2(10),
 job VARCHAR2(9),
 mgr NUMBER(4),
 hiredate DATE,
 sal NUMBER(7,2),
 comm NUMBER(7,2),
 deptno NUMBER(2)
);

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 126

You can enter this code into PSQL with line breaks. PSQL recognizes that the command isn't terminated until the semicolon.

You can use white space (spaces, tabs, and newlines) in SQL commands. You can align the command as you want or even put all the text all on one line.

Two dashes ("--") introduce comments. Whatever follows them is ignored up to the end of the line. In addition, SQL is not case sensitive about key words and identifiers, except when identifiers are
double-quoted to preserve the case.

VARCHAR2(10) specifies a data type that can store arbitrary character strings up to 10 characters in length. NUMBER(7,2) is a fixed-point number with precision 7 and scale 2. NUMBER(4) is an
integer number with precision 4 and scale 0.

EDB Postgres Advanced Server supports the usual SQL data types: INTEGER , SMALLINT , NUMBER , REAL , DOUBLE PRECISION , CHAR , VARCHAR2 , DATE , and TIMESTAMP as well as
various synonyms for these types.

If you don’t need a table or want to recreate it, you can remove it using the following command:

DROP TABLE tablename;

14.3.3 Populating a table With rows

Use the INSERT statement to populate a table with rows:

INSERT INTO emp VALUES (7369,'SMITH','CLERK',7902,'17-DEC-80',800,NULL,20);

All data types use obvious input formats. Constants that aren't simple numeric values usually are surrounded by single quotes ('), as in the example. The DATE type is flexible in what it accepts.
However, for this tutorial we use the unambiguous format shown here.

The syntax used so far requires you to remember the order of the columns. An alternative syntax allows you to list the columns explicitly:

INSERT INTO emp(empno,ename,job,mgr,hiredate,sal,comm,deptno)
 VALUES (7499,'ALLEN','SALESMAN',7698,'20-FEB-81',1600,300,30);

You can list the columns in a different order if you want or even omit some columns, for example, if the commission is unknown:

INSERT INTO emp(empno,ename,job,mgr,hiredate,sal,deptno)
 VALUES (7369,'SMITH','CLERK',7902,'17-DEC-80',800,20);

Many developers consider explicitly listing the columns better style than relying on the order implicitly.

14.3.4 Querying a table

To retrieve data from a table, the table is queried. Use an SQL SELECT statement to do this. The statement is divided into:

A select list (the part that lists the columns to return)
A table list (the part that lists the tables from which to retrieve the data)
An optional qualification (the part that specifies any restrictions)

The following query lists all columns of all employees in the table in no particular order.

SELECT * FROM emp;

Here, “*” in the select list means all columns. The following is the output from this query.

empno| ename | job | mgr | hiredate | sal | comm | deptno
-----+-------+----------+------+--------------------+---------+-------+-------
7369 | SMITH | CLERK | 7902 | 17-DEC-80 00:00:00 | 800.00 | | 20
7499 | ALLEN | SALESMAN | 7698 | 20-FEB-81 00:00:00 | 1600.00 | 300.00| 30
7521 | WARD | SALESMAN | 7698 | 22-FEB-81 00:00:00 | 1250.00 | 500.00| 30
7566 | JONES | MANAGER | 7839 | 02-APR-81 00:00:00 | 2975.00 | | 20
7654 | MARTIN| SALESMAN | 7698 | 28-SEP-81 00:00:00 | 1250.00 |1400.00| 30
7698 | BLAKE | MANAGER | 7839 | 01-MAY-81 00:00:00 | 2850.00 | | 30
7782 | CLARK | MANAGER | 7839 | 09-JUN-81 00:00:00 | 2450.00 | | 10
7788 | SCOTT | ANALYST | 7566 | 19-APR-87 00:00:00 | 3000.00 | | 20
7839 | KING | PRESIDENT| | 17-NOV-81 00:00:00 | 5000.00 | | 10
7844 | TURNER| SALESMAN | 7698 | 08-SEP-81 00:00:00 | 1500.00 | 0.00 | 30
7876 | ADAMS | CLERK | 7788 | 23-MAY-87 00:00:00 | 1100.00 | | 20
7900 | JAMES | CLERK | 7698 | 03-DEC-81 00:00:00 | 950.00 | | 30

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 127

7902 | FORD | ANALYST | 7566 | 03-DEC-81 00:00:00 | 3000.00 | | 20
7934 | MILLER| CLERK | 7782 | 23-JAN-82 00:00:00 | 1300.00 | | 10
(14 rows)

You can specify any arbitrary expression in the select list. For example, you can do:

SELECT ename, sal, sal * 24 AS yearly_salary, deptno FROM emp;

 ename | sal | yearly_salary | deptno
---------+---------+---------------+--------
 SMITH | 800.00 | 19200.00 | 20
 ALLEN | 1600.00 | 38400.00 | 30
 WARD | 1250.00 | 30000.00 | 30
 JONES | 2975.00 | 71400.00 | 20
 MARTIN | 1250.00 | 30000.00 | 30
 BLAKE | 2850.00 | 68400.00 | 30
 CLARK | 2450.00 | 58800.00 | 10
 SCOTT | 3000.00 | 72000.00 | 20
 KING | 5000.00 | 120000.00 | 10
 TURNER | 1500.00 | 36000.00 | 30
 ADAMS | 1100.00 | 26400.00 | 20
 JAMES | 950.00 | 22800.00 | 30
 FORD | 3000.00 | 72000.00 | 20
 MILLER | 1300.00 | 31200.00 | 10
(14 rows)

Notice how the AS clause is used to relabel the output column. The AS clause is optional.

You can qualify a query by adding a WHERE clause that specifies the rows you want. The WHERE clause contains a Boolean (truth value) expression. Only rows for which the Boolean expression is true
are returned. The usual Boolean operators (AND , OR , and NOT) are allowed in the qualification. For example, the following retrieves the employees in department 20 with salaries over $1000.00:

SELECT ename, sal, deptno FROM emp WHERE deptno = 20 AND sal > 1000;

 ename | sal | deptno
-------+---------+--------
 JONES | 2975.00 | 20
 SCOTT | 3000.00 | 20
 ADAMS | 1100.00 | 20
 FORD | 3000.00 | 20
(4 rows)

You can request to return the results of a query in sorted order:

SELECT ename, sal, deptno FROM emp ORDER BY ename;

 ename | sal | deptno
--------+---------+--------
 ADAMS | 1100.00 | 20
 ALLEN | 1600.00 | 30
 BLAKE | 2850.00 | 30
 CLARK | 2450.00 | 10
 FORD | 3000.00 | 20
 JAMES | 950.00 | 30
 JONES | 2975.00 | 20
 KING | 5000.00 | 10
 MARTIN | 1250.00 | 30
 MILLER | 1300.00 | 10
 SCOTT | 3000.00 | 20
 SMITH | 800.00 | 20
 TURNER | 1500.00 | 30
 WARD | 1250.00 | 30
(14 rows)

You can request to remove duplicate rows from the result of a query:

SELECT DISTINCT job FROM emp;

 job

 ANALYST
 CLERK
 MANAGER
 PRESIDENT
 SALESMAN
(5 rows)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 128

14.3.5 Joins between tables

Queries can access multiple tables at once or access the same table in such a way that multiple rows of the table are processed at the same time. A query that accesses multiple rows of the same or
different tables at one time is called a join query. For example, suppose you want to list all the employee records together with the name and location of the associated department. To do that, you need
to compare the deptno column of each row of the emp table with the deptno column of all rows in the dept table. Then select the pairs of rows where these values match. You can accomplish
this using the following query:

SELECT emp.ename, emp.sal, dept.deptno, dept.dname, dept.loc FROM emp, dept
WHERE emp.deptno = dept.deptno;

 ename | sal | deptno | dname | loc
--------+---------+--------+------------+----------
 MILLER | 1300.00 | 10 | ACCOUNTING | NEW YORK
 CLARK | 2450.00 | 10 | ACCOUNTING | NEW YORK
 KING | 5000.00 | 10 | ACCOUNTING | NEW YORK
 SCOTT | 3000.00 | 20 | RESEARCH | DALLAS
 JONES | 2975.00 | 20 | RESEARCH | DALLAS
 SMITH | 800.00 | 20 | RESEARCH | DALLAS
 ADAMS | 1100.00 | 20 | RESEARCH | DALLAS
 FORD | 3000.00 | 20 | RESEARCH | DALLAS
 WARD | 1250.00 | 30 | SALES | CHICAGO
 TURNER | 1500.00 | 30 | SALES | CHICAGO
 ALLEN | 1600.00 | 30 | SALES | CHICAGO
 BLAKE | 2850.00 | 30 | SALES | CHICAGO
 MARTIN | 1250.00 | 30 | SALES | CHICAGO
 JAMES | 950.00 | 30 | SALES | CHICAGO
(14 rows)

Observe two things about the result set:

There's no result row for department 40. That's because there's no matching entry in the emp table for department 40, so the join ignores the unmatched rows in the dept table. The code that
follows shows how to fix this.
It's more desirable to list the output columns qualified by table name rather than using * or leaving out the qualification as follows:

SELECT ename, sal, dept.deptno, dname, loc FROM emp, dept WHERE emp.deptno =
dept.deptno;

Since all the columns had different names (except for deptno , which therefore must be qualified), the parser automatically found out which table they belong to. However it's good style to fully
qualify column names in join queries.

You can also write this kind of join queries in this alternative form:

SELECT emp.ename, emp.sal, dept.deptno, dept.dname, dept.loc FROM emp INNER
JOIN dept ON emp.deptno = dept.deptno;

This syntax is not as commonly used, but we show it here to help you understand the following topics.

In all the above results for joins, no employees were returned that belonged to department 40. As a consequence, the record for department 40 never appears. Next, resolve how to get the department
40 record in the results despite the fact that there are no matching employees. The query must scan the dept table and, for each row, find the matching emp row. If no matching row is found, we
want to substitute some “empty” values for the emp table’s columns. This kind of query is called an outer join. (The joins you have seen so far are inner joins.) The command looks like this:

SELECT emp.ename, emp.sal, dept.deptno, dept.dname, dept.loc FROM dept LEFT
OUTER JOIN emp ON emp.deptno = dept.deptno;

 ename | sal | deptno | dname | loc
--------+---------+--------+------------+----------
 MILLER | 1300.00 | 10 | ACCOUNTING | NEW YORK
 CLARK | 2450.00 | 10 | ACCOUNTING | NEW YORK
 KING | 5000.00 | 10 | ACCOUNTING | NEW YORK
 SCOTT | 3000.00 | 20 | RESEARCH | DALLAS
 JONES | 2975.00 | 20 | RESEARCH | DALLAS
 SMITH | 800.00 | 20 | RESEARCH | DALLAS
 ADAMS | 1100.00 | 20 | RESEARCH | DALLAS
 FORD | 3000.00 | 20 | RESEARCH | DALLAS
 WARD | 1250.00 | 30 | SALES | CHICAGO
 TURNER | 1500.00 | 30 | SALES | CHICAGO
 ALLEN | 1600.00 | 30 | SALES | CHICAGO
 BLAKE | 2850.00 | 30 | SALES | CHICAGO
 MARTIN | 1250.00 | 30 | SALES | CHICAGO
 JAMES | 950.00 | 30 | SALES | CHICAGO
 | | 40 | OPERATIONS | BOSTON
(15 rows)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 129

This query is called a left outer join. The table mentioned on the left of the join operator has each of its rows in the output at least once. The table on the right has only those rows output that match some
row of the left table. When a left-table row is selected for which there is no right-table match, empty (NULL) values are substituted for the right-table columns.

An alternative syntax for an outer join is to use the outer join operator, “(+)”, in the join condition in the WHERE clause. The outer join operator is placed after the column name of the table for which
you substitute null values for unmatched rows. So for all the rows in the dept table that have no matching rows in the emp table, EDB Postgres Advanced Server returns null for any select list
expressions containing columns of emp . Hence you can rewrite the earlier example as:

SELECT emp.ename, emp.sal, dept.deptno, dept.dname, dept.loc FROM dept, emp
WHERE emp.deptno(+) = dept.deptno;

 ename | sal | deptno | dname | loc
--------+---------+--------+------------+----------
 MILLER | 1300.00 | 10 | ACCOUNTING | NEW YORK
 CLARK | 2450.00 | 10 | ACCOUNTING | NEW YORK
 KING | 5000.00 | 10 | ACCOUNTING | NEW YORK
 SCOTT | 3000.00 | 20 | RESEARCH | DALLAS
 JONES | 2975.00 | 20 | RESEARCH | DALLAS
 SMITH | 800.00 | 20 | RESEARCH | DALLAS
 ADAMS | 1100.00 | 20 | RESEARCH | DALLAS
 FORD | 3000.00 | 20 | RESEARCH | DALLAS
 WARD | 1250.00 | 30 | SALES | CHICAGO
 TURNER | 1500.00 | 30 | SALES | CHICAGO
 ALLEN | 1600.00 | 30 | SALES | CHICAGO
 BLAKE | 2850.00 | 30 | SALES | CHICAGO
 MARTIN | 1250.00 | 30 | SALES | CHICAGO
 JAMES | 950.00 | 30 | SALES | CHICAGO
 | | 40 | OPERATIONS | BOSTON
(15 rows)

You can also join a table against itself, which is called a self join. As an example, suppose you want to find the name of each employee and the name of that employee’s manager. You need to compare
the mgr column of each emp row to the empno column of all other emp rows.

SELECT e1.ename || ' works for ' || e2.ename AS "Employees and their
Managers" FROM emp e1, emp e2 WHERE e1.mgr = e2.empno;

 Employees and their Managers

 FORD works for JONES
 SCOTT works for JONES
 WARD works for BLAKE
 TURNER works for BLAKE
 MARTIN works for BLAKE
 JAMES works for BLAKE
 ALLEN works for BLAKE
 MILLER works for CLARK
 ADAMS works for SCOTT
 CLARK works for KING
 BLAKE works for KING
 JONES works for KING
 SMITH works for FORD
(13 rows)

Here, the emp table was relabeled as e1 to represent the employee row in the select list and in the join condition. It was also relabeled as e2 to represent the matching employee row acting as
manager in the select list and in the join condition. You can use these kinds of aliases in other queries to save some typing. For example:

SELECT e.ename, e.mgr, d.deptno, d.dname, d.loc FROM emp e, dept d WHERE
e.deptno = d.deptno;

 ename | mgr | deptno | dname | loc
--------+------+--------+------------+----------
 MILLER | 7782 | 10 | ACCOUNTING | NEW YORK
 CLARK | 7839 | 10 | ACCOUNTING | NEW YORK
 KING | | 10 | ACCOUNTING | NEW YORK
 SCOTT | 7566 | 20 | RESEARCH | DALLAS
 JONES | 7839 | 20 | RESEARCH | DALLAS
 SMITH | 7902 | 20 | RESEARCH | DALLAS
 ADAMS | 7788 | 20 | RESEARCH | DALLAS
 FORD | 7566 | 20 | RESEARCH | DALLAS
 WARD | 7698 | 30 | SALES | CHICAGO
 TURNER | 7698 | 30 | SALES | CHICAGO
 ALLEN | 7698 | 30 | SALES | CHICAGO
 BLAKE | 7839 | 30 | SALES | CHICAGO
 MARTIN | 7698 | 30 | SALES | CHICAGO
 JAMES | 7698 | 30 | SALES | CHICAGO
(14 rows)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 130

This style of abbreviating is used often.

14.3.6 Aggregate functions

Like most other relational database products, EDB Postgres Advanced Server supports aggregate functions. An aggregate function computes a single result from multiple input rows. For example, some
aggregates compute the COUNT , SUM , AVG (average), MAX (maximum), and MIN (minimum) over a set of rows.

As an example, you can find the highest and lowest salaries with the following query:

SELECT MAX(sal) highest_salary, MIN(sal) lowest_salary FROM emp;

 highest_salary | lowest_salary
----------------+---------------
 5000.00 | 800.00
(1 row)

If you want to find the employee with the largest salary, you might be tempted to try:

SELECT ename FROM emp WHERE sal = MAX(sal);

ERROR: aggregates not allowed in WHERE clause

This approach doesn't work because you can't use the aggregate function MAX in the WHERE clause. This restriction exists because the WHERE clause determines the rows that go into the
aggregation stage. Hence, it has to be evaluated before aggregate functions are computed. However, you can restart the query to accomplish the intended result by using a subquery. The subquery is an
independent computation that obtains its own result separately from the outer query.

SELECT ename FROM emp WHERE sal = (SELECT MAX(sal) FROM emp);

 ename

 KING
(1 row)

Aggregates are also useful in combination with the GROUP BY clause. For example, the following query gets the highest salary in each department.

SELECT deptno, MAX(sal) FROM emp GROUP BY deptno;

 deptno | max
--------+---------
 10 | 5000.00
 20 | 3000.00
 30 | 2850.00
(3 rows)

This query produces one output row per department. Each aggregate result is computed over the rows matching that department. These grouped rows can be filtered using the HAVING clause.

SELECT deptno, MAX(sal) FROM emp GROUP BY deptno HAVING AVG(sal) > 2000;

 deptno | max
--------+---------
 10 | 5000.00
 20 | 3000.00
(2 rows)

This query gives the same results for only those departments that have an average salary greater than 2000.

Finally, the following query takes into account only the highest paid employees who are analysts in each department.

SELECT deptno, MAX(sal) FROM emp WHERE job = 'ANALYST' GROUP BY deptno HAVING AVG(sal) > 2000;

 deptno | max
--------+---------
 20 | 3000.00
(1 row)

There's a subtle distinction between the WHERE and HAVING clauses. The WHERE clause filters out rows before grouping occurs and aggregate functions are applied. The HAVING clause applies
filters on the results after rows are grouped and aggregate functions are computed for each group.

So, in the previous example, only employees who are analysts are considered. From this subset, the employees are grouped by department. Only those groups where the average salary of analysts in the
group is greater than 2000 are in the final result. This is true only of the group for department 20, and the maximum analyst salary in department 20 is 3000.00.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 131

14.3.7 Updates

You can change the column values of existing rows using the UPDATE command. For example, the following sequence of commands shows the before and after results of giving everyone who is a
manager a 10% raise:

SELECT ename, sal FROM emp WHERE job = 'MANAGER';

 ename | sal
-------+---------
 JONES | 2975.00
 BLAKE | 2850.00
 CLARK | 2450.00
(3 rows)

UPDATE emp SET sal = sal * 1.1 WHERE job = 'MANAGER';

SELECT ename, sal FROM emp WHERE job = 'MANAGER';

 ename | sal
-------+---------
 JONES | 3272.50
 BLAKE | 3135.00
 CLARK | 2695.00
(3 rows)

14.3.8 Deletions

You can remove rows from a table using the DELETE command. For example, the following sequence of commands shows the before and after results of deleting all employees in department 20 .

SELECT ename, deptno FROM emp;

 ename | deptno
--------+--------
 SMITH | 20
 ALLEN | 30
 WARD | 30
 JONES | 20
 MARTIN | 30
 BLAKE | 30
 CLARK | 10
 SCOTT | 20
 KING | 10
 TURNER | 30
 ADAMS | 20
 JAMES | 30
 FORD | 20
 MILLER | 10
(14 rows)

DELETE FROM emp WHERE deptno = 20;

SELECT ename, deptno FROM emp;
 ename | deptno
--------+--------
 ALLEN | 30
 WARD | 30
 MARTIN | 30
 BLAKE | 30
 CLARK | 10
 KING | 10
 TURNER | 30
 JAMES | 30
 MILLER | 10
(9 rows)

Warning

Be careful when giving a DELETE command without a WHERE clause such as the following:

DELETE FROM tablename;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 132

This statement removes all rows from the given table, leaving it completely empty. The system doesn't request confirmation before doing this.

14.3.9 The SQL language

EDB Postgres Advanced Server supports SQL language that's compatible with Oracle syntax as well as syntax and commands for extended functionality. Extended functionality doesn't provide database
compatibility for Oracle or support Oracle-styled applications.

Database Compatibility for Oracle Developers: SQL provides detailed information about:

Compatible SQL syntax and language elements
Data types
Supported SQL command syntax

14.4 Advanced concepts

Advanced SQL features can simplify management and prevent loss or corruption of your data.

14.4.1 Views

Consider the following SELECT command:

SELECT ename, sal, sal * 24 AS yearly_salary, deptno FROM emp;

 ename | sal | yearly_salary | deptno
--------+---------+---------------+--------
 SMITH | 800.00 | 19200.00 | 20
 ALLEN | 1600.00 | 38400.00 | 30
 WARD | 1250.00 | 30000.00 | 30
 JONES | 2975.00 | 71400.00 | 20
 MARTIN | 1250.00 | 30000.00 | 30
 BLAKE | 2850.00 | 68400.00 | 30
 CLARK | 2450.00 | 58800.00 | 10
 SCOTT | 3000.00 | 72000.00 | 20
 KING | 5000.00 | 120000.00 | 10
 TURNER | 1500.00 | 36000.00 | 30
 ADAMS | 1100.00 | 26400.00 | 20
 JAMES | 950.00 | 22800.00 | 30
 FORD | 3000.00 | 72000.00 | 20
 MILLER | 1300.00 | 31200.00 | 10
(14 rows)

If this is a query that you use repeatedly, a shorthand method of reusing this query without retyping the entire SELECT command each time is to create a view:

CREATE VIEW employee_pay AS SELECT ename, sal, sal * 24 AS yearly_salary,
deptno FROM emp;

The view name, employee_pay , can now be used like an ordinary table name to perform the query:

SELECT * FROM employee_pay;

 ename | sal | yearly_salary | deptno
--------+---------+---------------+--------
 SMITH | 800.00 | 19200.00 | 20
 ALLEN | 1600.00 | 38400.00 | 30
 WARD | 1250.00 | 30000.00 | 30
 JONES | 2975.00 | 71400.00 | 20
 MARTIN | 1250.00 | 30000.00 | 30
 BLAKE | 2850.00 | 68400.00 | 30
 CLARK | 2450.00 | 58800.00 | 10
 SCOTT | 3000.00 | 72000.00 | 20
 KING | 5000.00 | 120000.00 | 10
 TURNER | 1500.00 | 36000.00 | 30
 ADAMS | 1100.00 | 26400.00 | 20
 JAMES | 950.00 | 22800.00 | 30
 FORD | 3000.00 | 72000.00 | 20
 MILLER | 1300.00 | 31200.00 | 10

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 133

(14 rows)

Making liberal use of views is a key aspect of good SQL database design. Views provide a consistent interface that encapsulate details of the structure of your tables that might change as your
application evolves.

You can use views in almost any place you can use a real table. Building views on other views is common.

14.4.2 Foreign keys

Suppose you want to make sure all employees belong to a valid department, that is, you want to maintain the referential integrity of your data. In simplistic database systems, you can implement this by
first looking at the dept table to check if a matching record exists and then inserting or rejecting the new employee record.

This approach has a number of problems and is inconvenient. EDB Postgres Advanced Server can make it easier for you.

A modified version of the emp table presented in Creating a new table is shown here with the addition of a foreign key constraint. The modified emp table looks like the following:

CREATE TABLE emp (
 empno NUMBER(4) NOT NULL CONSTRAINT emp_pk PRIMARY KEY,
 ename VARCHAR2(10),
 job VARCHAR2(9),
 mgr NUMBER(4),
 hiredate DATE,
 sal NUMBER(7,2),
 comm NUMBER(7,2),
 deptno NUMBER(2) CONSTRAINT emp_ref_dept_fk
 REFERENCES dept(deptno)
);

If you try to issue the following INSERT command in the sample emp table, the foreign key constraint emp_ref_dept_fk is meant to ensure that department 50 exists in the dept table. Since
it doesn't, the command is rejected.

INSERT INTO emp VALUES (8000,'JONES','CLERK',7902,'17-AUG-07',1200,NULL,50);

ERROR: insert or update on table "emp" violates foreign key constraint
"emp_ref_dept_fk"
DETAIL: Key (deptno)=(50) is not present in table "dept".

You can finely tune the behavior of foreign keys to your application. Making correct use of foreign keys improves the quality of your database applications. We strongly encourage you to learn more
about them.

14.4.3 The ROWNUM pseudo-column

ROWNUM is a pseudo-column that's assigned an incremental, unique integer value for each row based on the order the rows were retrieved from a query. Therefore, the first row retrieved has ROWNUM
of 1 , the second row has ROWNUM of 2 , and so on.

You can use this feature to limit the number of rows retrieved by a query, as shown in the following example:

SELECT empno, ename, job FROM emp WHERE ROWNUM < 5;

 empno | ename | job
-------+-------+----------
 7369 | SMITH | CLERK
 7499 | ALLEN | SALESMAN
 7521 | WARD | SALESMAN
 7566 | JONES | MANAGER
(4 rows)

The ROWNUM value is assigned to each row before any sorting of the result set takes place. Thus, the result set is returned in the order given by the ORDER BY clause. However the ROWNUM values
might not be in ascending order, as shown in the following example:

SELECT ROWNUM, empno, ename, job FROM emp WHERE ROWNUM < 5 ORDER BY ename;

 rownum | empno | ename | job
--------+-------+-------+----------
 2 | 7499 | ALLEN | SALESMAN
 4 | 7566 | JONES | MANAGER
 1 | 7369 | SMITH | CLERK
 3 | 7521 | WARD | SALESMAN

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 134

(4 rows)

The following example shows how you can add a sequence number to every row in the jobhist table. First add a column named seqno to the table. Then set seqno to ROWNUM in the UPDATE
command.

ALTER TABLE jobhist ADD seqno NUMBER(3);
UPDATE jobhist SET seqno = ROWNUM;

The following SELECT command shows the new seqno values:

SELECT seqno, empno, TO_CHAR(startdate,'DD-MON-YY') AS start, job FROM
jobhist;

seqno | empno | start | job
-------+-------+-----------+-----------
 1 | 7369 | 17-DEC-80 | CLERK
 2 | 7499 | 20-FEB-81 | SALESMAN
 3 | 7521 | 22-FEB-81 | SALESMAN
 4 | 7566 | 02-APR-81 | MANAGER
 5 | 7654 | 28-SEP-81 | SALESMAN
 6 | 7698 | 01-MAY-81 | MANAGER
 7 | 7782 | 09-JUN-81 | MANAGER
 8 | 7788 | 19-APR-87 | CLERK
 9 | 7788 | 13-APR-88 | CLERK
 10 | 7788 | 05-MAY-90 | ANALYST
 11 | 7839 | 17-NOV-81 | PRESIDENT
 12 | 7844 | 08-SEP-81 | SALESMAN
 13 | 7876 | 23-MAY-87 | CLERK
 14 | 7900 | 03-DEC-81 | CLERK
 15 | 7900 | 15-JAN-83 | CLERK
 16 | 7902 | 03-DEC-81 | ANALYST
 17 | 7934 | 23-JAN-82 | CLERK
(17 rows)

14.4.4 Synonyms

A synonym is an identifier that you can use to reference another database object in a SQL statement. A synonym is useful in cases where a database object normally requires full qualification by schema
name to be properly referenced in a SQL statement. A synonym defined for that object simplifies the reference to a single, unqualified name.

EDB Postgres Advanced Server supports synonyms for:

Tables
Views
Materialized views
Sequences
Procedures
Functions
Types
Objects that you can access through a database link
Other synonyms

Neither the referenced schema or referenced object must exist when you create the synonym. A synonym can refer to a nonexistent object or schema. A synonym becomes invalid if you drop the
referenced object or schema. You must explicitly drop a synonym to remove it.

As with any other schema object, EDB Postgres Advanced Server uses the search path to resolve unqualified synonym names. If you have two synonyms with the same name, an unqualified reference to
a synonym resolves to the first synonym with the given name in the search path. If public is in your search path, you can refer to a synonym in that schema without qualifying that name.

When EDB Postgres Advanced Server executes an SQL command, the privileges of the current user are checked against the synonym’s underlying database object. If the user doesn't have the proper
permissions for that object, the SQL command fails.

Creating a synonym

Use the CREATE SYNONYM command to create a synonym. The syntax is:

CREATE [OR REPLACE] [PUBLIC] SYNONYM [<schema>.]<syn_name>
 FOR <object_schema>.<object_name>[<@dblink_name>];

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 135

Parameters

syn_name

syn_name is the name of the synonym. A synonym name must be unique in a schema.

schema

schema specifies the name of the schema that the synonym resides in. If you don't specify a schema name, the synonym is created in the first existing schema in your search path.

object_name

object_name specifies the name of the object.

object_schema

object_schema specifies the name of the schema that the object resides in.

dblink_name

dblink_name specifies the name of the database link through which you can access a target object.

Include the REPLACE clause to replace an existing synonym definition with a new synonym definition.

Include the PUBLIC clause to create the synonym in the public schema. Compatible with Oracle databases, the CREATE PUBLIC SYNONYM command creates a synonym that resides in the
public schema:

CREATE [OR REPLACE] PUBLIC SYNONYM <syn_name> FOR
<object_schema>.<object_name>;

This is a shorthand way to write:

CREATE [OR REPLACE] SYNONYM public.<syn_name> FOR
<object_schema>.<object_name>;

This example creates a synonym named personnel that refers to the enterprisedb.emp table:

CREATE SYNONYM personnel FOR enterprisedb.emp;

Unless the synonym is schema qualified in the CREATE SYNONYM command, it's created in the first existing schema in your search path. You can view your search path by executing the following
command:

SHOW SEARCH_PATH;

 search_path

 development,accounting
(1 row)

In the example, if a schema named development doesn't exist, the synonym are created in the schema named accounting .

Now you can reference the emp table in the enterprisedb schema in any SQL statement (DDL or DML) by using the synonym personnel :

INSERT INTO personnel VALUES (8142,'ANDERSON','CLERK',7902,'17-DEC-06',1300,NULL,20);

SELECT * FROM personnel;

 empno | ename | job | mgr | hiredate | sal | comm |deptno
-------+---------+----------+-----+------------------+--------+-------+------
 7369 | SMITH | CLERK |7902 |17-DEC-80 00:00:00| 800.00 | | 20
 7499 | ALLEN | SALESMAN |7698 |20-FEB-81 00:00:00| 1600.00|300.00 | 30
 7521 | WARD | SALESMAN |7698 |22-FEB-81 00:00:00| 1250.00|500.00 | 30
 7566 | JONES | MANAGER |7839 |02-APR-81 00:00:00| 2975.00| | 20
 7654 | MARTIN | SALESMAN |7698 |28-SEP-81 00:00:00| 1250.00|1400.00| 30
 7698 | BLAKE | MANAGER |7839 |01-MAY-81 00:00:00| 2850.00| | 30
 7782 | CLARK | MANAGER |7839 |09-JUN-81 00:00:00| 2450.00| | 10
 7788 | SCOTT | ANALYST |7566 |19-APR-87 00:00:00| 3000.00| | 20
 7839 | KING | PRESIDENT| |17-NOV-81 00:00:00| 5000.00| | 10
 7844 | TURNER | SALESMAN |7698 |08-SEP-81 00:00:00| 1500.00| 0.00 | 30
 7876 | ADAMS | CLERK |7788 |23-MAY-87 00:00:00| 1100.00| | 20

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 136

 7900 | JAMES | CLERK |7698 |03-DEC-81 00:00:00| 950.00 | | 30
 7902 | FORD | ANALYST |7566 |03-DEC-81 00:00:00| 3000.00| | 20
 7934 | MILLER | CLERK |7782 |23-JAN-82 00:00:00| 1300.00| | 10
 8142 | ANDERSON| CLERK |7902 |17-DEC-06 00:00:00| 1300.00| | 20
(15 rows)

Deleting a synonym

To delete a synonym, use the command DROP SYNONYM . The syntax is:

DROP [PUBLIC] SYNONYM [<schema>.] <syn_name>

Parameters

syn_name

syn_name is the name of the synonym. A synonym name must be unique in a schema.

schema

schema specifies the name of the schema in which the synonym resides.

Like any other object that can be schema qualified, you can have two synonyms with the same name in your search path. To disambiguate the name of the synonym that you're dropping, include a
schema name. Unless a synonym is schema qualified in the DROP SYNONYM command, EDB Postgres Advanced Server deletes the first instance of the synonym it finds in your search path.

You can optionally include the PUBLIC clause to drop a synonym that resides in the public schema. Compatible with Oracle databases, the DROP PUBLIC SYNONYM command drops a synonym
that resides in the public schema:

DROP PUBLIC SYNONYM <syn_name>;

The following example drops the synonym personnel :

DROP SYNONYM personnel;

14.4.5 Hierarchical queries

A hierarchical query is a type of query that returns the rows of the result set in a hierarchical order based on data forming a parent-child relationship. A hierarchy is typically represented by an inverted
tree structure. The tree is made up of interconnected nodes. Each node can be connected to none, one, or multiple child nodes. Each node is connected to one parent node except for the top node, which
has no parent. This node is the root node. Each tree has exactly one root node.

Nodes that don’t have any children are called leaf nodes. A tree always has at least one leaf node, for example, the trivial case where the tree is made up of a single node. In this case, the node is both
the root and the leaf.

In a hierarchical query, the rows of the result set represent the nodes of one or more trees.

Note

A single given row can appear in more than one tree and thus appear more than once in the result set.

The hierarchical relationship in a query is described by the CONNECT BY clause, which forms the basis of the order in which rows are returned in the result set. This example shows the context of
where the CONNECT BY clause and its associated optional clauses appear in the SELECT command:

SELECT <select_list> FROM <table_expression> [WHERE ...]
 [START WITH <start_expression>]
 { CONNECT BY <condition> }
 [ORDER SIBLINGS BY <column1> [ASC | DESC]
 [, <column2> [ASC | DESC]] ...
 [GROUP BY ...]
 [HAVING ...]
 [<other> ...]

select_list is one or more expressions that make up the fields of the result set. table_expression is one or more tables or views from which the rows of the result set originate. other is
any additional legal SELECT command clauses.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 137

CONNECT BY specifies the relationship between a parent record and its child records of the hierarchy.

You can specify the PRIOR keyword with only one expression in a condition in the CONNECT BY clause. You must specify it with either right or left expression to refer to a parent row in a
hierarchical query. For example:

PRIOR expr = expr
or
expr = PRIOR expr

If the CONNECT BY condition is compound, only one condition requires the PRIOR keyword, although there can be multiple PRIOR conditions.

You can use the PRIOR keyword to evaluate the parent row in a parent-child relationship in a hierarchical query.

You can't use PRIOR keyword with unary expressions.

You can use the PRIOR keyword to add a pseudo-column for each record corresponding to an expression in a target list. The pseudo-column represents a parent record's actual value when
referenced in a child query using a PRIOR expression.

You can further enhance the functionality of the CONNECT BY [PRIOR] condition by using the CONNECT_BY_ROOT operator. This operator returns not only immediate parent rows but also all
ancestors rows in the hierarchy. For more information, see Retrieving the root node with CONNECT_BY_ROOT.

Examples

This example uses the CONNECT BY clause with PRIOR to define a relationship between employees and managers. Using the LEVEL value, the employee names are indented to further emphasize
the depth in the hierarchy of each row.

SELECT LPAD(ename,length(ename)+2 *(LEVEL - 1),' ') AS employee, empno, mgr, LEVEL
FROM emp
CONNECT BY PRIOR empno = mgr AND PRIOR emp.deptno = emp.deptno;

The output from this query is:

employee | empno | mgr | level
------------+-------+------+-------
 SMITH | 7369 | 7902 | 1
 ALLEN | 7499 | 7698 | 1
 WARD | 7521 | 7698 | 1
 JONES | 7566 | 7839 | 1
 FORD | 7902 | 7566 | 2
 SMITH | 7369 | 7902 | 3
 SCOTT | 7788 | 7566 | 2
 ADAMS | 7876 | 7788 | 3
 MARTIN | 7654 | 7698 | 1
 BLAKE | 7698 | 7839 | 1
 WARD | 7521 | 7698 | 2
 TURNER | 7844 | 7698 | 2
 MARTIN | 7654 | 7698 | 2
 JAMES | 7900 | 7698 | 2
 ALLEN | 7499 | 7698 | 2
 CLARK | 7782 | 7839 | 1
 MILLER | 7934 | 7782 | 2
 SCOTT | 7788 | 7566 | 1
 ADAMS | 7876 | 7788 | 2
 KING | 7839 | | 1
 CLARK | 7782 | 7839 | 2
 MILLER | 7934 | 7782 | 3
 TURNER | 7844 | 7698 | 1
 ADAMS | 7876 | 7788 | 1
 JAMES | 7900 | 7698 | 1
 FORD | 7902 | 7566 | 1
 SMITH | 7369 | 7902 | 2
 MILLER | 7934 | 7782 | 1
(28 rows)

This example adds the ORDER BY clause and a compound condition with AND operator in a CONNECT BY clause to show employee and manager hierarchy:

SELECT LPAD(ename,length(ename)+2 *(LEVEL - 1),' ') AS employee, empno, mgr, LEVEL
FROM emp
CONNECT BY PRIOR empno = mgr AND LEVEL <= 3
ORDER BY LEVEL, ename;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 138

The output from this query is:

employee | empno | mgr | level
------------+-------+------+-------
 ADAMS | 7876 | 7788 | 1
 ALLEN | 7499 | 7698 | 1
 BLAKE | 7698 | 7839 | 1
 CLARK | 7782 | 7839 | 1
 FORD | 7902 | 7566 | 1
 JAMES | 7900 | 7698 | 1
 JONES | 7566 | 7839 | 1
 KING | 7839 | | 1
 MARTIN | 7654 | 7698 | 1
 MILLER | 7934 | 7782 | 1
 SCOTT | 7788 | 7566 | 1
 SMITH | 7369 | 7902 | 1
 TURNER | 7844 | 7698 | 1
 WARD | 7521 | 7698 | 1
 ADAMS | 7876 | 7788 | 2
 ALLEN | 7499 | 7698 | 2
 BLAKE | 7698 | 7839 | 2
 CLARK | 7782 | 7839 | 2
 FORD | 7902 | 7566 | 2
 JAMES | 7900 | 7698 | 2
 JONES | 7566 | 7839 | 2
 MARTIN | 7654 | 7698 | 2
 MILLER | 7934 | 7782 | 2
 SCOTT | 7788 | 7566 | 2
 SMITH | 7369 | 7902 | 2
 TURNER | 7844 | 7698 | 2
 WARD | 7521 | 7698 | 2
 ADAMS | 7876 | 7788 | 3
 ALLEN | 7499 | 7698 | 3
 FORD | 7902 | 7566 | 3
 JAMES | 7900 | 7698 | 3
 MARTIN | 7654 | 7698 | 3
 MILLER | 7934 | 7782 | 3
 SCOTT | 7788 | 7566 | 3
 SMITH | 7369 | 7902 | 3
 TURNER | 7844 | 7698 | 3
 WARD | 7521 | 7698 | 3
(37 rows)

This example uses the PRIOR keyword to return the employee name and manager name for each employee:

SELECT ename, PRIOR ename AS mgr FROM emp START WITH mgr
IS NULL CONNECT BY PRIOR empno = mgr ORDER BY ename;

The output from this query is:

ename | mgr
--------+-------
 ADAMS | SCOTT
 ALLEN | BLAKE
 BLAKE | KING
 CLARK | KING
 FORD | JONES
 JAMES | BLAKE
 JONES | KING
 KING |
 MARTIN | BLAKE
 MILLER | CLARK
 SCOTT | JONES
 SMITH | FORD
 TURNER | BLAKE
 WARD | BLAKE
(14 rows)

This example uses a CONNECT BY clause with an optional PRIOR statement to show the level value:

SELECT LEVEL
FROM DUAL
CONNECT BY LEVEL <= 5;

The output from this query is:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 139

level

 1
 2
 3
 4
 5
(5 rows)

14.4.5.1 Defining the parent/child relationship

For any given row, to determine its children:

1. Evaluate parent_expr on the given row.

2. Evaluate child_expr on any other row resulting from the evaluation of table_expression .

3. If parent_expr = child_expr , then this row is a child node of the given parent row.

4. Repeat the process for all remaining rows in table_expression . All rows that satisfy the equation in step 3 are the children nodes of the given parent row.

Note

The evaluation process to determine if a row is a child node occurs on every row returned by table_expression before the WHERE clause is applied to table_expression .

Iteratively repeating this process, treating each child node found in the prior steps as a parent, constructs an inverted tree of nodes. The process is complete when the final set of child nodes has no
children of its own. These are the leaf nodes.

A SELECT command that includes a CONNECT BY clause typically includes the START WITH clause. The START WITH clause determines the rows that are to be the root nodes, that is, the rows
that are the initial parent nodes upon which to apply the algorithm.

14.4.5.2 Selecting the root nodes

The START WITH clause determines the rows selected by table_expression to use as the root nodes. All rows selected by table_expression where start_expression evaluates to
true become a root node of a tree. Thus, the number of potential trees in the result set is equal to the number of root nodes. As a consequence, if the START WITH clause is omitted, then every row
returned by table_expression is a root of its own tree.

14.4.5.3 Organization tree in the sample application

Consider the emp table of the sample application. The rows of the emp table form a hierarchy based on the mgr column, which contains the employee number of the employee’s manager. Each
employee has at most one manager. KING is the president of the company. He has no manager, therefore KING’s mgr column is null. Also, it's possible for an employee to act as a manager for more
than one employee. This relationship forms a typical tree-structured hierarchical organization chart:

To form a hierarchical query based on this relationship, the SELECT command includes the clause CONNECT BY PRIOR empno = mgr . For example, given the company president, KING , with
employee number 7839 , any employee whose mgr column is 7839 reports directly to KING . This relationship is true for JONES , BLAKE , and CLARK , the child nodes of KING . Similarly, for
employee JONES , any other employee with mgr column equal to 7566 is a child node of JONES . These nodes are SCOTT and FORD in the example.

The top of the organization chart is KING , so there is one root node in this tree. The START WITH mgr IS NULL clause selects only KING as the initial root node.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 140

The complete SELECT command is:

SELECT ename, empno, mgr
FROM emp
START WITH mgr IS NULL
CONNECT BY PRIOR empno = mgr;

The rows in the query output traverse each branch from the root to leaf moving in a top-to-bottom, left-to-right order. The following is the output from this query.

ename | empno | mgr
-------+-------+------
KING | 7839 |
JONES | 7566 | 7839
SCOTT | 7788 | 7566
ADAMS | 7876 | 7788
FORD | 7902 | 7566
SMITH | 7369 | 7902
BLAKE | 7698 | 7839
ALLEN | 7499 | 7698
WARD | 7521 | 7698
MARTIN | 7654 | 7698
TURNER | 7844 | 7698
JAMES | 7900 | 7698
CLARK | 7782 | 7839
MILLER | 7934 | 7782
(14 rows)

14.4.5.4 Node level

LEVEL is a pseudo-column that you can use wherever a column can appear in the SELECT command. For each row in the result set, LEVEL returns a non-zero integer value designating the depth in
the hierarchy of the node represented by this row. The LEVEL for root nodes is 1. The LEVEL for direct children of root nodes is 2, and so on.

The following query is a modification of the previous query with the addition of the LEVEL pseudo-column. In addition, using the LEVEL value, the employee names are indented to further emphasize
the depth in the hierarchy of each row.

SELECT LEVEL, LPAD (' ', 2 * (LEVEL - 1)) || ename "employee", empno, mgr
FROM emp START WITH mgr IS NULL
CONNECT BY PRIOR empno = mgr;

The output from this query is:

level | employee | empno | mgr
------+-------------+-------+------
 1 | KING | 7839 |
 2 | JONES | 7566 | 7839
 3 | SCOTT | 7788 | 7566
 4 | ADAMS | 7876 | 7788
 3 | FORD | 7902 | 7566
 4 | SMITH | 7369 | 7902
 2 | BLAKE | 7698 | 7839
 3 | ALLEN | 7499 | 7698
 3 | WARD | 7521 | 7698
 3 | MARTIN | 7654 | 7698
 3 | TURNER | 7844 | 7698
 3 | JAMES | 7900 | 7698
 2 | CLARK | 7782 | 7839
 3 | MILLER | 7934 | 7782
(14 rows)

Nodes that share a common parent and are at the same level are called siblings. For example, in the above output, employees ALLEN , WARD , MARTIN , TURNER , and JAMES are siblings since
they are all at level three with parent BLAKE . JONES , BLAKE , and CLARK are siblings since they are at level two and KING is their common parent.

14.4.5.5 Ordering the siblings

You can order the result set so the siblings appear in ascending or descending order by selected column values using the ORDER SIBLINGS BY clause. This is a special case of the ORDER BY
clause that you can use only with hierarchical queries.

You can further modify the previous query by adding ORDER SIBLINGS BY ename ASC .

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 141

SELECT LEVEL, LPAD (' ', 2 * (LEVEL - 1)) || ename "employee", empno, mgr
FROM emp START WITH mgr IS NULL
CONNECT BY PRIOR empno = mgr
ORDER SIBLINGS BY ename ASC;

The output from the prior query is now modified so the siblings appear in ascending order by name. Siblings BLAKE , CLARK , and JONES are now alphabetically arranged under KING . Siblings
ALLEN , JAMES , MARTIN , TURNER , and WARD are alphabetically arranged under BLAKE , and so on.

level | employee | empno | mgr
------+-------------+-------+------
 1 | KING | 7839 |
 2 | BLAKE | 7698 | 7839
 3 | ALLEN | 7499 | 7698
 3 | JAMES | 7900 | 7698
 3 | MARTIN | 7654 | 7698
 3 | TURNER | 7844 | 7698
 3 | WARD | 7521 | 7698
 2 | CLARK | 7782 | 7839
 3 | MILLER | 7934 | 7782
 2 | JONES | 7566 | 7839
 3 | FORD | 7902 | 7566
 4 | SMITH | 7369 | 7902
 3 | SCOTT | 7788 | 7566
 4 | ADAMS | 7876 | 7788
(14 rows)

This final example adds the WHERE clause and starts with three root nodes. After the node tree is constructed, the WHERE clause filters out rows in the tree to form the result set.

SELECT LEVEL, LPAD (' ', 2 * (LEVEL - 1)) || ename "employee", empno, mgr
FROM emp WHERE mgr IN (7839, 7782, 7902, 7788)
START WITH ename IN ('BLAKE','CLARK','JONES')
CONNECT BY PRIOR empno = mgr
ORDER SIBLINGS BY ename ASC;

The output from the query shows three root nodes (level one): BLAKE , CLARK , and JONES . In addition, rows that don't satisfy the WHERE clause were eliminated from the output.

level | employee | empno | mgr
------+-----------+-------+------
 1 | BLAKE | 7698 | 7839
 1 | CLARK | 7782 | 7839
 2 | MILLER | 7934 | 7782
 1 | JONES | 7566 | 7839
 3 | SMITH | 7369 | 7902
 3 | ADAMS | 7876 | 7788
(6 rows)

14.4.5.6 Retrieving the root node with CONNECT_BY_ROOT

CONNECT_BY_ROOT is a unary operator that you can use to qualify a column to return the column’s value of the row considered to be the root node in relation to the current row.

Note

A unary operator operates on a single operand. In the case of CONNECT_BY_ROOT , it's the column name following the CONNECT_BY_ROOT keyword.

In the context of the SELECT list, the CONNECT_BY_ROOT operator is shown by the following:

SELECT [... ,] CONNECT_BY_ROOT <column> [, ...]
 FROM <table_expression> ...

Some points to note about the CONNECT_BY_ROOT operator:

You can use the CONNECT_BY_ROOT operator in the SELECT list, WHERE clause, GROUP BY clause, HAVING clause, ORDER BY clause, and ORDER SIBLINGS BY clause as long as
the SELECT command is for a hierarchical query.
You can't use the CONNECT_BY_ROOT operator in the CONNECT BY clause or the START WITH clause of the hierarchical query.
You can apply CONNECT_BY_ROOT to an expression involving a column. To do so, you must enclose the expression in parentheses.

The following query shows the use of the CONNECT_BY_ROOT operator to return the employee number and employee name of the root node for each employee listed in the result set based on trees
starting with employees BLAKE , CLARK , and JONES .

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 142

SELECT LEVEL, LPAD (' ', 2 * (LEVEL - 1)) || ename "employee", empno, mgr,
CONNECT_BY_ROOT empno "mgr empno",
CONNECT_BY_ROOT ename "mgr ename"
FROM emp
START WITH ename IN ('BLAKE','CLARK','JONES')
CONNECT BY PRIOR empno = mgr
ORDER SIBLINGS BY ename ASC;

The output from the query shows that all of the root nodes in columns mgr empno and mgr ename are one of the employees— BLAKE , CLARK , or JONES —listed in the START WITH clause.

level | employee | empno | mgr | mgr empno | mgr ename
------+-----------+-------+------+-----------+-----------
 1 | BLAKE | 7698 | 7839 | 7698 | BLAKE
 2 | ALLEN | 7499 | 7698 | 7698 | BLAKE
 2 | JAMES | 7900 | 7698 | 7698 | BLAKE
 2 | MARTIN | 7654 | 7698 | 7698 | BLAKE
 2 | TURNER | 7844 | 7698 | 7698 | BLAKE
 2 | WARD | 7521 | 7698 | 7698 | BLAKE
 1 | CLARK | 7782 | 7839 | 7782 | CLARK
 2 | MILLER | 7934 | 7782 | 7782 | CLARK
 1 | JONES | 7566 | 7839 | 7566 | JONES
 2 | FORD | 7902 | 7566 | 7566 | JONES
 3 | SMITH | 7369 | 7902 | 7566 | JONES
 2 | SCOTT | 7788 | 7566 | 7566 | JONES
 3 | ADAMS | 7876 | 7788 | 7566 | JONES
(13 rows)

The following is a similar query but producing only one tree starting with the single, top-level employee where the mgr column is null:

SELECT LEVEL, LPAD (' ', 2 * (LEVEL - 1)) || ename "employee", empno, mgr,
CONNECT_BY_ROOT empno "mgr empno",
CONNECT_BY_ROOT ename "mgr ename"
FROM emp START WITH mgr IS NULL
CONNECT BY PRIOR empno = mgr
ORDER SIBLINGS BY ename ASC;

In the following output, all of the root nodes in columns mgr empno and mgr ename indicate KING as the root for this query:

level | employee | empno | mgr | mgr empno | mgr ename
------+-------------+-------+------+-----------+-----------
 1 | KING | 7839 | | 7839 | KING
 2 | BLAKE | 7698 | 7839 | 7839 | KING
 3 | ALLEN | 7499 | 7698 | 7839 | KING
 3 | JAMES | 7900 | 7698 | 7839 | KING
 3 | MARTIN | 7654 | 7698 | 7839 | KING
 3 | TURNER | 7844 | 7698 | 7839 | KING
 3 | WARD | 7521 | 7698 | 7839 | KING
 2 | CLARK | 7782 | 7839 | 7839 | KING
 3 | MILLER | 7934 | 7782 | 7839 | KING
 2 | JONES | 7566 | 7839 | 7839 | KING
 3 | FORD | 7902 | 7566 | 7839 | KING
 4 | SMITH | 7369 | 7902 | 7839 | KING
 3 | SCOTT | 7788 | 7566 | 7839 | KING
 4 | ADAMS | 7876 | 7788 | 7839 | KING
(14 rows)

By contrast, this example omits the START WITH clause, thereby resulting in 14 trees:

SELECT LEVEL, LPAD (' ', 2 * (LEVEL - 1)) || ename "employee", empno, mgr,
CONNECT_BY_ROOT empno "mgr empno",
CONNECT_BY_ROOT ename "mgr ename"
FROM emp
CONNECT BY PRIOR empno = mgr
ORDER SIBLINGS BY ename ASC;

The following is the output from the query. Each node appears at least once as a root node under the mgr empno and mgr ename columns, since even the leaf nodes form the top of their own trees.

level | employee | empno | mgr | mgr empno | mgr ename
------+-------------+-------+------+-----------+-----------
 1 | ADAMS | 7876 | 7788 | 7876 | ADAMS
 1 | ALLEN | 7499 | 7698 | 7499 | ALLEN
 1 | BLAKE | 7698 | 7839 | 7698 | BLAKE
 2 | ALLEN | 7499 | 7698 | 7698 | BLAKE
 2 | JAMES | 7900 | 7698 | 7698 | BLAKE

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 143

 2 | MARTIN | 7654 | 7698 | 7698 | BLAKE
 2 | TURNER | 7844 | 7698 | 7698 | BLAKE
 2 | WARD | 7521 | 7698 | 7698 | BLAKE
 1 | CLARK | 7782 | 7839 | 7782 | CLARK
 2 | MILLER | 7934 | 7782 | 7782 | CLARK
 1 | FORD | 7902 | 7566 | 7902 | FORD
 2 | SMITH | 7369 | 7902 | 7902 | FORD
 1 | JAMES | 7900 | 7698 | 7900 | JAMES
 1 | JONES | 7566 | 7839 | 7566 | JONES
 2 | FORD | 7902 | 7566 | 7566 | JONES
 3 | SMITH | 7369 | 7902 | 7566 | JONES
 2 | SCOTT | 7788 | 7566 | 7566 | JONES
 3 | ADAMS | 7876 | 7788 | 7566 | JONES
 1 | KING | 7839 | | 7839 | KING
 2 | BLAKE | 7698 | 7839 | 7839 | KING
 3 | ALLEN | 7499 | 7698 | 7839 | KING
 3 | JAMES | 7900 | 7698 | 7839 | KING
 3 | MARTIN | 7654 | 7698 | 7839 | KING
 3 | TURNER | 7844 | 7698 | 7839 | KING
 3 | WARD | 7521 | 7698 | 7839 | KING
 2 | CLARK | 7782 | 7839 | 7839 | KING
 3 | MILLER | 7934 | 7782 | 7839 | KING
 2 | JONES | 7566 | 7839 | 7839 | KING
 3 | FORD | 7902 | 7566 | 7839 | KING
 4 | SMITH | 7369 | 7902 | 7839 | KING
 3 | SCOTT | 7788 | 7566 | 7839 | KING
 4 | ADAMS | 7876 | 7788 | 7839 | KING
 1 | MARTIN | 7654 | 7698 | 7654 | MARTIN
 1 | MILLER | 7934 | 7782 | 7934 | MILLER
 1 | SCOTT | 7788 | 7566 | 7788 | SCOTT
 2 | ADAMS | 7876 | 7788 | 7788 | SCOTT
 1 | SMITH | 7369 | 7902 | 7369 | SMITH
 1 | TURNER | 7844 | 7698 | 7844 | TURNER
 1 | WARD | 7521 | 7698 | 7521 | WARD
(39 rows)

The following shows the unary operator effect of CONNECT_BY_ROOT . When applied to an expression that isn't enclosed in parentheses, the CONNECT_BY_ROOT operator affects only the term
ename immediately following it. The subsequent concatenation of || ' manages ' || ename isn't part of the CONNECT_BY_ROOT operation. Hence the second occurrence of ename

results in the value of the currently processed row while the first occurrence of ename results in the value from the root node.

SELECT LEVEL, LPAD (' ', 2 * (LEVEL - 1)) || ename "employee", empno, mgr,
CONNECT_BY_ROOT ename || ' manages ' || ename "top mgr/employee"
FROM emp
START WITH ename IN ('BLAKE','CLARK','JONES')
CONNECT BY PRIOR empno = mgr
ORDER SIBLINGS BY ename ASC;

The following is the output from the query. Note the values produced under the top mgr/employee column.

level | employee | empno | mgr | top mgr/employee
------+-----------+-------+------+----------------------
 1 | BLAKE | 7698 | 7839 | BLAKE manages BLAKE
 2 | ALLEN | 7499 | 7698 | BLAKE manages ALLEN
 2 | JAMES | 7900 | 7698 | BLAKE manages JAMES
 2 | MARTIN | 7654 | 7698 | BLAKE manages MARTIN
 2 | TURNER | 7844 | 7698 | BLAKE manages TURNER
 2 | WARD | 7521 | 7698 | BLAKE manages WARD
 1 | CLARK | 7782 | 7839 | CLARK manages CLARK
 2 | MILLER | 7934 | 7782 | CLARK manages MILLER
 1 | JONES | 7566 | 7839 | JONES manages JONES
 2 | FORD | 7902 | 7566 | JONES manages FORD
 3 | SMITH | 7369 | 7902 | JONES manages SMITH
 2 | SCOTT | 7788 | 7566 | JONES manages SCOTT
 3 | ADAMS | 7876 | 7788 | JONES manages ADAMS
(13 rows)

This example uses the CONNECT_BY_ROOT operator on an expression enclosed in parentheses:

SELECT LEVEL, LPAD (' ', 2 * (LEVEL - 1)) || ename "employee", empno, mgr,
CONNECT_BY_ROOT ('Manager ' || ename || ' is emp # ' || empno)
"top mgr/empno"
FROM emp
START WITH ename IN ('BLAKE','CLARK','JONES')
CONNECT BY PRIOR empno = mgr
ORDER SIBLINGS BY ename ASC;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 144

The following is the output of the query. The values of both ename and empno are affected by the CONNECT_BY_ROOT operator. As a result, they return the values from the root node as shown
under the top mgr/empno column.

level | employee | empno | mgr | top mgr/empno
------+-----------+-------+------+-----------------------------
 1 | BLAKE | 7698 | 7839 | Manager BLAKE is emp # 7698
 2 | ALLEN | 7499 | 7698 | Manager BLAKE is emp # 7698
 2 | JAMES | 7900 | 7698 | Manager BLAKE is emp # 7698
 2 | MARTIN | 7654 | 7698 | Manager BLAKE is emp # 7698
 2 | TURNER | 7844 | 7698 | Manager BLAKE is emp # 7698
 2 | WARD | 7521 | 7698 | Manager BLAKE is emp # 7698
 1 | CLARK | 7782 | 7839 | Manager CLARK is emp # 7782
 2 | MILLER | 7934 | 7782 | Manager CLARK is emp # 7782
 1 | JONES | 7566 | 7839 | Manager JONES is emp # 7566
 2 | FORD | 7902 | 7566 | Manager JONES is emp # 7566
 3 | SMITH | 7369 | 7902 | Manager JONES is emp # 7566
 2 | SCOTT | 7788 | 7566 | Manager JONES is emp # 7566
 3 | ADAMS | 7876 | 7788 | Manager JONES is emp # 7566
(13 rows)

14.4.5.7 Retrieving a path with SYS_CONNECT_BY_PATH

SYS_CONNECT_BY_PATH is a function that works in a hierarchical query to retrieve the column values of a specified column that occur between the current node and the root node. The signature of
the function is:

SYS_CONNECT_BY_PATH (<column>, <delimiter>)

The function takes two arguments:

column is the name of a column that resides in a table specified in the hierarchical query that's calling the function.
delimiter is the varchar value that separates each entry in the specified column.

This example returns a list of employee names and their managers. If the manager has a manager, that name is appended to the result.

edb=# SELECT level, ename , SYS_CONNECT_BY_PATH(ename, '/') managers
 FROM emp
 CONNECT BY PRIOR empno = mgr
 START WITH mgr IS NULL
 ORDER BY level, ename, managers;

 level | ename | managers
-------+--------+-------------------------
 1 | KING | /KING
 2 | BLAKE | /KING/BLAKE
 2 | CLARK | /KING/CLARK
 2 | JONES | /KING/JONES
 3 | ALLEN | /KING/BLAKE/ALLEN
 3 | FORD | /KING/JONES/FORD
 3 | JAMES | /KING/BLAKE/JAMES
 3 | MARTIN | /KING/BLAKE/MARTIN
 3 | MILLER | /KING/CLARK/MILLER
 3 | SCOTT | /KING/JONES/SCOTT
 3 | TURNER | /KING/BLAKE/TURNER
 3 | WARD | /KING/BLAKE/WARD
 4 | ADAMS | /KING/JONES/SCOTT/ADAMS
 4 | SMITH | /KING/JONES/FORD/SMITH
(14 rows)

In the result set:

The level column displays the number of levels that the query returned.
The ename column displays the employee name.
The managers column contains the hierarchical list of managers.

The EDB Postgres Advanced Server implementation of SYS_CONNECT_BY_PATH doesn't support use of:

SYS_CONNECT_BY_PATH inside CONNECT_BY_PATH
SYS_CONNECT_BY_PATH inside SYS_CONNECT_BY_PATH

14.4.6 Multidimensional analysis

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 145

Multidimensional analysis refers to the process commonly used in data warehousing applications of examining data using various combinations of dimensions. Dimensions are categories used to
classify data such as time, geography, a company’s departments, product lines, and so forth. The results associated with a particular set of dimensions are called facts. Facts are typically figures
associated with product sales, profits, volumes, counts, and so on.

To obtain these facts according to a set of dimensions in a relational database system, you typically use SQL aggregation. SQL aggregation basically means data is grouped according to certain criteria
(dimensions), and the result set consists of aggregates of facts, such as counts, sums, and averages of the data in each group.

The GROUP BY clause of the SQL SELECT command supports the following extensions that simplify the process of producing aggregate results:

ROLLUP extension
CUBE extension
GROUPING SETS extension

In addition, you can use the GROUPING function and the GROUPING_ID function in the SELECT list or the HAVING clause to aid with the interpretation of the results when you use these
extensions.

Note

The sample dept and emp tables are used extensively in this discussion to provide usage examples. The following changes were applied to these tables to provide more informative results:

UPDATE dept SET loc = 'BOSTON' WHERE deptno = 20;
INSERT INTO emp (empno,ename,job,deptno) VALUES (9001,'SMITH','CLERK',40);
INSERT INTO emp (empno,ename,job,deptno) VALUES (9002,'JONES','ANALYST',40);
INSERT INTO emp (empno,ename,job,deptno) VALUES (9003,'ROGERS','MANAGER',40);

The following rows from a join of the emp and dept tables are used:

SELECT loc, dname, job, empno FROM emp e, dept d
WHERE e.deptno = d.deptno
ORDER BY 1, 2, 3, 4;

 loc | dname | job | empno
----------+------------+-----------+-------
 BOSTON | OPERATIONS | ANALYST | 9002
 BOSTON | OPERATIONS | CLERK | 9001
 BOSTON | OPERATIONS | MANAGER | 9003
 BOSTON | RESEARCH | ANALYST | 7788
 BOSTON | RESEARCH | ANALYST | 7902
 BOSTON | RESEARCH | CLERK | 7369
 BOSTON | RESEARCH | CLERK | 7876
 BOSTON | RESEARCH | MANAGER | 7566
 CHICAGO | SALES | CLERK | 7900
 CHICAGO | SALES | MANAGER | 7698
 CHICAGO | SALES | SALESMAN | 7499
 CHICAGO | SALES | SALESMAN | 7521
 CHICAGO | SALES | SALESMAN | 7654
 CHICAGO | SALES | SALESMAN | 7844
 NEW YORK | ACCOUNTING | CLERK | 7934
 NEW YORK | ACCOUNTING | MANAGER | 7782
 NEW YORK | ACCOUNTING | PRESIDENT | 7839
(17 rows)

The loc , dname , and job columns are used for the dimensions of the SQL aggregations used in the examples. The resulting facts of the aggregations are the number of employees obtained by
using the COUNT(*) function.

A basic query grouping the loc , dname , and job columns is given by the following:

SELECT loc, dname, job, COUNT(*) AS "employees" FROM emp e, dept d
WHERE e.deptno = d.deptno
GROUP BY loc, dname, job
ORDER BY 1, 2, 3;

The rows of this result set using the basic GROUP BY clause without extensions are referred to as the base aggregate rows.

loc | dname | job | employees
---------+------------+-----------+-----------
BOSTON | OPERATIONS | ANALYST | 1
BOSTON | OPERATIONS | CLERK | 1
BOSTON | OPERATIONS | MANAGER | 1
BOSTON | RESEARCH | ANALYST | 2
BOSTON | RESEARCH | CLERK | 2
BOSTON | RESEARCH | MANAGER | 1
CHICAGO | SALES | CLERK | 1
CHICAGO | SALES | MANAGER | 1

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 146

CHICAGO | SALES | SALESMAN | 4
NEW YORK | ACCOUNTING | CLERK | 1
NEW YORK | ACCOUNTING | MANAGER | 1
NEW YORK | ACCOUNTING | PRESIDENT | 1
(12 rows)

The ROLLUP and CUBE extensions add to the base aggregate rows by providing additional levels of subtotals to the result set.

The GROUPING SETS extension lets you combine different types of groupings into a single result set.

The GROUPING and GROUPING_ID functions help you to interpret the result set.

14.4.6.1 ROLLUP extension

The ROLLUP extension produces a hierarchical set of groups with subtotals for each hierarchical group as well as a grand total. The order of the hierarchy is determined by the order of the expressions
given in the ROLLUP expression list. The top of the hierarchy is the left-most item in the list. Each successive item proceeding to the right moves down the hierarchy. The right-most item is at the lowest
level.

The syntax for a single ROLLUP is:

ROLLUP ({ <expr_1> | (<expr_1a> [, <expr_1b>] ...) }
 [, <expr_2> | (<expr_2a> [, <expr_2b>] ...)] ...)

Each expr is an expression that determines the grouping of the result set. If enclosed in parenthesis as (expr_1a, expr_1b, ...) , then the combination of values returned by expr_1a
and expr_1b defines a single grouping level of the hierarchy.

The base level of aggregates returned in the result set is for each unique combination of values returned by the expression list.

In addition, a subtotal is returned for the first item in the list (expr_1 or the combination of (expr_1a, expr_1b, ...) , whichever is specified) for each unique value. A subtotal is returned
for the second item in the list (expr_2 or the combination of (expr_2a, expr_2b, ...) , whichever is specified) for each unique value in each grouping of the first item and so on. Finally, a
grand total is returned for the entire result set.

For the subtotal rows, null is returned for the items across which the subtotal is taken.

The ROLLUP extension specified in the context of the GROUP BY clause is shown by the following:

SELECT <select_list> FROM ...
GROUP BY [... ,] ROLLUP (<expression_list>) [, ...]

The items specified in select_list must either:

Also appear in the ROLLUP expression_list
Be aggregate functions such as COUNT , SUM , AVG , MIN, or MAX
Be constants or functions whose return values are independent of the individual rows in the group (for example, the SYSDATE function)

The GROUP BY clause can specify multiple ROLLUP extensions as well as multiple occurrences of other GROUP BY extensions and individual expressions.

Use the ORDER BY clause if you want the output to display in a hierarchical or other meaningful structure. To guarantee the order of the result set, specify the ORDER BY clause.

The number of grouping levels or totals is n + 1 where n represents the number of items in the ROLLUP expression list. A parenthesized list counts as one item.

The following query produces a rollup based on a hierarchy of columns loc , dname , and then job .

SELECT loc, dname, job, COUNT(*) AS "employees" FROM emp e, dept d
WHERE e.deptno = d.deptno
GROUP BY ROLLUP (loc, dname, job)
ORDER BY 1, 2, 3;

The following is the result of the query. It displays a count of the number of employees for each unique combination of loc , dname , and job , as well as subtotals for each unique combination of
loc and dname for each unique value of loc . A grand total appears on the last line.

loc | dname | job | employees
---------+------------+-----------+-----------
BOSTON | OPERATIONS | ANALYST | 1
BOSTON | OPERATIONS | CLERK | 1
BOSTON | OPERATIONS | MANAGER | 1
BOSTON | OPERATIONS | | 3
BOSTON | RESEARCH | ANALYST | 2

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 147

BOSTON | RESEARCH | CLERK | 2
BOSTON | RESEARCH | MANAGER | 1
BOSTON | RESEARCH | | 5
BOSTON | | | 8
CHICAGO | SALES | CLERK | 1
CHICAGO | SALES | MANAGER | 1
CHICAGO | SALES | SALESMAN | 4
CHICAGO | SALES | | 6
CHICAGO | | | 6
NEW YORK | ACCOUNTING | CLERK | 1
NEW YORK | ACCOUNTING | MANAGER | 1
NEW YORK | ACCOUNTING | PRESIDENT | 1
NEW YORK | ACCOUNTING | | 3
NEW YORK | | | 3
 | | | 17
(20 rows)

The following query shows the effect of combining items in the ROLLUP list in parentheses:

SELECT loc, dname, job, COUNT(*) AS "employees" FROM emp e, dept d
WHERE e.deptno = d.deptno
GROUP BY ROLLUP (loc, (dname, job))
ORDER BY 1, 2, 3;

The output doesn't include subtotals for loc and dname combinations as in the prior example:

loc | dname | job | employees
---------+------------+-----------+-----------
BOSTON | OPERATIONS | ANALYST | 1
BOSTON | OPERATIONS | CLERK | 1
BOSTON | OPERATIONS | MANAGER | 1
BOSTON | RESEARCH | ANALYST | 2
BOSTON | RESEARCH | CLERK | 2
BOSTON | RESEARCH | MANAGER | 1
BOSTON | | | 8
CHICAGO | SALES | CLERK | 1
CHICAGO | SALES | MANAGER | 1
CHICAGO | SALES | SALESMAN | 4
CHICAGO | | | 6
NEW YORK | ACCOUNTING | CLERK | 1
NEW YORK | ACCOUNTING | MANAGER | 1
NEW YORK | ACCOUNTING | PRESIDENT | 1
NEW YORK | | | 3
 | | | 17
(16 rows)

If the first two columns in the ROLLUP list are enclosed in parentheses, the subtotal levels differ as well:

SELECT loc, dname, job, COUNT(*) AS "employees" FROM emp e, dept d
WHERE e.deptno = d.deptno
GROUP BY ROLLUP ((loc, dname), job)
ORDER BY 1, 2, 3;

Now there's a subtotal for each unique loc and dname combination but none for unique values of loc :

loc | dname | job | employees
---------+------------+-----------+-----------
BOSTON | OPERATIONS | ANALYST | 1
BOSTON | OPERATIONS | CLERK | 1
BOSTON | OPERATIONS | MANAGER | 1
BOSTON | OPERATIONS | | 3
BOSTON | RESEARCH | ANALYST | 2
BOSTON | RESEARCH | CLERK | 2
BOSTON | RESEARCH | MANAGER | 1
BOSTON | RESEARCH | | 5
CHICAGO | SALES | CLERK | 1
CHICAGO | SALES | MANAGER | 1
CHICAGO | SALES | SALESMAN | 4
CHICAGO | SALES | | 6
NEW YORK | ACCOUNTING | CLERK | 1
NEW YORK | ACCOUNTING | MANAGER | 1
NEW YORK | ACCOUNTING | PRESIDENT | 1
NEW YORK | ACCOUNTING | | 3
 | | | 17
(17 rows)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 148

14.4.6.2 CUBE extension

The CUBE extension is similar to the ROLLUP extension. However, ROLLUP produces groupings and results in a hierarchy based on a left-to-right listing of items in the ROLLUP expression list. A
CUBE produces groupings and subtotals based on every permutation of all items in the CUBE expression list. Thus, the result set contains more rows than a ROLLUP performed on the same

expression list.

The syntax for a single CUBE is:

CUBE ({ <expr_1> | (<expr_1a> [, <expr_1b>] ...) }
 [, <expr_2> | (<expr_2a> [, <expr_2b>] ...)] ...)

Each expr is an expression that determines the grouping of the result set. If enclosed in parenthesis as (expr_1a, expr_1b, ...) , then the combination of values returned by expr_1a
and expr_1b defines a single group.

The base level of aggregates returned in the result set is for each unique combination of values returned by the expression list.

In addition, a subtotal is returned for the first item in the list (expr_1 or the combination of (expr_1a, expr_1b, ...) , whichever is specified) for each unique value. A subtotal is returned
for the second item in the list (expr_2 or the combination of (expr_2a, expr_2b, ...) , whichever is specified) for each unique value. A subtotal is also returned for each unique combination
of the first item and the second item. Similarly, if there's a third item, a subtotal is returned for:

Each unique value of the third item
Each unique value of the third item and first item combination
Each unique value of the third item and second item combination
Each unique value of the third item, second item, and first item combination

Finally, a grand total is returned for the entire result set.

For the subtotal rows, null is returned for the items across which the subtotal is taken.

The CUBE extension specified in the context of the GROUP BY clause is shown by the following:

SELECT <select_list> FROM ...
GROUP BY [... ,] CUBE (<expression_list>) [, ...]

The items specified in select_list must either:

Also appear in the CUBE expression_list
Be aggregate functions such as COUNT , SUM , AVG , MIN , or MAX
Be constants or functions whose return values are independent of the individual rows in the group (for example, the SYSDATE function)

The GROUP BY clause can specify multiple CUBE extensions as well as multiple occurrences of other GROUP BY extensions and individual expressions.

Use the ORDER BY clause if you want the output to display in a meaningful structure. To guarantee the order of the result set, specify the ORDER BY clause.

The number of grouping levels or totals is 2 raised to the power of n, where n represents the number of items in the CUBE expression list. A parenthesized list counts as one item.

The following query produces a cube based on permutations of columns loc , dname , and job .

SELECT loc, dname, job, COUNT(*) AS "employees" FROM emp e, dept d
WHERE e.deptno = d.deptno
GROUP BY CUBE (loc, dname, job)
ORDER BY 1, 2, 3;

The following is the result of the query. It displays a count of the number of employees for each combination of loc , dname , and job , as well as subtotals for:

Each combination of loc and dname
Each combination of loc and job
Each combination of dname and job
Each unique value of loc
Each unique value of dname
Each unique value of job

A grand total appears on the last line.

loc | dname | job | employees
---------+------------+-----------+-----------
BOSTON | OPERATIONS | ANALYST | 1
BOSTON | OPERATIONS | CLERK | 1
BOSTON | OPERATIONS | MANAGER | 1
BOSTON | OPERATIONS | | 3

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 149

BOSTON | RESEARCH | ANALYST | 2
BOSTON | RESEARCH | CLERK | 2
BOSTON | RESEARCH | MANAGER | 1
BOSTON | RESEARCH | | 5
BOSTON | | ANALYST | 3
BOSTON | | CLERK | 3
BOSTON | | MANAGER | 2
BOSTON | | | 8
CHICAGO | SALES | CLERK | 1
CHICAGO | SALES | MANAGER | 1
CHICAGO | SALES | SALESMAN | 4
CHICAGO | SALES | | 6
CHICAGO | | CLERK | 1
CHICAGO | | MANAGER | 1
CHICAGO | | SALESMAN | 4
CHICAGO | | | 6
NEW YORK | ACCOUNTING | CLERK | 1
NEW YORK | ACCOUNTING | MANAGER | 1
NEW YORK | ACCOUNTING | PRESIDENT | 1
NEW YORK | ACCOUNTING | | 3
NEW YORK | | CLERK | 1
NEW YORK | | MANAGER | 1
NEW YORK | | PRESIDENT | 1
NEW YORK | | | 3
 | ACCOUNTING | CLERK | 1
 | ACCOUNTING | MANAGER | 1
 | ACCOUNTING | PRESIDENT | 1
 | ACCOUNTING | | 3
 | OPERATIONS | ANALYST | 1
 | OPERATIONS | CLERK | 1
 | OPERATIONS | MANAGER | 1
 | OPERATIONS | | 3
 | RESEARCH | ANALYST | 2
 | RESEARCH | CLERK | 2
 | RESEARCH | MANAGER | 1
 | RESEARCH | | 5
 | SALES | CLERK | 1
 | SALES | MANAGER | 1
 | SALES | SALESMAN | 4
 | SALES | | 6
 | | ANALYST | 3
 | | CLERK | 5
 | | MANAGER | 4
 | | PRESIDENT | 1
 | | SALESMAN | 4
 | | | 17
(50 rows)

The following query shows the effect of combining items in the CUBE list in parentheses:

SELECT loc, dname, job, COUNT(*) AS "employees" FROM emp e, dept d
WHERE e.deptno = d.deptno
GROUP BY CUBE (loc, (dname, job))
ORDER BY 1, 2, 3;

The output has no subtotals for permutations involving loc and dname combinations, loc and job combinations, for dname by itself, or for job by itself.

loc | dname | job | employees
---------+------------+-----------+-----------
BOSTON | OPERATIONS | ANALYST | 1
BOSTON | OPERATIONS | CLERK | 1
BOSTON | OPERATIONS | MANAGER | 1
BOSTON | RESEARCH | ANALYST | 2
BOSTON | RESEARCH | CLERK | 2
BOSTON | RESEARCH | MANAGER | 1
BOSTON | | | 8
CHICAGO | SALES | CLERK | 1
CHICAGO | SALES | MANAGER | 1
CHICAGO | SALES | SALESMAN | 4
CHICAGO | | | 6
NEW YORK | ACCOUNTING | CLERK | 1
NEW YORK | ACCOUNTING | MANAGER | 1
NEW YORK | ACCOUNTING | PRESIDENT | 1
NEW YORK | | | 3
 | ACCOUNTING | CLERK | 1
 | ACCOUNTING | MANAGER | 1
 | ACCOUNTING | PRESIDENT | 1

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 150

 | OPERATIONS | ANALYST | 1
 | OPERATIONS | CLERK | 1
 | OPERATIONS | MANAGER | 1
 | RESEARCH | ANALYST | 2
 | RESEARCH | CLERK | 2
 | RESEARCH | MANAGER | 1
 | SALES | CLERK | 1
 | SALES | MANAGER | 1
 | SALES | SALESMAN | 4
 | | | 17
(28 rows)

The following query shows another variation whereby the first expression is specified outside of the CUBE extension:

SELECT loc, dname, job, COUNT(*) AS "employees" FROM emp e, dept d
WHERE e.deptno = d.deptno
GROUP BY loc, CUBE (dname, job)
ORDER BY 1, 2, 3;

In this output, the permutations are performed for dname and job in each grouping of loc :

loc | dname | job | employees
---------+------------+-----------+-----------
BOSTON | OPERATIONS | ANALYST | 1
BOSTON | OPERATIONS | CLERK | 1
BOSTON | OPERATIONS | MANAGER | 1
BOSTON | OPERATIONS | | 3
BOSTON | RESEARCH | ANALYST | 2
BOSTON | RESEARCH | CLERK | 2
BOSTON | RESEARCH | MANAGER | 1
BOSTON | RESEARCH | | 5
BOSTON | | ANALYST | 3
BOSTON | | CLERK | 3
BOSTON | | MANAGER | 2
BOSTON | | | 8
CHICAGO | SALES | CLERK | 1
CHICAGO | SALES | MANAGER | 1
CHICAGO | SALES | SALESMAN | 4
CHICAGO | SALES | | 6
CHICAGO | | CLERK | 1
CHICAGO | | MANAGER | 1
CHICAGO | | SALESMAN | 4
CHICAGO | | | 6
NEW YORK | ACCOUNTING | CLERK | 1
NEW YORK | ACCOUNTING | MANAGER | 1
NEW YORK | ACCOUNTING | PRESIDENT | 1
NEW YORK | ACCOUNTING | | 3
NEW YORK | | CLERK | 1
NEW YORK | | MANAGER | 1
NEW YORK | | PRESIDENT | 1
NEW YORK | | | 3
(28 rows)

14.4.6.3 GROUPING SETS extension

The use of the GROUPING SETS extension in the GROUP BY clause provides a means to produce one result set that's the concatenation of multiple results sets based on different groupings. In
other words, a UNION ALL operation is performed combining the result sets of multiple groupings into one result set.

A UNION ALL operation, and therefore the GROUPING SETS extension, doesn't eliminate duplicate rows from the result sets that are being combined.

The syntax for a single GROUPING SETS extension is:

GROUPING SETS (
 { <expr_1> | (<expr_1a> [, <expr_1b>] ...) |
 ROLLUP (<expr_list>) | CUBE (<expr_list>)
 } [, ...])

A GROUPING SETS extension can contain any combination of one or more comma-separated expressions, lists of expressions enclosed in parentheses, ROLLUP extensions, and CUBE extensions.

The GROUPING SETS extension is specified in the context of the GROUP BY clause as shown by the following:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 151

SELECT <select_list> FROM ...
GROUP BY [... ,] GROUPING SETS (<expression_list>) [, ...]

The items specified in select_list must also either:

Appear in the GROUPING SETS expression_list
Be aggregate functions such as COUNT, SUM, AVG, MIN , or MAX
Be constants or functions whose return values are independent of the individual rows in the group (for example, the SYSDATE function)

The GROUP BY clause can specify multiple GROUPING SETS extensions as well as multiple occurrences of other GROUP BY extensions and individual expressions.

Use the ORDER BY clause if you want the output to display in a meaningful structure. To guarantee the order of the result set, specify an ORDER BY clause.

The following query produces a union of groups given by columns loc , dname , and job :

SELECT loc, dname, job, COUNT(*) AS "employees" FROM emp e, dept d
WHERE e.deptno = d.deptno
GROUP BY GROUPING SETS (loc, dname, job)
ORDER BY 1, 2, 3;

The result is as follows:

loc | dname | job | employees
---------+------------+-----------+-----------
BOSTON | | | 8
CHICAGO | | | 6
NEW YORK | | | 3
 | ACCOUNTING | | 3
 | OPERATIONS | | 3
 | RESEARCH | | 5
 | SALES | | 6
 | | ANALYST | 3
 | | CLERK | 5
 | | MANAGER | 4
 | | PRESIDENT | 1
 | | SALESMAN | 4
(12 rows)

This is equivalent to the following query, which uses the UNION ALL operator:

SELECT loc AS "loc", NULL AS "dname", NULL AS "job", COUNT(*) AS "employees"
FROM emp e, dept d
WHERE e.deptno = d.deptno
GROUP BY loc
 UNION ALL
SELECT NULL, dname, NULL, COUNT(*) AS "employees" FROM emp e, dept d
WHERE e.deptno = d.deptno
GROUP BY dname
 UNION ALL
SELECT NULL, NULL, job, COUNT(*) AS "employees" FROM emp e, dept d
WHERE e.deptno = d.deptno
GROUP BY job
ORDER BY 1, 2, 3;

The output from the UNION ALL query is the same as the GROUPING SETS output:

loc | dname | job | employees
---------+------------+-----------+-----------
BOSTON | | | 8
CHICAGO | | | 6
NEW YORK | | | 3
 | ACCOUNTING | | 3
 | OPERATIONS | | 3
 | RESEARCH | | 5
 | SALES | | 6
 | | ANALYST | 3
 | | CLERK | 5
 | | MANAGER | 4
 | | PRESIDENT | 1
 | | SALESMAN | 4
(12 rows)

This example shows how you can use various types of GROUP BY extensions together in a GROUPING SETS expression list:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 152

SELECT loc, dname, job, COUNT(*) AS "employees" FROM emp e, dept d
WHERE e.deptno = d.deptno
GROUP BY GROUPING SETS (loc, ROLLUP (dname, job), CUBE (job, loc))
ORDER BY 1, 2, 3;

The following is the output from this query:

loc | dname | job | employees
---------+------------+-----------+-----------
BOSTON | | ANALYST | 3
BOSTON | | CLERK | 3
BOSTON | | MANAGER | 2
BOSTON | | | 8
BOSTON | | | 8
CHICAGO | | CLERK | 1
CHICAGO | | MANAGER | 1
CHICAGO | | SALESMAN | 4
CHICAGO | | | 6
CHICAGO | | | 6
NEW YORK | | CLERK | 1
NEW YORK | | MANAGER | 1
NEW YORK | | PRESIDENT | 1
NEW YORK | | | 3
NEW YORK | | | 3
 | ACCOUNTING | CLERK | 1
 | ACCOUNTING | MANAGER | 1
 | ACCOUNTING | PRESIDENT | 1
 | ACCOUNTING | | 3
 | OPERATIONS | ANALYST | 1
 | OPERATIONS | CLERK | 1
 | OPERATIONS | MANAGER | 1
 | OPERATIONS | | 3
 | RESEARCH | ANALYST | 2
 | RESEARCH | CLERK | 2
 | RESEARCH | MANAGER | 1
 | RESEARCH | | 5
 | SALES | CLERK | 1
 | SALES | MANAGER | 1
 | SALES | SALESMAN | 4
 | SALES | | 6
 | | ANALYST | 3
 | | CLERK | 5
 | | MANAGER | 4
 | | PRESIDENT | 1
 | | SALESMAN | 4
 | | | 17
 | | | 17
(38 rows)

The output is basically a concatenation of the result sets from GROUP BY loc , GROUP BY ROLLUP (dname, job) , and GROUP BY CUBE (job, loc) . These individual queries are shown
by the following:

SELECT loc, NULL AS "dname", NULL AS "job", COUNT(*) AS "employees"
FROM emp e, dept d
WHERE e.deptno = d.deptno
GROUP BY loc
ORDER BY 1;

The following is the result set from the GROUP BY loc clause:

loc | dname | job | employees
----------+-------+-----+-----------
BOSTON | | | 8
CHICAGO | | | 6
NEW YORK | | | 3
(3 rows)

The following query uses the GROUP BY ROLLUP (dname, job) clause:

SELECT NULL AS "loc", dname, job, COUNT(*) AS "employees" FROM emp e, dept d
WHERE e.deptno = d.deptno
GROUP BY ROLLUP (dname, job)
ORDER BY 2, 3;

The following is the result set from the GROUP BY ROLLUP (dname, job) clause:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 153

loc | dname | job | employees
----+------------+-----------+-----------
 | ACCOUNTING | CLERK | 1
 | ACCOUNTING | MANAGER | 1
 | ACCOUNTING | PRESIDENT | 1
 | ACCOUNTING | | 3
 | OPERATIONS | ANALYST | 1
 | OPERATIONS | CLERK | 1
 | OPERATIONS | MANAGER | 1
 | OPERATIONS | | 3
 | RESEARCH | ANALYST | 2
 | RESEARCH | CLERK | 2
 | RESEARCH | MANAGER | 1
 | RESEARCH | | 5
 | SALES | CLERK | 1
 | SALES | MANAGER | 1
 | SALES | SALESMAN | 4
 | SALES | | 6
 | | | 17
(17 rows)

The following query uses the GROUP BY CUBE (job, loc) clause:

SELECT loc, NULL AS "dname", job, COUNT(*) AS "employees" FROM emp e, dept d
WHERE e.deptno = d.deptno
GROUP BY CUBE (job, loc)
ORDER BY 1, 3;

The following is the result set from the GROUP BY CUBE (job, loc) clause:

loc | dname | job | employees
---------+-------+-----------+-----------
BOSTON | | ANALYST | 3
BOSTON | | CLERK | 3
BOSTON | | MANAGER | 2
BOSTON | | | 8
CHICAGO | | CLERK | 1
CHICAGO | | MANAGER | 1
CHICAGO | | SALESMAN | 4
CHICAGO | | | 6
NEW YORK | | CLERK | 1
NEW YORK | | MANAGER | 1
NEW YORK | | PRESIDENT | 1
NEW YORK | | | 3
 | | ANALYST | 3
 | | CLERK | 5
 | | MANAGER | 4
 | | PRESIDENT | 1
 | | SALESMAN | 4
 | | | 17
(18 rows)

If the previous three queries are combined with the UNION ALL operator, a concatenation of the three results sets is produced:

SELECT loc AS "loc", NULL AS "dname", NULL AS "job", COUNT(*) AS "employees"
FROM emp e, dept d
WHERE e.deptno = d.deptno
GROUP BY loc
 UNION ALL
SELECT NULL, dname, job, count(*) AS "employees" FROM emp e, dept d
WHERE e.deptno = d.deptno
GROUP BY ROLLUP (dname, job)
 UNION ALL
SELECT loc, NULL, job, count(*) AS "employees" FROM emp e, dept d
WHERE e.deptno = d.deptno
GROUP BY CUBE (job, loc)
ORDER BY 1, 2, 3;

The following is the output, which is the same as when the GROUP BY GROUPING SETS (loc, ROLLUP (dname, job), CUBE (job, loc)) clause is used.

loc | dname | job | employees
---------+------------+-----------+-----------
BOSTON | | ANALYST | 3
BOSTON | | CLERK | 3
BOSTON | | MANAGER | 2

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 154

BOSTON | | | 8
BOSTON | | | 8
CHICAGO | | CLERK | 1
CHICAGO | | MANAGER | 1
CHICAGO | | SALESMAN | 4
CHICAGO | | | 6
CHICAGO | | | 6
NEW YORK | | CLERK | 1
NEW YORK | | MANAGER | 1
NEW YORK | | PRESIDENT | 1
NEW YORK | | | 3
NEW YORK | | | 3
 | ACCOUNTING | CLERK | 1
 | ACCOUNTING | MANAGER | 1
 | ACCOUNTING | PRESIDENT | 1
 | ACCOUNTING | | 3
 | OPERATIONS | ANALYST | 1
 | OPERATIONS | CLERK | 1
 | OPERATIONS | MANAGER | 1
 | OPERATIONS | | 3
 | RESEARCH | ANALYST | 2
 | RESEARCH | CLERK | 2
 | RESEARCH | MANAGER | 1
 | RESEARCH | | 5
 | SALES | CLERK | 1
 | SALES | MANAGER | 1
 | SALES | SALESMAN | 4
 | SALES | | 6
 | | ANALYST | 3
 | | CLERK | 5
 | | MANAGER | 4
 | | PRESIDENT | 1
 | | SALESMAN | 4
 | | | 17
 | | | 17
(38 rows)

14.4.6.4 GROUPING function

When using the ROLLUP , CUBE , or GROUPING SETS extensions to the GROUP BY clause, it can sometimes be difficult to differentiate between the various levels of subtotals generated by the
extensions as well as the base aggregate rows in the result set. The GROUPING function provides a means of making this distinction.

The general syntax for use of the GROUPING function is:

SELECT [<expr> ...,] GROUPING(<col_expr>) [, <expr>] ...
FROM ...
GROUP BY [...,]
 { ROLLUP | CUBE | GROUPING SETS }([...,] <col_expr>
 [, ...]) [, ...]

The GROUPING function takes a single parameter that must be an expression of a dimension column specified in the expression list of a ROLLUP , CUBE , or GROUPING SETS extension of the
GROUP BY clause.

The return value of the GROUPING function is either a 0 or 1. In the result set of a query, if the column expression specified in the GROUPING function is null because the row represents a subtotal
over multiple values of that column, then the GROUPING function returns a value of 1. If the row returns results based on a particular value of the column specified in the GROUPING function, then
the GROUPING function returns a value of 0. In the latter case, the column can be null as well as non-null. In any case, it's for a particular value of that column, not a subtotal across multiple values.

The following query shows how the return values of the GROUPING function correspond to the subtotal lines:

SELECT loc, dname, job, COUNT(*) AS "employees",
 GROUPING(loc) AS "gf_loc",
 GROUPING(dname) AS "gf_dname",
 GROUPING(job) AS "gf_job"
FROM emp e, dept d
WHERE e.deptno = d.deptno
GROUP BY ROLLUP (loc, dname, job)
ORDER BY 1, 2, 3;

In the three right-most columns displaying the output of the GROUPING functions, a value of 1 appears on a subtotal line wherever a subtotal is taken across values of the corresponding columns:

loc | dname | job | employees | gf_loc | gf_dname | gf_job
---------+------------+-----------+-----------+--------+----------+--------

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 155

BOSTON | OPERATIONS | ANALYST | 1 | 0 | 0 | 0
BOSTON | OPERATIONS | CLERK | 1 | 0 | 0 | 0
BOSTON | OPERATIONS | MANAGER | 1 | 0 | 0 | 0
BOSTON | OPERATIONS | | 3 | 0 | 0 | 1
BOSTON | RESEARCH | ANALYST | 2 | 0 | 0 | 0
BOSTON | RESEARCH | CLERK | 2 | 0 | 0 | 0
BOSTON | RESEARCH | MANAGER | 1 | 0 | 0 | 0
BOSTON | RESEARCH | | 5 | 0 | 0 | 1
BOSTON | | | 8 | 0 | 1 | 1
CHICAGO | SALES | CLERK | 1 | 0 | 0 | 0
CHICAGO | SALES | MANAGER | 1 | 0 | 0 | 0
CHICAGO | SALES | SALESMAN | 4 | 0 | 0 | 0
CHICAGO | SALES | | 6 | 0 | 0 | 1
CHICAGO | | | 6 | 0 | 1 | 1
NEW YORK | ACCOUNTING | CLERK | 1 | 0 | 0 | 0
NEW YORK | ACCOUNTING | MANAGER | 1 | 0 | 0 | 0
NEW YORK | ACCOUNTING | PRESIDENT | 1 | 0 | 0 | 0
NEW YORK | ACCOUNTING | | 3 | 0 | 0 | 1
NEW YORK | | | 3 | 0 | 1 | 1
 | | | 17 | 1 | 1 | 1
(20 rows)

You can use these indicators as screening criteria for particular subtotals. For example, using the previous query, you can display only those subtotals for loc and dname combinations by using the
GROUPING function in a HAVING clause:

SELECT loc, dname, job, COUNT(*) AS "employees",
 GROUPING(loc) AS "gf_loc",
 GROUPING(dname) AS "gf_dname",
 GROUPING(job) AS "gf_job"
FROM emp e, dept d
WHERE e.deptno = d.deptno
GROUP BY ROLLUP (loc, dname, job)
HAVING GROUPING(loc) = 0
 AND GROUPING(dname) = 0
 AND GROUPING(job) = 1
ORDER BY 1, 2;

This query produces the following result:

loc | dname | job | employees | gf_loc | gf_dname | gf_job
---------+------------+-----+-----------+--------+----------+--------
BOSTON | OPERATIONS | | 3 | 0 | 0 | 1
BOSTON | RESEARCH | | 5 | 0 | 0 | 1
CHICAGO | SALES | | 6 | 0 | 0 | 1
NEW YORK | ACCOUNTING | | 3 | 0 | 0 | 1
(4 rows)

You can use the GROUPING function to distinguish a subtotal row from a base aggregate row or from certain subtotal rows. These subtotal rows have one item in the expression list that returns null as
a result of the column on which the expression is based being null for one or more rows in the table. This is opposed to representing a subtotal over the column.

To illustrate this point, the following row is added to the emp table. This provides a row with a null value for the job column:

INSERT INTO emp (empno,ename,deptno) VALUES (9004,'PETERS',40);

The following query is issued using a reduced number of rows for clarity:

SELECT loc, job, COUNT(*) AS "employees",
 GROUPING(loc) AS "gf_loc",
 GROUPING(job) AS "gf_job"
FROM emp e, dept d
WHERE e.deptno = d.deptno AND loc = 'BOSTON'
GROUP BY CUBE (loc, job)
ORDER BY 1, 2;

The output contains two rows containing BOSTON in the loc column and spaces in the job column (fourth and fifth entries in the table):

loc | job | employees | gf_loc | gf_job
-------+---------+-----------+--------+--------
BOSTON | ANALYST | 3 | 0 | 0
BOSTON | CLERK | 3 | 0 | 0
BOSTON | MANAGER | 2 | 0 | 0
BOSTON | | 1 | 0 | 0
BOSTON | | 9 | 0 | 1
 | ANALYST | 3 | 1 | 0

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 156

 | CLERK | 3 | 1 | 0
 | MANAGER | 2 | 1 | 0
 | | 1 | 1 | 0
 | | 9 | 1 | 1
(10 rows)

The fifth row, where the GROUPING function on the job column (gf_job) returns 1, indicates this is a subtotal over all jobs. The row contains a subtotal value of 9 in the employees column.

In the fourth row, the GROUPING function on the job column as well as on the loc column returns 0. This indicates that this is a base aggregate of all rows, where loc is BOSTON and job is
null, which is the row inserted for this example. The employees column contains 1, which is the count of the single such row inserted.

In the ninth row (next to last) the GROUPING function on the job column returns 0, while the GROUPING function on the loc column returns 1. This indicates that this is a subtotal over all
locations where the job column is null which, again, is a count of the single row inserted for this example.

14.4.6.5 GROUPING_ID function

The GROUPING_ID function provides a simplification of the GROUPING function to determine the subtotal level of a row in the result set from a ROLLBACK , CUBE , or GROUPING SETS
extension.

The GROUPING function takes only one column expression and returns an indication of whether a row is a subtotal over all values of the given column. Thus, you might need multiple GROUPING
functions to interpret the level of subtotals for queries with multiple grouping columns.

The GROUPING_ID function accepts one or more column expressions that were used in the ROLLBACK , CUBE , or GROUPING SETS extensions. It returns a single integer that you can use to
determine over which of these columns a subtotal was aggregated.

The general syntax for the GROUPING_ID function is:

SELECT [<expr> ...,]
 GROUPING_ID(<col_expr_1> [, <col_expr_2>] ...)
 [, <expr>] ...
FROM ...
GROUP BY [...,]
 { ROLLUP | CUBE | GROUPING SETS }([...,] <col_expr_1>
 [, <col_expr_2>] [, ...]) [, ...]

The GROUPING_ID function takes one or more parameters that must be expressions of dimension columns specified in the expression list of a ROLLUP , CUBE , or GROUPING SETS extension of
the GROUP BY clause.

The GROUPING_ID function returns an integer value. This value corresponds to the base-10 interpretation of a bit vector consisting of the concatenated 1s and 0s returned by a series of GROUPING
functions specified in the same left-to-right order as the ordering of the parameters specified in the GROUPING_ID function.

The following query shows how the returned values of the GROUPING_ID function represented in column gid correspond to the values returned by two GROUPING functions on columns loc and
dname :

SELECT loc, dname, COUNT(*) AS "employees",
 GROUPING(loc) AS "gf_loc", GROUPING(dname) AS "gf_dname",
 GROUPING_ID(loc, dname) AS "gid"
FROM emp e, dept d
WHERE e.deptno = d.deptno
GROUP BY CUBE (loc, dname)
ORDER BY 6, 1, 2;

In the following output, note the relationship between a bit vector consisting of the gf_loc value and gf_dname value compared to the integer given in gid :

loc | dname | employees | gf_loc | gf_dname | gid
---------+------------+-----------+--------+----------+-----
BOSTON | OPERATIONS | 3 | 0 | 0 | 0
BOSTON | RESEARCH | 5 | 0 | 0 | 0
CHICAGO | SALES | 6 | 0 | 0 | 0
NEW YORK | ACCOUNTING | 3 | 0 | 0 | 0
BOSTON | | 8 | 0 | 1 | 1
CHICAGO | | 6 | 0 | 1 | 1
NEW YORK | | 3 | 0 | 1 | 1
 | ACCOUNTING | 3 | 1 | 0 | 2
 | OPERATIONS | 3 | 1 | 0 | 2
 | RESEARCH | 5 | 1 | 0 | 2
 | SALES | 6 | 1 | 0 | 2
 | | 17 | 1 | 1 | 3
(12 rows)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 157

The following table provides specific examples of the GROUPING_ID function calculations based on the GROUPING function return values for four rows of the output.

loc dname
Bit Vector

gf_loc gf_dname

GROUPING_ID

gid

BOSTON OPERATIONS 0 * 2¹ + 0 * 2⁰ 0

BOSTON null 0 * 2¹ + 1 * 2⁰ 1

null ACCOUNTING 1 * 2¹ + 0 * 2⁰ 2

null null 1 * 2¹ + 1 * 2⁰ 3

The following table summarizes how the GROUPING_ID function return values correspond to the grouping columns over which aggregation occurs.

Aggregation by Column
Bit Vector

gf_loc gf_dname

GROUPING_ID

gid

loc, dname 0 0 0

loc 0 1 1

dname 1 0 2

Grand Total 1 1 3

To display only those subtotals by dname , you can use the following simplified query with a HAVING clause based on the GROUPING_ID function:

SELECT loc, dname, COUNT(*) AS "employees",
 GROUPING(loc) AS "gf_loc", GROUPING(dname) AS "gf_dname",
 GROUPING_ID(loc, dname) AS "gid"
FROM emp e, dept d
WHERE e.deptno = d.deptno
GROUP BY CUBE (loc, dname)
HAVING GROUPING_ID(loc, dname) = 2
ORDER BY 6, 1, 2;

The following is the result of the query:

loc | dname | employees | gf_loc | gf_dname | gid
----+------------+-----------+--------+----------+-----
 | ACCOUNTING | 3 | 1 | 0 | 2
 | OPERATIONS | 3 | 1 | 0 | 2
 | RESEARCH | 5 | 1 | 0 | 2
 | SALES | 6 | 1 | 0 | 2
(4 rows)

14.5 Profile management

EDB Postgres Advanced Server allows a database superuser to create named profiles. A profile is a set of password attributes that allow you to easily manage a group of roles that share comparable
authentication requirements. Each profile defines rules for password management that augment password and md5 authentication. The rules in a profile can:

Count failed login attempts
Lock an account due to excessive failed login attempts
Mark a password for expiration
Define a grace period after a password expiration
Define rules for password complexity
Define rules that limit password reuse

If the password requirements change, you can modify the profile to apply the new requirements to each user associated with that profile.

After creating the profile, you can associate the profile with one or more users. When a user connects to the server, the server enforces the profile that's associated with their login role. Profiles are
shared by all databases in a cluster, but each cluster can have multiple profiles. A single user with access to multiple databases uses the same profile when connecting to each database in the cluster.

EDB Postgres Advanced Server creates a profile named default that's associated with a new role when the role is created unless you specify an alternative profile. If you upgrade to EDB Postgres
Advanced Server from a previous server version, existing roles are automatically assigned to the default profile. You can't delete the default profile.

The default profile specifies the following attributes:

FAILED_LOGIN_ATTEMPTS UNLIMITED

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 158

PASSWORD_LOCK_TIME UNLIMITED

PASSWORD_LIFE_TIME UNLIMITED

PASSWORD_GRACE_TIME UNLIMITED

PASSWORD_REUSE_TIME UNLIMITED

PASSWORD_REUSE_MAX UNLIMITED

PASSWORD_VERIFY_FUNCTION NULL

PASSWORD_ALLOW_HASHED TRUE

FAILED_LOGIN_ATTEMPTS UNLIMITED

A database superuser can use the ALTER PROFILE command to modify the values specified by the default profile. For more information about modifying a profile, see Altering a profile.

14.5.1 Creating a new profile

Use the CREATE PROFILE command to create a new profile. The syntax is:

CREATE PROFILE <profile_name>
 [LIMIT {<parameter value>} ...];

Include the LIMIT clause and one or more space-delimited parameter/value pairs to specify the rules enforced by EDB Postgres Advanced Server.

Parameters

profile_name specifies the name of the profile.

parameter specifies the attribute limited by the profile.

value specifies the parameter limit.

EDB Postgres Advanced Server supports the vollowing value for each parameter :

FAILED_LOGIN_ATTEMPTS specifies the number of failed login attempts that a user can make before the server locks them out of their account for the length of time specified by
PASSWORD_LOCK_TIME . Supported values are:

An INTEGER value greater than 0 .
DEFAULT — The value of FAILED_LOGIN_ATTEMPTS specified in the DEFAULT profile.
UNLIMITED — The connecting user can make an unlimited number of failed login attempts.

PASSWORD_LOCK_TIME specifies the length of time that must pass before the server unlocks an account that was locked because of FAILED_LOGIN_ATTEMPTS . Supported values are:

A NUMERIC value greater than or equal to 0. To specify a fractional portion of a day, specify a decimal value. For example, use the value 4.5 to specify 4 days, 12 hours.
DEFAULT — The value of PASSWORD_LOCK_TIME specified in the DEFAULT profile.
UNLIMITED — The account is locked until a database superuser manually unlocks it.

PASSWORD_LIFE_TIME specifies the number of days that the current password can be used before the user is prompted to provide a new password. Include the PASSWORD_GRACE_TIME clause
when using the PASSWORD_LIFE_TIME clause to specify the number of days that pass after the password expires before connections by the role are rejected. If you don't specify
PASSWORD_GRACE_TIME , the password expires on the day specified by the default value of PASSWORD_GRACE_TIME , and the user can't execute any command until they provide a new password.

Supported values are:

A NUMERIC value greater than or equal to 0. To specify a fractional portion of a day, specify a decimal value. For example, use the value 4.5 to specify 4 days, 12 hours.
DEFAULT — The value of PASSWORD_LIFE_TIME specified in the DEFAULT profile.
UNLIMITED — The password doesn't have an expiration date.

PASSWORD_GRACE_TIME specifies the length of the grace period after a password expires until the user is forced to change their password. When the grace period expires, a user can connect but
can't execute any command until they update their expired password. Supported values are:

A NUMERIC value greater than or equal to 0. To specify a fractional portion of a day, specify a decimal value. For example, use the value 4.5 to specify 4 days, 12 hours.
DEFAULT — The value of PASSWORD_GRACE_TIME specified in the DEFAULT profile.
UNLIMITED — The grace period is infinite.

PASSWORD_REUSE_TIME specifies the number of days a user must wait before reusing a password. Use the PASSWORD_REUSE_TIME and PASSWORD_REUSE_MAX parameters together. If you
specify a finite value for one of these parameters while the other is UNLIMITED , old passwords can never be reused. If both parameters are set to UNLIMITED , there are no restrictions on password
reuse. Supported values are:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 159

A NUMERIC value greater than or equal to 0. To specify a fractional portion of a day, specify a decimal value. For example, use the value 4.5 to specify 4 days, 12 hours.
DEFAULT — The value of PASSWORD_REUSE_TIME specified in the DEFAULT profile.
UNLIMITED — The password can be reused without restrictions.

PASSWORD_REUSE_MAX specifies the number of password changes that must occur before a password can be reused. Use the PASSWORD_REUSE_TIME and PASSWORD_REUSE_MAX
parameters together. If you specify a finite value for one of these parameters while the other is UNLIMITED , old passwords can never be reused. If both parameters are set to UNLIMITED , there are
no restrictions on password reuse. Supported values are:

An INTEGER value greater than or equal to 0.
DEFAULT — The value of PASSWORD_REUSE_MAX specified in the DEFAULT profile.
UNLIMITED — The password can be reused without restrictions.

PASSWORD_VERIFY_FUNCTION specifies password complexity. Supported values are:

The name of a PL/SQL function.
DEFAULT — The value of PASSWORD_VERIFY_FUNCTION specified in the DEFAULT profile.
NULL

PASSWORD_ALLOW_HASHED specifies whether an encrypted password is allowed. If you specify TRUE , the system allows a user to change the password by specifying a hash-computed encrypted
password on the client side. If you specify FALSE , then a password must be specified in a plain-text form to validate. Otherwise, an error is thrown if a server receives an encrypted password.
Supported values are:

A Boolean value TRUE/ON/YES/1 or FALSE/OFF/NO/0 .
DEFAULT — The value of PASSWORD_ALLOW_HASHED specified in the DEFAULT profile.

Note

The PASSWORD_ALLOW_HASHED isn't an Oracle-compatible parameter.
Use DROP PROFILE command to remove the profile.

Examples

The following command creates a profile named acctg . The profile specifies that if a user doesn't authenticate with the correct password in five attempts, the account is locked for one day:

CREATE PROFILE acctg LIMIT
 FAILED_LOGIN_ATTEMPTS 5
 PASSWORD_LOCK_TIME 1;

The following command creates a profile named sales . The profile specifies that a user must change their password every 90 days:

CREATE PROFILE sales LIMIT
 PASSWORD_LIFE_TIME 90
 PASSWORD_GRACE_TIME 3;

If the user doesn't change their password before the 90 days specified in the profile has passed, a warning appears at login. After a grace period of their days, their account can't invoke any commands
until they change their password.

The following command creates a profile named accts . The profile specifies that a user can't reuse a password within 180 days of the last use of the password and must change their password at
least five times before reusing the password:

CREATE PROFILE accts LIMIT
 PASSWORD_REUSE_TIME 180
 PASSWORD_REUSE_MAX 5;

The following command creates a profile named resources . The profile calls a user-defined function named password_rules that verifies that the password provided meets their standards for
complexity:

CREATE PROFILE resources LIMIT
 PASSWORD_VERIFY_FUNCTION password_rules;

14.5.1.1 Creating a password function

When specifying PASSWORD_VERIFY_FUNCTION , you can provide a customized function that specifies the security rules to apply when your users change their password. For example, you can
specify rules that stipulate that the new password must be at least n characters long and can't contain a specific value.

The password function has the following signature:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 160

<function_name> (<user_name> VARCHAR2,
 <new_password> VARCHAR2,
 <old_password> VARCHAR2) RETURN boolean

Where:

user_name is the name of the user.

new_password is the new password.

old_password is the user's previous password. If you reference this parameter in your function:

When a database superuser changes their password, the third parameter is always NULL .
When a user with the CREATEROLE attribute changes their password, the parameter passes the previous password if the statement includes the REPLACE clause. The REPLACE
clause is optional syntax for a user with the CREATEROLE privilege.
When a user that isn't a database superuser and doesn't have the CREATEROLE attribute changes their password, the third parameter contains the previous password for the role.

The function returns a Boolean value. If the function returns true and doesn't raise an exception, the password is accepted. If the function returns false or raises an exception, the password is
rejected. If the function raises an exception, the specified error message is displayed to the user. If the function doesn't raise an exception but returns false , the following error message is displayed:

ERROR: password verification for the specified password failed

The function must be owned by a database superuser and reside in the sys schema.

Example

This example creates a profile and a custom function. Then, the function is associated with the profile.

This CREATE PROFILE command creates a profile named acctg_pwd_profile :

CREATE PROFILE acctg_pwd_profile;

The following commands create a schema-qualified function named verify_password :

CREATE OR REPLACE FUNCTION sys.verify_password(user_name varchar2,
new_password varchar2, old_password varchar2)
RETURN boolean IMMUTABLE
IS
BEGIN
 IF (length(new_password) < 5)
 THEN
 raise_application_error(-20001, 'too short');
 END IF;

 IF substring(new_password FROM old_password) IS NOT NULL
 THEN
 raise_application_error(-20002, 'includes old password');
 END IF;

 RETURN true;
END;

The function first ensures that the password is at least five characters long and then compares the new password to the old password. If the new password contains fewer than five characters or
contains the old password, the function raises an error.

The following statement sets the ownership of the verify_password function to the enterprisedb database superuser:

ALTER FUNCTION verify_password(varchar2, varchar2, varchar2) OWNER TO
enterprisedb;

Then, the verify_password function is associated with the profile:

ALTER PROFILE acctg_pwd_profile LIMIT PASSWORD_VERIFY_FUNCTION
verify_password;

The following statements confirm that the function is working by first creating a test user (alice), and then attempting to associate invalid and valid passwords with her role:

CREATE ROLE alice WITH LOGIN PASSWORD 'temp_password' PROFILE

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 161

acctg_pwd_profile;

Then, when alice connects to the database and attempts to change her password, she must adhere to the rules established by the profile function. A non-superuser without CREATEROLE must
include the REPLACE clause when changing a password:

edb=> ALTER ROLE alice PASSWORD 'hey';
ERROR: missing REPLACE clause

The new password must be at least five characters long:

edb=> ALTER USER alice PASSWORD 'hey' REPLACE 'temp_password';
ERROR: EDB-20001: too short
CONTEXT: edb-spl function verify_password(character varying,character
varying,character varying) line 5 at procedure/function invocation statement

If the new password is acceptable, the command completes without error:

edb=> ALTER USER alice PASSWORD 'hello' REPLACE 'temp_password';
ALTER ROLE

If alice decides to change her password, the new password must not contain the old password:

edb=> ALTER USER alice PASSWORD 'helloworld' REPLACE 'hello';
ERROR: EDB-20002: includes old password
CONTEXT: edb-spl function verify_password(character varying,character
varying,character varying) line 10 at procedure/function invocation statement

To remove the verify function, set password_verify_function to NULL :

ALTER PROFILE acctg_pwd_profile LIMIT password_verify_function NULL;

Then, all password constraints are lifted:

edb=# ALTER ROLE alice PASSWORD 'hey';
ALTER ROLE

14.5.2 Altering a profile

Use the ALTER PROFILE command to modify a user-defined profile. EDB Postgres Advanced Server supports two forms of the command:

ALTER PROFILE <profile_name> RENAME TO <new_name>;

ALTER PROFILE <profile_name>
 LIMIT {<parameter value>}[...];

Include the LIMIT clause and one or more space-delimited parameter/value pairs to specify the rules enforced by EDB Postgres Advanced Server. Or use ALTER PROFILE...RENAME TO to
change the name of a profile.

Parameters

profile_name specifies the name of the profile.
new_name specifies the new name of the profile.
parameter specifies the attribute limited by the profile.
value specifies the parameter limit.

See the table in Creating a new profile for a complete list of accepted parameter/value pairs.

Examples

The following example modifies a profile named acctg_profile :

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 162

ALTER PROFILE acctg_profile
 LIMIT FAILED_LOGIN_ATTEMPTS 3 PASSWORD_LOCK_TIME 1;

acctg_profile counts failed connection attempts when a login role attempts to connect to the server. The profile specifies that if a user doesn't authenticate with the correct password in three
attempts, the account is locked for one day.

The following example changes the name of acctg_profile to payables_profile :

ALTER PROFILE acctg_profile RENAME TO payables_profile;

14.5.3 Dropping a profile

Use the DROP PROFILE command to drop a profile. The syntax is:

DROP PROFILE [IF EXISTS] <profile_name> [CASCADE|RESTRICT];

Include the IF EXISTS clause to instruct the server not to throw an error if the specified profile doesn't exist. The server issues a notice if the profile doesn't exist.

Include the optional CASCADE clause to reassign any users that are currently associated with the profile to the default profile and then drop the profile. Include the optional RESTRICT clause to
instruct the server not to drop any profile that's associated with a role. This is the default behavior.

Parameters

profile_name

The name of the profile being dropped.

Examples

This example drops a profile named acctg_profile :

DROP PROFILE acctg_profile CASCADE;

The command first reassociates any roles associated with the acctg_profile profile with the default profile and then drops the acctg_profile profile.

The following example drops a profile named acctg_profile :

DROP PROFILE acctg_profile RESTRICT;

The RESTRICT clause in the command instructs the server not to drop acctg_profile if any roles are associated with the profile.

14.5.4 Associating a profile with an existing role

After creating a profile, you can use the ALTER USER... PROFILE or ALTER ROLE... PROFILE command to associate the profile with a role. The command syntax related to profile
management functionality is:

ALTER USER|ROLE <name> [[WITH] option[…]

where option can be the following compatible clauses:

 PROFILE <profile_name>
| ACCOUNT {LOCK|UNLOCK}
| PASSWORD EXPIRE [AT '<timestamp>']

Or, option can be the following noncompatible clauses:

| PASSWORD SET AT '<timestamp>'

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 163

| LOCK TIME '<timestamp>'
| STORE PRIOR PASSWORD {'<password>' '<timestamp>} [, ...]

For information about the administrative clauses of the ALTER USER or ALTER ROLE command that are supported by EDB Postgres Advanced Server, see the PostgreSQL core documentation.

Only a database superuser can use the ALTER USER|ROLE clauses that enforce profile management. The clauses enforce the following behaviors:

Include the PROFILE clause and a profile_name to associate a predefined profile with a role or to change the predefined profile associated with a user.

Include the ACCOUNT clause and the LOCK or UNLOCK keyword to place the user account in a locked or unlocked state.

Include the LOCK TIME 'timestamp' clause and a date/time value to lock the role at the specified time and unlock the role at the time indicated by the PASSWORD_LOCK_TIME
parameter of the profile assigned to this role. If LOCK TIME is used with the ACCOUNT LOCK clause, only a database superuser can unlock the role with the ACCOUNT UNLOCK clause.

Include the PASSWORD EXPIRE clause with the AT 'timestamp' keywords to specify a date/time when the password associated with the role expires. If you omit the AT 'timestamp'
keywords, the password expires immediately.

Include the PASSWORD SET AT 'timestamp' keywords to set the password modification date to the time specified.

Include the STORE PRIOR PASSWORD {'password' 'timestamp} [, ...] clause to modify the password history, adding the new password and the time the password was set.

Each login role can have only one profile. To discover the profile that's currently associated with a login role, query the profile column of the DBA_USERS view.

Parameters

name

The name of the role with which to associate the specified profile.

password

The password associated with the role.

profile_name

The name of the profile to associate with the role.

timestamp

The date and time at which to enforce the clause. When specifying a value for timestamp , enclose the value in single quotes.

Examples

This command uses the ALTER USER... PROFILE command to associate a profile named acctg with a user named john :

ALTER USER john PROFILE acctg_profile;

The following command uses the ALTER ROLE... PROFILE command to associate a profile named acctg with a user named john :

ALTER ROLE john PROFILE acctg_profile;

14.5.5 Unlocking a locked account

A database superuser can use clauses of the ALTER USER|ROLE... command to lock or unlock a role. The syntax is:

ALTER USER|ROLE <name>
 ACCOUNT {LOCK|UNLOCK}
 LOCK TIME '<timestamp>'

Include the ACCOUNT LOCK clause to lock a role immediately. When locked, a role’s LOGIN functionality is disabled. When you specify the ACCOUNT LOCK clause without the LOCK TIME
clause, the state of the role doesn't change until a superuser uses the ACCOUNT UNLOCK clause to unlock the role.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 164

https://www.postgresql.org/docs/current/static/sql-commands.html

Use the ACCOUNT UNLOCK clause to unlock a role.

Use the LOCK TIME 'timestamp' clause to lock the account at the time specified by the given timestamp for the length of time specified by the PASSWORD_LOCK_TIME parameter of the profile
associated with this role.

Combine the LOCK TIME 'timestamp' clause and the ACCOUNT LOCK clause to lock an account at a specified time until the account is unlocked by a superuser invoking the ACCOUNT
UNLOCK clause.

Parameters

name

The name of the role that's being locked or unlocked.

timestamp

The date and time when the role is locked. When specifying a value for timestamp , enclose the value in single quotes.

Note

This command (available only in EDB Postgres Advanced Server) is implemented to support Oracle-styled profile management.

Examples

This example uses the ACCOUNT LOCK clause to lock the role named john . The account remains locked until the account is unlocked with the ACCOUNT UNLOCK clause.

ALTER ROLE john ACCOUNT LOCK;

This example uses the ACCOUNT UNLOCK clause to unlock the role named john :

ALTER USER john ACCOUNT UNLOCK;

This example uses the LOCK TIME 'timestamp' clause to lock the role named john on September 4, 2015:

ALTER ROLE john LOCK TIME ‘September 4 12:00:00 2015’;

The role remains locked for the length of time specified by the PASSWORD_LOCK_TIME parameter.

This example combines the LOCK TIME 'timestamp' clause and the ACCOUNT LOCK clause to lock the role named john on September 4, 2015:

ALTER ROLE john LOCK TIME ‘September 4 12:00:00 2015’ ACCOUNT LOCK;

The role remains locked until a database superuser uses the ACCOUNT UNLOCK command to unlock the role.

14.5.6 Creating a new role associated with a profile

A database superuser can use clauses of the CREATE USER|ROLE command to assign a named profile to a role when creating the role or to specify profile management details for a role. The
command syntax related to profile management functionality is:

CREATE USER|ROLE <name> [[WITH] <option> […]]

where option can be the following compatible clauses:

 PROFILE <profile_name>
| ACCOUNT {LOCK|UNLOCK}
| PASSWORD EXPIRE [AT '<timestamp>']

Or, option can be the following noncompatible clauses:

| LOCK TIME '<timestamp>'

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 165

For information about the administrative clauses of the CREATE USER or CREATE ROLE command that are supported by EDB Postgres Advanced Server, see the PostgreSQL core documentation.

CREATE ROLE|USER... PROFILE adds a role with an associated profile to an EDB Postgres Advanced Server database cluster.

Roles created with the CREATE USER command are by default login roles. Roles created with the CREATE ROLE command are by default not login roles. To create a login account with the
CREATE ROLE command, you must include the LOGIN keyword.

Only a database superuser can use the CREATE USER|ROLE clauses that enforce profile management. These clauses enforce the following behaviors:

Include the PROFILE clause and a profile_name to associate a predefined profile with a role or to change the predefined profile associated with a user.

Include the ACCOUNT clause and the LOCK or UNLOCK keyword to place the user account in a locked or unlocked state.

Include the LOCK TIME 'timestamp' clause and a date/time value to lock the role at the specified time and unlock the role at the time indicated by the PASSWORD_LOCK_TIME
parameter of the profile assigned to this role. If LOCK TIME is used with the ACCOUNT LOCK clause, only a database superuser can unlock the role with the ACCOUNT UNLOCK clause.

Include the PASSWORD EXPIRE clause with the optional AT 'timestamp' keywords to specify a date/time when the password associated with the role expires. If you omit the AT
'timestamp' keywords, the password expires immediately.

Each login role can have only one profile. To discover the profile that's currently associated with a login role, query the profile column of the DBA_USERS view.

Parameters

name

The name of the role.

profile_name

The name of the profile associated with the role.

timestamp

The date and time when the clause is enforced. When specifying a value for timestamp , enclose the value in single quotes.

Examples

This example uses CREATE USER to create a login role named john associated with the acctg_profile profile:

CREATE USER john PROFILE acctg_profile IDENTIFIED BY “1safepwd”;

john can log in to the server using the password 1safepwd .

This example uses CREATE ROLE to create a login role named john associated with the acctg_profile profile:

CREATE ROLE john PROFILE acctg_profile LOGIN PASSWORD “1safepwd”;

john can log in to the server using the password 1safepwd .

14.5.7 Backing up profile management functions

A profile can include a PASSWORD_VERIFY_FUNCTION clause that refers to a user-defined function that specifies the behavior enforced by EDB Postgres Advanced Server. Profiles are global
objects. They are shared by all of the databases in a cluster. While profiles are global objects, user-defined functions are database objects.

Invoking pg_dumpall with the –g or –r option creates a script that re-creates the definition of any existing profiles but that doesn't re-create the user-defined functions that are referred to by the
PASSWORD_VERIFY_FUNCTION clause. Use the pg_dump utility to explicitly dump, and later restore, the database in which those functions reside.

The script created by pg_dump contains a command that includes the clause and function name to associate the restored function with the profile with which it was previously associated:

ALTER PROFILE… LIMIT PASSWORD_VERIFY_FUNCTION <function_name>

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 166

https://www.postgresql.org/docs/current/static/sql-commands.html

If the PASSWORD_VERIFY_FUNCTION clause is set to DEFAULT or NULL , the behavior is replicated by the script generated by the pg_dumpall –g or pg_dumpall –r command.

14.6 Optimizer hints

When you invoke a DELETE , INSERT , SELECT , or UPDATE command, the server generates a set of execution plans. After analyzing those execution plans, the server selects a plan that generally
returns the result set in the least amount of time. The server's choice of plan depends on several factors:

The estimated execution cost of data handling operations
Parameter values assigned to parameters in the Query Tuning section of the postgresql.conf file
Column statistics that were gathered by the ANALYZE command

As a rule, the query planner selects the least expensive plan. You can use an optimizer hint to influence the server as it selects a query plan. An optimizer hint is one or more directives embedded in a
comment-like syntax that immediately follows a DELETE , INSERT , SELECT or UPDATE command. Keywords in the comment instruct the server to use or avoid a specific plan when producing the
result set.

Synopsis

You can incude optimizer hints in either of these forms:

{ DELETE | INSERT | SELECT | UPDATE } /*+ { <hint> [<comment>] } [...] */
 <statement_body>

{ DELETE | INSERT | SELECT | UPDATE } --+ { <hint> [<comment>] } [...]
 <statement_body>

In both forms, a plus sign (+) must immediately follow the /* or -- opening comment symbols, with no intervening space. Otherwise the server doesn't interpret the tokens that follow as hints.

If you're using the first form, the hint and optional comment might span multiple lines. In the second form, all hints and comments must occupy a single line. The rest of the statement must start on a
new line.

Description

Note:

The database server always tries to use the specified hints if at all possible.
If a planner method parameter is set so as to disable a certain plan type, then this plan isn't used even if it is specified in a hint, unless there are no other possible options for the planner.
Examples of planner method parameters are enable_indexscan , enable_seqscan , enable_hashjoin , enable_mergejoin , and enable_nestloop . These are all Boolean
parameters.
The hint is embedded in a comment. As a consequence, if the hint is misspelled or if any parameter to a hint such as view, table, or column name is misspelled or nonexistent in the SQL
command, there's no indication that an error occurred. No syntax error is given. The entire hint is silently ignored.
If an alias is used for a table name in the SQL command, then you must use the alias name in the hint, not the original table name. For example, in the command SELECT /*+ FULL(acct)
*/ * FROM accounts acct ..., acct , you must specify the alias for accounts in the FULL hint, not in the table name accounts .

Use the EXPLAIN command to ensure that the hint is correctly formed and the planner is using the hint.

In general, don't use optimizer hints in a production application, where table data changes throughout the life of the application. By ensuring that dynamic columns are analyzed frequently via the
ANALYZE command, the column statistics are updated to reflect value changes. The planner uses such information to produce the lowest-cost plan for any given command execution. Use of optimizer

hints defeats the purpose of this process and results in the same plan regardless of how the table data changes.

Parameters

hint

An optimizer hint directive.

comment

A string with additional information. Comments have restrictions as to what characters you can include. Generally, comment can consist only of alphabetic, numeric, the underscore, dollar sign,
number sign, and space characters. These must also conform to the syntax of an identifier. Any subsequent hint is ignored if the comment isn't in this form.

statement_body

The remainder of the DELETE , INSERT , SELECT , or UPDATE command.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 167

http://www.enterprisedb.com/docs/en/9.3/pg/sql-analyze.html

14.6.1 Default optimization modes

You can choose an optimization mode as the default setting for an EDB Postgres Advanced Server database cluster. You can also change this setting on a per-session basis by using the ALTER
SESSION command as well as in individual DELETE , SELECT , and UPDATE commands in an optimizer hint. The configuration parameter that controls these default modes is OPTIMIZER_MODE .

The table shows the possible values.

Hint Description

ALL_ROWS Optimizes for retrieving all rows of the result set.

CHOOSE Does no default optimization based on assumed number of rows to retrieve from the result set. This is the default.

FIRST_ROWS Optimizes for retrieving only the first row of the result set.

FIRST_ROWS_1
0

Optimizes for retrieving the first 10 rows of the results set.

FIRST_ROWS_1
00

Optimizes for retrieving the first 100 rows of the result set.

FIRST_ROWS_1
000

Optimizes for retrieving the first 1000 rows of the result set.

FIRST_ROWS(n
)

Optimizes for retrieving the first n rows of the result set. You can't use this form as the object of the ALTER SESSION SET OPTIMIZER_MODE command. You can use it
only in the form of a hint in a SQL command.

These optimization modes are based on the assumption that the client submitting the SQL command is interested in viewing only the first n rows of the result set and not the remainder of the result set.
Resources allocated to the query are adjusted as such.

Examples

Alter the current session to optimize for retrieval of the first 10 rows of the result set:

ALTER SESSION SET OPTIMIZER_MODE = FIRST_ROWS_10;

You can show the current value of the OPTIMIZER_MODE parameter by using the SHOW command. This command depends on the utility. In PSQL, use the SHOW command as follows:

SHOW OPTIMIZER_MODE;

optimizer_mode

 first_rows_10
(1 row)

The SHOW command compatible with Oracle databases has the following syntax:

SHOW PARAMETER OPTIMIZER_MODE;

NAME
--
VALUE
--
optimizer_mode
first_rows_10

This example shows an optimization mode used in a SELECT command as a hint:

SELECT /*+ FIRST_ROWS(7) */ * FROM emp;

empno| ename | job | mgr | hiredate | sal | comm | deptno
-----+-------+----------+------+--------------------+---------+-------+-------
7369 | SMITH | CLERK | 7902 | 17-DEC-80 00:00:00 | 800.00 | | 20
7499 | ALLEN | SALESMAN | 7698 | 20-FEB-81 00:00:00 | 1600.00 | 300.00| 30
7521 | WARD | SALESMAN | 7698 | 22-FEB-81 00:00:00 | 1250.00 | 500.00| 30
7566 | JONES | MANAGER | 7839 | 02-APR-81 00:00:00 | 2975.00 | | 20
7654 | MARTIN| SALESMAN | 7698 | 28-SEP-81 00:00:00 | 1250.00 |1400.00| 30
7698 | BLAKE | MANAGER | 7839 | 01-MAY-81 00:00:00 | 2850.00 | | 30
7782 | CLARK | MANAGER | 7839 | 09-JUN-81 00:00:00 | 2450.00 | | 10
7788 | SCOTT | ANALYST | 7566 | 19-APR-87 00:00:00 | 3000.00 | | 20
7839 | KING | PRESIDENT| | 17-NOV-81 00:00:00 | 5000.00 | | 10
7844 | TURNER| SALESMAN | 7698 | 08-SEP-81 00:00:00 | 1500.00 | 0.00 | 30

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 168

7876 | ADAMS | CLERK | 7788 | 23-MAY-87 00:00:00 | 1100.00 | | 20
7900 | JAMES | CLERK | 7698 | 03-DEC-81 00:00:00 | 950.00 | | 30
7902 | FORD | ANALYST | 7566 | 03-DEC-81 00:00:00 | 3000.00 | | 20
7934 | MILLER| CLERK | 7782 | 23-JAN-82 00:00:00 | 1300.00 | | 10
(14 rows)

14.6.2 Access method hints

The following hints influence how the optimizer accesses relations to create the result set.

Hint Description

FULL(table) Perform a full sequential scan on table .

INDEX(table [index] [...]) Use index on table to access the relation.

NO_INDEX(table [index]
[...])

Don't use index on table to access the relation.

In addition, you can use the ALL_ROWS , FIRST_ROWS , and FIRST_ROWS(n) hints.

Examples

The sample application doesn't have enough data to show the effects of optimizer hints. Thus the remainder of these examples use a banking database created by the pgbench application located in
the EDB Postgres Advanced Server bin subdirectory.

This example creates a database named bank populated by the tables pgbench_accounts , pgbench_branches , pgbench_tellers , and pgbench_history . The –s 20 option
specifies a scaling factor of 20, which creates 20 branches, each with 100,000 accounts. This results in a total of 2,000,000 rows in the pgbench_accounts table and 20 rows in the
pgbench_branches table. Ten tellers are assigned to each branch, resulting in a total of 200 rows in the pgbench_tellers table.

The following initializes the pgbench application in the bank database.

createdb -U enterprisedb bank
CREATE DATABASE

pgbench -i -s 20 -U enterprisedb bank

NOTICE: table "pgbench_history" does not exist, skipping
NOTICE: table "pgbench_tellers" does not exist, skipping
NOTICE: table "pgbench_accounts" does not exist, skipping
NOTICE: table "pgbench_branches" does not exist, skipping
creating tables...
100000 of 2000000 tuples (5%) done (elapsed 0.11 s, remaining 2.10 s)
200000 of 2000000 tuples (10%) done (elapsed 0.22 s, remaining 1.98 s)
300000 of 2000000 tuples (15%) done (elapsed 0.33 s, remaining 1.84 s)
400000 of 2000000 tuples (20%) done (elapsed 0.42 s, remaining 1.67 s)
500000 of 2000000 tuples (25%) done (elapsed 0.52 s, remaining 1.57 s)
600000 of 2000000 tuples (30%) done (elapsed 0.62 s, remaining 1.45 s)
700000 of 2000000 tuples (35%) done (elapsed 0.73 s, remaining 1.35 s)
800000 of 2000000 tuples (40%) done (elapsed 0.87 s, remaining 1.31 s)
900000 of 2000000 tuples (45%) done (elapsed 0.98 s, remaining 1.19 s)
1000000 of 2000000 tuples (50%) done (elapsed 1.09 s, remaining 1.09 s)
1100000 of 2000000 tuples (55%) done (elapsed 1.22 s, remaining 1.00 s)
1200000 of 2000000 tuples (60%) done (elapsed 1.36 s, remaining 0.91 s)
1300000 of 2000000 tuples (65%) done (elapsed 1.51 s, remaining 0.82 s)
1400000 of 2000000 tuples (70%) done (elapsed 1.65 s, remaining 0.71 s)
1500000 of 2000000 tuples (75%) done (elapsed 1.78 s, remaining 0.59 s)
1600000 of 2000000 tuples (80%) done (elapsed 1.93 s, remaining 0.48 s)
1700000 of 2000000 tuples (85%) done (elapsed 2.10 s, remaining 0.37 s)
1800000 of 2000000 tuples (90%) done (elapsed 2.23 s, remaining 0.25 s)
1900000 of 2000000 tuples (95%) done (elapsed 2.37 s, remaining 0.12 s)
2000000 of 2000000 tuples (100%) done (elapsed 2.48 s, remaining 0.00 s)
vacuum...
set primary keys...
done.

A total of 500,00 transactions are then processed. These transactions populate the pgbench_history table with 500,000 rows.

pgbench -U enterprisedb -t 500000 bank

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 169

starting vacuum...end.
transaction type: <builtin: TPC-B (sort of)>
scaling factor: 20
query mode: simple
number of clients: 1
number of threads: 1
number of transactions per client: 500000
number of transactions actually processed: 500000/500000
latency average: 0.000 ms
tps = 1464.338375 (including connections establishing)
tps = 1464.350357 (excluding connections establishing)

The following are the table definitions:

\d pgbench_accounts

 Table "public.pgbench_accounts"
 Column | Type | Modifiers
----------+---------------+-----------
 aid | integer | not null
 bid | integer |
 abalance | integer |
 filler | character(84) |
Indexes:
 "pgbench_accounts_pkey" PRIMARY KEY, btree (aid)

\d pgbench_branches

 Table "public.pgbench_branches"
 Column | Type | Modifiers
----------+---------------+-----------
 bid | integer | not null
 bbalance | integer |
 filler | character(88) |
Indexes:
 "pgbench_branches_pkey" PRIMARY KEY, btree (bid)

\d pgbench_tellers

 Table "public.pgbench_tellers"
 Column | Type | Modifiers
----------+---------------+-----------
 tid | integer | not null
 bid | integer |
 tbalance | integer |
 filler | character(84) |
Indexes:
 "pgbench_tellers_pkey" PRIMARY KEY, btree (tid)

\d pgbench_history

 Table "public.pgbench_history"
 Column | Type | Modifiers
--------+-----------------------------+-----------
 tid | integer |
 bid | integer |
 aid | integer |
 delta | integer |
 mtime | timestamp without time zone |
 filler | character(22) |

The EXPLAIN command shows the plan selected by the query planner. In this example, aid is the primary key column, so an indexed search is used on index pgbench_accounts_pkey :

EXPLAIN SELECT * FROM pgbench_accounts WHERE aid = 100;

 QUERY PLAN

Index Scan using pgbench_accounts_pkey on pgbench_accounts (cost=0.43..8.45
rows=1 width=97)
 Index Cond: (aid = 100)
(2 rows)

The FULL hint is used to force a full sequential scan instead of using the index:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 170

EXPLAIN SELECT /*+ FULL(pgbench_accounts) */ * FROM pgbench_accounts WHERE
aid = 100;

 QUERY PLAN

Seq Scan on pgbench_accounts (cost=0.00..58781.69 rows=1 width=97)
 Filter: (aid = 100)
(2 rows)

The NO_INDEX hint forces a parallel sequential scan instead of using the index:

EXPLAIN SELECT /*+ NO_INDEX(pgbench_accounts pgbench_accounts_pkey) */ *
FROM pgbench_accounts WHERE aid = 100;

 QUERY PLAN

 Gather (cost=1000.00..45094.80 rows=1 width=97)
 Workers Planned: 2
 -> Parallel Seq Scan on pgbench_accounts (cost=0.00..44094.70 rows=1
 width=97)
 Filter: (aid = 100)
(4 rows)

In addition to using the EXPLAIN command, you can get more detailed information about whether a hint was used by the planner by setting the trace_hints configuration parameter:

SET trace_hints TO on;

The SELECT command with the NO_INDEX hint shows the additional information produced when you set the trace_hints configuration parameters:

EXPLAIN SELECT /*+ NO_INDEX(pgbench_accounts pgbench_accounts_pkey) */ *
FROM pgbench_accounts WHERE aid = 100;

INFO: [HINTS] Index Scan of [pgbench_accounts].[pgbench_accounts_pkey]
rejected due to NO_INDEX hint.
 QUERY PLAN

 Gather (cost=1000.00..45094.80 rows=1 width=97)
 Workers Planned: 2
 -> Parallel Seq Scan on pgbench_accounts (cost=0.00..44094.70 rows=1
width=97)
 Filter: (aid = 100)
(4 rows)

If a hint is ignored, the INFO: [HINTS] line doesn't appear. This might be indicate a syntax error or some other misspelling in the hint as shown in this example. The index name is misspelled.

EXPLAIN SELECT /*+ NO_INDEX(pgbench_accounts pgbench_accounts_xxx) */ * FROM
pgbench_accounts WHERE aid = 100;

 QUERY PLAN

Index Scan using pgbench_accounts_pkey on pgbench_accounts (cost=0.43..8.45
rows=1 width=97)
 Index Cond: (aid = 100)
(2 rows)

14.6.3 Specifying a join order

Include the ORDERED directive to instruct the query optimizer to join tables in the order in which they're listed in the FROM clause. If you don't include the ORDERED keyword, the query optimizer
chooses the order in which to join the tables.

For example, the following command allows the optimizer to choose the order in which to join the tables listed in the FROM clause:

SELECT e.ename, d.dname, h.startdate
 FROM emp e, dept d, jobhist h
 WHERE d.deptno = e.deptno
 AND h.empno = e.empno;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 171

The following command instructs the optimizer to join the tables in the order specified:

SELECT /*+ ORDERED */ e.ename, d.dname, h.startdate
 FROM emp e, dept d, jobhist h
 WHERE d.deptno = e.deptno
 AND h.empno = e.empno;

In the ORDERED version of the command, EDB Postgres Advanced Server first joins emp e with dept d before joining the results with jobhist h . Without the ORDERED directive, the query
optimizer selects the join order.

Note

The ORDERED directive doesn't work for Oracle-style outer joins (joins that contain a + sign).

14.6.4 Joining relations hints

When you join two tables, you can use any of three plans to perform the join.

Nested loop join — A table is scanned once for every row in the other joined table.
Merge sort join — Each table is sorted on the join attributes before the join starts. The two tables are then scanned in parallel, and the matching rows are combined to form the join rows.
Hash join — A table is scanned and its join attributes are loaded into a hash table using its join attributes as hash keys. The other joined table is then scanned and its join attributes are used as
hash keys to locate the matching rows from the first table.

The following table lists the optimizer hints that you can use to influence the planner to use one type of join plan over another.

Hint Description

USE_HASH(table [...]) Use a hash join for table .

NO_USE_HASH(table [...]) Don't use a hash join for table .

USE_MERGE(table [...]) Use a merge sort join for table .

NO_USE_MERGE(table
[...])

Don't use a merge sort join for table .

USE_NL(table [...]) Use a nested loop join for table .

NO_USE_NL(table [...]) Don't use a nested loop join for table .

Examples

In this example, the USE_HASH hint is used for a join on the pgbench_branches and pgbench_accounts tables. The query plan shows that a hash join is used by creating a hash table from the
join attribute of the pgbench_branches table:

EXPLAIN SELECT /*+ USE_HASH(b) */ b.bid, a.aid, abalance FROM
pgbench_branches b, pgbench_accounts a WHERE b.bid = a.bid;

 QUERY PLAN

 Hash Join (cost=21.45..81463.06 rows=2014215 width=12)
 Hash Cond: (a.bid = b.bid)
 -> Seq Scan on pgbench_accounts a (cost=0.00..53746.15 rows=2014215 width=12)
 -> Hash (cost=21.20..21.20 rows=20 width=4)
 -> Seq Scan on pgbench_branches b (cost=0.00..21.20 rows=20 width=4)
(5 rows)

Next, the NO_USE_HASH(a b) hint forces the planner to use an approach other than hash tables. The result is a merge join.

EXPLAIN SELECT /*+ NO_USE_HASH(a b) */ b.bid, a.aid, abalance FROM
pgbench_branches b, pgbench_accounts a WHERE b.bid = a.bid;

 QUERY PLAN

 Merge Join (cost=333526.08..368774.94 rows=2014215 width=12)
 Merge Cond: (b.bid = a.bid)
 -> Sort (cost=21.63..21.68 rows=20 width=4)
 Sort Key: b.bid
 -> Seq Scan on pgbench_branches b (cost=0.00..21.20 rows=20 width=4)
 -> Materialize (cost=333504.45..343575.53 rows=2014215 width=12)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 172

 -> Sort (cost=333504.45..338539.99 rows=2014215 width=12)
 Sort Key: a.bid
 -> Seq Scan on pgbench_accounts a (cost=0.00..53746.15 rows=2014215 width=12)
(9 rows)

Finally, the USE_MERGE hint forces the planner to use a merge join:

EXPLAIN SELECT /*+ USE_MERGE(a) */ b.bid, a.aid, abalance FROM
pgbench_branches b, pgbench_accounts a WHERE b.bid = a.bid;

 QUERY PLAN

 Merge Join (cost=333526.08..368774.94 rows=2014215 width=12)
 Merge Cond: (b.bid = a.bid)
 -> Sort (cost=21.63..21.68 rows=20 width=4)
 Sort Key: b.bid
 -> Seq Scan on pgbench_branches b (cost=0.00..21.20 rows=20 width=4)
 -> Materialize (cost=333504.45..343575.53 rows=2014215 width=12)
 -> Sort (cost=333504.45..338539.99 rows=2014215 width=12)
 Sort Key: a.bid
 -> Seq Scan on pgbench_accounts a (cost=0.00..53746.15 rows=2014215 width=12)
(9 rows)

In this three-table join example, the planner first performs a hash join on the pgbench_branches and pgbench_history tables. Then it performs a hash join of the result with the
pgbench_accounts table.

EXPLAIN SELECT h.mtime, h.delta, b.bid, a.aid FROM pgbench_history h, pgbench_branches b,
pgbench_accounts a WHERE h.bid = b.bid AND h.aid = a.aid;

 QUERY PLAN

 Hash Join (cost=86814.29..123103.29 rows=500000 width=20)
 Hash Cond: (h.aid = a.aid)
 -> Hash Join (cost=21.45..15081.45 rows=500000 width=20)
 Hash Cond: (h.bid = b.bid)
 -> Seq Scan on pgbench_history h (cost=0.00..8185.00 rows=500000 width=20)
 -> Hash (cost=21.20..21.20 rows=20 width=4)
 -> Seq Scan on pgbench_branches b (cost=0.00..21.20 rows=20 width=4)
 -> Hash (cost=53746.15..53746.15 rows=2014215 width=4)
 -> Seq Scan on pgbench_accounts a (cost=0.00..53746.15 rows=2014215 width=4)
(9 rows)

This plan is altered by using hints to force a combination of a merge sort join and a hash join:

EXPLAIN SELECT /*+ USE_MERGE(h b) USE_HASH(a) */ h.mtime, h.delta, b.bid, a.aid FROM
pgbench_history h, pgbench_branches b, pgbench_accounts a WHERE h.bid = b.bid AND h.aid = a.aid;

 QUERY PLAN

 Hash Join (cost=152583.39..182562.49 rows=500000 width=20)
 Hash Cond: (h.aid = a.aid)
 -> Merge Join (cost=65790.55..74540.65 rows=500000 width=20)
 Merge Cond: (b.bid = h.bid)
 -> Sort (cost=21.63..21.68 rows=20 width=4)
 Sort Key: b.bid
 -> Seq Scan on pgbench_branches b (cost=0.00..21.20 rows=20 width=4)
 -> Materialize (cost=65768.92..68268.92 rows=500000 width=20)
 -> Sort (cost=65768.92..67018.92 rows=500000 width=20)
 Sort Key: h.bid
 -> Seq Scan on pgbench_history h (cost=0.00..8185.00 rows=500000 width=20)
 -> Hash (cost=53746.15..53746.15 rows=2014215 width=4)
 -> Seq Scan on pgbench_accounts a (cost=0.00..53746.15 rows=2014215 width=4)
(13 rows)

14.6.5 Global hints

In addition to applying hits directly to tables that are referenced in the SQL command, you can apply hints to tables that appear in a view when the view is referenced in the SQL command. The hint
doesn't appear in the view but in the SQL command that references the view.

When specifying a hint that applies to a table in a view, give the view and table names in dot notation in the hint argument list.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 173

Synopsis

<hint>(<view>.<table>)

Parameters

hint

Any of the hints in the table Access method hints, Joining relations hints.

view

The name of the view containing table .

table

The table on which to apply the hint.

Examples

A view named tx is created from the three-table join of pgbench_history , pgbench_branches , and pgbench_accounts , shown in the last example of Joining relations hints.

CREATE VIEW tx AS SELECT h.mtime, h.delta, b.bid, a.aid FROM pgbench_history
h, pgbench_branches b, pgbench_accounts a WHERE h.bid = b.bid AND h.aid =
a.aid;

The query plan produced by selecting from this view is:

EXPLAIN SELECT * FROM tx;

 QUERY PLAN

 Hash Join (cost=86814.29..123103.29 rows=500000 width=20)
 Hash Cond: (h.aid = a.aid)
 -> Hash Join (cost=21.45..15081.45 rows=500000 width=20)
 Hash Cond: (h.bid = b.bid)
 -> Seq Scan on pgbench_history h (cost=0.00..8185.00 rows=500000 width=20)
 -> Hash (cost=21.20..21.20 rows=20 width=4)
 -> Seq Scan on pgbench_branches b (cost=0.00..21.20 rows=20 width=4)
 -> Hash (cost=53746.15..53746.15 rows=2014215 width=4)
 -> Seq Scan on pgbench_accounts a (cost=0.00..53746.15 rows=2014215 width=4)
(9 rows)

The same hints that were applied to this join at the end of Joining relations hints can be applied to the view:

EXPLAIN SELECT /*+ USE_MERGE(tx.h tx.b) USE_HASH(tx.a) */ * FROM tx;

 QUERY PLAN

 Hash Join (cost=152583.39..182562.49 rows=500000 width=20)
 Hash Cond: (h.aid = a.aid)
 -> Merge Join (cost=65790.55..74540.65 rows=500000 width=20)
 Merge Cond: (b.bid = h.bid)
 -> Sort (cost=21.63..21.68 rows=20 width=4)
 Sort Key: b.bid
 -> Seq Scan on pgbench_branches b (cost=0.00..21.20 rows=20 width=4)
 -> Materialize (cost=65768.92..68268.92 rows=500000 width=20)
 -> Sort (cost=65768.92..67018.92 rows=500000 width=20)
 Sort Key: h.bid
 -> Seq Scan on pgbench_history h (cost=0.00..8185.00 rows=500000 width=20)
 -> Hash (cost=53746.15..53746.15 rows=2014215 width=4)
 -> Seq Scan on pgbench_accounts a (cost=0.00..53746.15 rows=2014215 width=4)
(13 rows)

In addition to applying hints to tables in stored views, you can apply hints to tables in subqueries as shown by this example. In this query on the sample application emp table, employees and their

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 174

managers are listed by joining the emp table with a subquery of the emp table identified by the alias b :

SELECT a.empno, a.ename, b.empno "mgr empno", b.ename "mgr ename" FROM emp a,
(SELECT * FROM emp) b WHERE a.mgr = b.empno;

 empno | ename | mgr empno | mgr ename
-------+--------+-----------+-----------
 7369 | SMITH | 7902 | FORD
 7499 | ALLEN | 7698 | BLAKE
 7521 | WARD | 7698 | BLAKE
 7566 | JONES | 7839 | KING
 7654 | MARTIN | 7698 | BLAKE
 7698 | BLAKE | 7839 | KING
 7782 | CLARK | 7839 | KING
 7788 | SCOTT | 7566 | JONES
 7844 | TURNER | 7698 | BLAKE
 7876 | ADAMS | 7788 | SCOTT
 7900 | JAMES | 7698 | BLAKE
 7902 | FORD | 7566 | JONES
 7934 | MILLER | 7782 | CLARK
(13 rows)

This code shows the plan chosen by the query planner:

EXPLAIN SELECT a.empno, a.ename, b.empno "mgr empno", b.ename "mgr ename"
FROM emp a, (SELECT * FROM emp) b WHERE a.mgr = b.empno;

 QUERY PLAN

 Hash Join (cost=1.32..2.64 rows=13 width=22)
 Hash Cond: (a.mgr = emp.empno)
 -> Seq Scan on emp a (cost=0.00..1.14 rows=14 width=16)
 -> Hash (cost=1.14..1.14 rows=14 width=11)
 -> Seq Scan on emp (cost=0.00..1.14 rows=14 width=11)
(5 rows)

You can apply a hint to the emp table in the subquery to perform an index scan on index emp_pk instead of a table scan. Note the difference in the query plans.

EXPLAIN SELECT /*+ INDEX(b.emp emp_pk) */ a.empno, a.ename, b.empno "mgr
empno", b.ename "mgr ename" FROM emp a, (SELECT * FROM emp) b WHERE a.mgr =
b.empno;

 QUERY PLAN

 Merge Join (cost=4.17..13.11 rows=13 width=22)
 Merge Cond: (a.mgr = emp.empno)
 -> Sort (cost=1.41..1.44 rows=14 width=16)
 Sort Key: a.mgr
 -> Seq Scan on emp a (cost=0.00..1.14 rows=14 width=16)
 -> Index Scan using emp_pk on emp (cost=0.14..12.35 rows=14 width=11)
(6 rows)

14.6.6 Using the APPEND optimizer hint

By default, EDB Postgres Advanced Server adds new data into the first available free space in a table vacated by vacuumed records. Include the APPEND directive after an INSERT or SELECT
command to bypass midtable free space and affix new rows to the end of the table. This optimizer hint can be particularly useful when bulk loading data.

The syntax is:

/*+APPEND*/

For example, the following command, compatible with Oracle databases, instructs the server to append the data in the INSERT statement to the end of the sales table:

INSERT /*+APPEND*/ INTO sales VALUES
(10, 10, '01-Mar-2011', 10, 'OR');

EDB Postgres Advanced Server supports the APPEND hint when adding multiple rows in a single INSERT statement:

INSERT /*+APPEND*/ INTO sales VALUES
(20, 20, '01-Aug-2011', 20, 'NY'),

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 175

(30, 30, '01-Feb-2011', 30, 'FL'),
(40, 40, '01-Nov-2011', 40, 'TX');

You can also include the APPEND hint in the SELECT clause of an INSERT INTO statement:

INSERT INTO sales_history SELECT /*+APPEND*/ FROM sales;

14.6.7 Parallelism hints

The PARALLEL optimizer hint forces parallel scanning.

The NO_PARALLEL optimizer hint prevents use of a parallel scan.

Synopsis

PARALLEL (<table> [<parallel_degree> | DEFAULT])

NO_PARALLEL (<table>)

Description

Parallel scanning is the use of multiple background workers to simultaneously perform a scan of a table, that is, in parallel, for a given query. This process provides performance improvement over other
methods such as the sequential scan.

Parameters

table

The table to which to apply the parallel hint.

parallel_degree | DEFAULT

parallel_degree is a positive integer that specifies the desired number of workers to use for a parallel scan. If specified, the lesser of parallel_degree and configuration parameter
max_parallel_workers_per_gather is used as the planned number of workers. For information on the max_parallel_workers_per_gather parameter, see Asynchronous Behavior

under Resource Consumption in the PostgreSQL core documentation.

If you specify DEFAULT , then the maximum possible parallel degree is used.

If you omit both parallel_degree and DEFAULT , then the query optimizer determines the parallel degree. In this case, if table was set with the parallel_workers storage parameter,
then this value is used as the parallel degree. Otherwise, the optimizer uses the maximum possible parallel degree as if DEFAULT were specified. For information on the parallel_workers
storage parameter, see Storage Parameters under CREATE TABLE in the PostgreSQL core documentation.

Regardless of the circumstance, the parallel degree never exceeds the setting of configuration parameter max_parallel_workers_per_gather .

Examples

For these exammples, the following configuration parameter settings are in effect:

SHOW max_worker_processes;

 max_worker_processes

 8
(1 row)

SHOW max_parallel_workers_per_gather;

 max_parallel_workers_per_gather

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 176

https://www.postgresql.org/docs/current/static/runtime-config-resource.html
https://www.postgresql.org/docs/current/static/sql-createtable.html

 2
(1 row)

This example shows the default scan on table pgbench_accounts . A sequential scan is shown in the query plan.

SET trace_hints TO on;

EXPLAIN SELECT * FROM pgbench_accounts;

 QUERY PLAN

 Seq Scan on pgbench_accounts (cost=0.00..53746.15 rows=2014215 width=97)
(1 row)

This example uses the PARALLEL hint. In the query plan, the Gather node, which launches the background workers, indicates the plan to use two workers:

Note

If trace_hints is set to on , the INFO: [HINTS] lines appear stating that PARALLEL was accepted for pgbench_accounts and other hint information. For the remaining
examples, these lines aren't displayed as they generally show the same output, that is, trace_hints was reset to off .

EXPLAIN SELECT /*+ PARALLEL(pgbench_accounts) */ * FROM pgbench_accounts;

INFO: [HINTS] SeqScan of [pgbench_accounts] rejected due to PARALLEL hint.
INFO: [HINTS] PARALLEL on [pgbench_accounts] accepted.
INFO: [HINTS] Index Scan of [pgbench_accounts].[pgbench_accounts_pkey]
rejected due to PARALLEL hint.
 QUERY PLAN

 Gather (cost=1000.00..244418.06 rows=2014215 width=97)
 Workers Planned: 2
 -> Parallel Seq Scan on pgbench_accounts (cost=0.00..41996.56 rows=839256 width=97)
(3 rows)

Now, the max_parallel_workers_per_gather setting is increased:

SET max_parallel_workers_per_gather TO 6;

SHOW max_parallel_workers_per_gather;

 max_parallel_workers_per_gather

 6
(1 row)

The same query on pgbench_accounts is issued again with no parallel degree specification in the PARALLEL hint. The number of planned workers has increased to 4, as determined by the
optimizer.

EXPLAIN SELECT /*+ PARALLEL(pgbench_accounts) */ * FROM pgbench_accounts;

 QUERY PLAN

 Gather (cost=1000.00..241061.04 rows=2014215 width=97)
 Workers Planned: 4
 -> Parallel Seq Scan on pgbench_accounts (cost=0.00..38639.54 rows=503554 width=97)
(3 rows)

Now, a value of 6 is specified for the parallel degree parameter of the PARALLEL hint. The planned number of workers is returned as this specified value:

EXPLAIN SELECT /*+ PARALLEL(pgbench_accounts 6) */ * FROM pgbench_accounts;

 QUERY PLAN

 Gather (cost=1000.00..239382.52 rows=2014215 width=97)
 Workers Planned: 6
 -> Parallel Seq Scan on pgbench_accounts (cost=0.00..36961.03 rows=335702 width=97)
(3 rows)

The same query is now issued with the DEFAULT setting for the parallel degree. The results indicate that the maximum allowable number of workers is planned.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 177

EXPLAIN SELECT /*+ PARALLEL(pgbench_accounts DEFAULT) */ * FROM
pgbench_accounts;

 QUERY PLAN

 Gather (cost=1000.00..239382.52 rows=2014215 width=97)
 Workers Planned: 6
 -> Parallel Seq Scan on pgbench_accounts (cost=0.00..36961.03 rows=335702 width=97)
(3 rows)

Table pgbench_accounts is now altered so that the parallel_workers storage parameter is set to 3 .

Note

This format of the ALTER TABLE command to set the parallel_workers parameter isn't compatible with Oracle databases.

The parallel_workers setting is shown by the PSQL \d+ command.

ALTER TABLE pgbench_accounts SET (parallel_workers=3);

\d+ pgbench_accounts
 Table "public.pgbench_accounts"
 Column | Type | Modifiers | Storage | Stats target | Description
---------+---------------+-----------+----------+--------------+------------
-
 aid | integer | not null | plain | |
 bid | integer | | plain | |
 abalance| integer | | plain | |
 filler | character(84) | | extended | |
Indexes:
 "pgbench_accounts_pkey" PRIMARY KEY, btree (aid)
Options: fillfactor=100, parallel_workers=3

When the PARALLEL hint is given with no parallel degree, the resulting number of planned workers is the value from the parallel_workers parameter:

EXPLAIN SELECT /*+ PARALLEL(pgbench_accounts) */ * FROM pgbench_accounts;

 QUERY PLAN

 Gather (cost=1000.00..242522.97 rows=2014215 width=97)
 Workers Planned: 3
 -> Parallel Seq Scan on pgbench_accounts (cost=0.00..40101.47 rows=649747 width=97)
(3 rows)

Specifying a parallel degree value or DEFAULT in the PARALLEL hint overrides the parallel_workers setting.

This example shows the NO_PARALLEL hint. With trace_hints set to on , the INFO: [HINTS] message states that the parallel scan was rejected due to the NO_PARALLEL hint.

EXPLAIN SELECT /*+ NO_PARALLEL(pgbench_accounts) */ * FROM pgbench_accounts;
INFO: [HINTS] Parallel SeqScan of [pgbench_accounts] rejected due to
NO_PARALLEL hint.
 QUERY PLAN

 Seq Scan on pgbench_accounts (cost=0.00..53746.15 rows=2014215 width=97)
(1 row)

14.6.8 Conflicting hints

If a command includes two or more conflicting hints, the server ignores the contradicting hints. The following table lists hints that contradict each other.

Hint Conflicting hint

ALL_ROWS FIRST_ROWS - all formats

FULL(table)

INDEX(table [index])

PARALLEL(table [degree
])

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 178

INDEX(table)

FULL(table)

NO_INDEX(table)

PARALLEL(table [degree
])

INDEX(table index)

FULL(table)

NO_INDEX(table index)

PARALLEL(table [degree
])

PARALLEL(table [degree
])

FULL(table)

INDEX(table)

NO_PARALLEL(table)

USE_HASH(table) NO_USE_HASH(table)

USE_MERGE(table) NO_USE_MERGE(table)

USE_NL(table) NO_USE_NL(table)

Hint Conflicting hint

14.7 dblink_ora

dblink_ora enables you to issue arbitrary queries to a remote Oracle server. It provides an OCI-based database link that allows you to SELECT , INSERT , UPDATE , or DELETE data stored on an
Oracle system from EDB Postgres Advanced Server.

Connecting to an Oracle database

To enable Oracle connectivity, download Oracle's freely available OCI drivers from their website.

For Linux, if the Oracle instant client that you downloaded doesn't include the libclntsh.so library, you must create a symbolic link named libclntsh.so that points to the downloaded
version. Navigate to the instant client directory and execute the following command:

ln -s libclntsh.so.<version> libclntsh.so

Where version is the version number of the libclntsh.so library. For example:

ln -s libclntsh.so.12.1 libclntsh.so

Before creating a link to an Oracle server, you must direct EDB Postgres Advanced Server to the correct Oracle home directory. Set the LD_LIBRARY_PATH environment variable on Linux or PATH
on Windows to the lib directory of the Oracle client installation directory.

Alternatively, you can set the value of the oracle_home configuration parameter in the postgresql.conf file. The value specified in the oracle_home configuration parameter overrides the
LD_LIBRARY_PATH environment variable in Linux and PATH environment variable in Windows.

Note

The oracle_home configuration parameter provides the correct path to the Oracle client, that is, the OCI library.

To set the oracle_home configuration parameter in the postgresql.conf file, edit the file and add the following line:

oracle_home = '<lib_directory>'

In place of <lib_directory> , substitute the name of the oracle_home path to the Oracle client installation directory that contains libclntsh.so in Linux and oci.dll in Windows.

After setting the oracle_home configuration parameter, you must restart the server for the changes to take effect. Restart the server:

On Linux, using the systemctl command or pg_ctl services.

On Windows, from the Windows Services console.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 179

http://www.oracle.com/technetwork/database/database-technologies/instant-client/overview/index.html

14.7.1 dblink_ora functions and procedures

dblink_ora supports functions and procedures that enable you to issue arbitrary queries to a remote Oracle server.

14.7.1.1 dblink_ora_connect()

The dblink_ora_connect() function establishes a connection to an Oracle database with user-specified connection information. The function comes in two forms.

The signature of the first form is:

dblink_ora_connect(<conn_name>, <server_name>, <service_name>, <user_name>,
<password>, <port>, <asDBA>)

Where:

conn_name specifies the name of the link.

server_name specifies the name of the host.

service_name specifies the name of the service.

user_name specifies the name used to connect to the server.

password specifies the password associated with the user name.

port specifies the port number.

asDBA is True if you want to request SYSDBA privileges on the Oracle server. This parameter is optional. If omitted, the value is FALSE .

The first form of dblink_ora_connect() returns a TEXT value.

The signature of the second form of the dblink_ora_connect() function is:

dblink_ora_connect(<foreign_server_name>, <asDBA>)

Where:

foreign_server_name specifies the name of a foreign server.

asDBA is True if you want to request SYSDBA privileges on the Oracle server. This parameter is optional. If omitted, the value is FALSE .

The second form of the dblink_ora_connect() function allows you to use the connection properties of a predefined foreign server when connecting to the server.

Before invoking the second form of the dblink_ora_connect() function, use the CREATE SERVER command to store the connection properties for the link to a system table. When you call the
dblink_ora_connect() function, substitute the server name specified in the CREATE SERVER command for the name of the link.

The second form of dblink_ora_connect() returns a TEXT value.

14.7.1.2 dblink_ora_status()

The dblink_ora_status() function returns the database connection status. The signature is:

dblink_ora_status(<conn_name>)

Where:

conn_name specifies the name of the link.

If the specified connection is active, the function returns a TEXT value of OK .

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 180

14.7.1.3 dblink_ora_disconnect()

The dblink_ora_disconnect() function closes a database connection. The signature is:

dblink_ora_disconnect(<conn_name>)

Where:

conn_name specifies the name of the link.

The function returns a TEXT value.

14.7.1.4 dblink_ora_record()

The dblink_ora_record() function retrieves information from a database. The signature is:

dblink_ora_record(<conn_name>, <query_text>)

Where:

conn_name specifies the name of the link.

query_text specifies the text of the SQL SELECT statement invoked on the Oracle server.

The function returns a SETOF record.

14.7.1.5 dblink_ora_call()

The dblink_ora_call() function executes a non- SELECT statement on an Oracle database and returns a result set. The signature is:

dblink_ora_call(<conn_name>, <command>, <iterations>)

Where:

conn_name specifies the name of the link.

command specifies the text of the SQL statement invoked on the Oracle server.

iterations specifies the number of times the statement is executed.

The function returns a SETOF record.

14.7.1.6 dblink_ora_exec()

The dblink_ora_exec() procedure executes a DML or DDL statement in the remote database. The signature is:

dblink_ora_exec(<conn_name>, <command>)

Where:

conn_name specifies the name of the link.

command specifies the text of the INSERT , UPDATE , or DELETE SQL statement invoked on the Oracle server.

The function returns a VOID .

14.7.1.7 dblink_ora_copy()

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 181

The dblink_ora_copy() function copies an Oracle table to an EDB table. The dblink_ora_copy() function returns a BIGINT value that represents the number of rows copied. The
signature is:

dblink_ora_copy(<conn_name>, <command>, <schema_name>, <table_name>,
<truncate>, <count>)

Where:

conn_name specifies the name of the link.

command specifies the text of the SQL SELECT statement invoked on the Oracle server.

schema_name specifies the name of the target schema.

table_name specifies the name of the target table.

truncate specifies whether the server performs a TRUNCATE on the table prior to copying. Specify TRUE if you want the server to TRUNCATE the table. truncate is optional. If omitted,
the value is FALSE .

count reports status information every n records, where n is a number. While the function executes, EDB Postgres Advanced Server raises a notice of severity INFO with each iteration of
the count. For example, if FeedbackCount is 10 , dblink_ora_copy() raises a notice every 10 records. count is optional. If omitted, the value is 0 .

14.7.2 Calling dblink_ora functions

The following command establishes a connection using the dblink_ora_connect() function:

SELECT dblink_ora_connect('acctg', 'localhost', 'xe', 'hr', 'pwd', 1521);

The example connects to:

A service named xe
Running on port 1521 on the localhost
With a user name of hr
With a password of pwd

You can use the connection name acctg to refer to this connection when calling other dblink_ora functions.

The following command uses the dblink_ora_copy() function over a connection named edb_conn . It copies the empid and deptno columns from a table on an Oracle server named
ora_acctg to a table located in the public schema on an instance of EDB Postgres Advanced Server named as_acctg . The TRUNCATE option is enforced, and a feedback count of 3 is

specified:

edb=# SELECT dblink_ora_copy('edb_conn','select empid, deptno FROM
ora_acctg', 'public', 'as_acctg', true, 3);

INFO: Row: 0
INFO: Row: 3
INFO: Row: 6
INFO: Row: 9
INFO: Row: 12

 dblink_ora_copy

 12

(1 row)

The following SELECT statement uses the dblink_ora_record() function and the acctg connection to retrieve information from the Oracle server:

SELECT * FROM dblink_ora_record('acctg', 'SELECT first_name from employees') AS t1(id VARCHAR);

The command retrieves a list that includes all of the entries in the first_name column of the employees table.

14.8 Open Client Library

The Open Client Library provides application interoperability with the Oracle Call Interface. An application that was formerly “locked in” can now work with either an EDB Postgres Advanced Server or an
Oracle database with minimal to no changes to the application code. The EDB implementation of the Open Client Library is written in C.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 182

The following diagram compares the Open Client Library and Oracle Call Interface application stacks.

For detailed usage information about the Open Client Library and the supported functions, see EDB OCL Connector.

Note

EDB doesn't support the use of the Open Client Library with Oracle Real Application Clusters (RAC) and Oracle Exadata. These Oracle products haven't been evaluated or certified with this
EDB product.

14.9 Oracle catalog views

The Oracle catalog views provide information about database objects in a manner compatible with the Oracle data dictionary views. Information about the supported views is available in Database
Compatibility for Oracle Developers Catalog Views.

14.10 Tools and utilities

Compatible tools and utility programs allow you to work with EDB Postgres Advanced Server in a familiar environment. The tools supported by EDB Postgres Advanced Server include:

EDB*Plus
EDB*Loader
EDB*Wrap
The Dynamic Runtime Instrumentation Tools Architecture (DRITA)

For detailed information about the functionality supported by EDB Postgres Advanced Server, see Tools, utilities, and components.

14.11 ECPGPlus

EDB has enhanced ECPG (the PostgreSQL precompiler) to create ECPGPlus. ECPGPlus allows you to include embedded SQL commands in C applications. When you use ECPGPlus to compile an
application that contains embedded SQL commands, the SQL code is syntax checked and translated into C.

ECPGPlus supports Pro*C-compatible syntax in C programs when connected to an EDB Postgres Advanced Server database. ECPGPlus supports:

Oracle Dynamic SQL – Method 4 (ODS-M4)
Pro*C-compatible anonymous blocks
A CALL statement compatible with Oracle databases

As part of ECPGPlus' Pro*C compatibility, you don't need to include the BEGIN DECLARE SECTION and END DECLARE SECTION directives.

For more information about using ECPGPlus, see EDB Postgres Advanced Server ECPG Connector.

14.12 System catalog tables

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 183

https://www.enterprisedb.com/docs/ocl_connector/latest/

The system catalog tables contain definitions of database objects that are available to EDB Postgres Advanced Server. The layout of the system tables is subject to change. If you're writing an application
that depends on information stored in the system tables, it's prudent to use an existing catalog view or create a catalog view to isolate the application from changes to the system table.

For detailed information about the system catalog tables, see the Database Compatibility for Oracle Developers Catalog Views](/epas/14/epas_compat_cat_views/oracle_compatible_views/).

15 Database Compatibility for Oracle Developers: Reference

Database compatibility for Oracle means that an application runs in an Oracle environment as well as in the EDB Postgres Advanced Server environment with minimal or no changes to the application
code.

Developing an application that's compatible with Oracle databases in EDB Postgres Advanced Server requires special attention to the features you're using. For example, developing a compatible
application means selecting:

Data types to define the application’s database tables that are compatible with Oracle databases
SQL statements that are compatible with Oracle SQL
System and built-in functions for use in SQL statements and procedural logic that are compatible with Oracle databases
Stored procedure language (SPL) to create database server-side application logic for stored procedures, functions, triggers, and packages
System catalog views that are compatible with Oracle’s data dictionary

15.1 The SQL language

A subset of the EDB Postgres Advanced Server SQL language is compatible with Oracle databases. These SQL syntaxes, data types, and functions work in both EDB Postgres Advanced Server and Oracle.

The EDB Postgres Advanced Server includes syntax and commands for extended functionality (functionality that doesn't provide database compatibility for Oracle or support Oracle-styled applications)
that aren't included here.

15.1.1 SQL syntax

Understanding the general syntax of SQL forms the foundation for understanding how to apply the SQL commands to define and modify data.

15.1.1.1 Lexical structure

SQL input consists of a sequence of commands. A command is composed of a sequence of tokens, terminated by a semicolon (;). The end of the input stream also terminates a command. The valid
tokens depend on the syntax of the command.

A token can be a key word, an identifier, a quoted identifier, a literal (or constant), or a special character symbol. Tokens are normally separated by whitespace (space, tab, new line) but don't need to be
if there's no ambiguity (which is generally the case only if a special character is adjacent to some other token type).

Also, comments can occur in SQL input. They aren't tokens. They are equivalent to whitespace.

For example, the following is syntactically valid SQL input:

SELECT * FROM MY_TABLE;
UPDATE MY_TABLE SET A = 5;
INSERT INTO MY_TABLE VALUES (3, 'hi there');

This is a sequence of three commands, one per line, although that format isn't required. You can enter more than one command on a line, and commands can usually split across lines.

The SQL syntax isn't very consistent regarding the tokens that identify commands and the ones that are operands or parameters. The first few tokens are generally the command name, so the example
contains a SELECT , an UPDATE , and an INSERT command. But, for instance, the UPDATE command always requires a SET token to appear in a certain position, and this variation of INSERT
also requires a VALUES token to be complete. The precise syntax rules for each command are described in SQL reference.

15.1.1.2 Identifiers and key words

Tokens such as SELECT , UPDATE , or VALUES are examples of key words, that is, words that have a fixed meaning in the SQL language. The tokens MY_TABLE and A are examples of identifiers.
They identify names of tables, columns, or other database objects, depending on the command you use them in. Therefore, they're sometimes called names. Key words and identifiers have the same
lexical structure, meaning that you can't know whether a token is an identifier or a key word without knowing the language.

SQL identifiers and key words must begin with a letter (a-z or A-Z). Subsequent characters in an identifier or key word can be letters, underscores, digits (0-9), dollar signs ($), or the number
sign (#).

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 184

Identifier and key word names aren't case sensitive. Therefore these two commands are equivalent:

UPDATE MY_TABLE SET A = 5;

uPDaTE my_TabLE SeT a = 5;

A convention often used is to write key words in upper case and names in lower case, for example:

UPDATE my_table SET a = 5;

A second kind of identifier is the delimited identifier or quoted identifier. It's formed by enclosing an arbitrary sequence of characters in double quotes ("). A delimited identifier is always an identifier,
never a key word. So you can use "select" to refer to a column or table named "select" . An unquoted select is taken as a key word and therefore provokes a parse error when used where a
table or column name is expected. The example can be written with quoted identifiers like this:

UPDATE "my_table" SET "a" = 5;

Quoted identifiers can contain any character except the character with the numeric code zero.

To include a double quote, use two double quotes. This allows you to construct table or column names that are otherwise not possible (such as ones containing spaces or ampersands). The length
limitation still applies.

Quoting an identifier also makes it case sensitive, whereas unquoted names are always folded to lower case. For example, the identifiers FOO , foo , and "foo" are considered the same by EDB
Postgres Advanced Server, but "Foo" and "FOO" are different from these three and each other. The folding of unquoted names to lower case isn't compatible with Oracle databases. In Oracle
syntax, unquoted names are folded to upper case. For example, foo is equivalent to "FOO" and not "foo" . If you want to write portable applications, either always quote a particular name or never
quote it.

15.1.1.3 Constants

The kinds of implicitly typed constants in EDB Postgres Advanced Server are strings and numbers. You can also specify constants with explicit types, which can enable more accurate representation and
more efficient handling by the system.

String constants

A string constant in SQL is an arbitrary sequence of characters bounded by single quotes (') , for example 'This is a string' . To include a single-quote character in a string constant, include
two adjacent single quotes, for example, 'Dianne''s horse' . (The two single quotes diffe from a double-quote character (") .)

Numeric constants

Numeric constants are accepted in these general forms:

digits
digits.[digits][e[+-]digits]
[digits].digits[e[+-]digits]
digitse[+-]digits

Where digits is one or more decimal digits (0 through 9). You must enter at least one digit before or after the decimal point, if one is used. At least one digit must follow the exponent marker (e) ,
if one is present. Don't embed any spaces or other characters in the constant. Leading plus or minus signs aren't considered part of the constant. They are operators applied to the constant.

These are some examples of valid numeric constants:

42
3.5
4.
.001
5e2
1.925e-3

A numeric constant that doesn't contain a decimal point or an exponent is initially presumed to be type INTEGER if its value fits in type INTEGER (32 bits). Otherwise it's presumed to be type
BIGINT if its value fits in type BIGINT (64 bits). If its value then doesn't fit in type BIGINT , it's taken to be type NUMBER . Constants that contain decimal points or exponents are always initially

presumed to be type NUMBER .

The initially assigned data type of a numeric constant is just a starting point for the type resolution algorithms. In most cases the constant is automatically coerced to the most appropriate type
depending on context. When necessary, you can force a numeric value to be interpreted as a specific data type by casting it as described in Constants of other types.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 185

Constants of other types

CAST

You can enter a constant of an arbitrary type using the following notation:

CAST('string' AS type)

The string constant’s text is passed to the input conversion routine for the type called type . The result is a constant of the indicated type. You can omit the explicit type cast if there's no ambiguity as to
the type of constant (for example, when it's assigned directly to a table column), in which case it's automatically coerced.

You can also use CAST to specify runtime type conversions of arbitrary expressions.

CAST (MULTISET)

MULTISET is an extension to CAST that converts subquery results into a nested table type. The synopsis is:

CAST (MULTISET (< subquery >) AS < datatype >)

Where subquery is a query returning one or more rows, and datatype is a nested table type.

CAST(MULTISET) is used to store a collection of data in a table.

Example

This example uses MULTISET :

edb=# CREATE OR REPLACE TYPE project_table_t AS TABLE OF VARCHAR2(25);
CREATE TYPE
edb=# CREATE TABLE projects (person_id NUMBER(10), project_name VARCHAR2(20));
CREATE TABLE
edb=# CREATE TABLE pers_short (person_id NUMBER(10), last_name VARCHAR2(25));
CREATE TABLE

edb=# INSERT INTO projects VALUES (1, 'Teach');
INSERT 0 1
edb=# INSERT INTO projects VALUES (1, 'Code');
INSERT 0 1
edb=# INSERT INTO projects VALUES (2, 'Code');
INSERT 0 1
edb=# INSERT INTO pers_short VALUES (1, 'Morgan');
INSERT 0 1
edb=# INSERT INTO pers_short VALUES (2, 'Kolk');
INSERT 0 1
edb=# INSERT INTO pers_short VALUES (3, 'Scott');
INSERT 0 1
edb=# COMMIT;
COMMIT

edb=# SELECT e.last_name, CAST(MULTISET(
edb(# SELECT p.project_name
edb(# FROM projects p
edb(# WHERE p.person_id = e.person_id
edb(# ORDER BY p.project_name) AS project_table_t)
edb-# FROM pers_short e;
 last_name | project_table_t
-----------+-----------------
 Morgan | {Code,Teach}
 Kolk | {Code}
 Scott | {}
(3 rows)

15.1.1.4 Comments

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 186

A comment is an arbitrary sequence of characters beginning with double dashes and extending to the end of the line, for example:

-- This is a standard SQL comment

Alternatively, you can use C-style block comments:

/* multiline comment
* block
*/

The comment begins with /* and extends to the matching occurrence of */.

15.1.2 Data types

The following table shows the built-in general-purpose data types.

Name Alias Description

BLOB LONG RAW, RAW(n), BYTEA Binary data

BOOLEAN Logical Boolean (true/false)

CHAR [(n)] CHARACTER [(n)] Fixed-length character string of n characters

CLOB LONG, LONG VARCHAR Long character string

DATE TIMESTAMP Date and time to the second

DOUBLE PRECISION FLOAT, FLOAT(25) – FLOAT(53) Double precision floating-point number

INTEGER INT, BINARY_INTEGER, PLS_INTEGER Signed four-byte integer

NUMBER DEC, DECIMAL, NUMERIC Exact numeric with optional decimal places

NUMBER(p [, s]) DEC(p [, s]),DECIMAL(p [, s]),NUMERIC(p [, s
])

Exact numeric of maximum precision, p , and optional scale, s

REAL FLOAT(1) – FLOAT(24) Single-precision floating-point number

TIMESTAMP [(p)] Date and time with optional, fractional second precision, p

TIMESTAMP [(p)] WITH TIME
ZONE

Date and time with optional, fractional second precision, p , and with time
zone

VARCHAR2(n) CHAR VARYING(n), CHARACTER VARYING(n),
VARCHAR(n)

Variable-length character string with a maximum length of n characters

XMLTYPE XML data

15.1.2.1 Numeric types

Numeric types consist of four-byte integers, four-byte and eight-byte floating-point numbers, and fixed-precision decimals. The following table lists the available types.

Name Storage size Description Range

BINARY_INTEGER 4 bytes Signed integer, alias for INTEGER -2,147,483,648 to +2,147,483,647

DOUBLE PRECISION 8 bytes Variable-precision, inexact 15 decimal digits precision

INTEGER 4 bytes Usual choice for integer -2,147,483,648 to +2,147,483,647

NUMBER Variable User-specified precision, exact Up to 1000 digits of precision

NUMBER(p [, s]
)

Variable
Exact numeric of maximum precision, p , and optional scale,
s

Up to 1000 digits of precision

PLS_INTEGER 4 bytes Signed integer, alias for INTEGER -2,147,483,648 to +2,147,483,647

REAL 4 bytes Variable-precision, inexact 6 decimal digits precision

ROWID 8 bytes Signed 8 bit integer. -9223372036854775808 to 9223372036854775807

Integer types

The BINARY_INTEGER , INTEGER , PLS_INTEGER , and ROWID types store whole numbers (without fractional components) as specified in the numeric types table. Attempts to store values
outside of the allowed range result in an error.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 187

Arbitrary precision numbers

The type NUMBER can store an almost unlimited number of digits of precision and perform calculations exactly. We especially recommend it for storing monetary amounts and other quantities where
exactness is required. However, the NUMBER type is very slow compared to the floating-point types described in Floating point types.

The scale of a NUMBER is the count of decimal digits in the fractional part, to the right of the decimal point. The precision of a NUMBER is the total count of significant digits in the whole
number, that is, the number of digits to both sides of the decimal point. So the number 23.5141 has a precision of 6 and a scale of 4. Integers have a scale of zero.

You can configure both the precision and the scale of the NUMBER type. To declare a column of type NUMBER , use the syntax:

NUMBER(precision, scale)

The precision must be positive, and the scale must be zero or positive. Alternatively, this syntax selects a scale of 0:

NUMBER(precision)

Specifying NUMBER without any precision or scale creates a column in which you can store numeric values of any precision and scale, up to the implementation limit on precision. A column of this kind
doesn't coerce input values to any particular scale, whereas NUMBER columns with a declared scale coerce input values to that scale. (The SQL standard requires a default scale of 0, that is, coercion
to integer precision. For maximum portability, it's best to specify the precision and scale explicitly.)

If the precision or scale of a value is greater than the declared precision or scale of a column, the system attempts to round the value. If the value can't be rounded to satisfy the declared limits, an error
occurs.

Floating-point types

The data types REAL and DOUBLE PRECISION are inexact, variable-precision numeric types. In practice, these types are usually implementations of IEEE Standard 754 for Binary Floating-Point
Arithmetic (single and double precision, respectively), to the extent that the underlying processor, operating system, and compiler support it.

Inexact means that some values can't be converted exactly to the internal format and are stored as approximations, so that storing and printing back out a value might show slight discrepancies.
Managing these errors and how they propagate through calculations is the subject of an entire branch of mathematics and computer science and isn't discussed further here, except for the following
points:

If you require exact storage and calculations (such as for monetary amounts), use the NUMBER type instead.

If you want to do complicated calculations with these types for anything important, especially if you rely on certain behavior in boundary cases (infinity, underflow), evaluate the implementation
carefully.

Comparing two floating-point values for equality might not work as expected.

On most platforms, the REAL type has a range of at least 1E-37 to 1E+37 with a precision of at least six decimal digits. The DOUBLE PRECISION type typically has a range of around 1E-307
to 1E+308 with a precision of at least 15 digits. Values that are too large or too small cause an error. Rounding might occur if the precision of an input number is too high. Numbers too close to zero
that you can't represent as distinct from zero cause an underflow error.

EDB Postgres Advanced Server also supports the SQL standard notations FLOAT and FLOAT(p) for specifying inexact numeric types. Here, p specifies the minimum acceptable precision in binary
digits. EDB Postgres Advanced Server accepts FLOAT(1) to FLOAT(24) as selecting the REAL type and FLOAT(25) to FLOAT(53) as selecting DOUBLE PRECISION . Values of p outside
the allowed range draw an error. FLOAT with no precision specified is taken to mean DOUBLE PRECISION .

15.1.2.2 Character types

The following table lists the general-purpose character types available in EDB Postgres Advanced Server.

Name Description

CHAR[(n)] Fixed-length character string, blank-padded to the size specified by n

CLOB Large variable-length up to 1 GB

LONG Variable unlimited length.

NVARCHAR(n) Variable-length national character string, with limit

NVARCHAR2(n) Variable-length national character string, with limit

STRING Alias for VARCHAR2

VARCHAR(n) Variable-length character string, with limit (considered deprecated, but supported for compatibility)

VARCHAR2(n) Variable-length character string, with limit

Where n is a positive integer, these types can store strings up to n characters in length. An attempt to assign a value that exceeds the length of n results in an error, unless the excess characters are

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 188

all spaces. In this case, the string is truncated to the maximum length.

The storage requirement for data of these types is the actual string plus 1 byte if the string is less than 127 bytes or 4 bytes if the string is 127 bytes or greater. In the case of CHAR , the padding also
requires storage. Long strings are compressed by the system automatically, so the physical requirement on disk might be less. Long values are stored in background tables so they don't interfere with
rapid access to the shorter column values.

The database character set determines the character set used to store textual values.

CHAR

If you don't specify a value for n , n defaults to 1 . If the string to assign is shorter than n , values of type CHAR are space-padded to the specified width (n) and are stored and displayed that way.

Padding spaces are treated as semantically insignificant. That is, trailing spaces are disregarded when comparing two values of type CHAR , and they are removed when converting a CHAR value to
one of the other string types.

If you explicitly cast an over-length value to a CHAR(n) type, the value is truncated to n characters without raising an error (as specified by the SQL standard).

VARCHAR, VARCHAR2, NVARCHAR and NVARCHAR2

If the string to assign is shorter than n , values of type VARCHAR , VARCHAR2 , NVARCHAR , and NVARCHAR2 store the shorter string without padding.

!!! Note The trailing spaces are semantically significant in VARCHAR values.

If you explicitly cast a value to a VARCHAR type, an over-length value is truncated to n characters without raising an error (as specified by the SQL standard).

CLOB

You can store a large character string in a CLOB type. CLOB is semantically equivalent to VARCHAR2 except no length limit is specified. Generally, use a CLOB type if you don't know the maximum
string length.

The longest possible character string that you can store in a CLOB type is about 1 GB.

!!!Note The CLOB data type is actually a DOMAIN based on the PostgreSQL TEXT data type. For information on a DOMAIN , see the PostgreSQL core documentation.

Thus, use of the CLOB type is limited by what can be done for TEXT , such as a maximum size of approximately 1 GB.

For larger amounts of data, instead of using the CLOB data type, use the PostgreSQL large objects feature that relies on the pg_largeobject system catalog. For information on large objects, see
the PostgreSQL core documentation.

15.1.2.3 Binary data

The following table shows data types that allow the storage of binary strings.

Name Storage size Description

BINARY The length of the binary string Fixed-length binary string, with a length between 1 and
8300

BLOB The actual binary string plus 1 byte if the binary string is less than 127 bytes, or 4 bytes if the binary string is 127 bytes
or greater

Variable-length binary string, with a maximum size of 1 GB

VARBINAR
Y

The length of the binary string Variable-length binary string, with a length between 1 and
8300

A binary string is a sequence of octets (or bytes). Binary strings are distinguished from characters strings by two characteristics:

Binary strings specifically allow storing octets of value zero and other "non-printable" octets (defined as octets outside the range 32 to 126).
Operations on binary strings process the actual bytes, whereas the encoding and processing of character strings depends on locale settings.

15.1.2.4 Date/time types

The following discussion of the date/time types assumes that the configuration parameter edb_redwood_date is set to TRUE whenever a table is created or altered.

EDB Postgres Advanced Server supports the date/time types shown in the table.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 189

https://www.postgresql.org/docs/current/static/sql-createdomain.html
https://www.postgresql.org/docs/current/static/largeobjects.html

Name Storage size Description Low value High value Resolution

DATE 8 bytes Date and time 4713 BC 5874897 AD 1 second

INTERVAL DAY TO SECOND [(p)] 12 bytes Period of time -178000000 years 178000000 years 1 microsecond / 14 digits

INTERVAL YEAR TO MONTH 12 bytes Period of time -178000000 years 178000000 years 1 microsecond / 14 digits

TIMESTAMP [(p)] 8 bytes Date and time 4713 BC 5874897 AD 1 microsecond

TIMESTAMP [(p)] WITH TIME ZONE 8 bytes Date and time with time zone 4713 BC 5874897 AD 1 microsecond

When DATE appears as the data type of a column in the data definition language (DDL) commands CREATE TABLE or ALTER TABLE , it's translated to TIMESTAMP at the time the table
definition is stored in the database. Thus, a time component is also stored in the column along with the date.

DATE can appear as a data type of:

A variable in an SPL declaration section
The data type of a formal parameter in an SPL procedure or an SPL function
The return type of an SPL function

In these cases, it's always translated to TIMESTAMP and thus can handle a time component if present.

TIMESTAMP accepts an optional precision value p that specifies the number of fractional digits retained in the seconds field. The allowed range of p is from 0 to 6. The default is 6 .

When TIMESTAMP values are stored as double-precision floating-point numbers (the default), the effective limit of precision might be less than 6. TIMESTAMP values are stored as seconds before or
after midnight 2000-01-01. Microsecond precision is achieved for dates within a few years of 2000-01-01, but the precision degrades for dates further away. When TIMESTAMP values are stored as 8-
byte integers (a compile-time option), microsecond precision is available over the full range of values. However, 8-byte integer timestamps have a more limited range of dates than shown in the table:
from 4713 BC up to 294276 AD.

TIMESTAMP (p) WITH TIME ZONE is similar to TIMESTAMP (p) but includes the time zone as well.

INTERVAL types

INTERVAL values specify a period of time. Values of INTERVAL type are composed of fields that describe the value of the data. The following table lists the fields allowed in an INTERVAL type.

Field name INTERVAL values allowed

YEAR Integer value (positive or negative)

MONTH 0 through 11

DAY Integer value (positive or negative)

HOUR 0 through 23

MINUTE 0 through 59

SECOND 0 through 59.9(p) where 9(p) is the precision of fractional
seconds

The fields must be presented in descending order, from YEARS to MONTHS and from DAYS to HOURS , MINUTES , and then SECONDS .

EDB Postgres Advanced Server supports two INTERVAL types compatible with Oracle databases.

The first variation supported by EDB Postgres Advanced Server is INTERVAL DAY TO SECOND [(p)] . INTERVAL DAY TO SECOND [(p)] stores a time interval in days, hours, minutes, and
seconds.

p specifies the precision of the second field.

EDB Postgres Advanced Server interprets this value as as 1 day, 2 hours, 34 minutes, 5 seconds and 678 thousandths of a second:

INTERVAL '1 2:34:5.678' DAY TO SECOND(3)

EDB Postgres Advanced Server interprets this value as 1 day and 23 hours:

INTERVAL '1 23' DAY TO HOUR

EDB Postgres Advanced Server interprets this value as 2 hours and 34 minutes:

INTERVAL '2:34' HOUR TO MINUTE

EDB Postgres Advanced Server interprets this value as 2 hours, 34 minutes, 56 seconds and 13 thousandths of a second. The fractional second is rounded up to 13 because of the specified precision.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 190

INTERVAL '2:34:56.129' HOUR TO SECOND(2)

The second variation supported by EDB Postgres Advanced Server that's compatible with Oracle databases is INTERVAL YEAR TO MONTH . This variation stores a time interval in years and months.

EDB Postgres Advanced Server interprets this value as 12 years and 3 months:

INTERVAL '12-3' YEAR TO MONTH

EDB Postgres Advanced Server interprets this value as 12 years and 3 months:

INTERVAL '456' YEAR(2)

EDB Postgres Advanced Server interprets this value as 25 years:

INTERVAL '300' MONTH

Date/time input

Date and time input is accepted in ISO 8601 SQL-compatible format, the Oracle default dd-MON-yy format, as well as a number of other formats provided that there's no ambiguity as to which
component is the year, month, and day. However, we strongly recommend using the TO_DATE function to avoid ambiguities.

Enclose any date or time literal input in single quotes, like text strings. The following SQL standard syntax is also accepted:

type 'value'

type is either DATE or TIMESTAMP .

value is a date/time text string.

Dates

The following block shows some possible input formats for dates, all of which equate to January 8, 1999:

Example
January 8, 1999
1999-01-08
1999-Jan-08
Jan-08-1999
08-Jan-1999
08-Jan-99
Jan-08-99
19990108
990108

You can assign the date values to a DATE or TIMESTAMP column or variable. The hour, minute, and seconds fields is set to zero if you don't append the date value with a time value.

Times

Some examples of the time component of a date or time stamp are shown in the table.

Example Description

04:05:06.789 ISO 8601

04:05:06 ISO 8601

04:05 ISO 8601

040506 ISO 8601

04:05 AM Same as 04:05; AM does not affect value

04:05 PM Same as 16:05; input hour must be <=
12

Time stamps

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 191

Valid input for time stamps consists of a concatenation of a date and a time. You can format the date portion of the time according to any of the examples shown in Dates. The time portion of the time
stamp can be formatted according to any of examples shown in the table in Times.

This example shows a time stamp that follows the Oracle default format:

08-JAN-99 04:05:06

This example shows a time stamp that follows the ISO 8601 standard:

1999-01-08 04:05:06

Date/time output

The default output format of the date/time types is either:

(dd-MON-yy), referred to as the Redwood date style, compatible with Oracle databases
(yyyy-mm-dd) referred to as the ISO 8601 format

The format you use depends on the application interface to the database. Applications that use JDBC, such as SQL Interactive, always present the date in ISO 8601 form. Other applications such as PSQL
present the date in Redwood form.

The following table shows examples of the output formats for the two styles: Redwood and ISO 8601.

Description Example

Redwood style 31-DEC-05 07:37:16

ISO 8601/SQL standard
1997-12-17
07:37:16

Internals

EDB Postgres Advanced Server uses Julian dates for all date/time calculations. Julian dates correctly predict or calculate any date after 4713 BC based on the assumption that the length of the year is
365.2425 days.

15.1.2.5 Boolean types

EDB Postgres Advanced Server provides the standard SQL type BOOLEAN . BOOLEAN can have one of only two states: TRUE or FALSE . A third state, UNKNOWN , is represented by the SQL NULL
value.

Name Storage size Description

BOOLEAN 1 byte Logical Boolean (true/false)

The valid literal value for representing the true state is TRUE . The valid literal for representing the false state is FALSE .

15.1.2.6 XML type

The XMLTYPE data type is used to store XML data. Its advantage over storing XML data in a character field is that it checks the input values for how well they're formed. Also, support functions perform
type-safe operations on it.

The XML type can store well-formed “documents,” as defined by the XML standard, as well as “content” fragments, which are defined by the production XMLDecl? content in the XML standard.
Roughly, this means that content fragments can have more than one top-level element or character node.

Note

Oracle doesn't support storing content fragments in XMLTYPE columns.

This example shows creating and inserting a row into a table with an XMLTYPE column:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 192

CREATE TABLE books (
 content XMLTYPE
);

INSERT INTO books VALUES (XMLPARSE (DOCUMENT '<?xml
version="1.0"?><book><title>Manual</title><chapter>...</chapter></book>'));

SELECT * FROM books;

 content
--
 <book><title>Manual</title><chapter>...</chapter></book>
(1 row)

15.1.3 Functions and operators

EDB Postgres Advanced Server provides functions and operators for the built-in data types.

15.1.3.1 Logical operators

The usual logical operators are available: AND , OR , NOT

SQL uses a three-valued Boolean logic where the null value represents "unknown". Observe the following truth tables.

AND/OR Truth Table

a b a AND b a OR b

True True True True

True False False True

True Null Null True

False False False False

False Null False Null

Null Null Null Null

NOT Truth Table

a NOT a

True False

False True

Null Null

The operators AND and OR are commutative. You can switch the left and right operand without affecting the result.

15.1.3.2 Comparison operators

The usual comparison operators are shown in the table.

Operator Description

< Less than

> Greater than

<= Less than or equal to

>= Greater than or equal to

= Equal

<> Not equal

!= Not equal

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 193

Comparison operators are available for all data types where they makes sense. All comparison operators are binary operators that return values of type BOOLEAN . Expressions like 1 < 2 < 3
aren't valid because there is no < operator to compare a Boolean value with 3 .

In addition to the comparison operators, the special BETWEEN construct is available.

a BETWEEN x AND y

is equivalent to:

a >= x AND a <= y

Similarly:

a NOT BETWEEN x AND y

is equivalent to:

a < x OR a > y

There's no difference between the two forms apart from the CPU cycles required to rewrite the first one into the second one internally.

To check whether a value is null, use the constructs:

expression IS NULL

expression IS NOT NULL

Don't write expression = NULL because NULL isn't "equal to" NULL . The null value represents an unknown value, and it isn't known whether two unknown values are equal. This behavior
conforms to the SQL standard.

Some applications might expect that expression = NULL returns true if expression evaluates to the null value. We highly recommend that you modify these applications to comply with the
SQL standard.

15.1.3.3 Mathematical functions and operators

Mathematical operators are provided for many EDB Postgres Advanced Server types. The following table shows the available mathematical operators.

Operator Description Example Result

+ Addition 2 + 3 5

- Subtraction 2 – 3 -1

* Multiplication 2 * 3 6

/ Division (See the following note) 4 / 2 2

** Exponentiation Operator
2 **
3

8

Note

If the db_dialect configuration parameter in the postgresql.conf file is set to redwood , then division of a pair of INTEGER data types doesn't result in a truncated value. Any
fractional result is retained as shown by the following example:

edb=# SET db_dialect TO redwood;
SET
edb=# SHOW db_dialect;
 db_dialect

 redwood
(1 row)

edb=# SELECT CAST('10' AS INTEGER) / CAST('3' AS INTEGER) FROM dual;
 ?column?

 3.3333333333333333
(1 row)

This behavior is compatible with Oracle databases where there is no native INTEGER data type. Any INTEGER data type specification is internally converted to NUMBER(38) , which results in
retaining any fractional result.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 194

If the db_dialect configuration parameter is set to postgres , then division of a pair of INTEGER data types results in a truncated value:

edb=# SET db_dialect TO postgres;
SET
edb=# SHOW db_dialect;
 db_dialect

 postgres
(1 row)

edb=# SELECT CAST('10' AS INTEGER) / CAST('3' AS INTEGER) FROM dual;
 ?column?

 3
(1 row)

This behavior is compatible with PostgreSQL databases where division involving any pair of INTEGER , SMALLINT , or BIGINT data types results in truncating the result. The same truncated result
is returned by EDB Postgres Advanced Server when db_dialect is set to postgres .

Even when db_dialect is set to redwood , only division with a pair of INTEGER data types results in no truncation of the result. Division that includes only SMALLINT or BIGINT data types,
with or without an INTEGER data type, results in truncation in the PostgreSQL fashion without retaining the fractional portion. In this example, INTEGER and SMALLINT are involved in the
division:

edb=# SHOW db_dialect;
 db_dialect

 redwood
(1 row)

edb=# SELECT CAST('10' AS INTEGER) / CAST('3' AS SMALLINT) FROM dual;
 ?column?

 3
(1 row)

The following table shows the available mathematical functions. Many of these functions are provided in multiple forms with different argument types. Except where noted, any given form of a function
returns the same data type as its argument. The functions working with DOUBLE PRECISION data are mostly implemented on top of the host system’s C library. Accuracy and behavior in boundary
cases might therefore vary depending on the host system.

Function Return Type Description Example Result

ABS(x) Same as x Absolute value ABS(-17.4) 17.4

CEIL(DOUBLE PRECISION or
NUMBER)

Same as input Smallest integer not less than argument CEIL(-42.8) -42

EXP(DOUBLE PRECISION or
NUMBER)

Same as input Exponential EXP(1.0) 2.7182818
284590452

FLOOR(DOUBLE PRECISION or
NUMBER)

Same as input Largest integer not greater than argument FLOOR(-42.8) 43

LN(DOUBLE PRECISION or
NUMBER)

Same as input Natural logarithm LN(2.0) 0.6931471
805599453

LOG(b NUMBER, x NUMBER) NUMBER Logarithm to base b LOG(2.0, 64.0) 6.0000000
000000000

MOD(y, x) Same as argument types Remainder of y/x MOD(9, 4) 1

NVL(x, y)
Same as argument types; where
both arguments are of the same
data type

If x is null, then NVL returns y NVL(9, 0) 9

POWER(a DOUBLE PRECISION, b
DOUBLE PRECISION) DOUBLE PRECISION a raised to the power of b POWER(9.0, 3.0)

729.00000
000000000
00

POWER(a NUMBER, b NUMBER) NUMBER a raised to the power of b POWER(9.0, 3.0)
729.00000
000000000
00

ROUND(DOUBLE PRECISION or
NUMBER)

Same as input Round to nearest integer ROUND(42.4) 42

ROUND(v NUMBER, s INTEGER) NUMBER Round to s decimal places
ROUND(42.4382,
2)

42.44

SIGN(DOUBLE PRECISION or
NUMBER)

Same as input Sign of the argument (-1, 0, +1) SIGN(-8.4) -1

SQRT(DOUBLE PRECISION or
NUMBER)

Same as input Square root SQRT(2.0) 1.4142135
62373095

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 195

TRUNC(DOUBLE PRECISION or
NUMBER)

Same as input Truncate toward zero TRUNC(42.8) 42

TRUNC(v NUMBER, s INTEGER) NUMBER Truncate to s decimal places
TRUNC(42.4382,
2)

42.43

WIDTH_BUCKET(op NUMBER, b1
NUMBER, b2 NUMBER, count
INTEGER)

INTEGER
Return the bucket to which op would be assigned in an
equidepth histogram with count buckets, in the range b1
to b2

WIDTH_BUCKET(5.35
, 0.024, 10.06,
5)

3

Function Return Type Description Example Result

The following table shows the available trigonometric functions. All trigonometric functions take arguments and return values of type DOUBLE PRECISION .

Function Description

ACOS(x) Inverse cosine

ASIN(x) Inverse sine

ATAN(x) Inverse tangent

ATAN2(x, y) Inverse tangent of x/y

COS(x) Cosine

SIN(x) Sine

TAN(x) Tangent

15.1.3.4 String functions and operators

These functions and operators are for examining and manipulating string values. Strings in this context include values of the types CHAR , VARCHAR2 , and CLOB . Unless otherwise noted, all of
these functions work on all of these types, but be aware of potential effects of automatic padding when using the CHAR type. Generally, the functions described here also work on data of nonstring
types by converting that data to a string representation first.

Function Return
type

Description Example Result

string || string CLOB String concatenation. 'Enterprise' || 'DB'
Ente
rpri
seDB

CONCAT(string,
string)

CLOB String concatenation. 'a' || 'b' ab

HEXTORAW(varchar2) RAW Converts a VARCHAR2 value to a RAW value . HEXTORAW('303132') '012
'

RAWTOHEX(raw) VARC
HAR2

Converts a RAW value to a HEXADECIMAL value. RAWTOHEX('012') '303
132'

INSTR(string, set, [
start [, occurrence
]])

INTE
GER

Finds the location of a set of characters in a string, starting at position start in the string,
string , and looking for the first, second, third and so on occurrences of the set. Returns 0 if

the set isn't found.

INSTR('PETER PIPER PICKED a
PECK of PICKLED
PEPPERS','PI',1,3)

30

INSTRB(string, set)
INTE
GER Returns the position of the set within the string . Returns 0 if set is not found.

INSTRB('PETER PIPER PICKED a
PECK of PICKLED PEPPERS',
'PICK')

13

INSTRB(string, set,
start)

INTE
GER

Returns the position of the set within the string , beginning at start . Returns 0 if
set is not found.

INSTRB('PETER PIPER PICKED a
PECK of PICKLED
PEPPERS','PICK', 14)

30

INSTRB(string, set,
start, occurrence)

INTE
GER

Returns the position of the specified occurrence of set within the string , beginning at
start . Returns 0 if set is not found.

INSTRB('PETER PIPER PICKED a
PECK of PICKLED
PEPPERS','PICK', 1, 2)

30

LOWER(string) CLOB Converts string to lower case. LOWER('TOM') tom

SUBSTR(string, start
[, count])

CLOB Extracts substring starting from start and going for count characters. If count isn't
specified, the string is clipped from the start till the end.

SUBSTR('This is a test',6,2) is

SUBSTRB(string,
start [, count])

CLOB Same as SUBSTR except start and count are in number of bytes. SUBSTRB('abc',3) , assuming a
double-byte character set.

c

SUBSTR2(string,
start [, count])

CLOB Alias for SUBSTR . SUBSTR2('This is a test',6,2) is

SUBSTR2(string,
start [, count])

CLOB Alias for SUBSTRB . SUBSTR2('abc',3) (assuming a
double-byte character set)

c

SUBSTR4(string,
start [, count])

CLOB Alias for SUBSTR . SUBSTR4('This is a test',6,2) is

SUBSTR4(string,
start [, count])

CLOB Alias for SUBSTRB . SUBSTR4('abc',3) (assuming a
double-byte character set)

c

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 196

SUBSTRC(string,
start [, count])

CLOB Alias for SUBSTR . SUBSTRC('This is a test',6,2) is

SUBSTRC(string,
start [, count])

CLOB Alias for SUBSTRB . SUBSTRC('abc',3) (assuming a
double-byte character set)

c

TRIM([LEADING | TRAILING |
BOTH] [characters] FROM
string)

CLOB Removes the longest string containing only the characters (a space by default) from the
start/end/both ends of the string. TRIM(BOTH 'x' FROM 'xTomxx') Tom

LTRIM(string [,
set])

CLOB Removes all the characters specified in set from the left of a given string . If set isn't
specified, a blank space is used as default.

LTRIM('abcdefghi', 'abc') defg
hi

RTRIM(string [,
set])

CLOB Removes all the characters specified in set from the right of a given string . If set isn't
specified, a blank space is used as default.

RTRIM('abcdefghi', 'ghi') abcd
ef

UPPER(string) CLOB Converts string to upper case. UPPER('tom') TOM

Function Return
type

Description Example Result

More string manipulation functions are available and are listed in the following table. Some of them are used internally to implement the SQL-standard string functions listed in the above table.

Function Return type Description Example Res
ult

ASCII(string) INTEGER ASCII code of the first byte of the argument. ASCII('x') 12
0

CHR(INTEGER) CLOB Character with the given ASCII code. CHR(65) A

DECODE(expr, expr1a,
expr1b [, expr2a, expr2b
]... [, default])

Same as argument types
of expr1b,
expr2b,...,
default

Finds first match of expr with expr1a, expr2a , etc. When match found, returns
corresponding parameter pair, expr1b, expr2b , etc. If no match found, returns default . If
no match found and default not specified, returns null.

DECODE(3, 1,'One',
2,'Two', 3,'Three',
'Not found')

Th
re
e

INITCAP(string) CLOB Converts the first letter of each word to upper case and the rest to lower case. Words are
sequences of alphanumeric characters separated by non-alphanumeric characters.

INITCAP('hi
THOMAS')

Hi
Th
om
as

LENGTH INTEGER Returns the number of characters in a string value.
LENGTH('Côte
d''Azur')

1
1

LENGTHC INTEGER This function is identical in functionality to LENGTH ; the function name is supported for
compatibility.

LENGTHC('Côte
d''Azur')

1
1

LENGTH2 INTEGER This function is identical in functionality to LENGTH ; the function name is supported for
compatibility.

LENGTH2('Côte
d''Azur')

1
1

LENGTH4 INTEGER This function is identical in functionality to LENGTH ; the function name is supported for
compatibility.

LENGTH4('Côte
d''Azur')

1
1

LENGTHB INTEGER Returns the number of bytes required to hold the given value.
LENGTHB('Côte
d''Azur')

1
2

LPAD(string,
length INTEGER [,
fill])

CLOB
Fills up string to size length by prepending the characters fill (a space by default). If
string is already longer than length , then it is truncated (on the right).

LPAD('hi', 5, 'xy')
xy
xh
i

REPLACE(string,
search_string [,
replace_string]

CLOB
Replaces one value in a string with another. If you don't specify a value for replace_string ,
the search_string value, when found, is removed.

REPLACE('GEORGE',
'GE', 'EG')

EG
OR
EG

RPAD(string,
length INTEGER [,
fill]) CLOB

Fills up string to size length by appending the characters fill (a space by default). If
string is already longer than length , then it is truncated. RPAD('hi', 5, 'xy')

hi
xy
x

TRANSLATE(string,
from, to) CLOB

Any character in string that matches a character in the from set is replaced by the
corresponding character in the to set.

TRANSLATE('12345',
'14', 'ax')

a2
3x
5

Truncation of string text resulting from concatenation with NULL

Note

This functionality isn't compatible with Oracle databases, which can lead to some inconsistency when converting data from Oracle to EDB Postgres Advanced Server.

For EDB Postgres Advanced Server, when a column value is NULL , the concatenation of the column with a text string can result in either of the following:

Return of the text string
Disappearance of the text string (that is, a null result)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 197

The result depends on the data type of the NULL column and the way in which the concatenation is done.

If you use the string concatenation operator ‘||’ , then the types that have implicit coercion to text, as listed in the table Data Types with Implicit Coercion to Text, don't truncate the string if one of
the input parameters is NULL . For other types, it truncates the string unless the explicit type cast is used (that is, ::text). Also, to see the consistent behavior in the presence of nulls, you can use
the CONCAT function.

The following query lists the data types that have implicit coercion to text:

SELECT castsource::regtype, casttarget::regtype, castfunc::regproc,
 CASE castcontext
 WHEN 'e' THEN 'explicit'
 WHEN 'a' THEN 'implicit in assignment'
 WHEN 'i' THEN 'implicit in expressions'
 END as castcontext,
 CASE castmethod
 WHEN 'f' THEN 'function'
 WHEN 'i' THEN 'input/output function'
 WHEN 'b' THEN 'binary-coercible'
 END as castmethod
FROM pg_cast
 WHERE casttarget::regtype::text = 'text'
 AND castcontext='i';

The result of the query is listed in the following table.

castsource casttarget castfunc castcontext castmethod

character text pg_catalog.text implicit in
expressions

function

character varying text - implicit in
expressions

binary-coercible

"char" text pg_catalog.text implicit in
expressions

function

name text pg_catalog.text implicit in
expressions

function

pg_node_tree text - implicit in
expressions

binary-coercible

pg_ndistinct text - implicit in
expressions

input/output
function

pg_dependencies text - implicit in
expressions

input/output
function

integer text - implicit in
expressions

input/output
function

smallint text - implicit in
expressions

input/output
function

oid text - implicit in
expressions

input/output
function

date text - implicit in
expressions

input/output
function

double precision text - implicit in
expressions

input/output
function

real text - implicit in
expressions

input/output
function

time with time zone text - implicit in
expressions

input/output
function

time without time zone text - implicit in
expressions

input/output
function

timestamp with time zone text - implicit in
expressions

input/output
function

interval text - implicit in
expressions

input/output
function

bigint text - implicit in
expressions

input/output
function

numeric text - implicit in
expressions

input/output
function

timestamp without time zone text - implicit in
expressions

input/output
function

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 198

record text -
implicit in
expressions

input/output
function

boolean text pg_catalog.text implicit in
expressions

function

bytea text - implicit in
expressions

input/output
function

castsource casttarget castfunc castcontext castmethod

For information on the column output, see the pg_cast system catalog in the PostgreSQL core documentation.

So for example, data type UUID isn't in this list and therefore doesn't have the implicit coercion to text. As a result, certain concatenation attempts with a NULL UUID column results in a truncated
text result.

The following table is created for this example with a single row with all NULL column values:

CREATE TABLE null_concat_types (
 boolean_type BOOLEAN,
 uuid_type UUID,
 char_type CHARACTER
);

INSERT INTO null_concat_types VALUES (NULL, NULL, NULL);

Columns boolean_type and char_type have the implicit coercion to text while column uuid_type doesn't.

Thus, string concatenation with the concatenation operator ‘||‘ against columns boolean_type or char_type results in the following:

SELECT 'x=' || boolean_type || 'y' FROM null_concat_types;

 ?column?

 x=y
(1 row)

SELECT 'x=' || char_type || 'y' FROM null_concat_types;

 ?column?

 x=y
(1 row)

But concatenation with column uuid_type results in the loss of the x= string:

SELECT 'x=' || uuid_type || 'y' FROM null_concat_types;

 ?column?

 y
(1 row)

However, using explicit casting with ::text prevents the loss of the x= string:

SELECT 'x=' || uuid_type::text || 'y' FROM null_concat_types;

 ?column?

 x=y
(1 row)

Using the CONCAT function also preserves the x= string:

SELECT CONCAT('x=',uuid_type) || 'y' FROM null_concat_types;

 ?column?

 x=y
(1 row)

Thus, depending on the data type of a NULL column, use explicit casting or the CONCAT function to avoid losing some text strings.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 199

https://www.postgresql.org/docs/current/static/catalog-pg-cast.html

15.1.3.5 Pattern matching string functions

EDB Postgres Advanced Server offers support for the REGEXP_COUNT , REGEXP_INSTR , and REGEXP_SUBSTR functions. These functions search a string for a pattern specified by a regular
expression and return information about occurrences of the pattern in the string. Use a POSIX-style regular expression. For more information about forming a POSIX-style regular expression, see the
PostgreSQL core documentation.

REGEXP_COUNT

REGEXP_COUNT searches a string for a regular expression and returns a count of the times that the regular expression occurs. The signature is:

INTEGER REGEXP_COUNT
(
 srcstr TEXT,
 pattern TEXT,
 position DEFAULT 1
 modifier DEFAULT NULL
)

Parameters

srcstr

srcstr specifies the string to search.

pattern

pattern specifies the regular expression REGEXP_COUNT searches for.

position

position is an integer value that indicates the position in the source string where REGEXP_COUNT begins searching. The default value is 1 .

modifier

modifier specifies values that control the pattern-matching behavior. The default value is NULL . For a complete list of the modifiers supported by EDB Postgres Advanced Server, see the
PostgreSQL core documentation.

Example

In this example, REGEXP_COUNT returns a count of the number of times the letter i is used in the character string 'reinitializing' :

edb=# SELECT REGEXP_COUNT('reinitializing', 'i', 1) FROM DUAL;
 regexp_count

 5
(1 row)

The command instructs REGEXP_COUNT to begin counting in the first position. If you modify the command to start the count on the sixth position, REGEXP_COUNT returns 3 :

edb=# SELECT REGEXP_COUNT('reinitializing', 'i', 6) FROM DUAL;
 regexp_count

 3
(1 row)

The count now excludes any occurrences of the letter i that occur before the sixth position.

REGEXP_INSTR

REGEXP_INSTR searches a string for a POSIX-style regular expression. This function returns the position in the string where the match was located. The signature is:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 200

https://www.postgresql.org/docs/current/static/functions-matching.html
https://www.postgresql.org/docs/current/static/functions-matching.html

INTEGER REGEXP_INSTR
(
 srcstr TEXT,
 pattern TEXT,
 position INT DEFAULT 1,
 occurrence INT DEFAULT 1,
 returnparam INT DEFAULT 0,
 modifier TEXT DEFAULT NULL,
 subexpression INT DEFAULT 0,
)

Parameters

srcstr

srcstr specifies the string to search.

pattern

pattern specifies the regular expression that REGEXP_INSTR searches for.

position

position specifies an integer value that indicates the start position in a source string. The default value is 1 .

occurrence

occurrence specifies the match to return if more than one occurrence of the pattern occurs in the string to search. The default value is 1 .

returnparam

returnparam is an integer value that specifies the location in the string for REGEXP_INSTR to return. The default value is 0 . Specify:

0 to return the location in the string of the first character that matches pattern .

A value greater than 0 to return the position of the first character following the end of the pattern .

modifier

modifier specifies values that control the pattern-matching behavior. The default value is NULL . For a complete list of the modifiers supported by EDB Postgres Advanced Server, see the
PostgreSQL core documentation.

subexpression

subexpression is an integer value that identifies the portion of the pattern that's returned by REGEXP_INSTR . The default value of subexpression is 0 .

If you specify a value for subexpression , you must include one or more sets of parentheses in the pattern that isolate a portion of the value you are searching for. The value specified by
subexpression indicates the set of parentheses to return. For example, if subexpression is 2 , REGEXP_INSTR returns the position of the second set of parentheses.

Example

In this example, REGEXP_INSTR searches a string that contains a phone number for the first occurrence of a pattern that contains three consecutive digits:

edb=# SELECT REGEXP_INSTR('800-555-1212', '[0-9][0-9][0-9]', 1, 1) FROM DUAL;
 regexp_instr

 1
(1 row)

The command instructs REGEXP_INSTR to return the position of the first occurrence. If we modify the command to return the start of the second occurrence of three consecutive digits,
REGEXP_INSTR returns 5 . The second occurrence of three consecutive digits begins in the fifth position.

edb=# SELECT REGEXP_INSTR('800-555-1212', '[0-9][0-9][0-9]', 1, 2) FROM DUAL;
 regexp_instr

 5
(1 row)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 201

https://www.postgresql.org/docs/current/static/functions-matching.html

REGEXP_SUBSTR

The REGEXP_SUBSTR function searches a string for a pattern specified by a POSIX-compliant regular expression. REGEXP_SUBSTR returns the string that matches the pattern specified in the call to
the function. The signature of the function is:

TEXT REGEXP_SUBSTR
(
 srcstr TEXT,
 pattern TEXT,
 position INT DEFAULT 1,
 occurrence INT DEFAULT 1,
 modifier TEXT DEFAULT NULL,
 subexpression INT DEFAULT 0
)

Parameters

srcstr

srcstr specifies the string to search.

pattern

pattern specifies the regular expression REGEXP_SUBSTR searches for.

position

position specifies an integer value that indicates the start position in a source string. The default value is 1 .

occurrence

occurrence specifies the match returned if more than one occurrence of the search pattern occurs. The default value is 1 .

modifier

modifier specifies values that control the pattern-matching behavior. The default value is NULL . For a complete list of the modifiers supported by EDB Postgres Advanced Server, see the
PostgreSQL core documentation.

subexpression

subexpression is an integer value that identifies the portion of the pattern that's returned by REGEXP_SUBSTR . The default value of subexpression is 0 .

If you specify a value for subexpression , you must include one or more sets of parentheses in the pattern that isolate a portion of the value being searched for. The value specified by
subexpression indicates the set of parentheses to return. For example, if subexpression is 2 , REGEXP_SUBSTR returns the value contained in the second set of parentheses.

Example

In this example, REGEXP_SUBSTR searches a string that contains a phone number for the first set of three consecutive digits:

edb=# SELECT REGEXP_SUBSTR('800-555-1212', '[0-9][0-9][0-9]', 1, 1) FROM DUAL;
 regexp_substr

 800
(1 row)

It locates the first occurrence of three digits and returns the string (800) . If we modify the command to check for the second occurrence of three consecutive digits, REGEXP_SUBSTR returns 555 ,
the contents of the second substring.

edb=# SELECT REGEXP_SUBSTR('800-555-1212', '[0-9][0-9][0-9]', 1, 2) FROM DUAL;
 regexp_substr

 555
(1 row)

15.1.3.6 Pattern matching using the LIKE operator

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 202

https://www.postgresql.org/docs/current/static/functions-matching.html

EDB Postgres Advanced Server provides pattern matching using the traditional SQL LIKE operator. The syntax for the LIKE operator is:

string LIKE pattern [ESCAPE escape-character]
string NOT LIKE pattern [ESCAPE escape-character]

Every pattern defines a set of strings. The LIKE expression returns TRUE if string is contained in the set of strings represented by pattern . As expected, the NOT LIKE expression
returns FALSE if LIKE returns TRUE and vice versa. An equivalent expression is NOT (string LIKE pattern) .

If pattern doesn't contain percent signs or underscore, then the pattern represents only the string. In that case, LIKE acts like the equals operator. An underscore (_) in pattern matches any
single character. A percent sign (%) matches any string of zero or more characters.

Some examples:

'abc' LIKE 'abc' true
'abc' LIKE 'a%' true
'abc' LIKE '_b_' true
'abc' LIKE 'c' false

LIKE pattern matches always cover the entire string. To match a pattern anywhere in a string, the pattern must start and end with a percent sign.

To match a literal underscore or percent sign without matching other characters, place an escape character before the character in pattern . The default escape character is the backslash, but you
can select a different one by using the ESCAPE clause. To match the escape character, enter two escape characters.

The backslash already has a special meaning in string literals, so to write a pattern constant that contains a backslash you must write two backslashes in an SQL statement. Thus, writing a pattern that
matches a literal backslash means writing four backslashes in the statement. You can avoid this by selecting a different escape character with ESCAPE . Then a backslash isn't special to LIKE
anymore. However, it's still special to the string literal parser, so you still need two of them.

It’s also possible to select no escape character by writing ESCAPE '' . This disables the escape mechanism, which makes it impossible to turn off the special meaning of underscore and percent signs
in the pattern.

15.1.3.7 Data type formatting functions

The EDB Postgres Advanced Server formatting functions provide a powerful set of tools for converting various data types (date/time, integer, floating point, numeric) to formatted strings and for
converting from formatted strings to specific data types. These functions all follow a common calling convention: the first argument is the value to format and the second argument is a string template
that defines the output or input format.

Function Return
type

Description Example Result

TO_CHAR(DATE [,
format])

VARCH
AR2

Convert a date/time to a string with output format . If
omitted default format is DD-MON-YY.

TO_CHAR(SYSDATE, 'MM/DD/YYYY HH12:MI:SS AM') 07/25/2007
09:43:02 AM

TO_CHAR(TIMESTAMP
[, format])

VARCH
AR2

Convert a timestamp to a string with output format . If
omitted default format is DD-MON-YY.

TO_CHAR (CURRENT_TIMESTAMP, 'MM/DD/YYYY
HH12:MI:SS AM')

08/13/2015
08:55:22 PM

TO_CHAR(INTEGER [,
format])

VARCH
AR2

Convert an integer to a string with output format . TO_CHAR(2412, '999,999S') 2,412+

TO_CHAR(NUMBER [,
format])

VARCH
AR2

Convert a decimal number to a string with output
format .

TO_CHAR(10125.35, '999,999.99') 10,125.35

TO_CHAR(DOUBLE
PRECISION, format)

VARCH
AR2

Convert a floating-point number to a string with output
format .

TO_CHAR (CAST(123.5282 AS REAL), '999.99') 123.53

TO_DATE(string [,
format])

TIMES
TAMP

Convert a date or timestamp formatted string to a
TIMESTAMP data type.

TO_DATE('2007-07-04 13:39:10', 'YYYY-MM-DD
HH24:MI:SS')

TO_DATE('2007-07-04','YYYY-MM-DD')

04-JUL-07
13:39:10

04-JUL-07
00:00:00

TO_NUMBER(string [,
format])

NUMBE
R

Convert a number formatted string to a NUMBER data
type.

TO_NUMBER('2,412-', '999,999S') -2412

TO_TIMESTAMP(string
, format)

TIMES
TAMPTZ

Convert a timestamp formatted string to a
TIMESTAMPTZ data type.

TO_TIMESTAMP('05 Dec 2000 08:30:25 pm', 'DD
Mon YYYY hh12:mi:ss pm')

05-DEC-00
20:30:25
+05:30

TO_TIMESTAMP_TZ(str
ing, format)

TIMES
TAMPTZ

Convert a timestamp formatted string to a
TIMESTAMPTZ data type.

TO_TIMESTAMP_TZ ('2003/12/13 10:13:18 -8:00',
'YYYY/MM/DD HH:MI:SS TZH:TZM')

13-DEC-03
23:43:18
+05:30

TO_CHAR, TO_DATE, TO_TIMESTAMP, and TO_TIMESTAMP_TZ

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 203

In an output template string (for TO_CHAR), certain patterns are recognized and replaced with appropriately formatted data from the value to formatt. Any text that isn't a template pattern is copied
verbatim. Similarly, in an input template string (for anything but TO_CHAR), template patterns identify the parts of the input data string to look at and the values to find there.

If you don't specify a date, month, or year when calling TO_TIMESTAMP , TO_TIMESTAMP_TZ , or TO_DATE , then by default the output format considers the first date of a current month or current
year. In the following example, date, month, and year isn't specified in the input string. TO_TIMESTAMP , TO_TIMESTAMP_TZ , and TO_DATE returns a default value of the first date of a current
month and current year.

edb=# select to_timestamp('12', 'HH');
 to_timestamp

 01-MAY-20 12:00:00 +05:30
(1 row)

edb=# select to_timestamp_tz('12', 'HH');
 to_timestamp_tz

 01-MAY-20 12:00:00 +05:30
(1 row)

edb=# select to_date('12', 'HH');
 to_date

 01-MAY-20 12:00:00
(1 row)

The following table shows the template patterns available for formatting date values using the TO_CHAR , TO_DATE , TO_TIMESTAMP , and TO_TIMESTAMP_TZ functions.

Pattern Description

HH Hour of day (01-12)

HH12 Hour of day (01-12)

HH24 Hour of day (00-23)

MI Minute (00-59)

SS Second (00-59)

SSSSS Seconds past midnight (0-86399)

FFn Fractional seconds where n is an optional integer from 1 to 9 for the number of digits to return; if omitted, the default is 6

AM or
A.M.
or PM
or
P.M.

Meridian indicator (uppercase)

am or
a.m.
or pm
or
p.m.

Meridian indicator (lowercase)

Y,YYY Year (4 and more digits) with comma

YEAR Year (spelled out)

SYEAR Year (spelled out) (BC dates prefixed by a minus sign)

YYYY Year (4 and more digits)

SYYYY Year (4 and more digits) (BC dates prefixed by a minus sign)

YYY Last 3 digits of year

YY Last 2 digits of year

Y Last digit of year

IYYY ISO year (4 and more digits)

IYY Last 3 digits of ISO year

IY Last 2 digits of ISO year

I Last 1 digit of ISO year

BC or
B.C.
or AD
or
A.D.

Era indicator (uppercase)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 204

bc or
b.c.
or ad
or
a.d.

Era indicator (lowercase)

MONTH Full uppercase month name

Month Full mixed-case month name

month Full lowercase month name

MON Abbreviated uppercase month name (3 chars in English, localized lengths vary)

Mon Abbreviated mixed-case month name (3 chars in English, localized lengths vary)

mon Abbreviated lowercase month name (3 chars in English, localized lengths vary)

MM Month number (01-12)

DAY Full uppercase day name

Day Full mixed-case day name

day Full lowercase day name

DY Abbreviated uppercase day name (3 chars in English, localized lengths vary)

Dy Abbreviated mixed-case day name (3 chars in English, localized lengths vary)

dy Abbreviated lowercase day name (3 chars in English, localized lengths vary)

DDD Day of year (001-366)

DD Day of month (01-31)

D Day of week (1-7; Sunday is 1)

W Week of month (1-5); the first week starts on the first day of the month

WW Week number of year (1-53); the first week starts on the first day of the year

IW ISO week number of year; the first Thursday of the new year is in week 1

CC Century (2 digits); the 21st century starts on 2001-01-01

SCC Same as CC except BC dates are prefixed by a minus sign

J Julian Day (days since January 1, 4712 BC)

Q Quarter

RM Month in Roman numerals (I-XII; I=January) (uppercase)

rm Month in Roman numerals (i-xii; i=January) (lowercase)

RR

First 2 digits of the year when given only the last 2 digits of the year. Result is based upon an algorithm using the current year and the given 2-digit year. The first 2 digits of the given 2-
digit year are the same as the first 2 digits of the current year with the following exceptions: If the given 2-digit year is <50 and the last 2 digits of the current year is >= 50, then the first 2
digits for the given year is 1 greater than the first 2 digits of the current year. If the given 2-digit year is >= 50 and the last 2 digits of the current year is <50, then the first 2 digits for the
given year is 1 less than the first 2 digits of the current year.

RRRR Affects only TO_DATE function. Allows specification of 2-digit or 4-digit year. If 2-digit year given, then returns first 2 digits of year like RR format. If 4-digit year given, returns the
given 4-digit year.

TZH Time-zone hours

TZM Time-zone minutes

Pattern Description

Date and time modifiers

You can apply certain modifiers to any template pattern to alter its behavior. For example, FMMonth is the Month pattern with the FM modifier. The following table shows the modifier patterns for
date/time formatting.

Modifier Description Example

FM prefix Fill mode (suppress padding blanks and zeros) FMMonth

TH suffix Uppercase ordinal number suffix DDTH

th suffix Lowercase ordinal number suffix DDth

FX prefix Fixed format global option (see usage notes)
FX Month DD
Day

SP suffix Spell mode DDSP

Usage notes for date/time formatting:

FM suppresses leading zeroes and trailing blanks that are otherwise added to make the output of a pattern fixed width.

TO_TIMESTAMP , TO_TIMESTAMP_TZ , and TO_DATE skip multiple blank spaces in the input string if you don't use the FX option. You must use FX as the first item in the template. For
example:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 205

TO_TIMESTAMP('2000 - JUN', 'YYYY-MON') is correct, but
TO_TIMESTAMP('2000 JUN', 'FXYYYY MON') and
TO_TIMESTAMP_TZ('2000 JUN', 'FXYYYY MON') returns an error
because TO_TIMESTAMP and TO_TIMESTAMP_TZ expects one space
only.

Ordinary text is allowed in TO_CHAR templates and is output literally.

In conversions from string to timestamp , timestamptz , or date , the CC field is ignored if there is a YYY , YYYY , or Y,YYY field. If CC is used with YY or Y , then the year is
computed as (CC-1)*100+YY .

The following table shows some examples of the use of the TO_CHAR and TO_DATE functions.

Expression Result

TO_CHAR(CURRENT_TIMESTAMP, 'Day, DD HH12:MI:SS') 'Tuesday , 06 05:39:18'

TO_CHAR(CURRENT_TIMESTAMP, 'FM-Day, FMDD HH12:MI:SS') 'Tuesday, 6 05:39:18'

TO_CHAR(-0.1, '99.99') ' -.10'

TO_CHAR(-0.1, 'FM9.99') '-.1'

TO_CHAR(0.1, '0.9') ' 0.1'

TO_CHAR(12, '9990999.9') ' 0012.0'

TO_CHAR(12, 'FM9990999.9') '0012.'

TO_CHAR(485, '999') ' 485'

TO_CHAR(-485, '999') '-485'

TO_CHAR(1485, '9,999') ' 1,485'

TO_CHAR(1485, '9G999') ' 1,485'

TO_CHAR(148.5, '999.999') ' 148.500'

TO_CHAR(148.5, 'FM999.999') '148.5'

TO_CHAR(148.5, 'FM999.990') '148.500'

TO_CHAR(148.5, '999D999') ' 148.500'

TO_CHAR(3148.5, '9G999D999') ' 3,148.500'

TO_CHAR(-485, '999S') '485-'

TO_CHAR(-485, '999MI') '485-'

TO_CHAR(485, '999MI') '485 '

TO_CHAR(485, 'FM999MI') '485'

TO_CHAR(-485, '999PR') '<485>'

TO_CHAR(485, 'L999') '$ 485'

TO_CHAR(485, 'RN') ' CDLXXXV'

TO_CHAR(485, 'FMRN') 'CDLXXXV'

TO_CHAR(5.2, 'FMRN') 'V'

TO_CHAR(12, '99V999') ' 12000'

TO_CHAR(12.4, '99V999') ' 12400'

TO_CHAR(12.45, '99V9') ' 125'

The following table shows some examples of the use of the TO_TIMESTAMP_TZ function:

Expression Result

TO_TIMESTAMP_TZ('12-JAN-2010', 'DD-MONTH-YYYY') '12-JAN-10 00:00:00 +05:30'

TO_TIMESTAMP_TZ('03-APR-07 09:12:21 P.M','DD-MON-YY HH12:MI:SS A.M') '03-APR-07 09:12:21 +05:30'

TO_TIMESTAMP_TZ('2003/12/13 10:13:18 -8:00', 'YYYY/MM/DD HH:MI:SS
TZH:TZM')

'13-DEC-03 23:43:18 +05:30'

TO_TIMESTAMP_TZ('20-MAR-20 04:30:00 +08:00', 'DD-MON-YY HH:MI:SS TZH:TZM') '20-MAR-20 02:00:00 +05:30'

TO_TIMESTAMP_TZ('10-Sep-02 14:10:10.123000', 'DD-MON-RR HH24:MI:SS.FF') '10-SEP-02 14:10:10.123 +05:30'

IMMUTABLE TO_CHAR(TIMESTAMP, format) function

Certain cases of the TO_CHAR function can result in usage of an IMMUTABLE form of the function. A function is IMMUTABLE if the function doesn't modify the database, and the function returns
the same, consistent value dependent upon only its input parameters. That is, the settings of configuration parameters, the locale, the content of the database, and so on don't affect the results returned

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 206

by the function.

For more information about function volatility categories VOLATILE , STABLE , and IMMUTABLE , see the PostgreSQL Core documentation.

A particular advantage of an IMMUTABLE function is that you can use it in the CREATE INDEX command to create an index based on that function.

For the TO_CHAR function to use the IMMUTABLE form, you must satisfy the following conditions:

The first parameter of the TO_CHAR function must be of data type TIMESTAMP .
The format specified in the second parameter of the TO_CHAR function must not affect the return value of the function based on factors such as language and locale. For example, you can use a
format of 'YYYY-MM-DD HH24:MI:SS' for an IMMUTABLE form of the function since the result of the function is the date and time expressed solely in numeric form, regardless of locale
settings. However, you can't use a format of 'DD-MON-YYYY' for an IMMUTABLE form of the function because the three-character abbreviation of the month can return different results
depending upon the locale setting.

Format patterns that result in a non-immutable function include any variations of spelled out or abbreviated months (MONTH, MON) , days (DAY, DY) , median indicators (AM, PM) , or era
indicators (BC, AD) .

For this example, a table with a TIMESTAMP column is created:

CREATE TABLE ts_tbl (ts_col TIMESTAMP);

The following shows the successful creation of an index with the IMMUTABLE form of the TO_CHAR function.

edb=# CREATE INDEX ts_idx ON ts_tbl (TO_CHAR(ts_col,'YYYY-MM-DD HH24:MI:SS'));
CREATE INDEX
edb=# \dS ts_idx
 Index "public.ts_idx"
 Column | Type | Definition
---------+-------------------+--
 to_char | character varying | to_char(ts_col, 'YYYY-MM-DD HH24:MI:SS'::character varying)
btree, for table "public.ts_tbl"

The following results in an error because the format specified in the TO_CHAR function prevents the use of the IMMUTABLE form since the three-character month abbreviation, MON , can result in
different return values based on the locale setting.

edb=# CREATE INDEX ts_idx_2 ON ts_tbl (TO_CHAR(ts_col, 'DD-MON-YYYY'));
ERROR: functions in index expression must be marked IMMUTABLE

TO_NUMBER

The following table lists the template patterns available for formatting numeric values.

Pattern Description

9 Value with the specified number of digits

0 Value with leading zeroes

.
(period)

Decimal point

, (comma) Group (thousand) separator

$ Dollar sign

S Sign anchored to number (uses locale).

L Currency symbol (uses locale)

The pattern 9 results in a value with the same number of digits as there are 9s. If a digit isn't available, the server ignores the corresponding 9s. The S pattern doesn't support + , and the $ pattern
doesn't support decimal points in the expression.

The following table shows some examples of the use of the TO_NUMBER function.

Expression Result

TO_NUMBER('-65', 'S99') ' -65'

TO_NUMBER('$65', 'L99') ' 65'

TO_NUMBER('9678584', '9999999') ' 9678584'

TO_NUMBER('123,456,789', '999,999,999') ' 123456789'

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 207

https://www.postgresql.org/docs/current/static/xfunc-volatility.html

TO_NUMBER('1210.73', '9999.99') ' 1210.73'

TO_NUMBER('1210.73') ' 1210.73'

TO_NUMBER('0101.010','FM99999999.99999') ' 101.010'

Expression Result

Numeric modifiers

The following table shows the modifier pattern for numeric formatting.

Pattern Description Example

FM prefix Fill mode (suppress trailing zeroes and padding blanks) FM99.99

Difference TO_CHAR, TO_NUMBER, and SUBSTR functions

You can initialize the database using the INITDBOPTS variable to create clusters in a mode compatible with Oracle databases. The clusters created in PostgreSQL mode don't include compatibility
features. To create a new cluster in PostgreSQL mode, use the "--no-redwood-compat" option, which offers a similar behavior to PostgreSQL.

A SELECT statement that contains one of the functions shown in the following table returns the indicated result in EDB Postgres Advanced Server and PostgreSQL. Listed are the following differences
for TO_CHAR , TO_NUMBER , and SUBSTR functions.

TO_CHAR: Converts the timestamp to string according to a given format.

Note

The 'syear' , 'syyyy' , 'year' , 'rrrr' , 'sp' , 'spth' , 'scc' , 'rr' , 'ff' , 'ff7' , 'ff8' , 'ff9' , and lowercase 'of' , 'tzh' , and 'tzm' patterns
aren't supported in PostgreSQL.
'TH' modifier adds fewer padding zeros in EDB Postgres Advanced Server.

The upper case 'TH' pattern, which displays the suffix in uppercase, isn't supported in EDB Postgres Advanced Server. If you specify the 'TH/th' pattern, the suffix is always
displayed in lower case.
A modifier can appear in an 'FM' pattern, and each occurrence toggles the modifier's effect. To toggle the effect of the 'FM' pattern, specify it an even number of times to turn off
the effect and specify it an odd number of times to turn on the effect of the 'FM' pattern in PostgreSQL. However, in EDB Postgres Advanced Server, specifying the 'FM' pattern
always turns on the effect of the 'FM' pattern.

The following table shows the examples for TO_CHAR(timestamp, text) function.

Examples Result

EDB Postgres Advanced
Server

PostgreSQL

SELECT TO_CHAR(current_timestamp, 'of');

SELECT TO_CHAR(current_timestamp, 'OF');
+05:30

of

+05:30

SELECT TO_CHAR(current_timestamp, 'syear'); twenty twenty one s1ear

SELECT TO_CHAR(current_timestamp, 'syyyy'); 2021 s2021

SELECT TO_CHAR(current_timestamp, 'year'); twenty twenty one 1ear

SELECT TO_CHAR(current_timestamp, 'rrrr'); 2021 rrrr

SELECT TO_CHAR(current_timestamp, 'hhsp'); five 05sp

SELECT TO_CHAR(current_timestamp, 'hhspth'); fifth 05spth

SELECT TO_CHAR(current_timestamp, 'scc'); 21 s21

SELECT TO_CHAR(current_timestamp, 'rr'); 21 rr

SELECT TO_CHAR(current_timestamp, 'ff'); 923202 ff

SELECT TO_CHAR(current_timestamp, 'ff7'); 4192310 ff7

SELECT TO_CHAR(current_timestamp, 'ff8'); 36181700 ff8

SELECT TO_CHAR(current_timestamp, 'ff9'); 640405000 ff9

SELECT TO_CHAR(current_timestamp, 'tzh');

SELECT TO_CHAR(current_timestamp, 'TZH');
+05

isth

+05

SELECT TO_CHAR(current_timestamp, 'TZM');

SELECT TO_CHAR(current_timestamp, 'tzm');
30

30

istm

SELECT TO_CHAR(current_timestamp, 'iddd'); 1134 131

SELECT TO_CHAR(current_timestamp, 'id'); 16 5

SELECT TO_CHAR(current_timestamp, 'ssss'); 5555 64490

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 208

SELECT TO_CHAR(current_timestamp, 'hhthth'); Invalid format 11thth

SELECT TO_CHAR(current_timestamp, 'rmth'); Invalid format v

SELECT TO_CHAR(current_timestamp, 'FMOF');

SELECT TO_CHAR(current_timestamp, 'FMFMOF');

SELECT TO_CHAR(current_timestamp, 'FMFMFMOF');

SELECT TO_CHAR(current_timestamp, 'FMFMFMFMOF');

+5:30

+5:30

FM+05:30

FM+5:30

FMFM+05:30

SELECT TO_CHAR(timestamptz'5-MAY-21 17:37:14 +05:30', 'DDTH'); 05th 05TH

SELECT TO_CHAR(timestamptz'5-JAN-0001 17:37:14 +05:30',
'FMY,YYY');

1 0,001

SELECT TO_CHAR(timestamptz'5-JAN-0001 17:37:14 +05:30',
'Y,YYYTH');

01st 0,001ST

SELECT TO_CHAR(timestamptz'5-JAN-0001 17:37:14 +05:30', 'IYYYTH'); 01st 0001ST

SELECT TO_CHAR(timestamptz'5-JAN-0001 17:37:14 +05:30', 'YYYYTH'); 01st 0001ST

SELECT TO_CHAR(timestamptz'5-JAN-0001 17:37:14 +05:30', 'IYYTH'); 01st 001ST

SELECT TO_CHAR(timestamptz'5-JAN-0001 17:37:14 +05:30', 'YYYTH'); 01st 001ST

Examples Result

TO_NUMBER: Converts the string to numeric according to a given format.

Note

PostgreSQL doesn't strictly check the format options. In contrast, EDB Postgres Advanced Server checks the format except in a few cases when the input string has '-' or ',' at the
beginning. You don't have to provide the pattern for these characters in the corresponding location in the format string.
In PostgreSQL, you don't have to match all the digits of the input string with the patterns. It outputs the number of digits from the input string for which the valid patterns are present.
EDB Postgres Advanced Server throws an error if you don't provide patterns for all the digits present in the input string.
PostgreSQL ignores any invalid characters present in the input or the format string. EDB Postgres Advanced Server throws an error. This kind of behavior can lead to many differences
with different types of patterns.
The patterns 'PL' , 'PR' , and 'SG' aren't supported in EDB Postgres Advanced Server.

The following table shows the examples for the TO_NUMBER(text, text) function.

Examples Result

EDB Postgres Advanced Server PostgreSQL

SELECT TO_NUMBER('$1', '00'); Invalid input syntax for type numeric: "$1" 1

SELECT TO_NUMBER('$$1', '$$0'); Invalid format string: "$$0" 1

SELECT TO_NUMBER('1$', '0$'); Invalid input syntax for type numeric: "1." 1

SELECT TO_NUMBER('1', '0'); Invalid format string: "0" 1

SELECT TO_NUMBER('1$$1', '0$L0'); Invalid input syntax for type numeric: "1.$1" 11

SELECT TO_NUMBER('1,11', '000'); 111 11

SELECT TO_NUMBER('1,11', '0,0'); Invalid input syntax for type numeric: "111" 11

SELECT TO_NUMBER('1-1', '0S0'); Invalid format string: "0S0" -11

SELECT TO_NUMBER('1-1', '000'); Invalid input syntax for type numeric: "1-1" 11

SELECT TO_NUMBER('1.11', '000'); Invalid input syntax for type numeric: "1.11" 11

SELECT TO_NUMBER('1..1', '0.0'); Invalid input syntax for type numeric: "1..1" 1

SELECT TO_NUMBER('$11-', '$00S'); Invalid input syntax for type numeric: "-$11" -11

SELECT TO_NUMBER('11', ''); Invalid input syntax for type numeric: "11" Returns blank

SELECT TO_NUMBER(' ', ''); Invalid input syntax for type numeric: "" Returns blank

SELECT TO_NUMBER('$12.345', 'L00.000'); Invalid format string: "L00.000" 12.345

SELECT TO_NUMBER('$12.345', 'L00D000'); Invalid format string: "L00.000" 12.345

SELECT TO_NUMBER('11-', '9MMI'); Invalid format string: "9MMI" -1

SELECT TO_NUMBER('-11', 'MI99'); Invalid input syntax for type numeric: "-11" -11

SELECT TO_NUMBER('000011',
'FMFM000000');

Invalid format string: "FMFM000000" 11

SELECT TO_NUMBER('+11', 'S99');

SELECT TO_NUMBER('11+', '99S');

Invalid input syntax for type numeric: "+11"

11

11

11

SELECT TO_NUMBER('+11', 'PL99'); Invalid format string: "PL99" 11

SELECT TO_NUMBER('-11', '99PR'); Invalid format string: "99PR" -11

SELECT TO_NUMBER('1+1-1', '9SG9SG9'); Invalid format string: "9SG9SG9" -111

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 209

SELECT TO_NUMBER('01,000', '99G999');

SELECT TO_NUMBER('01,000', 'FM99G999');
1000

1000

100

Examples Result

SUBSTR: Returns a substring of a character value.

Note

The index of the string starts from 1 . In PostgreSQL, if zero is the start parameter to fetch only one character, the result returns blank. If you try to fetch two characters, the result
shows one character since zero is specified in the start position. However, in EDB Postgres Advanced Server, if zero is the start parameter, internally it converts to 1 and starts the
searching.
Negative values at the start parameter aren't allowed in PostgreSQL. In EDB Postgres Advanced Server, negative values cause a reverse search to occur.
PostgreSQL throws an error if a numeric value is passed for start and length parameter. EDB Postgres Advanced Server converts it to an integer.

The following table shows the examples for SUBSTR(string, from, count) , SUBSTR(string, from) , SUBSTR(string, from, count)::bytea , and SUBSTR(string,
from)::bytea function.

Examples Result

EDB Postgres Advanced
Server

PostgreSQL

SELECT (SUBSTR('ABCDEFGH', 0, 1)); A Returns blank

SELECT (SUBSTR('ABCD', -1, 1));

SELECT (SUBSTR('ABCD', -4, 1));

D

A
Returns blank

SELECT (SUBSTR('ABCD', 1, -1)); Returns blank ERROR: negative substring length not allowed

SELECT (SUBSTR('ABCD', 1.1, 1)); A ERROR: function substr(unknown, numeric, integer) does not
exist

SELECT (SUBSTR('ABCD', 1, 1.1)); A ERROR: function substr(unknown, integer, numeric) does not
exist

SELECT (SUBSTR('ABCD', -1)); D ABCD

SELECT (SUBSTR('ABCD', 1.1)); ABCD ERROR: function substr(unknown, numeric) does not exist

SELECT (SUBSTR('ABCDEFGH', 0, 1))::bytea; \x41 \x

SELECT (SUBSTR('ABCD', 5,1))::bytea; Returns blank \x

SELECT (SUBSTR('ABCDEFGH', -1,
1))::bytea;

\x48 \x

SELECT (SUBSTR('ABCD', -5, 1))::bytea; Returns blank \x

SELECT (SUBSTR('ABCD', 1, -1))::bytea; Returns blank ERROR: negative substring length not allowed

SELECT (SUBSTR('ABCD', 1.1, 1))::bytea; \x41 ERROR: function substr(unknown, numeric, integer) does not
exist

SELECT (SUBSTR('ABCD', 1, 1.1))::bytea; \x41 ERROR: function substr(unknown, integer, numeric) does not
exist

SELECT (SUBSTR('ABCD', 5))::bytea; Returns blank \x

SELECT (SUBSTR('ABCD', -1))::bytea; \x44 \x41424344

SELECT (SUBSTR('ABCD', 1.1))::bytea; \x41424344 ERROR: function substr(unknown, numeric) does not exist

15.1.3.8 Date/time functions and operators

The table summarizes the available functions for date/time value processing. It shows the behaviors of the basic arithmetic operators (+, -) . For formatting functions, refer to IMMUTABLE
TO_CHAR(TIMESTAMP, format) function. For background information on date/time data types, see Date/time types.

Operator Example Result

plus (+) DATE '2001-09-28' + 7 05-OCT-01
00:00:00

plus (+) TIMESTAMP '2001-09-28 13:30:00' + 3 01-OCT-01
13:30:00

minus (-) DATE '2001-10-01' – 7 24-SEP-01
00:00:00

minus (-) TIMESTAMP '2001-09-28 13:30:00' - 3 25-SEP-01
13:30:00

minus (-) TIMESTAMP '2001-09-29 03:00:00' - TIMESTAMP '2001-09-27
12:00:00'

@ 1 day 15 hours

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 210

In the date/time functions of the following table the use of the DATE and TIMESTAMP data types are interchangeable.

Function Return
type

Description Example Result

ADD_MONTHS (DATE,
NUMBER)

DATE Adds months to a date. ADD_MONTHS ('28-FEB-97', ,3.8) 31-MAY-97
00:00:00

CURRENT_DATE DATE Current date. CURRENT_DATE 04-JUL-07

CURRENT_TIMESTAMP TIMEST
AMP

Returns the current date and time. CURRENT_TIMESTAMP 04-JUL-07
15:33:23.484

EXTRACT(field FROM
TIMESTAMP)

DOUBLE
PRECIS
ION

Gets subfield.
EXTRACT(hour FROM TIMESTAMP '2001-02-
16 20:38:40') 20

LAST_DAY(DATE) DATE
Returns the last day of the month represented by the given date. If the
given date contains a time portion, it's carried forward to the result
unchanged.

LAST_DAY('14-APR-98')
30-APR-98
00:00:00

LOCALTIMESTAMP [
(precision)]

TIMEST
AMP

Current date and time (start of current transaction). LOCALTIMESTAMP 04-JUL-07
15:33:23.484

MONTHS_BETWEEN
(DATE, DATE)

NUMBER Number of months between two dates.
MONTHS_BETWEEN ('28-FEB-07', '30-NOV-
06')

3

NEXT_DAY(DATE,
dayofweek)

DATE Date falling on dayofweek following specified date. NEXT_DAY('16-APR-07',FRI') 20-APR-07
00:00:00

NEW_TIME(DATE,
VARCHAR, VARCHAR)

DATE Converts a date and time to an alternate time zone.
NEW_TIME (TO_DATE '2005/05/29 01:45',
'AST', 'PST')

2005/05/29
21:45:00

NUMTODSINTERVAL(NU
MBER, INTERVAL)

INTERV
AL

Converts a number to a specified day or second interval. SELECT numtodsinterval(100, ‘hour’); 4 days
04:00:00

NUMTOYMINTERVAL(NU
MBER, INTERVAL)

INTERV
AL

Converts a number to a specified year or month interval. SELECT numtoyminterval(100, ‘month’); 8 years 4 mons

ROUND(DATE [,
format])

DATE Date rounded according to format . ROUND(TO_DATE('29-MAY-05'),'MON') 01-JUN-05
00:00:00

SYS_EXTRACT_UTC(TI
MESTAMP WITH TIME
ZONE)

TIMEST
AMP Returns Coordinated Universal Time.

SYS_EXTRACT_UTC(CAST ('24-MAR-11
12:30:00PM -04:00' AS TIMESTAMP WITH
TIME ZONE))

 24-MAR-11
16:30:00

SYSDATE DATE Returns current date and time. SYSDATE 01-AUG-12
11:12:34

SYSTIMESTAMP()
TIMEST
AMP Returns current date and time. SYSTIMESTAMP

01-AUG-12
11:11:23.
665229 -07:00

TRUNC(DATE
[format])

DATE Truncates according to format . TRUNC(TO_DATE ('29-MAY-05'), 'MON') 01-MAY-05
00:00:00

ADD_MONTHS

The ADD_MONTHS functions adds or subtracts the specified number of months to or from the given date. Use a negative value to subtract. The resulting day of the month is the same as the day of the
month of the given date except when the day is the last day of the month. In that case, the resulting date always falls on the last day of the month.

Any fractional portion of the number of months parameter is truncated before performing the calculation.

If the given date contains a time portion, it's carried forward to the result unchanged.

These examples show the ADD_MONTHS function:

SELECT ADD_MONTHS('13-JUN-07',4) FROM DUAL;

 add_months

 13-OCT-07 00:00:00
(1 row)

SELECT ADD_MONTHS('31-DEC-06',2) FROM DUAL;

 add_months

 28-FEB-07 00:00:00
(1 row)

SELECT ADD_MONTHS('31-MAY-04',-3) FROM DUAL;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 211

 add_months

 29-FEB-04 00:00:00
(1 row)

CURRENT DATE/TIME

EDB Postgres Advanced Server provides functions that return values related to the current date and time. These functions return values based on the start time of the current transaction:

CURRENT_DATE
CURRENT_TIMESTAMP
LOCALTIMESTAMP
LOCALTIMESTAMP(precision)

CURRENT_DATE returns the current date and time based on the start time of the current transaction. The value of CURRENT_DATE doesn't change if called multiple times in a transaction.

SELECT CURRENT_DATE FROM DUAL;

 date

 06-AUG-07

CURRENT_TIMESTAMP returns the current date and time. When called from a single SQL statement, it returns the same value for each occurrence in the statement. If called from multiple statements
in a transaction, it might return different values for each occurrence. If called from a function, it might return a value different from the one returned by current_timestamp in the caller.

SELECT CURRENT_TIMESTAMP, CURRENT_TIMESTAMP FROM DUAL;

 current_timestamp | current_timestamp
----------------------------------+----------------------------------
 02-SEP-13 17:52:29.261473 +05:00 | 02-SEP-13 17:52:29.261474 +05:00

You can optionally give LOCALTIMESTAMP a precision parameter. The parameter causes the result to be rounded to the specified number of fractional digits in the seconds field. Without a precision
parameter, the result is given to the full available precision.

SELECT LOCALTIMESTAMP FROM DUAL;

 timestamp

 06-AUG-07 16:11:35.973
(1 row)

SELECT LOCALTIMESTAMP(2) FROM DUAL;

 timestamp

 06-AUG-07 16:11:44.58
(1 row)

Since these functions return the start time of the current transaction, their values don't change during the transaction. The intent is to allow a single transaction to have a consistent notion of the
“current” time, so that multiple modifications in the same transaction have the same timestamp. Other database systems might advance these values more frequently.

EXTRACT

The EXTRACT function retrieves subfields such as year or hour from date/time values. The EXTRACT function returns values of type DOUBLE PRECISION . The following are valid field names:

YEAR

The year field.

SELECT EXTRACT(YEAR FROM TIMESTAMP '2001-02-16 20:38:40') FROM DUAL;

 date_part

 2001
(1 row)

MONTH

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 212

The number of the month in the year (1 - 12).

SELECT EXTRACT(MONTH FROM TIMESTAMP '2001-02-16 20:38:40') FROM DUAL;

 date_part

 2
(1 row)

DAY

The day of the month field (1 - 31).

SELECT EXTRACT(DAY FROM TIMESTAMP '2001-02-16 20:38:40') FROM DUAL;

 date_part

 16
(1 row)

HOUR

The hour field (0 - 23).

SELECT EXTRACT(HOUR FROM TIMESTAMP '2001-02-16 20:38:40') FROM DUAL;

 date_part

 20
(1 row)

MINUTE

The minutes field (0 - 59).

SELECT EXTRACT(MINUTE FROM TIMESTAMP '2001-02-16 20:38:40') FROM DUAL;

 date_part

 38
(1 row)

SECOND

The seconds field, including fractional parts (0 - 59).

SELECT EXTRACT(SECOND FROM TIMESTAMP '2001-02-16 20:38:40') FROM DUAL;

 date_part

 40
(1 row)

MONTHS_BETWEEN

The MONTHS_BETWEEN function returns the number of months between two dates. The result is a numeric value that's positive if the first date is greater than the second date. It's negative if the first
date is less than the second date.

The result is always a whole number of months if the day of the month of both date parameters is the same or both date parameters fall on the last day of their respective months.

These examples show the MONTHS_BETWEEN function:

SELECT MONTHS_BETWEEN('15-DEC-06','15-OCT-06') FROM DUAL;

 months_between

 2
(1 row)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 213

SELECT MONTHS_BETWEEN('15-OCT-06','15-DEC-06') FROM DUAL;

 months_between

 -2
(1 row)

SELECT MONTHS_BETWEEN('31-JUL-00','01-JUL-00') FROM DUAL;

 months_between

 0.967741935
(1 row)

SELECT MONTHS_BETWEEN('01-JAN-07','01-JAN-06') FROM DUAL;

 months_between

 12
(1 row)

NEXT_DAY

The NEXT_DAY function returns the first occurrence of the given weekday strictly greater than the given date. You must specify at least the first three letters of the weekday, for example, SAT . If the
given date contains a time portion, it's carried forward to the result unchanged.

These examples show the NEXT_DAY function.

SELECT NEXT_DAY(TO_DATE('13-AUG-07','DD-MON-YY'),'SUNDAY') FROM DUAL;

 next_day

 19-AUG-07 00:00:00
(1 row)

SELECT NEXT_DAY(TO_DATE('13-AUG-07','DD-MON-YY'),'MON') FROM DUAL;

 next_day

 20-AUG-07 00:00:00
(1 row)

NEW_TIME

The NEW_TIME function converts a date and time from one time zone to another. NEW_TIME returns a value of type DATE . The syntax is:

NEW_TIME(DATE, time_zone1, time_zone2)

time_zone1 and time_zone2 must be string values from the Time zone column of the following table.

Time zone Offset from UTC Description

AST UTC+4 Atlantic Standard Time

ADT UTC+3 Atlantic Daylight Time

BST UTC+11 Bering Standard Time

BDT UTC+10 Bering Daylight Time

CST UTC+6 Central Standard Time

CDT UTC+5 Central Daylight Time

EST UTC+5 Eastern Standard Time

EDT UTC+4 Eastern Daylight Time

GMT UTC Greenwich Mean Time

HST UTC+10 Alaska-Hawaii Standard Time

HDT UTC+9 Alaska-Hawaii Daylight Time

MST UTC+7 Mountain Standard Time

MDT UTC+6 Mountain Daylight Time

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 214

NST UTC+3:30 Newfoundland Standard
Time

PST UTC+8 Pacific Standard Time

PDT UTC+7 Pacific Daylight Time

YST UTC+9 Yukon Standard Time

YDT UTC+8 Yukon Daylight Time

Time zone Offset from UTC Description

This example shows the NEW_TIME function:

SELECT NEW_TIME(TO_DATE('08-13-07 10:35:15','MM-DD-YY HH24:MI:SS'),'AST',
'PST') "Pacific Standard Time" FROM DUAL;

Pacific Standard Time

 13-AUG-07 06:35:15
(1 row)

NUMTODSINTERVAL

The NUMTODSINTERVAL function converts a numeric value to a time interval that includes day-through-second interval units. When calling the function, specify the smallest fractional interval type to
include in the result set. The valid interval types are DAY , HOUR , MINUTE , and SECOND .

This example converts a numeric value to a time interval that includes days and hours:

SELECT numtodsinterval(100, ‘hour’);
numtodsinterval

4 days 04:00:00
(1 row)

This example converts a numeric value to a time interval that includes minutes and seconds:

SELECT numtodsinterval(100, ‘second’);
numtodsinterval

1 min 40 secs
(1 row)

NUMTOYMINTERVAL

The NUMTOYMINTERVAL function converts a numeric value to a time interval that includes year-through-month interval units. When calling the function, specify the smallest fractional interval type to
include in the result set. The valid interval types are YEAR and MONTH .

This example converts a numeric value to a time interval that includes years and months:

SELECT numtoyminterval(100, ‘month’);
numtoyminterval

8 years 4 mons
(1 row)

This example converts a numeric value to a time interval that includes years only:

SELECT numtoyminterval(100, ‘year’);
numtoyminterval

100 years
(1 row)

ROUND

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 215

The ROUND function returns a date rounded according to a specified template pattern. If you omit the template pattern, the date is rounded to the nearest day. The following table shows the template
patterns for the ROUND function.

Pattern Description

CC, SCC Returns January 1, cc 01 where cc is first 2 digits of the given year if last 2 digits <= 50, or 1 greater than the first 2 digits of the given year if last 2 digits >
50; (for AD years)

SYYY, YYYY, YEAR,
SYEAR, YYY, YY, Y

Returns January 1, yyyy where yyyy is rounded to the nearest year; rounds down on June 30, rounds up on July 1

IYYY, IYY, IY, I Rounds to the beginning of the ISO year, which is determined by rounding down if the month and day is on or before June 30th or by rounding up if the month and
day is July 1st or later

Q Returns the first day of the quarter determined by rounding down if the month and day is on or before the 15th of the second month of the quarter or by rounding
up if the month and day is on the 16th of the second month or later of the quarter

MONTH, MON, MM, RM Returns the first day of the specified month if the day of the month is on or prior to the 15th; returns the first day of the following month if the day of the month is
on the 16th or later

WW Rounds to the nearest date that corresponds to the same day of the week as the first day of the year

IW Rounds to the nearest date that corresponds to the same day of the week as the first day of the ISO year

W Rounds to the nearest date that corresponds to the same day of the week as the first day of the month

DDD, DD, J Rounds to the start of the nearest day; 11:59:59 AM or earlier rounds to the start of the same day; 12:00:00 PM or later rounds to the start of the next day

DAY, DY, D Rounds to the nearest Sunday

HH, HH12, HH24 Round to the nearest hour

MI Rounds to the nearest minute

These examples show the use of the ROUND function.

These examples round to the nearest hundred years:

SELECT TO_CHAR(ROUND(TO_DATE('1950','YYYY'),'CC'),'DD-MON-YYYY') "Century" FROM DUAL;

 Century

 01-JAN-1901
(1 row)

SELECT TO_CHAR(ROUND(TO_DATE('1951','YYYY'),'CC'),'DD-MON-YYYY') "Century" FROM DUAL;

 Century

 01-JAN-2001
(1 row)

These examples round to the nearest year:

SELECT TO_CHAR(ROUND(TO_DATE('30-JUN-1999','DD-MON-YYYY'),'Y'),'DD-MON-YYYY') "Year" FROM DUAL;

 Year

 01-JAN-1999
(1 row)

SELECT TO_CHAR(ROUND(TO_DATE('01-JUL-1999','DD-MON-YYYY'),'Y'),'DD-MON-YYYY') "Year" FROM DUAL;

 Year

 01-JAN-2000
(1 row)

These examples round to the nearest ISO year. The first example rounds to 2004, and the ISO year for 2004 begins on December 29, 2003. The second example rounds to 2005, and the ISO year for 2005
begins on January 3 of that same year.

(An ISO year begins on the first Monday from which a seven-day span, Monday through Sunday, contains at least four days of the new year. It's possible for the beginning of an ISO year to start in
December of the prior year.)

SELECT TO_CHAR(ROUND(TO_DATE('30-JUN-2004','DD-MON-YYYY'),'IYYY'),'DD-MON-YYYY') "ISO Year" FROM DUAL;

 ISO Year

 29-DEC-2003
(1 row)

SELECT TO_CHAR(ROUND(TO_DATE('01-JUL-2004','DD-MON-YYYY'),'IYYY'),'DD-MON-YYYY') "ISO Year" FROM DUAL;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 216

 ISO Year

 03-JAN-2005
(1 row)

These examples round to the nearest quarter:

SELECT ROUND(TO_DATE('15-FEB-07','DD-MON-YY'),'Q') "Quarter" FROM DUAL;

 Quarter

 01-JAN-07 00:00:00
(1 row)

SELECT ROUND(TO_DATE('16-FEB-07','DD-MON-YY'),'Q') "Quarter" FROM DUAL;

 Quarter

 01-APR-07 00:00:00
(1 row)

These examples round to the nearest month:

SELECT ROUND(TO_DATE('15-DEC-07','DD-MON-YY'),'MONTH') "Month" FROM DUAL;

 Month

 01-DEC-07 00:00:00
(1 row)

SELECT ROUND(TO_DATE('16-DEC-07','DD-MON-YY'),'MONTH') "Month" FROM DUAL;

 Month

 01-JAN-08 00:00:00
(1 row)

These examples round to the nearest week. The first day of 2007 lands on a Monday. In the first example, January 18 is closest to the Monday that lands on January 15. In the second example, January
19 is closer to the Monday that falls on January 22.

SELECT ROUND(TO_DATE('18-JAN-07','DD-MON-YY'),'WW') "Week" FROM DUAL;

 Week

 15-JAN-07 00:00:00
(1 row)

SELECT ROUND(TO_DATE('19-JAN-07','DD-MON-YY'),'WW') "Week" FROM DUAL;

 Week

 22-JAN-07 00:00:00
(1 row)

These examples round to the nearest ISO week. An ISO week begins on a Monday. In the first example, January 1, 2004 is closest to the Monday that lands on December 29, 2003. In the second
example, January 2, 2004 is closer to the Monday that lands on January 5, 2004.

SELECT ROUND(TO_DATE('01-JAN-04','DD-MON-YY'),'IW') "ISO Week" FROM DUAL;

 ISO Week

 29-DEC-03 00:00:00
(1 row)

SELECT ROUND(TO_DATE('02-JAN-04','DD-MON-YY'),'IW') "ISO Week" FROM DUAL;

 ISO Week

 05-JAN-04 00:00:00
(1 row)

These examples round to the nearest week, where a week is considered to start on the same day as the first day of the month:

SELECT ROUND(TO_DATE('05-MAR-07','DD-MON-YY'),'W') "Week" FROM DUAL;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 217

 Week

 08-MAR-07 00:00:00
(1 row)

SELECT ROUND(TO_DATE('04-MAR-07','DD-MON-YY'),'W') "Week" FROM DUAL;

 Week

 01-MAR-07 00:00:00
(1 row)

These examples round to the nearest day:

SELECT ROUND(TO_DATE('04-AUG-07 11:59:59 AM','DD-MON-YY HH:MI:SS AM'),'J')
"Day" FROM DUAL;

 Day

 04-AUG-07 00:00:00
(1 row)

SELECT ROUND(TO_DATE('04-AUG-07 12:00:00 PM','DD-MON-YY HH:MI:SS AM'),'J')
"Day" FROM DUAL;

 Day

 05-AUG-07 00:00:00
(1 row)

These examples round to the start of the nearest day of the week (Sunday):

SELECT ROUND(TO_DATE('08-AUG-07','DD-MON-YY'),'DAY') "Day of Week" FROM DUAL;

 Day of Week

 05-AUG-07 00:00:00
(1 row)

SELECT ROUND(TO_DATE('09-AUG-07','DD-MON-YY'),'DAY') "Day of Week" FROM DUAL;

 Day of Week

 12-AUG-07 00:00:00
(1 row)

These examples round to the nearest hour:

SELECT TO_CHAR(ROUND(TO_DATE('09-AUG-07 08:29','DD-MON-YY HH:MI'),'HH'),'DD-MON-YY HH24:MI:SS') "Hour" FROM DUAL;

 Hour

 09-AUG-07 08:00:00
(1 row)

SELECT TO_CHAR(ROUND(TO_DATE('09-AUG-07 08:30','DD-MON-YY HH:MI'),'HH'),'DD-MON-YY HH24:MI:SS') "Hour" FROM DUAL;

 Hour

 09-AUG-07 09:00:00
(1 row)

These examples round to the nearest minute:

SELECT TO_CHAR(ROUND(TO_DATE('09-AUG-07 08:30:29','DD-MON-YY
HH:MI:SS'),'MI'),'DD-MON-YY HH24:MI:SS') "Minute" FROM DUAL;

 Minute

 09-AUG-07 08:30:00
(1 row)

SELECT TO_CHAR(ROUND(TO_DATE('09-AUG-07 08:30:30','DD-MON-YY
HH:MI:SS'),'MI'),'DD-MON-YY HH24:MI:SS') "Minute" FROM DUAL;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 218

 Minute

 09-AUG-07 08:31:00
(1 row)

SYSDATE

The SYSDATE function returns the current date and time (timestamp without timezone) of the operating system on which the database server resides. The function is STABLE and requires no
arguments.

When called from a single SQL statement, it returns the same value for each occurrence in the statement. If called from multiple statements in a transaction, it might return different values for each
occurrence. If called from a function, it might return a value different from the one returned by SYSDATE in the caller.

This example shows a call to SYSDATE :

SELECT SYSDATE, SYSDATE FROM DUAL;
 sysdate | sysdate
--------------------+--------------------
 28-APR-20 16:45:28 | 28-APR-20 16:45:28
(1 row)

TRUNC

The TRUNC function returns a date truncated according to a specified template pattern. If you omit the template pattern, the date is truncated to the nearest day. The following table shows the
template patterns for the TRUNC function.

Pattern Description

CC, SCC Returns January 1, cc 01 where cc is first 2 digits of the given year

SYYY, YYYY, YEAR, SYEAR, YYY, YY,
Y

Returns January 1, yyyy where yyyy is the given year

IYYY, IYY, IY, I Returns the start date of the ISO year containing the given date

Q Returns the first day of the quarter containing the given date

MONTH, MON, MM, RM Returns the first day of the specified month

WW Returns the largest date just prior to or the same as the given date that corresponds to the same day of the week as the first day of the year

IW Returns the start of the ISO week containing the given date

W Returns the largest date just prior to, or the same as the given date that corresponds to the same day of the week as the first day of the
month

DDD, DD, J Returns the start of the day for the given date

DAY, DY, D Returns the start of the week (Sunday) containing the given date

HH, HH12, HH24 Returns the start of the hour

MI Returns the start of the minute

Following are examples that use the TRUNC function.

This example truncates down to the hundred-years unit:

SELECT TO_CHAR(TRUNC(TO_DATE('1951','YYYY'),'CC'),'DD-MON-YYYY') "Century" FROM DUAL;

 Century

 01-JAN-1901
(1 row)

This example truncates down to the year:

SELECT TO_CHAR(TRUNC(TO_DATE('01-JUL-1999','DD-MON-YYYY'),'Y'),'DD-MON-YYYY') "Year" FROM DUAL;

 Year

 01-JAN-1999
(1 row)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 219

This example truncates down to the beginning of the ISO year:

SELECT TO_CHAR(TRUNC(TO_DATE('01-JUL-2004','DD-MON-YYYY'),'IYYY'),'DD-MON-YYYY') "ISO Year" FROM DUAL;

 ISO Year

 29-DEC-2003
(1 row)

This example truncates down to the start date of the quarter:

SELECT TRUNC(TO_DATE('16-FEB-07','DD-MON-YY'),'Q') "Quarter" FROM DUAL;

 Quarter

 01-JAN-07 00:00:00
(1 row)

This example truncates to the start of the month:

SELECT TRUNC(TO_DATE('16-DEC-07','DD-MON-YY'),'MONTH') "Month" FROM DUAL;

 Month

 01-DEC-07 00:00:00
(1 row)

This example truncates down to the start of the week determined by the first day of the year. The first day of 2007 lands on a Monday, so the Monday just prior to January 19 is January 15.

SELECT TRUNC(TO_DATE('19-JAN-07','DD-MON-YY'),'WW') "Week" FROM DUAL;

 Week

 15-JAN-07 00:00:00
(1 row)

This example truncates to the start of an ISO week. An ISO week begins on a Monday. January 2, 2004 falls in the ISO week that starts on Monday, December 29, 2003.

SELECT TRUNC(TO_DATE('02-JAN-04','DD-MON-YY'),'IW') "ISO Week" FROM DUAL;

 ISO Week

 29-DEC-03 00:00:00
(1 row)

This example truncates to the start of the week, where a week is considered to start on the same day as the first day of the month:

SELECT TRUNC(TO_DATE('21-MAR-07','DD-MON-YY'),'W') "Week" FROM DUAL;

 Week

 15-MAR-07 00:00:00
(1 row)

This example truncates to the start of the day:

SELECT TRUNC(TO_DATE('04-AUG-07 12:00:00 PM','DD-MON-YY HH:MI:SS AM'),'J')
"Day" FROM DUAL;

 Day

 04-AUG-07 00:00:00
(1 row)

This example truncates to the start of the week (Sunday):

SELECT TRUNC(TO_DATE('09-AUG-07','DD-MON-YY'),'DAY') "Day of Week" FROM DUAL;

 Day of Week

 05-AUG-07 00:00:00
(1 row)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 220

This example truncates to the start of the hour:

SELECT TO_CHAR(TRUNC(TO_DATE('09-AUG-07 08:30','DD-MON-YY HH:MI'),'HH'),'DD-MON-YY HH24:MI:SS') "Hour" FROM DUAL;

 Hour

 09-AUG-07 08:00:00
(1 row)

This example truncates to the minute:

SELECT TO_CHAR(TRUNC(TO_DATE('09-AUG-07 08:30:30','DD-MON-YY
HH:MI:SS'),'MI'),'DD-MON-YY HH24:MI:SS') "Minute" FROM DUAL;

 Minute

 09-AUG-07 08:30:00
(1 row)

15.1.3.9 Sequence manipulation functions

Sequence objects, which are also called sequence generators or sequences, are special single-row tables created with the CREATE SEQUENCE command. You usually use a sequence to generate
unique identifiers for rows of a table. The sequence functions provide simple, multiuser-safe methods for obtaining successive sequence values from sequence objects.

sequence.NEXTVAL
sequence.CURRVAL

sequence is the identifier assigned to the sequence in the CREATE SEQUENCE command.

NEXTVAL

Advance the sequence object to its next value and return that value. This is done atomically: even if multiple sessions execute NEXTVAL concurrently, each safely receives a distinct sequence value.

CURRVAL

Return the value most recently obtained by NEXTVAL for this sequence in the current session. An error is reported if NEXTVAL was never called for this sequence in this session. Because this is
returning a session-local value, it gives a predictable answer whether or not other sessions executed NEXTVAL since the current session did.

If a sequence object was created with default parameters, NEXTVAL calls on it return successive values beginning with 1. Use special parameters in the CREATE SEQUENCE command for other
behaviors.

Important

To avoid blocking of concurrent transactions that obtain numbers from the same sequence, a NEXTVAL operation is never rolled back. After a value is fetched it is considered used, even if
the transaction that did the NEXTVAL later aborts. This means that aborted transactions can leave unused "holes" in the sequence of assigned values.

15.1.3.10 Conditional expressions

SQL-compliant conditional expressions are available in EDB Postgres Advanced Server.

CASE

The SQL CASE expression is a generic conditional expression, similar to if/else statements in other languages:

CASE WHEN condition THEN result
 [WHEN ...]
 [ELSE result]
END

You can use CASE clauses wherever an expression is valid. condition is an expression that returns a BOOLEAN result. If the result is TRUE , then the value of the CASE expression is the
result that follows the condition. If the result is FALSE , any subsequent WHEN clauses are searched in the same manner. If no WHEN condition is TRUE , then the value of the CASE

expression is the result in the ELSE clause. If the ELSE clause is omitted and no condition matches, the result is NULL .

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 221

For example:

SELECT * FROM test;

 a

 1
 2
 3
(3 rows)

SELECT a,
 CASE WHEN a=1 THEN 'one'
 WHEN a=2 THEN 'two'
 ELSE 'other'
 END
FROM test;

 a | case
---+-------
 1 | one
 2 | two
 3 | other
(3 rows)

The data types of all the result expressions must be convertible to a single output type.

The following simple CASE expression is a specialized variant of the general form:

CASE expression
 WHEN value THEN result
 [WHEN ...]
 [ELSE result]
END

The expression is computed and compared to all the value specifications in the WHEN clauses until one is found that is equal. If no match is found, the result in the ELSE clause (or a null
value) is returned.

This same example can be written using the simple CASE syntax:

SELECT a,
 CASE a WHEN 1 THEN 'one'
 WHEN 2 THEN 'two'
 ELSE 'other'
 END
FROM test;

 a | case
---+-------
 1 | one
 2 | two
 3 | other
(3 rows)

A CASE expression doesn't evaluate any subexpressions that aren't needed to determine the result. For example, this is a possible way of avoiding a division-by-zero failure:

SELECT ... WHERE CASE WHEN x <> 0 THEN y/x > 1.5 ELSE false END;

COALESCE

The COALESCE function returns the first of its arguments that isn't null. Null is returned only if all arguments are null.

COALESCE(value [, value2] ...)

It's often used to substitute a default value for null values when data is retrieved for display or further computation. For example:

SELECT COALESCE(description, short_description, '(none)') ...

Like a CASE expression, COALESCE doesn't evaluate arguments that aren't needed to determine the result. Arguments to the right of the first non-null argument aren't evaluated. This SQL-standard
function provides capabilities similar to NVL and IFNULL , which are used in some other database systems.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 222

NULLIF

The NULLIF function returns a null value if value1 and value2 are equal. Otherwise it returns value1 .

NULLIF(value1, value2)

You can use this to perform the inverse operation of the COALESCE example:

SELECT NULLIF(value1, '(none)') ...

If value1 is (none), return a null. Otherwise return value1 .

NVL

The NVL function returns the first of its arguments that isn't null. NVL evaluates the first expression. If that expression evaluates to NULL , NVL returns the second expression.

NVL(expr1, expr2)

The return type is the same as the argument types. All arguments must have the same data type or be coercible to a common type. NVL returns NULL if all arguments are NULL . '' is considered as
unknown, and if the arguments data type aren't coercible to the common data type, then NVL throws an error.

Examples

This example computes a bonus for noncommissioned employees. If an employee is a commissioned employee,
this expression returns the employee's commission. If the employee isn't a commissioned employee, that is, their commission is NULL , this expression returns a bonus that is 10% of their salary.

bonus = NVL(emp.commission, emp.salary * .10)

In this example, the type of 1 is numeric and the type of '' is considered as unknown. Therefore PostgreSQL decides that the common type is numeric. It tries to interpret the empty string as a numeric
value, which produces the indicated error:

NVL2

NVL2 evaluates an expression and returns either the second or third expression, depending on the value of the first expression. If the first expression isn't NULL , NVL2 returns the value in expr2 .
If the first expression is NULL , NVL2 returns the value in expr3 .

NVL2(expr1, expr2, expr3)

The return type is the same as the argument types. All arguments must have the same data type or be coercible to a common type.

This example computes a bonus for commissioned employees. If a given employee is a commissioned employee, this expression returns an amount equal to 110% of their commission. If the employee
isn't a commissioned employee, that is, their commission is NULL , this expression returns 0 .

bonus = NVL2(emp.commission, emp.commission * 1.1, 0)

GREATEST and LEAST

The GREATEST and LEAST functions select the largest or smallest value from a list of any number of expressions.

GREATEST(value [, value2] ...)
LEAST(value [, value2] ...)

All of the expressions must be convertible to a common data type, which becomes the type of the result. Null values in the list are ignored. The result is null only if all the expressions evaluate to null.

Note

edb=# select nvl('',1);
ERROR: invalid input syntax for type numeric:
""

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 223

The GREATEST and LEAST aren't in the SQL standard but are a common extension.

15.1.3.11 Aggregate functions

Aggregate functions compute a single result value from a set of input values. The built-in aggregate functions are listed in the following tables.

Function Argument type Return type Description

AVG
(expressi
on)

INTEGER, REAL, DOUBLE
PRECISION, NUMBER

NUMBER for any integer type, DOUBLE PRECISION for a floating-point argument, otherwise the same
as the argument data type

The average (arithmetic mean) of
all input values

COUNT(*) BIGINT Number of input rows

COUNT
(expressi
on)

Any BIGINT Number of input rows for which the
value of expression is not null

MAX
(expressi
on)

Any numeric, string,
date/time, or bytea type Same as argument type

Maximum value of expression
across all input values

MIN
(expressi
on)

Any numeric, string,
date/time, or bytea type Same as argument type

Minimum value of expression
across all input values

SUM
(expressi
on)

INTEGER, REAL, DOUBLE
PRECISION, NUMBER

BIGINT for SMALLINT or INTEGER arguments, NUMBER for BIGINT arguments, DOUBLE
PRECISION for floating-point arguments, otherwise the same as the argument data type

Sum of expression across all input
values

Except for COUNT , these functions return a null value when no rows are selected. In particular, SUM of no rows returns null, not zero. You can use the COALESCE function to substitute zero for null
when necessary.

The following table shows the aggregate functions typically used in statistical analysis. Where the description mentions N , it means the number of input rows for which all the input expressions are
non-null. In all cases, null is returned if the computation is meaningless, for example when N is zero.

Function Argument type Return type Description

CORR(Y, X) DOUBLE PRECISION DOUBLE PRECISION Correlation coefficient

COVAR_POP(Y, X) DOUBLE PRECISION DOUBLE PRECISION Population covariance

COVAR_SAMP(Y,
X)

DOUBLE PRECISION DOUBLE PRECISION Sample covariance

REGR_AVGX(Y, X) DOUBLE PRECISION DOUBLE PRECISION Average of the independent variable (sum (X) / N)

REGR_AVGY(Y, X) DOUBLE PRECISION DOUBLE PRECISION Average of the dependent variable (sum (Y) / N)

REGR_COUNT(Y,
X)

DOUBLE PRECISION DOUBLE PRECISION Number of input rows in which both expressions are nonnull

REGR_INTERCEPT(Y
, X)

DOUBLE PRECISION DOUBLE PRECISION y-intercept of the least-squares-fit linear equation determined by
the (X, Y) pairs

REGR_R2(Y, X) DOUBLE PRECISION DOUBLE PRECISION Square of the correlation coefficient

REGR_SLOPE(Y,
X)

DOUBLE PRECISION DOUBLE PRECISION Slope of the least-squares-fit linear equation determined by the
(X, Y) pairs

REGR_SXX(Y, X) DOUBLE PRECISION DOUBLE PRECISION Sum (X2) – sum (X) 2 / N (“sum of squares” of the independent
variable)

REGR_SXY(Y, X) DOUBLE PRECISION DOUBLE PRECISION Sum (X*Y) – sum (X) * sum (Y) / N (“sum of products” of independent
times dependent variable)

REGR_SYY(Y, X) DOUBLE PRECISION DOUBLE PRECISION Sum (Y2) – sum (Y) 2 / N (“sum of squares” of the dependent variable)

STDDEV(expressio
n)

INTEGER, REAL, DOUBLE
PRECISION, NUMBER

DOUBLE PRECISION for floating-point
arguments, otherwise NUMBER

Historic alias for STDDEV_SAMP

STDDEV_POP(expre
ssion)

INTEGER, REAL, DOUBLE
PRECISION, NUMBER

DOUBLE PRECISION for floating-point
arguments, otherwise NUMBER

Population standard deviation of the input values

STDDEV_SAMP(expr
ession)

INTEGER, REAL, DOUBLE
PRECISION, NUMBER

DOUBLE PRECISION for floating-point
arguments, otherwise NUMBER Sample standard deviation of the input values

VARIANCE(express
ion)

INTEGER, REAL, DOUBLE
PRECISION, NUMBER

DOUBLE PRECISION for floating-point
arguments, otherwise NUMBER

Historical alias for VAR_SAMP

VAR_POP(expressi
on)

INTEGER, REAL, DOUBLE
PRECISION, NUMBER

DOUBLE PRECISION for floating-point
arguments, otherwise NUMBER

Population variance of the input values (square of the population
standard deviation)

VAR_SAMP(express
ion)

INTEGER, REAL, DOUBLE
PRECISION, NUMBER

DOUBLE PRECISION for floating-point
arguments, otherwise NUMBER

Sample variance of the input values (square of the sample standard
deviation)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 224

LISTAGG

LISTAGG is an aggregate function that concatenates data from multiple rows into a single row in an ordered manner. You can optionally include a custom delimiter for your data.

The LISTAGG function mandates the use of an ORDER BY clause under a WITHIN GROUP clause to concatenate values of the measure column and then generate the ordered aggregated data.

Objective

You can use LISTAGG without any grouping. In this case, the LISTAGG function operates on all rows in a table and returns a single row.
You can use LISTAGG with the GROUP BY clause. In this case, the LISTAGG function operates on each group and returns an aggregated output for each group.
You can use LISTAGG with the OVER clause. In this case, the LISTAGG function partitions a query result set into groups based on the expression in the query_partition_by_clause
and then aggregates data in each group.

Synopsis

LISTAGG(<measure_expr> [, <delimiter>]) WITHIN GROUP(<order_by_clause>)
[OVER <query_partition_by_clause>]

Parameters

measure_expr

measure_expr (mandatory) specifies the column or expression that assigns a value to aggregate. NULL values are ignored.

delimiter

delimiter (optional) specifies a string that separates the concatenated values in the result row. The delimiter can be a NULL value, string, character literal, column name, or constant
expression. If ignored, the LISTAGG function uses a NULL value by default.

order_by_clause

order_by_clause (mandatory) determines the sort order in which the concatenated values are returned.

query_partition_by_clause

query_partition_by_clause (optional) allows the LISTAGG function to be used as an analytic function and sets the range of records for each group in the OVER clause.

Return type

The LISTAGG function returns a string value.

Examples

This example concatenates the values in the emp table and lists all the employees separated by a delimiter comma. First, create a table named emp . Then insert records into the emp table.

edb=# CREATE TABLE emp
edb-# (EMPNO NUMBER(4) NOT NULL,
edb(# ENAME VARCHAR2(10),
edb(# JOB VARCHAR2(9),
edb(# MGR NUMBER(4),
edb(# HIREDATE DATE,
edb(# SAL NUMBER(7, 2),
edb(# COMM NUMBER(7, 2),
edb(# DEPTNO NUMBER(2));
CREATE TABLE

edb=# INSERT INTO emp VALUES
edb-# (7499, 'ALLEN', 'SALESMAN', 7698,
edb(# TO_DATE('20-FEB-1981', 'DD-MON-YYYY'), 1600, 300, 30);
INSERT 0 1
edb=# INSERT INTO emp VALUES
edb-# (7521, 'WARD', 'SALESMAN', 7698,
edb(# TO_DATE('22-FEB-1981', 'DD-MON-YYYY'), 1250, 500, 30);

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 225

INSERT 0 1
edb=# INSERT INTO emp VALUES
edb-# (7566, 'JONES', 'MANAGER', 7839,
edb(# TO_DATE('2-APR-1981', 'DD-MON-YYYY'), 2975, NULL, 20);
INSERT 0 1
edb=# INSERT INTO emp VALUES
edb-# (7654, 'MARTIN', 'SALESMAN', 7698,
edb(# TO_DATE('28-SEP-1981', 'DD-MON-YYYY'), 1250, 1400, 30);
INSERT 0 1
edb=# INSERT INTO emp VALUES
edb-# (7698, 'BLAKE', 'MANAGER', 7839,
edb(# TO_DATE('1-MAY-1981', 'DD-MON-YYYY'), 2850, NULL, 30);
INSERT 0 1

edb=# SELECT LISTAGG(ENAME, ',') WITHIN GROUP (ORDER BY ENAME) FROM emp;
 listagg

 ALLEN,BLAKE,JONES,MARTIN,WARD
(1 row)

This example uses a PARTITION BY clause with LISTAGG in the emp table. It generates output based on a partition by deptno that applies to each partition and not on the entire table.

edb=# SELECT DISTINCT DEPTNO, LISTAGG(ENAME, ',') WITHIN GROUP (ORDER BY
ENAME) OVER(PARTITION BY DEPTNO) FROM emp;
 deptno | listagg
--------+-------------------------
 30 | ALLEN,BLAKE,MARTIN,WARD
 20 | JONES
(2 rows)

This example includes the GROUP BY clause.

edb=# SELECT DEPTNO, LISTAGG(ENAME, ',') WITHIN GROUP (ORDER BY ENAME) FROM
emp GROUP BY DEPTNO;
 deptno | listagg
--------+-------------------------
 20 | JONES
 30 | ALLEN,BLAKE,MARTIN,WARD
(2 rows)

MEDIAN

The MEDIAN function calculates the middle value of an expression from a given range of values. NULL values are ignored. The MEDIAN function returns an error if a query doesn't reference the
user-defined table.

Objective

You can use MEDIAN without any grouping. In this case, the MEDIAN function operates on all rows in a table and returns a single row.
You can use MEDIAN with the OVER clause. In this case, the MEDIAN function partitions a query result set into groups based on the expression specified in the PARTITION BY clause.
It then aggregates data in each group.

Synopsis

MEDIAN(<median_expression>) [OVER ([PARTITION BY...])]

Parameters

median_expression

median_expression (mandatory) is a target column or expression that the MEDIAN function operates on and returns a median value. It can be a numeric, datetime, or interval data type.

PARTITION BY

PARTITION BY clause (optional) allows you to use MEDIAN as an analytic function and sets the range of records for each group in the OVER clause.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 226

Return types

The return type is determined by the input data type of expression . The following table shows the return type for each input type.

Input type Return type

BIGINT NUMERIC

FLOAT, DOUBLE
PRECISION

DOUBLE PRECISION

INTEGER NUMERIC

INTERVAL INTERVAL

NUMERIC NUMERIC

REAL REAL

SMALLINT NUMERIC

TIMESTAMP TIMESTAMP

TIMESTAMPTZ TIMESTAMPTZ

Examples

In this example, a query returns the median salary for each department in the emp table:

edb=# SELECT * FROM emp;
 empno| ename | job | mgr | hiredate | sal | comm | deptno
 -----+-------+---------+------+-------------------+--------+--------+-------
 7369 | SMITH | CLERK | 7902 | 17-DEC-80 00:00:00| 800.00| | 20
 7499 | ALLEN | SALESMAN| 7698 | 20-FEB-81 00:00:00| 1600.00| 300.0 | 30
 7521 | WARD | SALESMAN| 7698 | 22-FEB-81 00:00:00| 1250.00| 500.00 | 30
 7566 | JONES | MANAGER | 7839 | 02-APR-81 00:00:00| 2975.00| | 20
 7654 | MARTIN| SALESMAN| 7698 | 28-SEP-81 00:00:00| 1250.00| 1400.00| 30
(5 rows)

 edb=# SELECT MEDIAN (SAL) FROM emp;
 median

 1250
 (1 row)

This example uses the PARTITION BY clause with MEDIAN in the emp table and returns the median salary based on a partition by deptno :

edb=# SELECT EMPNO, ENAME, DEPTNO, MEDIAN (SAL) OVER (PARTITION BY DEPTNO)
FROM emp;
 empno | ename | deptno | median
-------+--------+--------+--------
 7369 | SMITH | 20 | 1887.5
 7566 | JONES | 20 | 1887.5
 7499 | ALLEN | 30 | 1250
 7521 | WARD | 30 | 1250
 7654 | MARTIN | 30 | 1250
(5 rows)

You can compare the MEDIAN function with PERCENTILE_CONT . In this example, MEDIAN generates the same result as PERCENTILE_CONT :

edb=# SELECT MEDIAN (SAL), PERCENTILE_CONT(0.5) WITHIN GROUP(ORDER BY SAL)
FROM emp;
 median | percentile_cont
--------+-----------------
 1250 | 1250
(1 row)

STATS_MODE

The STATS_MODE function takes a set of values as an argument and returns the value that occurs with the highest frequency. If multiple values appear with the same frequency, the STATS_MODE
function arbitrarily chooses the first value and returns only that one value.

Objective

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 227

You can use STATS_MODE without any grouping. In this case, the STATS_MODE function operates on all the rows in a table and returns a single value.
You can use STATS_MODE as an ordered-set aggregate function using the WITHIN GROUP clause. In this case, the STATS_MODE function operates on the ordered data set.
You can use STATS_MODE with the GROUP BY clause. In this case, the STATS_MODE function operates on each group and returns the most frequent and aggregated output for each group.

Synopsis

STATS_MODE(<expr>)

Or

STATS_MODE() WITHIN GROUP (ORDER BY sort_expression)

Parameters

expr

An expression or value to assign to the column.

Return type

The STATS_MODE function returns a value that appears frequently. However, if all the values of a column are NULL , STATS_MODE returns NULL .

Examples

This example returns the mode of salary in the emp table:

edb=# SELECT * FROM emp;
 empno| ename | job | mgr | hiredate | sal | comm | deptno
------+-------+---------+------+-------------------+--------+--------+-------
 7369 | SMITH | CLERK | 7902 | 17-DEC-80 00:00:00| 800.00| | 20
 7499 | ALLEN | SALESMAN| 7698 | 20-FEB-81 00:00:00| 1600.00| 300.0 | 30
 7521 | WARD | SALESMAN| 7698 | 22-FEB-81 00:00:00| 1250.00| 500.00 | 30
 7566 | JONES | MANAGER | 7839 | 02-APR-81 00:00:00| 2975.00| | 20
 7654 | MARTIN| SALESMAN| 7698 | 28-SEP-81 00:00:00| 1250.00| 1400.00| 30
(5 rows)

edb=# SELECT STATS_MODE(SAL) FROM emp;
 stats_mode

 1250.00
(1 row)

This example uses GROUP BY and ORDER BY clauses with STATS_MODE in the emp table and returns the salary based on a partition by deptno :

edb=# SELECT STATS_MODE(SAL) FROM emp GROUP BY DEPTNO ORDER BY DEPTNO;
 stats_mode

 800.00
 1250.00
(2 rows)

This example uses the WITHIN GROUP clause with STATS_MODE to perform aggregation on the ordered data set.

SELECT STATS_MODE() WITHIN GROUP(ORDER BY SAL) FROM emp;
 stats_mode

 1250.00
(1 row)

BIT_AND_AGG

BIT_AND_AGG is a bitwise aggregation function that performs a bitwise AND operation and returns a value based on the data type of input argument.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 228

Objective

You can use the BIT_AND_AGG function with the GROUP BY clause. In this case, the BIT_AND_AGG function operates on a group and returns the result of a bitwise AND operation.
You can use the DISTINCT or UNIQUE keywords with the BIT_AND_AGG function to ensure that unique values in the expr are used for computation.

Synopsis

BIT_AND_AGG ([DISTINCT | ALL | UNIQUE] <expr>)

Parameters

expr

An expression or value to assign to the column.

Return Type

The BIT_AND_AGG function returns the same value as the data type of the input argument. However, if all the values of a column are NULL , the BIT_AND_AGG returns NULL .

Examples

This example applies the BIT_AND_AGG function to the sal column in an emp table and groups the result by deptno :

edb=# SELECT deptno,BIT_AND_AGG(DISTINCT sal) FROM emp GROUP BY deptno;
 deptno | bit_and_agg
--------+-------------
 20 | 2975.00
 30 | 0
(2 rows)

BIT_OR_AGG

BIT_OR_AGG is a bitwise aggregation function that performs a bitwise OR operation and returns a value based on the data type of input argument.

Objective

You can use the BIT_OR_AGG function with the GROUP BY clause. In this case, the BIT_OR_AGG function operates on a group and returns the result of a bitwise OR operation.
You can use the DISTINCT or UNIQUE keywords with the BIT_OR_AGG function to ensure that unique values in the expr are used for computation.

Synopsis

BIT_OR_AGG ([DISTINCT | ALL | UNIQUE] <expr>)

Parameters

expr

An expression or value to assign to the column.

Return type

The BIT_OR_AGG function returns the same value as the data type of the input argument. However, if all the values of a column are NULL , BIT_OR_AGG returns NULL .

Examples

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 229

This example applies BIT_OR_AGG to the sal column in an emp table and groups the result by deptno :

edb=# SELECT deptno,BIT_OR_AGG(DISTINCT sal) FROM emp GROUP BY deptno;
 deptno | bit_or_agg
--------+------------
 20 | 2975.00
 30 | 4066
(2 rows)

15.1.3.12 Subquery expressions

SQL-compliant subquery expressions are available in EDB Postgres Advanced Server. All of these expression forms return Boolean (TRUE/FALSE) results.

EXISTS

The argument of EXISTS is an arbitrary SELECT statement or subquery. The subquery is evaluated to determine whether it returns any rows. If it returns at least one row, the result of EXISTS is
TRUE . If the subquery returns no rows, the result of EXISTS is FALSE .

EXISTS(subquery)

The subquery can refer to variables from the surrounding query that act as constants during any one evaluation of the subquery.

The subquery is generally executed only far enough to determine whether at least one row is returned, not all the way to completion. We recommend that you don't write a subquery that has any side
effects (such as calling sequence functions). Whether the side effects occur might be difficult to predict.

Since the result depends only on whether any rows are returned and not on the contents of those rows, the output list of the subquery is normally uninteresting. A common coding convention is to write
all EXISTS tests in the form EXISTS(SELECT 1 WHERE ...) . There are exceptions to this rule, however, such as subqueries that use INTERSECT .

This simple example is like an inner join on deptno , but it produces at most one output row for each dept row, even though there are multiple matching emp rows:

SELECT dname FROM dept WHERE EXISTS (SELECT 1 FROM emp WHERE emp.deptno =
dept.deptno);

 dname

 ACCOUNTING
 RESEARCH
 SALES
(3 rows)

IN

The right-hand side is a parenthesized subquery, which must return exactly one column. The left-hand expression is evaluated and compared to each row of the subquery result. The result of IN is
TRUE if any equal subquery row is found. The result is FALSE if no equal row is found (including the special case where the subquery returns no rows).

expression IN (subquery)

If the left-hand expression yields NULL , or if there are no equal right-hand values and at least one right-hand row yields NULL , the result of the IN construct is NULL , not FALSE . This is in
accordance with SQL’s normal rules for Boolean combinations of null values.

As with EXISTS , you can't assume that the subquery will evaluate completely.

NOT IN

The right-hand side is a parenthesized subquery that must return exactly one column. The left-hand expression is evaluated and compared to each row of the subquery result. The result of NOT IN is
TRUE if only unequal subquery rows are found (including the special case where the subquery returns no rows). The result is FALSE if any equal row is found.

expression NOT IN (subquery)

If the left-hand expression yields NULL , or if there are no equal right-hand values and at least one right-hand row yields NULL , the result of the NOT IN construct is NULL , not TRUE . This is in

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 230

accordance with SQL’s normal rules for Boolean combinations of null values.

As with EXISTS , you can't assume that the subquery will evaluate completely.

ANY/SOME

The right-hand side is a parenthesized subquery, which must return exactly one column. The left-hand expression is evaluated and compared to each row of the subquery result using the given operator,
which must yield a Boolean result. The result of ANY is TRUE if any true result is obtained. The result is FALSE if no true result is found (including the special case where the subquery returns no
rows).

expression operator ANY (subquery)
expression operator SOME (subquery)

SOME is a synonym for ANY . IN is equivalent to = ANY .

If there are no successes and at least one right-hand row yields NULL for the operator’s result, the result of the ANY construct is NULL , not FALSE . This is in accordance with SQL’s normal rules
for Boolean combinations of null values.

As with EXISTS , you can't assume that the subquery will evaluate completely.

ALL

The right-hand side is a parenthesized subquery, which must return exactly one column. The left-hand expression is evaluated and compared to each row of the subquery result using the given operator,
which must yield a Boolean result. The result of ALL is TRUE if all rows yield true (including the special case where the subquery returns no rows). The result is FALSE if any false result is found.
The result is NULL if the comparison doesn't return FALSE for any row and it returns NULL for at least one row.

expression operator ALL (subquery)

NOT IN is equivalent to <> ALL . As with EXISTS , you can't assume that the subquery will evaluate completely.

15.1.3.13 Identifier functions

Identifier functions that information about the instance and session.

SYS_GUID

The SYS_GUID function generates and returns a globally unique identifier. The identifier takes the form of 16 bytes of RAW data. The SYS_GUID function is based on the uuid-ossp module to
generate universally unique identifiers. The signature is:

SYS_GUID()

Example

This example adds a column to the table EMP , inserts a unique identifier, and returns a 16-byte RAW value:

edb=# CREATE TABLE EMP(C1 RAW (16) DEFAULT SYS_GUID() PRIMARY KEY, C2 INT);
CREATE TABLE
edb=# INSERT INTO EMP(C2) VALUES (1);
INSERT 0 1
edb=# SELECT * FROM EMP;
 c1 | c2
------------------------------------+----
 \xb944970d3a1b42a7a2119265c49cbb7f | 1
(1 row)

USERENV

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 231

The USERENV function retrieves information about the current session. The signature is:

USERENV(<parameter>)

The parameter specifies a value to return from the current session. The table shows the possible parameter values.

Parameter Description

ISDBA Returns TRUE if the current user has DBA privileges, otherwise FALSE .

LANGUAGE The language, territory, and character set of the current session in the following format: language_territory.characterset

LANG The ISO abbreviation for the language name, a short name for the existing LANGUAGE parameter.

SID The current session identifier.

TERMINAL The current session's operating system terminal identifier.

Examples

This example returns the ISDBA parameter of the current session:

edb=# SELECT USERENV('ISDBA') FROM DUAL;
 userenv

 TRUE
(1 row)

This example returns the LANG parameter of the current session:

edb=# SELECT USERENV('LANG') FROM DUAL;
 userenv

 en
(1 row)

This example returns the LANGUAGE parameter of the current session:

edb=# SELECT USERENV('LANGUAGE') FROM DUAL;
 userenv

 English_USA.UTF-8
(1 row)

This example returns the TERMINAL identifier:

edb=# SELECT USERENV('TERMINAL') FROM DUAL;
 userenv

 [local]
(1 row)

This example returns the SID number of the current session:

edb=# SELECT USERENV('SID') FROM DUAL;
 userenv

 56867
(1 row)

SYS_CONTEXT

The SYS_CONTEXT function returns the value of a parameter associated with the context namespace in the current session. The signature is:

SYS_CONTEXT(<namespace>, <parameter>)

Or

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 232

SYS_CONTEXT(<userenv>, <parameter>)

Parameters

namespace

namespace can be any named context. USERENV is a built-in context that shows information about the current session.

parameter

The parameter is a defined attribute of a namespace. The following table lists predefined attributes of the USERENV namespace.

Parameter Description

ISDBA Returns TRUE if the current user has DBA privileges, otherwise FALSE .

LANGUAGE The language, territory, and character set of the current session in the following format: language_territory.characterset

LANG The ISO abbreviation for the language name, a short name for the existing LANGUAGE parameter.

SID The current session identifier.

TERMINAL The current session's operating system terminal identifier.

Examples

In these examples, the built-in USERENV namespace is used with the SYS_CONTEXT function.

This example returns the ISDBA parameter of the current session:

edb=# SELECT SYS_CONTEXT('USERENV','ISDBA') AS ISDBA FROM DUAL;
 isdba

 TRUE
(1 row)

This example returns the LANG parameter of the current session:

edb=# SELECT SYS_CONTEXT('USERENV','LANG') AS LANG FROM DUAL;
 lang

 en
(1 row)

This example returns the LANGUAGE parameter of the current session:

edb=# SELECT SYS_CONTEXT('USERENV','LANGUAGE') AS LANGUAGE FROM DUAL;
 language

 English_USA.UTF-8
(1 row)

This example returns the TERMINAL identifier:

edb=# SELECT SYS_CONTEXT('USERENV','TERMINAL') AS TERMINAL FROM DUAL;
 terminal

 [local]
(1 row)

This example returns the SID number of the current session:

edb=# SELECT SYS_CONTEXT('USERENV','SID') AS SID FROM DUAL;
 sid

 56867
(1 row)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 233

15.1.3.14 Bitwise functions

The bitwise functions include BITAND and BITOR .

BITAND

The BITAND function performs a bitwise AND operation and returns a value based on the data type of input argument. The signature is:

BITAND(<expr1>, <expr2>)

The input data type of expr1 and expr2 is a NUMBER on which the bitwise AND operation is performed. The BITAND compares each bit of expr1 value to the corresponding bit of exp2 using
a bitwise AND operation. It returns the value based on the data type of the input argument. If either argument to BITAND is NULL , the result is a NULL value.

Return types

The BITAND function returns the same value as the data type of the input argument.

Examples

This example performs an AND operation on the numbers 10 and 11.

edb=# SELECT BITAND(10,11) FROM DUAL;
 bitand

 10
(1 row)

BITOR

The BITOR function performs a bitwise OR operation and returns a value based on the data type of the input argument. The signature is:

BITOR(<expr1>, <expr2>)

The BITOR compares each bit of expr1 value to the corresponding bit of exp2 using a bitwise OR operation. It returns the value based on the data type of the input argument.

Return types

The BITOR function returns the same value as the data type of the input argument. If all the values of a column are NULL , the BITOR returns NULL .

Examples

This example performs an OR operation on the numbers 10 and 11.

edb=# SELECT BITOR(10,11) FROM DUAL;
 bitor

 11
(1 row)

BITWISE OPERATORS

The bitwise operators perform the same operation as BITAND and BITOR . The bitwise operators are:

& : (Bitwise AND) Return the result of a bitwise AND operation performed on the input type.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 234

| : (Bitwise OR) Return the result of a bitwise OR operation performed on the input type.

Examples

This example uses the & operator and returns the output as BITAND of the input:

edb=# SELECT 10&11 FROM DUAL;
 ?column?

 10
(1 row)

This example uses the | operator and returns the output as BITOR of the input:

edb=# SELECT 10|11 FROM DUAL;
 ?column?

 11
(1 row)

15.2 System catalog tables

The following system catalog tables contain definitions of database objects. The layout of the system tables is subject to change. If you're writing an application that depends on information stored in the
system tables, use an existing catalog view or create a catalog view to isolate the application from changes to the system table.

dual

dual is a single-row, single-column table that's provided only for compatibility with Oracle databases.

Column Type Modifiers Description

dummy VARCHAR2(1) Provided for compatibility only.

edb_dir

The edb_dir table contains one row for each alias that points to a directory created with the CREATE DIRECTORY command. A directory is an alias for a pathname that allows a user limited
access to the host file system.

You can use a directory to fence a user into a specific directory tree in the file system. For example, the UTL_FILE package offers functions that allow a user to read and write files and directories in
the host file system. However, it allows access only to paths that the database administrator has granted access to by way of a CREATE DIRECTORY command.

Column Type Modifiers Description

dirname "name" not null The name of the alias.

dirowner oid not null The OID of the user that owns the alias.

dirpath text The directory name to which access is granted.

diracl aclitem[] The access control list that determines the users who can access the alias.

edb_password_history

The edb_password_history table contains one row for each password change. The table is shared across all databases in a cluster.

Column Type References Description

passhistroleid oid pg_authid.oid The ID of a role.

passhistpassword text Role password in md5 encrypted form.

passhistpasswordsetat timestamptz The time the password was set.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 235

edb_policy

The edb_policy table contains one row for each policy.

Column Type Modifiers Description

policyname name not null The policy name.

policygroup oid not null Currently unused.

policyobject oid not null The OID of the table secured by this policy (the object_schema plus the object_name).

policykind char not null The kind of object secured by this policy: 'r' for a table, 'v' for a view, = for a synonym. Currently always 'r'.

policyproc oid not null The OID of the policy function (function_schema plus policy_function).

policyinsert boolean not null True if the policy is enforced by INSERT statements.

policyselect boolean not null True if the policy is enforced by SELECT statements.

policydelete boolean not null True if the policy is enforced by DELETE statements.

policyupdate boolean not null True if the policy is enforced by UPDATE statements.

policyindex boolean not null Currently unused.

policyenabled boolean not null True if the policy is enabled.

policyupdatecheck boolean not null True if rows updated by an UPDATE statement must satisfy the policy.

policystatic boolean not null Currently unused.

policytype integer not null Currently unused.

policyopts integer not null Currently unused.

policyseccols int2vector not null The column numbers for columns listed in sec_relevant_cols .

edb_profile

The edb_profile table stores information about the available profiles. edb_profiles is shared across all databases in a cluster.

Column Type References Description

oid oid Row identifier (hidden attribute. Must be explicitly selected).

prfname name The name of the profile.

prffailedloginat
tempts

inte
ger

The number of failed login attempts allowed by the profile. -1 indicates to use the value from the default profile. -2 indicates no limit on
failed login attempts.

prfpasswordlockt
ime

inte
ger

The password lock time associated with the profile, in seconds. -1 indicates to use the value from the default profile. -2 indicates to lock the
account permanently.

prfpasswordlifet
ime

inte
ger

The password lifetime associated with the profile, in seconds. -1 indicates to use the value from the default profile. -2 indicates that the
password never expires.

prfpasswordgrace
time

inte
ger

The password grace time associated with the profile, in seconds. -1 indicates to use the value from the default profile. -2 indicates that the
password never expires.

prfpasswordreuse
time

inte
ger

The number of seconds that a user must wait before reusing a password. -1 indicates to use the value from the default profile. -2 indicates
that the old passwords can never be reused.

prfpasswordreuse
max

inte
ger

The number of password changes that have to occur before a password can be reused. -1 indicates to use the value from the default profile. -
2 indicates that the old passwords can never be reused.

prfpasswordallow
hashed

inte
ger

Specifies whether an encrypted password is allowed for use. The possible values are true/on/yes/1 , false/off/no/0 , and
DEFAULT .

prfpasswordverif
yfuncdb

oid pg_databas
e.oid

The OID of the database in which the password verify function exists.

prfpasswordverif
yfunc

oid pg_proc.oi
d

The OID of the password verify function associated with the profile.

edb_variable

The edb_variable table contains one row for each package level variable (each variable declared in a package).

Column Type Modifier
s

Description

varname "name
"

not
null

The name of the variable.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 236

varpack
age

oid not
null

The OID of the pg_namespace row that stores the package.

vartype oid not
null

The OID of the pg_type row that defines the type of the variable.

varacce
ss

"char
"

not
null

+ if the variable is visible outside of the package. - if the variable is visible only in the package. Note: Public variables are declared in the package header.
Private variables are declared in the package body.

varsrc text Contains the source of the variable declaration, including any default value expressions for the variable.

varseq small
int

not
null

The order in which the variable was declared in the package.

Column Type Modifier
s

Description

pg_synonym

The pg_synonym table contains one row for each synonym created with the CREATE SYNONYM command or CREATE PUBLIC SYNONYM command.

Column Type Modifiers Description

synname "name" not null The name of the synonym.

synnamespace oid not null Replaces synowner . Contains the OID of the pg_namespace row where the synonym is
stored.

synowner oid not null The OID of the user that owns the synonym.

synobjschema "name" not null The schema in which the referenced object is defined.

synobjname "name" not null The name of the referenced object.

synlink text The optional name of the database link in which the referenced object is defined.

product_component_version

The product_component_version table contains information about feature compatibility. An application can query this table during installation or at runtime to verify that features used by the
application are available with this deployment.

Column Type Description

product character varying (74) The name of the product.

version character varying (74) The version number of the product.

status character varying (74) The status of the release.

16 Database Compatibility for Oracle Developers: Built-in Package

Database compatibility for Oracle means that an application runs in an Oracle environment as well as in the EDB Postgres Advanced Server environment with minimal or no changes to the application
code. The features that follow are related to the package support provided by EDB Postgres Advanced Server.

16.1 Packages

A package is a named collection of functions, procedures, variables, cursors, user-defined record types, and records that are referenced using a common qualifier: the package identifier. Packages have
the following characteristics:

They provide a convenient means of organizing the functions and procedures that perform a related purpose. Permission to use the package functions and procedures depends on one privilege
granted to the entire package. You must reference all of the package programs with a common name.
You can declare certain functions, procedures, variables, types, and so on in the package as public. Public entities are visible and other programs that are given EXECUTE privilege on the
package can reference them. For public functions and procedures, only their signatures are visible: the program names, parameters, if any, and return types of functions. The SPL code of these
functions and procedures isn't accessible to others. Therefore applications that use a package depend on only the information available in the signature and not in the procedural logic itself.
You can declare other functions, procedures, variables, types, and so on in the package as private. Private entities can be referenced and used by function and procedures in the package but not
by other external applications. Private entities are for use only by programs in the package.
Function and procedure names can be overloaded in a package. You can define one or more functions/procedures with the same name but with different signatures. This capability enables you to
create identically named programs that perform the same job but on different types of input.

16.1.1 Package components

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 237

Packages consist of two main components:

The package specification, which is the public interface. You can reference these elements outside the package. Declare all database objects that are a part of a package in the specification.

Th package body, which contains the actual implementation of all the database objects declared in the package specification.

The package body implements the specifications in the package specification. It contains implementation details and private declarations that are invisible to the application. You can debug,
enhance, or replace a package body without changing the specifications. Similarly, you can change the body without recompiling the calling programs because the implementation details are
invisible to the application.

Package specification syntax

The package specification defines the user interface for a package (the API). The specification lists the functions, procedures, types, exceptions, and cursors that are visible to a user of the package.

The syntax used to define the interface for a package is:

CREATE [OR REPLACE] PACKAGE <package_name>
 [<authorization_clause>]
 { IS | AS }
 [<declaration>;] ...
 [<procedure_or_function_declaration>] ...
END [<package_name>] ;

Where authorization_clause :=

{ AUTHID DEFINER } | { AUTHID CURRENT_USER }

Where procedure_or_function_declaration :=

procedure_declaration | function_declaration

Where procedure_declaration :=

PROCEDURE proc_name [argument_list];
[restriction_pragma;]

Where function_declaration :=

FUNCTION func_name [argument_list]
 RETURN rettype [DETERMINISTIC];
[restriction_pragma;]

Where argument_list :=

(argument_declaration [, ...])

Where argument_declaration :=

argname [IN | IN OUT | OUT] argtype [DEFAULT value]

Where restriction_pragma :=

PRAGMA RESTRICT_REFERENCES(name, restrictions)

Where restrictions :=

restriction [, ...]

Parameters

package_name

package_name is an identifier assigned to the package. Each package must have a unique name in the schema.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 238

AUTHID DEFINER

If you omit the AUTHID clause or specify AUTHID DEFINER , the privileges of the package owner are used to determine access privileges to database objects.

AUTHID CURRENT_USER

If you specify AUTHID CURRENT_USER , the privileges of the current user executing a program in the package are used to determine access privileges.

declaration

declaration is an identifier of a public variable. You can access a public variable from outside the package using the syntax package_name.variable . There can be zero, one, or more public
variables. Public variable definitions must come before procedure or function declarations.

declaration can be any of the following:

Variable declaration
Record declaration
Collection declaration
REF CURSOR and cursor variable declaration
TYPE definitions for records, ollections, and REF CURSOR

Exception
Object variable declaration

proc_name

The name of a public procedure.

argname

The name of an argument. The argument is referenced by this name in the function or procedure body.

IN | IN OUT | OUT

The argument mode. IN (the default) declares the argument for input only. IN OUT allows the argument to receive a value as well as return a value. OUT specifies the argument is for output only.

argtype

The data types of an argument. An argument type can be a base data type, a copy of the type of an existing column using %TYPE , or a user-defined type such as a nested table or an object type. Don't
specify a length for any base type. For example, specify VARCHAR2 , not VARCHAR2(10) .

Reference the type of a column by writing tablename.columnname %TYPE . Using this nomenclature can sometimes help make a procedure independent from changes to the definition of a table.

DEFAULT value

The DEFAULT clause supplies a default value for an input argument if you don't supply one in the invocation. You can't specify DEFAULT for arguments with modes IN OUT or OUT .

func_name

The name of a public function.

rettype

The return data type.

DETERMINISTIC

DETERMINISTIC is a synonym for IMMUTABLE . A DETERMINISTIC function can't modify the database and always reaches the same result when given the same argument values. It doesn't do
database lookups or otherwise use information not directly present in its argument list. If you include this clause, any call of the function with all-constant arguments can be immediately replaced with
the function value.

restriction

The following keywords are accepted for compatibility and ignored:

RNDS

RNPS

TRUST

WNDS

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 239

WNPS

Package body syntax

Package implementation details reside in the package body. The package body can contain objects that aren't visible to the package user. EDB Postgres Advanced Server supports the following syntax
for the package body:

CREATE [OR REPLACE] PACKAGE BODY <package_name>
 { IS | AS }
 [<private_declaration>;] ...
 [<procedure_or_function_definition>] ...
 [<package_initializer>]
END [<package_name>] ;

Where procedure_or_function_definition :=

procedure_definition | function_definition

Where procedure_definition :=

PROCEDURE proc_name[argument_list]
 [options_list]
 { IS | AS }
 procedure_body
 END [proc_name] ;

Where procedure_body :=

[PRAGMA AUTONOMOUS_TRANSACTION;]
[declaration;] [, ...]
BEGIN
 statement; [...]
[EXCEPTION
 { WHEN exception [OR exception] [...]] THEN statement; }
 [...]
]

Where function_definition :=

FUNCTION func_name [argument_list]
 RETURN rettype [DETERMINISTIC]
 [options_list]
 { IS | AS }
 function_body
 END [func_name] ;

Where function_body :=

[PRAGMA AUTONOMOUS_TRANSACTION;]
[declaration;] [, ...]
BEGIN
 statement; [...]
[EXCEPTION
 { WHEN exception [OR exception] [...] THEN statement; }
 [...]
]

Where argument_list :=

(argument_declaration [, ...])

Where argument_declaration :=

argname [IN | IN OUT | OUT] argtype [DEFAULT value]

Where options_list :=

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 240

option [...]

Where option :=

STRICT
LEAKPROOF
PARALLEL { UNSAFE | RESTRICTED | SAFE }
COST execution_cost
ROWS result_rows
SET config_param { TO value | = value | FROM CURRENT }

Where package_initializer :=

BEGIN
 statement; [...]
END;

Parameters

package_name

package_name is the name of the package for which this is the package body. An package specification with this name must already exist.

private_declaration

private_declaration is an identifier of a private variable that any procedure or function can access in the package. There can be zero, one, or more private variables. private_declaration
can be any of the following:

Variable declaration
Record declaration
Collection declaration
REF CURSOR and cursor variable declaration
TYPE definitions for records, collections, and REF CURSORs

Exception
Object variable declaration

proc_name

The name of the procedure being created.

PRAGMA AUTONOMOUS_TRANSACTION

PRAGMA AUTONOMOUS_TRANSACTION is the directive that sets the procedure as an autonomous transaction.

declaration

A variable, type, REF CURSOR , or subprogram declaration. If you include subprogram declarations, declare them after all other variable, type, and REF CURSOR declarations.

statement

An SPL program statement. A DECLARE - BEGIN - END block is considered an SPL statement unto itself. Thus, the function body can contain nested blocks.

exception

An exception condition name such as NO_DATA_FOUND, OTHERS .

func_name

The name of the function being created.

rettype

The return data type, which can be any of the types listed for argtype . As for argtype , don't specify a length for rettype .

DETERMINISTIC

Include DETERMINISTIC to specify for the function to always return the same result when given the same argument values. A DETERMINISTIC function must not modify the database.

!!! Note The DETERMINISTIC keyword is equivalent to the PostgreSQL IMMUTABLE option.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 241

!!!Note If DETERMINISTIC is specified for a public function in the package body, you must also specify it for the function declaration in the package specification. For private functions, there's no
function declaration in the package specification.

PRAGMA AUTONOMOUS_TRANSACTION

PRAGMA AUTONOMOUS_TRANSACTION is the directive that sets the function as an autonomous transaction.

argname

The name of a formal argument. The argument is referenced by this name in the procedure body.

IN | IN OUT | OUT

The argument mode. IN (the default) declares the argument for input only. IN OUT allows the argument to receive a value as well as return a value. OUT specifies the argument is for output only.

argtype

The data types of an argument. An argument type can be a base data type, a copy of the type of an existing column using %TYPE , or a user-defined type such as a nested table or an object type. Don't
specify a length for any base type. For example, specify VARCHAR2 , not VARCHAR2(10) .

Reference the type of a column by writing tablename.columnname%TYPE . Using this nomenclature can sometimes help make a procedure independent from changes to the definition of a table.

DEFAULT value

The DEFAULT clause supplies a default value for an input argument if you don't supply one in the procedure call. Don't specify DEFAULT for arguments with modes IN OUT or OUT .

The following options aren't compatible with Oracle databases. They're extensions to Oracle package syntax provided only by EDB Postgres Advanced Server.

STRICT

The STRICT keyword specifies for the function not to execute if called with a NULL argument. Instead the function returns NULL .

LEAKPROOF

The LEAKPROOF keyword specifies for the function not to reveal any information about arguments other than through a return value.

PARALLEL { UNSAFE | RESTRICTED | SAFE }

The PARALLEL clause enables the use of parallel sequential scans (parallel mode). A parallel sequential scan uses multiple workers to scan a relation in parallel during a query in contrast to a serial
sequential scan.

When set to UNSAFE , the procedure or function can't be executed in parallel mode. The presence of such a procedure or function forces a serial execution plan. This is the default setting if you omit
the PARALLEL clause.

When set to RESTRICTED , the procedure or function can be executed in parallel mode, but the execution is restricted to the parallel group leader. If the qualification for any particular relation has
anything that is parallel restricted, that relation won't be chosen for parallelism.

When set to SAFE , the procedure or function can be executed in parallel mode without restriction.

execution_cost

execution_cost specifies a positive number giving the estimated execution cost for the function, in units of cpu_operator_cost . If the function returns a set, this is the cost per returned row.
The default is 0.0025 .

result_rows

result_rows is the estimated number of rows for the query planner to expect the function to return. The default is 1000 .

SET

Use the SET clause to specify a parameter value for the duration of the function:

config_param specifies the parameter name.

value specifies the parameter value.

FROM CURRENT guarantees that the parameter value is restored when the function ends.

package_initializer

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 242

The statements in the package_initializer are executed once per user session when the package is first referenced.

Note

The STRICT , LEAKPROOF , PARALLEL , COST , ROWS and SET keywords provide extended functionality for EDB Postgres Advanced Server. Oracle doesn't support them.

16.1.2 Creating packages

A package isn't an executable piece of code but a repository of code. When you use a package, you execute or make reference to an element within a package.

Creating the package specification

The package specification contains the definition of all the elements in the package that you can reference from outside of the package. These are called the public elements of the package, and they
act as the package interface. The following code sample is a package specification:

--
-- Package specification for the 'emp_admin' package.
--
CREATE OR REPLACE PACKAGE emp_admin
IS
 FUNCTION get_dept_name (
 p_deptno NUMBER DEFAULT 10
)
 RETURN VARCHAR2;
 FUNCTION update_emp_sal (
 p_empno NUMBER,
 p_raise NUMBER
)
 RETURN NUMBER;
 PROCEDURE hire_emp (
 p_empno NUMBER,
 p_ename VARCHAR2,
 p_job VARCHAR2,
 p_sal NUMBER,
 p_hiredate DATE DEFAULT sysdate,
 p_comm NUMBER DEFAULT 0,
 p_mgr NUMBER,
 p_deptno NUMBER DEFAULT 10
);
 PROCEDURE fire_emp (
 p_empno NUMBER
);
END emp_admin;

This code sample creates the emp_admin package specification. This package specification consists of two functions and two stored procedures. You can also add the OR REPLACE clause to the
CREATE PACKAGE statement for convenience.

Creating the package body

The body of the package contains the actual implementation behind the package specification. For the emp_admin package specification in the example, this code now create a package body that
implements the specifications. The body contains the implementation of the functions and stored procedures in the specification.

--
-- Package body for the 'emp_admin' package.
--
CREATE OR REPLACE PACKAGE BODY emp_admin
IS
 --
 -- Function that queries the 'dept' table based on the department
 -- number and returns the corresponding department name.
 --
 FUNCTION get_dept_name (
 p_deptno IN NUMBER DEFAULT 10
)
 RETURN VARCHAR2
 IS
 v_dname VARCHAR2(14);

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 243

 BEGIN
 SELECT dname INTO v_dname FROM dept WHERE deptno = p_deptno;
 RETURN v_dname;
 EXCEPTION
 WHEN NO_DATA_FOUND THEN
 DBMS_OUTPUT.PUT_LINE('Invalid department number ' || p_deptno);
 RETURN '';
 END;
 --
 -- Function that updates an employee's salary based on the
 -- employee number and salary increment/decrement passed
 -- as IN parameters. Upon successful completion the function
 -- returns the new updated salary.
 --
 FUNCTION update_emp_sal (
 p_empno IN NUMBER,
 p_raise IN NUMBER
)
 RETURN NUMBER
 IS
 v_sal NUMBER := 0;
 BEGIN
 SELECT sal INTO v_sal FROM emp WHERE empno = p_empno;
 v_sal := v_sal + p_raise;
 UPDATE emp SET sal = v_sal WHERE empno = p_empno;
 RETURN v_sal;
 EXCEPTION
 WHEN NO_DATA_FOUND THEN
 DBMS_OUTPUT.PUT_LINE('Employee ' || p_empno || ' not found');
 RETURN -1;
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE('The following is SQLERRM:');
 DBMS_OUTPUT.PUT_LINE(SQLERRM);
 DBMS_OUTPUT.PUT_LINE('The following is SQLCODE:');
 DBMS_OUTPUT.PUT_LINE(SQLCODE);
 RETURN -1;
 END;
 --
 -- Procedure that inserts a new employee record into the 'emp' table.
 --
 PROCEDURE hire_emp (
 p_empno NUMBER,
 p_ename VARCHAR2,
 p_job VARCHAR2,
 p_sal NUMBER,
 p_hiredate DATE DEFAULT sysdate,
 p_comm NUMBER DEFAULT 0,
 p_mgr NUMBER,
 p_deptno NUMBER DEFAULT 10
)
 AS
 BEGIN
 INSERT INTO emp(empno, ename, job, sal, hiredate, comm, mgr, deptno)
 VALUES(p_empno, p_ename, p_job, p_sal,
 p_hiredate, p_comm, p_mgr, p_deptno);
 END;
 --
 -- Procedure that deletes an employee record from the 'emp' table based
 -- on the employee number.
 --
 PROCEDURE fire_emp (
 p_empno NUMBER
)
 AS
 BEGIN
 DELETE FROM emp WHERE empno = p_empno;
 END;
END;

16.1.3 Referencing a package

To reference the types, items, and subprograms that are declared in a package specification, use the dot notation. For example:

package_name.type_name

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 244

package_name.item_name

package_name.subprogram_name

To invoke a function from the emp_admin package specification, execute the following SQL command:

SELECT emp_admin.get_dept_name(10) FROM DUAL;

This example invokes the get_dept_name function declared in the package emp_admin . It passes the department number as an argument to the function, which returns the name of the
department. The value returned is ACCOUNTING , which corresponds to department number 10 .

16.1.4 Using packages with user-defined types

This example incorporates various user-defined types in the context of a package.

The package specification of emp_rpt shows the declaration of a record type emprec_typ and a weakly typed REF CURSOR, emp_refcur as publicly accessible. It also shows two functions
and two procedures. The function, open_emp_by_dept , returns the REF CURSOR type EMP_REFCUR . Procedures fetch_emp and close_refcur both declare a weakly typed REF
CURSOR as a formal parameter.

CREATE OR REPLACE PACKAGE emp_rpt
IS
 TYPE emprec_typ IS RECORD (
 empno NUMBER(4),
 ename VARCHAR(10)
);
 TYPE emp_refcur IS REF CURSOR;

 FUNCTION get_dept_name (
 p_deptno IN NUMBER
) RETURN VARCHAR2;
 FUNCTION open_emp_by_dept (
 p_deptno IN emp.deptno%TYPE
) RETURN EMP_REFCUR;
 PROCEDURE fetch_emp (
 p_refcur IN OUT SYS_REFCURSOR
);
 PROCEDURE close_refcur (
 p_refcur IN OUT SYS_REFCURSOR
);
END emp_rpt;

The package body shows the declaration of several private variables: a static cursor dept_cur , a table type depttab_typ , a table variable t_dept , an integer variable t_dept_max , and a
record variable r_emp .

CREATE OR REPLACE PACKAGE BODY emp_rpt
IS
 CURSOR dept_cur IS SELECT * FROM dept;
 TYPE depttab_typ IS TABLE of dept%ROWTYPE
 INDEX BY BINARY_INTEGER;
 t_dept DEPTTAB_TYP;
 t_dept_max INTEGER := 1;
 r_emp EMPREC_TYP;

 FUNCTION get_dept_name (
 p_deptno IN NUMBER
) RETURN VARCHAR2
 IS
 BEGIN
 FOR i IN 1..t_dept_max LOOP
 IF p_deptno = t_dept(i).deptno THEN
 RETURN t_dept(i).dname;
 END IF;
 END LOOP;
 RETURN 'Unknown';
 END;

 FUNCTION open_emp_by_dept(
 p_deptno IN emp.deptno%TYPE
) RETURN EMP_REFCUR
 IS
 emp_by_dept EMP_REFCUR;
 BEGIN

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 245

 OPEN emp_by_dept FOR SELECT empno, ename FROM emp
 WHERE deptno = p_deptno;
 RETURN emp_by_dept;
 END;

 PROCEDURE fetch_emp (
 p_refcur IN OUT SYS_REFCURSOR
)
 IS
 BEGIN
 DBMS_OUTPUT.PUT_LINE('EMPNO ENAME');
 DBMS_OUTPUT.PUT_LINE('----- -------');
 LOOP
 FETCH p_refcur INTO r_emp;
 EXIT WHEN p_refcur%NOTFOUND;
 DBMS_OUTPUT.PUT_LINE(r_emp.empno || ' ' || r_emp.ename);
 END LOOP;
 END;

 PROCEDURE close_refcur (
 p_refcur IN OUT SYS_REFCURSOR
)
 IS
 BEGIN
 CLOSE p_refcur;
 END;
BEGIN
 OPEN dept_cur;
 LOOP
 FETCH dept_cur INTO t_dept(t_dept_max);
 EXIT WHEN dept_cur%NOTFOUND;
 t_dept_max := t_dept_max + 1;
 END LOOP;
 CLOSE dept_cur;
 t_dept_max := t_dept_max - 1;
END emp_rpt;

This package contains an initialization section that loads the private table variable t_dept using the private static cursor dept_cur.t_dept . dept_cur.t_dept serves as a department name
lookup table in the function get_dept_name .

The function open_emp_by_dept returns a REF CURSOR variable for a result set of employee numbers and names for a given department. This REF CURSOR variable can then be passed to the
procedure fetch_emp to retrieve and list the individual rows of the result set. Finally, the procedure close_refcur can be used to close the REF CURSOR variable associated with this result
set.

The following anonymous block runs the package function and procedures. In the anonymous block's declaration section, note the declaration of cursor variable v_emp_cur using the package’s
public REF CURSOR type, EMP_REFCUR. v_emp_cur contains the pointer to the result set that's passed between the package function and procedures.

DECLARE
 v_deptno dept.deptno%TYPE DEFAULT 30;
 v_emp_cur emp_rpt.EMP_REFCUR;
BEGIN
 v_emp_cur := emp_rpt.open_emp_by_dept(v_deptno);
 DBMS_OUTPUT.PUT_LINE('EMPLOYEES IN DEPT #' || v_deptno ||
 ': ' || emp_rpt.get_dept_name(v_deptno));
 emp_rpt.fetch_emp(v_emp_cur);
 DBMS_OUTPUT.PUT_LINE('**********************');
 DBMS_OUTPUT.PUT_LINE(v_emp_cur%ROWCOUNT || ' rows were retrieved');
 emp_rpt.close_refcur(v_emp_cur);
END;

The following is the result of this anonymous block:

EMPLOYEES IN DEPT #30: SALES
EMPNO ENAME
----- -------
7499 ALLEN
7521 WARD
7654 MARTIN
7698 BLAKE
7844 TURNER
7900 JAMES

6 rows were retrieved

The following anonymous block shows another way to achieve the same result. Instead of using the package procedures fetch_emp and close_refcur , the logic of these programs is coded
directly into the anonymous block. In the anonymous block’s declaration section, note the addition of record variable r_emp , declared using the package’s public record type, EMPREC_TYP .

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 246

DECLARE
 v_deptno dept.deptno%TYPE DEFAULT 30;
 v_emp_cur emp_rpt.EMP_REFCUR;
 r_emp emp_rpt.EMPREC_TYP;
BEGIN
 v_emp_cur := emp_rpt.open_emp_by_dept(v_deptno);
 DBMS_OUTPUT.PUT_LINE('EMPLOYEES IN DEPT #' || v_deptno ||
 ': ' || emp_rpt.get_dept_name(v_deptno));
 DBMS_OUTPUT.PUT_LINE('EMPNO ENAME');
 DBMS_OUTPUT.PUT_LINE('----- -------');
 LOOP
 FETCH v_emp_cur INTO r_emp;
 EXIT WHEN v_emp_cur%NOTFOUND;
 DBMS_OUTPUT.PUT_LINE(r_emp.empno || ' ' ||
 r_emp.ename);
 END LOOP;
 DBMS_OUTPUT.PUT_LINE('**********************');
 DBMS_OUTPUT.PUT_LINE(v_emp_cur%ROWCOUNT || ' rows were retrieved');
 CLOSE v_emp_cur;
END;

The following is the result of this anonymous block.

EMPLOYEES IN DEPT #30: SALES
EMPNO ENAME
----- -------
7499 ALLEN
7521 WARD
7654 MARTIN
7698 BLAKE
7844 TURNER
7900 JAMES

6 rows were retrieved

16.1.5 Dropping a package

The syntax for deleting an entire package or the package body is:

DROP PACKAGE [BODY] package_name;

If you omit the keyword BODY , both the package specification and the package body are deleted, that is, the entire package is dropped. If you specify the keyword BODY , then only the package body is
dropped. The package specification remains intact. package_name is the identifier of the package to drop.

The following statement destroys only the package body of emp_admin :

DROP PACKAGE BODY emp_admin;

The following statement drops the entire emp_admin package:

DROP PACKAGE emp_admin;

16.2 Built-in packages

Built-in packages are provided with EDB Postgres Advanced Server. For certain packages, non-superusers must be explicitly granted the EXECUTE privilege on the package before using any of the
package’s functions or procedures. For most of the built-in packages, EXECUTE privilege is granted to PUBLIC by default.

For information about using the GRANT command to provide access to a package, see GRANT .

All built-in packages are owned by the special sys user that must be specified when granting or revoking privileges on built-in packages:

GRANT EXECUTE ON PACKAGE SYS.UTL_FILE TO john;

16.2.1 DBMS_ALERT

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 247

The DBMS_ALERT package lets you register for, send, and receive alerts. The following table lists the supported procedures:

Function/procedure Return type Description

REGISTER(name) n/a Register to be able to receive alerts named name .

REMOVE(name) n/a Remove registration for the alert named name .

REMOVEALL n/a Remove registration for all alerts.

SIGNAL(name, message) n/a Signal the alert named name with message .

WAITANY(name OUT, message OUT, status OUT,
timeout)

n/a Wait for any registered alert to occur.

WAITONE(name, message OUT, status OUT, timeout) n/a Wait for the specified alert, name , to occur.

EDB Postgres Advanced Server's implementation of DBMS_ALERT is a partial implementation when compared to Oracle's version. Only those functions and procedures listed in the table are
supported.

EDB Postgres Advanced Server allows a maximum of 500 concurrent alerts. You can use the dbms_alert.max_alerts GUC variable, located in the postgresql.conf file, to specify the
maximum number of concurrent alerts allowed on a system.

To set a value for the dbms_alert.max_alerts variable, open the postgresql.conf file, which is located by default in /opt/PostgresPlus/14AS/data , with your choice of editor. Edit
the dbms_alert.max_alerts parameter as shown:

dbms_alert.max_alerts = alert_count

alert_count

alert_count specifies the maximum number of concurrent alerts. By default, the value of dbms_alert.max_alerts is 100 . To disable this feature, set dbms_alert.max_alerts to 0 .

For the dbms_alert.max_alerts GUC to function correctly, the custom_variable_classes parameter must contain dbms_alerts :

custom_variable_classes = 'dbms_alert, …'

After editing the postgresql.conf file parameters, you must restart the server for the changes to take effect.

REGISTER

The REGISTER procedure enables the current session to be notified of the specified alert.

REGISTER(<name> VARCHAR2)

Parameters

name

Name of the alert to register.

Examples

This anonymous block registers for an alert named alert_test and then waits for the signal.

DECLARE
 v_name VARCHAR2(30) := 'alert_test';
 v_msg VARCHAR2(80);
 v_status INTEGER;
 v_timeout NUMBER(3) := 120;
BEGIN
 DBMS_ALERT.REGISTER(v_name);
 DBMS_OUTPUT.PUT_LINE('Registered for alert ' || v_name);
 DBMS_OUTPUT.PUT_LINE('Waiting for signal...');
 DBMS_ALERT.WAITONE(v_name,v_msg,v_status,v_timeout);
 DBMS_OUTPUT.PUT_LINE('Alert name : ' || v_name);
 DBMS_OUTPUT.PUT_LINE('Alert msg : ' || v_msg);
 DBMS_OUTPUT.PUT_LINE('Alert status : ' || v_status);
 DBMS_OUTPUT.PUT_LINE('Alert timeout: ' || v_timeout || ' seconds');

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 248

 DBMS_ALERT.REMOVE(v_name);
END;

Registered for alert alert_test
Waiting for signal...

REMOVE

The REMOVE procedure unregisters the session for the named alert.

REMOVE(<name> VARCHAR2)

Parameters

name

Name of the alert to unregister.

REMOVEALL

The REMOVEALL procedure unregisters the session for all alerts.

REMOVEALL

SIGNAL

The SIGNAL procedure signals the occurrence of the named alert.

SIGNAL(<name> VARCHAR2, <message> VARCHAR2)

Parameters

name

Name of the alert.

message

Information to pass with this alert.

Examples

This anonymous block signals an alert for alert_test .

DECLARE
 v_name VARCHAR2(30) := 'alert_test';
BEGIN
 DBMS_ALERT.SIGNAL(v_name,'This is the message from ' || v_name);
 DBMS_OUTPUT.PUT_LINE('Issued alert for ' || v_name);
END;
Issued alert for alert_test

WAITANY

The WAITANY procedure waits for any of the registered alerts to occur.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 249

WAITANY(<name> OUT VARCHAR2, <message> OUT VARCHAR2,
 <status> OUT INTEGER, <timeout> NUMBER)

Parameters

name

Variable receiving the name of the alert.

message

Variable receiving the message sent by the SIGNAL procedure.

status

Status code returned by the operation. Possible values are: 0 – alert occurred; 1 – timeout occurred.

timeout

Time to wait for an alert in seconds.

Examples

This anonymous block uses the WAITANY procedure to receive an alert named alert_test or any_alert :

DECLARE
 v_name VARCHAR2(30);
 v_msg VARCHAR2(80);
 v_status INTEGER;
 v_timeout NUMBER(3) := 120;
BEGIN
 DBMS_ALERT.REGISTER('alert_test');
 DBMS_ALERT.REGISTER('any_alert');
 DBMS_OUTPUT.PUT_LINE('Registered for alert alert_test and any_alert');
 DBMS_OUTPUT.PUT_LINE('Waiting for signal...');
 DBMS_ALERT.WAITANY(v_name,v_msg,v_status,v_timeout);
 DBMS_OUTPUT.PUT_LINE('Alert name : ' || v_name);
 DBMS_OUTPUT.PUT_LINE('Alert msg : ' || v_msg);
 DBMS_OUTPUT.PUT_LINE('Alert status : ' || v_status);
 DBMS_OUTPUT.PUT_LINE('Alert timeout: ' || v_timeout || ' seconds');
 DBMS_ALERT.REMOVEALL;
END;

Registered for alert alert_test and any_alert
Waiting for signal...

An anonymous block in a second session issues a signal for any_alert :

DECLARE
 v_name VARCHAR2(30) := 'any_alert';
BEGIN
 DBMS_ALERT.SIGNAL(v_name,'This is the message from ' || v_name);
 DBMS_OUTPUT.PUT_LINE('Issued alert for ' || v_name);
END;

Issued alert for any_alert

Control returns to the first anonymous block and the remainder of the code is executed:

Registered for alert alert_test and any_alert
Waiting for signal...
Alert name : any_alert
Alert msg : This is the message from any_alert
Alert status : 0
Alert timeout: 120 seconds

WAITONE

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 250

The WAITONE procedure waits for the specified registered alert to occur.

WAITONE(<name> VARCHAR2, <message> OUT VARCHAR2,
 <status> OUT INTEGER, <timeout> NUMBER)

Parameters

name

Name of the alert.

message

Variable receiving the message sent by the SIGNAL procedure.

status

Status code returned by the operation. Possible values are: 0 – alert occurred; 1 – timeout occurred.

timeout

Time to wait for an alert in seconds.

Examples

This anonymous block is similar to the one used in the WAITANY example except the WAITONE procedure is used to receive the alert named alert_test .

DECLARE
 v_name VARCHAR2(30) := 'alert_test';
 v_msg VARCHAR2(80);
 v_status INTEGER;
 v_timeout NUMBER(3) := 120;
BEGIN
 DBMS_ALERT.REGISTER(v_name);
 DBMS_OUTPUT.PUT_LINE('Registered for alert ' || v_name);
 DBMS_OUTPUT.PUT_LINE('Waiting for signal...');
 DBMS_ALERT.WAITONE(v_name,v_msg,v_status,v_timeout);
 DBMS_OUTPUT.PUT_LINE('Alert name : ' || v_name);
 DBMS_OUTPUT.PUT_LINE('Alert msg : ' || v_msg);
 DBMS_OUTPUT.PUT_LINE('Alert status : ' || v_status);
 DBMS_OUTPUT.PUT_LINE('Alert timeout: ' || v_timeout || ' seconds');
 DBMS_ALERT.REMOVE(v_name);
END;

Registered for alert alert_test
Waiting for signal...

Signal sent for alert_test sent by an anonymous block in a second session:

DECLARE
 v_name VARCHAR2(30) := 'alert_test';
BEGIN
 DBMS_ALERT.SIGNAL(v_name,'This is the message from ' || v_name);
 DBMS_OUTPUT.PUT_LINE('Issued alert for ' || v_name);
END;

Issued alert for alert_test

First session is alerted, control returns to the anonymous block, and the remainder of the code is executed:

Registered for alert alert_test
Waiting for signal...
Alert name : alert_test
Alert msg : This is the message from alert_test
Alert status : 0
Alert timeout: 120 seconds

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 251

Comprehensive example

The following example uses two triggers to send alerts when the dept table or the emp table is changed. An anonymous block listens for these alerts and displays messages when an alert is
received.

The following are the triggers on the dept and emp tables:

CREATE OR REPLACE TRIGGER dept_alert_trig
 AFTER INSERT OR UPDATE OR DELETE ON dept
DECLARE
 v_action VARCHAR2(25);
BEGIN
 IF INSERTING THEN
 v_action := ' added department(s) ';
 ELSIF UPDATING THEN
 v_action := ' updated department(s) ';
 ELSIF DELETING THEN
 v_action := ' deleted department(s) ';
 END IF;
 DBMS_ALERT.SIGNAL('dept_alert',USER || v_action || 'on ' ||
 SYSDATE);
END;

CREATE OR REPLACE TRIGGER emp_alert_trig
 AFTER INSERT OR UPDATE OR DELETE ON emp
DECLARE
 v_action VARCHAR2(25);
BEGIN
 IF INSERTING THEN
 v_action := ' added employee(s) ';
 ELSIF UPDATING THEN
 v_action := ' updated employee(s) ';
 ELSIF DELETING THEN
 v_action := ' deleted employee(s) ';
 END IF;
 DBMS_ALERT.SIGNAL('emp_alert',USER || v_action || 'on ' ||
 SYSDATE);
END;

This anonymous block is executed in a session while updates to the dept and emp tables occur in other sessions:

DECLARE
 v_dept_alert VARCHAR2(30) := 'dept_alert';
 v_emp_alert VARCHAR2(30) := 'emp_alert';
 v_name VARCHAR2(30);
 v_msg VARCHAR2(80);
 v_status INTEGER;
 v_timeout NUMBER(3) := 60;
BEGIN
 DBMS_ALERT.REGISTER(v_dept_alert);
 DBMS_ALERT.REGISTER(v_emp_alert);
 DBMS_OUTPUT.PUT_LINE('Registered for alerts dept_alert and emp_alert');
 DBMS_OUTPUT.PUT_LINE('Waiting for signal...');
 LOOP
 DBMS_ALERT.WAITANY(v_name,v_msg,v_status,v_timeout);
 EXIT WHEN v_status != 0;
 DBMS_OUTPUT.PUT_LINE('Alert name : ' || v_name);
 DBMS_OUTPUT.PUT_LINE('Alert msg : ' || v_msg);
 DBMS_OUTPUT.PUT_LINE('Alert status : ' || v_status);
 DBMS_OUTPUT.PUT_LINE('------------------------------------' ||
 '-------------------------');
 END LOOP;
 DBMS_OUTPUT.PUT_LINE('Alert status : ' || v_status);
 DBMS_ALERT.REMOVEALL;
END;

Registered for alerts dept_alert and emp_alert
Waiting for signal...

The following changes are made by user, mary:

INSERT INTO dept VALUES (50,'FINANCE','CHICAGO');
INSERT INTO emp (empno,ename,deptno) VALUES (9001,'JONES',50);
INSERT INTO emp (empno,ename,deptno) VALUES (9002,'ALICE',50);

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 252

The following change is made by user, john:

INSERT INTO dept VALUES (60,'HR','LOS ANGELES');

The following is the output displayed by the anonymous block receiving the signals from the triggers:

Registered for alerts dept_alert and emp_alert
Waiting for signal...
Alert name : dept_alert
Alert msg : mary added department(s) on 25-OCT-07 16:41:01
Alert status : 0

Alert name : emp_alert
Alert msg : mary added employee(s) on 25-OCT-07 16:41:02
Alert status : 0

Alert name : dept_alert
Alert msg : john added department(s) on 25-OCT-07 16:41:22
Alert status : 0

Alert status : 1

16.2.2 DBMS_AQ

EDB Postgres Advanced Server Advanced Queueing provides message queueing and message processing for the EDB Postgres Advanced Server database. User-defined messages are stored in a queue,
and a collection of queues is stored in a queue table. Procedures in the DBMS_AQADM package create and manage message queues and queue tables. Use the DBMS_AQ package to add messages to
or remove them from a queue or to register or unregister a PL/SQL callback procedure.

EDB Postgres Advanced Server also provides extended (noncompatible) functionality for the DBMS_AQ package with SQL commands. See the Database Compatibility for Oracle Developers SQL for
detailed information about the following SQL commands:

ALTER QUEUE
ALTER QUEUE TABLE
CREATE QUEUE
CREATE QUEUE TABLE
DROP QUEUE
DROP QUEUE TABLE

The DBMS_AQ package provides procedures that allow you to enqueue a message, dequeue a message, and manage callback procedures. The supported procedures are:

Function/procedure Return type Description

ENQUEUE n/a Post a message to a queue.

DEQUEUE n/a Retrieve a message from a queue if or when a message is available.

REGISTER n/a Register a callback procedure.

UNREGISTER n/a Unregister a callback procedure.

EDB Postgres Advanced Server's implementation of DBMS_AQ is a partial implementation when compared to Oracle's version. Only those procedures listed in the table above are supported.

EDB Postgres Advanced Server supports use of these constants:

Constant Description For parameters

DBMS_AQ.BROWSE (0) Read the message without locking. dequeue_options_t.dequeue_mode

DBMS_AQ.LOCKED (1) This constant is defined but returns an error if used. dequeue_options_t.dequeue_mode

DBMS_AQ.REMOVE (2) Delete the message after reading (the default). dequeue_options_t.dequeue_mode

DBMS_AQ.REMOVE_NODATA (3) This constant is defined but returns an error if used. dequeue_options_t.dequeue_mode

DBMS_AQ.FIRST_MESSAGE (0) Return the first available message that matches the search terms. dequeue_options_t.navigation

DBMS_AQ.NEXT_MESSAGE (1) Return the next available message that matches the search terms. dequeue_options_t.navigation

DBMS_AQ.NEXT_TRANSACTION
(2) This constant is defined but returns an error if used. dequeue_options_t.navigation

DBMS_AQ.FOREVER (-1) Wait forever if a message that matches the search term isn't found (the
default).

dequeue_options_t.wait

DBMS_AQ.NO_WAIT (0) Don't wait if a message that matches the search term isn't found. dequeue_options_t.wait

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 253

DBMS_AQ.ON_COMMIT (0) The dequeue is part of the current transaction.
enqueue_options_t.visibility,
dequeue_options_t.visibility

DBMS_AQ.IMMEDIATE (1) This constant is defined but returns an error if used.
enqueue_options_t.visibility,
dequeue_options_t.visibility

DBMS_AQ.PERSISTENT (0) Store the message in a table. enqueue_options_t.delivery_mode

DBMS_AQ.BUFFERED (1) This constant is defined but returns an error if used. enqueue_options_t.delivery_mode

DBMS_AQ.READY (0) Specifies that the message is ready to process. message_properties_t.state

DBMS_AQ.WAITING (1) Specifies that the message is waiting to be processed. message_properties_t.state

DBMS_AQ.PROCESSED (2) Specifies that the message was processed. message_properties_t.state

DBMS_AQ.EXPIRED (3) Specifies that the message is in the exception queue. message_properties_t.state

DBMS_AQ.NO_DELAY (0) This constant is defined but returns an error if used. message_properties_t.delay

DBMS_AQ.NEVER (NULL) This constant is defined but returns an error if used. message_properties_t.expiration

DBMS_AQ.NAMESPACE_AQ (0) Accept notifications from DBMS_AQ queues. sys.aq$_reg_info.namespace

DBMS_AQ.NAMESPACE_ANONYMOUS
(1)

This constant is defined but returns an error if used. sys.aq$_reg_info.namespace

Constant Description For parameters

The DBMS_AQ configuration parameters listed in the following table can be defined in the postgresql.conf file. After the configuration parameters are defined, you can invoke the DBMS_AQ
package to use and manage messages held in queues and queue tables.

Parameter Description

dbms_aq.max_workers The maximum number of workers to run.

dbms_aq.max_idle_time The idle time a worker must wait before exiting.

dbms_aq.min_work_time The minimum time a worker can run before exiting.

dbms_aq.launch_delay The minimum time between creating workers.

dbms_aq.batch_size The maximum number of messages to process in a single transaction. The default batch size is 10.

dbms_aq.max_databases The size of the DBMS_AQ hash table of databases. The default value is 1024.

dbms_aq.max_pending_retries The size of the DBMS_AQ hash table of pending retries. The default value is 1024.

16.2.2.1 ENQUEUE

The ENQUEUE procedure adds an entry to a queue. The signature is:

ENQUEUE(
 <queue_name> IN VARCHAR2,
 <enqueue_options> IN DBMS_AQ.ENQUEUE_OPTIONS_T,
 <message_properties> IN DBMS_AQ.MESSAGE_PROPERTIES_T,
 <payload> IN <type_name>,
 <msgid> OUT RAW)

Parameters

queue_name

The name (optionally schema qualified) of an existing queue. If you omit the schema name, the server uses the schema specified in the SEARCH_PATH . Unlike Oracle, unquoted identifiers are
converted to lower case before storing. To include special characters or use a case-sensitive name, enclose the name in double quotes.

For detailed information about creating a queue, see DBMS_AQADM.CREATE_QUEUE.

enqueue_options

enqueue_options is a value of the type enqueue_options_t :

DBMS_AQ.ENQUEUE_OPTIONS_T IS RECORD(
 visibility BINARY_INTEGER DEFAULT ON_COMMIT,
 relative_msgid RAW(16) DEFAULT NULL,
 sequence_deviation BINARY INTEGER DEFAULT NULL,
 transformation VARCHAR2(61) DEFAULT NULL,
 delivery_mode PLS_INTEGER NOT NULL DEFAULT PERSISTENT);

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 254

Currently, the only supported parameter values for enqueue_options_t are:

visibility ON_COMMIT .

delivery_mode PERSISTENT

sequence_deviation NULL

transformation NULL

relative_msgid NULL

message_properties

message_properties is a value of the type message_properties_t :

message_properties_t IS RECORD(
 priority INTEGER,
 delay INTEGER,
 expiration INTEGER,
 correlation CHARACTER VARYING(128) COLLATE pg_catalog.”C”,
 attempts INTEGER,
 recipient_list “AQ$_RECIPIENT_LIST_T”,
 exception_queue CHARACTER VARYING(61) COLLATE pg_catalog.”C”,
 enqueue_time TIMESTAMP WITHOUT TIME ZONE,
 state INTEGER,
 original_msgid BYTEA,
 transaction_group CHARACTER VARYING(30) COLLATE pg_catalog.”C”,
 delivery_mode INTEGER
DBMS_AQ.PERSISTENT);

The supported values for message_properties_t are:

priority If the queue table definition includes a sort_list that references priority , this parameter affects the order that messages are dequeued. A lower value indicates a
higher dequeue priority.

delay Specify the number of seconds to pass before a message is available for dequeueing or NO_DELAY .

expiration Use the expiration parameter to specify the number of seconds until a message expires.

correlation Use correlation to specify a message to associate with the entry. The default is NULL .

attempts This is a system-maintained value that specifies the number of attempts to dequeue the message.

recipient_list This parameter is not supported.

exception_queue Use the exception_queue parameter to specify the name of an exception queue to which to move a message if it expires or is dequeued by a transaction that rolls back
too many times.

enqueue_time enqueue_time is the time the record was added to the queue. This value is provided by the system.

state

This parameter is maintained by DBMS_AQ. The state can be:

DBMS_AQ.WAITING – The delay wasn't reached.

DBMS_AQ.READY – The queue entry is ready for processing.

DBMS_AQ.PROCESSED – The queue entry was processed.

DBMS_AQ.EXPIRED – The queue entry was moved to the exception queue.

original_msgid This parameter is accepted for compatibility and ignored.

transaction_gro
up

This parameter is accepted for compatibility and ignored.

delivery_mode This parameter isn't supported. Specify a value of DBMS_AQ.PERSISTENT .

payload

Use the payload parameter to provide the data to associate with the queue entry. The payload type must match the type specified when creating the corresponding queue table (see
DBMS_AQADM.CREATE_QUEUE_TABLE).

msgid

Use the msgid parameter to retrieve a unique (system-generated) message identifier.

Example

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 255

The following anonymous block calls DBMS_AQ.ENQUEUE , adding a message to a queue named work_order :

DECLARE

 enqueue_options DBMS_AQ.ENQUEUE_OPTIONS_T;
 message_properties DBMS_AQ.MESSAGE_PROPERTIES_T;
 message_handle raw(16);
 payload work_order;

BEGIN

 payload := work_order('Smith', 'system upgrade');

DBMS_AQ.ENQUEUE(
 queue_name => 'work_order',
 enqueue_options => enqueue_options,
 message_properties => message_properties,
 payload => payload,
 msgid => message_handle
);
 END;

16.2.2.2 DEQUEUE

The DEQUEUE procedure dequeues a message. The signature is:

DEQUEUE(
 <queue_name> IN VARCHAR2,
 <dequeue_options> IN DBMS_AQ.DEQUEUE_OPTIONS_T,
 <message_properties> OUT DBMS_AQ.MESSAGE_PROPERTIES_T,
 <payload> OUT <type_name>,
 <msgid> OUT RAW)

Parameters

queue_name

The name (optionally schema-qualified) of an existing queue. If you omit the schema name, the server uses the schema specified in the SEARCH_PATH . Unlike Oracle, unquoted identifiers are
converted to lower case before storing. To include special characters or use a case-sensitive name, enclose the name in double quotes.

For detailed information about creating a queue, see DBMS_AQADM.CREATE_QUEUE.

dequeue_options is a value of the type, dequeue_options_t :

DEQUEUE_OPTIONS_T IS RECORD(
 consumer_name CHARACTER VARYING(30),
 dequeue_mode INTEGER,
 navigation INTEGER,
 visibility INTEGER,
 wait INTEGER,
 msgid BYTEA,
 correlation CHARACTER VARYING(128),
 deq_condition CHARACTER VARYING(4000),
 transformation CHARACTER VARYING(61),
 delivery_mode INTEGER);

Currently, the supported parameter values for dequeue_options_t are:

consumer_name Must be NULL .

dequeue_mode

The locking behavior of the dequeue operation. Must be either:

DBMS_AQ.BROWSE – Read the message without obtaining a lock.

DBMS_AQ.LOCKED – Read the message after acquiring a lock.

DBMS_AQ.REMOVE – Read the message before deleting the message.

DBMS_AQ.REMOVE_NODATA – Read the message, but don't delete the message.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 256

navigation

Identifies the message to retrieve. Must be either:

FIRST_MESSAGE – The first message in the queue that matches the search term.

NEXT_MESSAGE – The next message that's available that matches the first term.

visibility Must be ON_COMMIT . If you roll back the current transaction, the dequeued item remains in the queue.

wait

Must be a number larger than 0, or:

DBMS_AQ.FOREVER – Wait indefinitely.

DBMS_AQ.NO_WAIT – Don't wait.

msgid The message ID of the message that to dequeue.

correlation Accepted for compatibility and ignored.

deq_condition A VARCHAR2 expression that evaluates to a BOOLEAN value indicating whether to deqeueue the message.

transformation Accepted for compatibility and ignored.

delivery_mode Must be PERSISTENT . Buffered messages aren't supported.

message_properties is a value of the type message_properties_t :

message_properties_t IS RECORD(
 priority INTEGER,
 delay INTEGER,
 expiration INTEGER,
 correlation CHARACTER VARYING(128) COLLATE pg_catalog.”C”,
 attempts INTEGER,
 recipient_list “AQ$_RECIPIENT_LIST_T”,
 exception_queue CHARACTER VARYING(61) COLLATE pg_catalog.”C”,
 enqueue_time TIMESTAMP WITHOUT TIME ZONE,
 state INTEGER,
 original_msgid BYTEA,
 transaction_group CHARACTER VARYING(30) COLLATE pg_catalog.”C”,
 delivery_mode INTEGER
DBMS_AQ.PERSISTENT);

The supported values for message_properties_t are:

priority If the queue table definition includes a sort_list that references priority , this parameter affects the order that messages are dequeued. A lower value indicates a
higher dequeue priority.

delay Specify the number of seconds that pass before a message is available for dequeueing or NO_DELAY .

expiration Use the expiration parameter to specify the number of seconds until a message expires.

correlation Use correlation to specify a message to associate with the entry. The default is NULL .

attempts This is a system-maintained value that specifies the number of attempts to dequeue the message.

recipient_list This parameter isn't supported.

exception_queue Use the exception_queue parameter to specify the name of an exception queue to which to move a message if it expires or is dequeued by a transaction that rolls back
too many times.

enqueue_time enqueue_time is the time the record was added to the queue. This value is provided by the system.

state

This parameter is maintained by DBMS_AQ; state can be:

DBMS_AQ.WAITING – the delay has not been reached.

DBMS_AQ.READY – the queue entry is ready for processing.

DBMS_AQ.PROCESSED – the queue entry has been processed.

DBMS_AQ.EXPIRED – the queue entry has been moved to the exception queue.

original_msgid This parameter is accepted for compatibility and ignored.

transaction_gro
up

This parameter is accepted for compatibility and ignored.

delivery_mode This parameter isn't supported. Specify a value of DBMS_AQ.PERSISTENT .

payload

Use the payload parameter to retrieve the payload of a message with a dequeue operation. The payload type must match the type specified when creating the queue table.

msgid

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 257

Use the msgid parameter to retrieve a unique message identifier.

Example

The following anonymous block calls DBMS_AQ.DEQUEUE , retrieving a message from the queue and a payload:

DECLARE

 dequeue_options DBMS_AQ.DEQUEUE_OPTIONS_T;
 message_properties DBMS_AQ.MESSAGE_PROPERTIES_T;
 message_handle raw(16);
 payload work_order;

BEGIN
 dequeue_options.dequeue_mode := DBMS_AQ.BROWSE;

 DBMS_AQ.DEQUEUE(
 queue_name => 'work_queue',
 dequeue_options => dequeue_options,
 message_properties => message_properties,
 payload => payload,
 msgid => message_handle
);

 DBMS_OUTPUT.PUT_LINE(
 'The next work order is [' || payload.subject || '].'
);
END;

The payload is displayed by DBMS_OUTPUT.PUT_LINE .

16.2.2.3 REGISTER

Use the REGISTER procedure to register an email address, procedure, or URL to notify when an item is enqueued or dequeued. The signature is:

REGISTER(
 <reg_list> IN SYS.AQ$_REG_INFO_LIST,
 <count> IN NUMBER)

Parameters

reg_list is a list of type AQ$_REG_INFO_LIST that provides information about each subscription that you want to register. Each entry in the list is of the type AQ$_REG_INFO and can contain:

Attribute Type Description

name VARCHAR2 (128) The (optionally schema-qualified) name of the subscription.

namespace NUMERIC The only supported value is DBMS_AQ.NAMESPACE_AQ (0) .

callback VARCHAR2 (4000)

Describes the action to perform on notification. Currently, only calls to PL/SQL procedures are supported. The call takes the
form:

plsql://schema.procedure

Where:

schema specifies the schema in which the procedure resides.

procedure specifies the name of the procedure to notify.

context RAW (16) Any user-defined value required by the procedure.

count

count is the number of entries in reg_list .

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 258

Example

The following anonymous block calls DBMS_AQ.REGISTER , registering procedures to notify when an item is added to or removed from a queue. A set of attributes (of sys.aq$_reg_info type) is
provided for each subscription identified in the DECLARE section:

DECLARE
 subscription1 sys.aq$_reg_info;
 subscription2 sys.aq$_reg_info;
 subscription3 sys.aq$_reg_info;
 subscriptionlist sys.aq$_reg_info_list;
BEGIN
 subscription1 := sys.aq$_reg_info('q', DBMS_AQ.NAMESPACE_AQ,
'plsql://assign_worker?PR=0',HEXTORAW('FFFF'));
 subscription2 := sys.aq$_reg_info('q', DBMS_AQ.NAMESPACE_AQ,
'plsql://add_to_history?PR=1',HEXTORAW('FFFF'));
 subscription3 := sys.aq$_reg_info('q', DBMS_AQ.NAMESPACE_AQ,
'plsql://reserve_parts?PR=2',HEXTORAW('FFFF'));

 subscriptionlist := sys.aq$_reg_info_list(subscription1,
subscription2, subscription3);
 dbms_aq.register(subscriptionlist, 3);
 commit;

 END;
 /

The subscriptionlist is of type sys.aq$_reg_info_list and contains the previously described sys.aq$_reg_info objects. The list name and an object count are passed to
dbms_aq.register .

16.2.2.4 UNREGISTER

Use the UNREGISTER procedure to turn off notifications related to enqueueing and dequeueing. The signature is:

UNREGISTER(
 <reg_list> IN SYS.AQ$_REG_INFO_LIST,
 <count> IN NUMBER)

Parameter

reg_list

reg_list is a list of type AQ$_REG_INFO_LIST that provides information about each subscription that you want to register. Each entry in the list is of the type AQ$_REG_INFO and can contain:

Attribute Type Description

name VARCHAR2 (128) The (optionally schema-qualified) name of the subscription.

namespace NUMERIC The only supported value is DBMS_AQ.NAMESPACE_AQ (0) .

callback VARCHAR2 (4000)

Describes the action to perform on notification. Currently, only calls to PL/SQL procedures are supported. The call taked the
form:

plsql://schema.procedure

Where:

schema specifies the schema in which the procedure resides.

procedure specifies the name of the procedure to notify.

context RAW (16) Any user-defined value required by the procedure.

count

count is the number of entries in reg_list .

Example

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 259

The following anonymous block calls DBMS_AQ.UNREGISTER , disabling the notifications specified in the example for DBMS_AQ.REGISTER :

DECLARE
 subscription1 sys.aq$_reg_info;
 subscription2 sys.aq$_reg_info;
 subscription3 sys.aq$_reg_info;
 subscriptionlist sys.aq$_reg_info_list;
BEGIN
 subscription1 := sys.aq$_reg_info('q', DBMS_AQ.NAMESPACE_AQ,
'plsql://assign_worker?PR=0',HEXTORAW('FFFF'));
 subscription2 := sys.aq$_reg_info('q', DBMS_AQ.NAMESPACE_AQ,
'plsql://add_to_history?PR=1',HEXTORAW('FFFF'));
 subscription3 := sys.aq$_reg_info('q', DBMS_AQ.NAMESPACE_AQ,
'plsql://reserve_parts?PR=2',HEXTORAW('FFFF'));

 subscriptionlist := sys.aq$_reg_info_list(subscription1,
subscription2, subscription3);
 dbms_aq.unregister(subscriptionlist, 3);
 commit;
 END;
 /

The subscriptionlist is of type sys.aq$_reg_info_list and contains sys.aq$_reg_info objects. The list name and an object count are passed to dbms_aq.unregister .

16.2.3 DBMS_AQADM

EDB Postgres Advanced Server advanced queueing provides message queueing and message processing for the EDB Postgres Advanced Server database. User-defined messages are stored in a queue,
and a collection of queues is stored in a queue table. Procedures in the DBMS_AQADM package create and manage message queues and queue tables. Use the DBMS_AQ package to add messages to
or remove messages from a queue or to register or unregister a PL/SQL callback procedure.

EDB Postgres Advanced Server also provides extended (non-compatible) functionality for the DBMS_AQ package with SQL commands. See Database Compatibility for Oracle Developers SQL for
detailed information about the following SQL commands:

ALTER QUEUE
ALTER QUEUE TABLE
CREATE QUEUE
CREATE QUEUE TABLE
DROP QUEUE
DROP QUEUE TABLE

The DBMS_AQADM package provides procedures that allow you to create and manage queues and queue tables. EDB Postgres Advanced Server's implementation of DBMS_AQADM is a partial
implementation when compared to Oracle's version. Only those functions and procedures listed in the table are supported.

Function/procedure Return type Description

ALTER_QUEUE n/a Modify an existing queue.

ALTER_QUEUE_TABLE n/a Modify an existing queue table.

CREATE_QUEUE n/a Create a queue.

CREATE_QUEUE_TABLE n/a Create a queue table.

DROP_QUEUE n/a Drop an existing queue.

DROP_QUEUE_TABLE n/a Drop an existing queue table.

PURGE_QUEUE_TABLE n/a Remove one or more messages from a queue table.

START_QUEUE n/a Make a queue available for enqueueing and dequeueing procedures.

STOP_QUEUE n/a Make a queue unavailable for enqueueing and dequeueing
procedures.

EDB Postgres Advanced Server supports use of the arguments listed in the table:

Constant Description For parameters

DBMS_AQADM.TRANSACTIONAL(1) This constant is defined but returns an error if used. message_grouping

DBMS_AQADM.NONE(0) Use to specify message grouping for a queue table. message_grouping

DBMS_AQADM.NORMAL_QUEUE(0) Use with create_queue to specify queue_type . queue_type

DBMS_AQADM.EXCEPTION_QUEUE (1) Use with create_queue to specify queue_type . queue_type

DBMS_AQADM.INFINITE(-1) Use with create_queue to specify retention_time . retention_time

DBMS_AQADM.PERSISTENT (0) Store the message in a table. enqueue_options_t.delivery_mode

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 260

DBMS_AQADM.BUFFERED (1) This constant is defined but returns an error if used. enqueue_options_t.delivery_mode

DBMS_AQADM.PERSISTENT_OR_BUFFERED
(2)

This constant is defined but returns an error if used. enqueue_options_t.delivery_mode

Constant Description For parameters

16.2.3.1 ALTER_QUEUE

Use the ALTER_QUEUE procedure to modify an existing queue. The signature is:

ALTER_QUEUE(
 <max_retries> IN NUMBER DEFAULT NULL,
 <retry_delay> IN NUMBER DEFAULT 0
 <retention_time> IN NUMBER DEFAULT 0,
 <auto_commit> IN BOOLEAN DEFAULT TRUE)
 <comment> IN VARCHAR2 DEFAULT NULL,

Parameters

queue_name

The name of the new queue.

max_retries

max_retries specifies the maximum number of attempts to remove a message with a dequeue statement. The value of max_retries is incremented with each ROLLBACK statement. When the
number of failed attempts reaches the value specified by max_retries , the message is moved to the exception queue. Specify 0 to indicate that no retries are allowed.

retry_delay

retry_delay specifies the number of seconds until a message is scheduled for reprocessing after a ROLLBACK . Specify 0 to retry the message immediately (the default).

retention_time

retention_time specifies the length of time in seconds that a message is stored after being dequeued. You can also specify 0 (the default) to indicate not to retain the message after dequeueing
or INFINITE to retain the message forever.

auto_commit

This parameter is accepted for compatibility and ignored.

comment

comment specifies a comment associated with the queue.

Example

The following command alters a queue named work_order , setting the retry_delay parameter to 5 seconds:

EXEC DBMS_AQADM.ALTER_QUEUE(queue_name => 'work_order', retry_delay => 5);

16.2.3.2 ALTER_QUEUE_TABLE

Use the ALTER_QUEUE_TABLE procedure to modify an existing queue table. The signature is:

ALTER_QUEUE_TABLE (
 <queue_table> IN VARCHAR2,
 <comment> IN VARCHAR2 DEFAULT NULL,
 <primary_instance> IN BINARY_INTEGER DEFAULT 0,
 <secondary_instance> IN BINARY_INTEGER DEFAULT 0,

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 261

Parameters

queue_table

The (optionally schema-qualified) name of the queue table.

comment

Use the comment parameter to provide a comment about the queue table.

primary_instance

primary_instance is accepted for compatibility and stored but is ignored.

secondary_instance

secondary_instance is accepted for compatibility but is ignored.

Example

The following command modifies a queue table named work_order_table :

EXEC DBMS_AQADM.ALTER_QUEUE_TABLE
 (queue_table => 'work_order_table', comment => 'This queue table
contains work orders for the shipping department.');

The queue table is named work_order_table . The command adds a comment to the definition of the queue table.

16.2.3.3 CREATE_QUEUE

Use the CREATE_QUEUE procedure to create a queue in an existing queue table. The signature is:

CREATE_QUEUE(
 <queue_name> IN VARCHAR2
 <queue_table> IN VARCHAR2,
 <queue_type> IN BINARY_INTEGER DEFAULT NORMAL_QUEUE,
 <max_retries> IN NUMBER DEFAULT 5,
 <retry_delay> IN NUMBER DEFAULT 0
 <retention_time> IN NUMBER DEFAULT 0,
 <dependency_tracking> IN BOOLEAN DEFAULT FALSE,
 <comment> IN VARCHAR2 DEFAULT NULL,
 <auto_commit> IN BOOLEAN DEFAULT TRUE)

Parameters

queue_name

The name of the new queue.

queue_table

The name of the table in which the new queue resides.

queue_type

The type of the new queue. The valid values for queue_type are:

DBMS_AQADM.NORMAL_QUEUE — This value specifies a normal queue (the default).

DBMS_AQADM.EXCEPTION_QUEUE — This value specifies that the new queue is an exception queue. An exception queue supports only dequeue operations.

max_retries

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 262

max_retries specifies the maximum number of attempts to remove a message with a dequeue statement. The value of max_retries is incremented with each ROLLBACK statement. When the
number of failed attempts reaches the value specified by max_retries , the message is moved to the exception queue. The default value for a system table is 0 . The default value for a user-created
table is 5 .

retry_delay

retry_delay specifies the number of seconds until a message is scheduled for reprocessing after a ROLLBACK . Specify 0 to retry the message immediately (the default).

retention_time

retention_time specifies the length of time (in seconds) that a message is stored after being dequeued. You can also specify 0 (the default) to indicate not to retain the message after dequeueing
or INFINITE to retain the message forever.

dependency_tracking

This parameter is accepted for compatibility and ignored.

comment

comment specifies a comment associated with the queue.

auto_commit

This parameter is accepted for compatibility and ignored.

Example

The following anonymous block creates a queue named work_order in the work_order_table table:

BEGIN
DBMS_AQADM.CREATE_QUEUE (queue_name => 'work_order', queue_table =>
'work_order_table', comment => 'This queue contains pending work orders.');
END;

16.2.3.4 CREATE_QUEUE_TABLE

Use the CREATE_QUEUE_TABLE procedure to create a queue table. The signature is:

CREATE_QUEUE_TABLE (
 <queue_table> IN VARCHAR2,
 <queue_payload_type> IN VARCHAR2,
 <storage_clause> IN VARCHAR2 DEFAULT NULL,
 <sort_list> IN VARCHAR2 DEFAULT NULL,
 <multiple_consumers> IN BOOLEAN DEFAULT FALSE,
 <message_grouping> IN BINARY_INTEGER DEFAULT NONE,
 <comment> IN VARCHAR2 DEFAULT NULL,
 <auto_commit> IN BOOLEAN DEFAULT TRUE,
 <primary_instance> IN BINARY_INTEGER DEFAULT 0,
 <secondary_instance> IN BINARY_INTEGER DEFAULT 0,
 <compatible> IN VARCHAR2 DEFAULT NULL,
 <secure> IN BOOLEAN DEFAULT FALSE)

Parameters

queue_table

The (optionally schema-qualified) name of the queue table.

queue_payload_type

The user-defined type of the data that's stored in the queue table. To specify a RAW data type, you must create a user-defined type that identifies a RAW type.

storage_clause

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 263

Use the storage_clause parameter to specify attributes for the queue table. Only the TABLESPACE option is enforced. All others are accepted for compatibility and ignored. Use the
TABLESPACE clause to specify the name of a tablespace in which to create the table.

storage_clause can be one or more of the following:

TABLESPACE tablespace_name, PCTFREE integer, PCTUSED integer,
INITRANS integer, MAXTRANS integer or STORAGE storage_option.

storage_option can be one or more of the following:

MINEXTENTS integer, MAXEXTENTS integer, PCTINCREASE integer, INITIAL
size_clause, NEXT, FREELISTS integer, OPTIMAL size_clause, BUFFER_
POOL {KEEP|RECYCLE|DEFAULT}.

sort_list

sort_list controls the dequeueing order of the queue. Specify the names of the columns to use to sort the queue in ascending order. The currently accepted values are the following combinations
of enq_time and priority :

enq_time, priority

priority, enq_time

priority

enq_time

multiple_consumers

multiple_consumers queue tables isn't supported.

message_grouping

If specified, message_grouping must be NONE .

comment

Use the comment parameter to provide a comment about the queue table.

auto_commit

auto_commit is accepted for compatibility but is ignored.

primary_instance

primary_instance is accepted for compatibility and stored but is ignored.

secondary_instance

secondary_instance is accepted for compatibility but is ignored.

compatible

compatible is accepted for compatibility but is ignored.

secure

secure is accepted for compatibility but is ignored.

Example

The following anonymous block first creates a type (work_order) with attributes that hold a name (a VARCHAR2), and a project description (a TEXT). The block then uses that type to create a
queue table:

BEGIN

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 264

CREATE TYPE work_order AS (name VARCHAR2, project TEXT, completed BOOLEAN);

EXEC DBMS_AQADM.CREATE_QUEUE_TABLE
 (queue_table => 'work_order_table',
 queue_payload_type => 'work_order',
 comment => 'Work order message queue table');

END;

The queue table is named work_order_table and contains a payload of a type work_order . A comment notes that this is the Work order message queue table .

16.2.3.5 DROP_QUEUE

Use the DROP_QUEUE procedure to delete a queue. The signature is:

DROP_QUEUE(
 <queue_name> IN VARCHAR2,
 <auto_commit> IN BOOLEAN DEFAULT TRUE)

Parameters

queue_name

The name of the queue that you want to drop.

auto_commit

auto_commit is accepted for compatibility but is ignored.

Example

The following anonymous block drops the queue named work_order :

BEGIN
DBMS_AQADM.DROP_QUEUE(queue_name => 'work_order');
END;

16.2.3.6 DROP_QUEUE_TABLE

Use the DROP_QUEUE_TABLE procedure to delete a queue table. The signature is:

DROP_QUEUE_TABLE(
 <queue_table> IN VARCHAR2,
 <force> IN BOOLEAN default FALSE,
 <auto_commit> IN BOOLEAN default TRUE)

Parameters

queue_table

The (optionally schema-qualified) name of the queue table.

force

The force keyword determines the behavior of the DROP_QUEUE_TABLE command when dropping a table that contain entries:

If the target table contains entries and force is FALSE , the command fails, and the server issues an error.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 265

If the target table contains entries and force is TRUE , the command drops the table and any dependent objects.

auto_commit

auto_commit is accepted for compatibility but is ignored.

Example

The following anonymous block drops a table named work_order_table :

BEGIN
 DBMS_AQADM.DROP_QUEUE_TABLE ('work_order_table', force => TRUE);
END;

16.2.3.7 PURGE_QUEUE_TABLE

Use the PURGE_QUEUE_TABLE procedure to delete messages from a queue table. The signature is:

PURGE_QUEUE_TABLE(
 <queue_table> IN VARCHAR2,
 <purge_condition> IN VARCHAR2,
 <purge_options> IN aq$_purge_options_t)

Parameters

queue_table

queue_table specifies the name of the queue table from which you're deleting a message.

purge_condition

Use purge_condition to specify a condition (a SQL WHERE clause) that the server evaluates when deciding which messages to purge.

purge_options

purge_options is an object of the type aq$_purge_options_t . An aq$_purge_options_t object contains:

Attribute Type Description

block Boolean Specify TRUE to hold an exclusive lock on all queues in the table. The default is FALSE .

delivery_mode INTEGER delivery_mode specifies the type of message to purge. The only accepted value is DBMS_AQ.PERSISTENT .

Example

The following anonymous block removes any messages from the work_order_table with a value in the completed column of YES :

DECLARE
 purge_options dbms_aqadm.aq$_purge_options_t;
BEGIN
 dbms_aqadm.purge_queue_table('work_order_table', 'completed = YES',
purge_options);
 END;

16.2.3.8 START_QUEUE

Use the START_QUEUE procedure to make a queue available for enqueuing and dequeueing. The signature is:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 266

START_QUEUE(
 <queue_name> IN VARCHAR2,
 <enqueue> IN BOOLEAN DEFAULT TRUE,
 <dequeue> IN BOOLEAN DEFAULT TRUE)

Parameters

queue_name

queue_name specifies the name of the queue that you're starting.

enqueue

Specify TRUE to enable enqueueing (the default) or FALSE to leave the current setting unchanged.

dequeue

Specify TRUE to enable dequeueing (the default) or FALSE to leave the current setting unchanged.

Example

The following anonymous block makes a queue named work_order available for enqueueing:

BEGIN
DBMS_AQADM.START_QUEUE
(queue_name => 'work_order);
END;

16.2.3.9 STOP_QUEUE

Use the STOP_QUEUE procedure to disable enqueuing or dequeueing on a specified queue. The signature is:

STOP_QUEUE(
 <queue_name> IN VARCHAR2,
 <enqueue> IN BOOLEAN DEFAULT TRUE,
 <dequeue> IN BOOLEAN DEFAULT TRUE,
 <wait> IN BOOLEAN DEFAULT TRUE)

Parameters

queue_name

queue_name specifies the name of the queue that you're stopping.

enqueue

Specify TRUE to disable enqueueing (the default) or FALSE to leave the current setting unchanged.

dequeue

Specify TRUE to disable dequeueing (the default) or FALSE to leave the current setting unchanged.

wait

Specify TRUE to instruct the server to wait for any uncompleted transactions to complete before applying the specified changes. While waiting to stop the queue, no transactions are allowed to
enqueue or dequeue from the specified queue. Specify FALSE to stop the queue immediately.

Example

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 267

The following anonymous block disables enqueueing and dequeueing from the queue named work_order :

BEGIN
DBMS_AQADM.STOP_QUEUE(queue_name =>'work_order', enqueue=>TRUE,
dequeue=>TRUE, wait=>TRUE);
END;

Enqueueing and dequeueing stops after any outstanding transactions complete.

16.2.4 DBMS_CRYPTO

The DBMS_CRYPTO package provides functions and procedures that allow you to encrypt or decrypt RAW, BLOB , or CLOB data. You can also use DBMS_CRYPTO functions to generate
cryptographically strong random values.

The table lists the DBMS_CRYPTO functions and procedures.

Function/procedure Return type Description

DECRYPT(src, typ, key, iv) RAW Decrypts RAW data.

DECRYPT(dst INOUT, src, typ, key,
iv)

N/A Decrypts BLOB data.

DECRYPT(dst INOUT, src, typ, key,
iv)

N/A Decrypts CLOB data.

ENCRYPT(src, typ, key, iv) RAW Encrypts RAW data.

ENCRYPT(dst INOUT, src, typ, key,
iv)

N/A Encrypts BLOB data.

ENCRYPT(dst INOUT, src, typ, key,
iv)

N/A Encrypts CLOB data.

HASH(src, typ) RAW Applies a hash algorithm to RAW data.

MAC(src, typ, key) RAW Returns the hashed MAC value of the given RAW data using the specified hash algorithm and key.

MAC(src, typ, key) RAW Returns the hashed MAC value of the given CLOB data using the specified hash algorithm and
key.

RANDOMBYTES(number_bytes) RAW Returns a specified number of cryptographically strong random bytes.

RANDOMINTEGER() INTEGER Returns a random integer.

RANDOMNUMBER() NUMBER Returns a random number.

DBMS_CRYPTO functions and procedures support the following error messages:

ORA-28239 - DBMS_CRYPTO.KeyNull

ORA-28829 - DBMS_CRYPTO.CipherSuiteNull

ORA-28827 - DBMS_CRYPTO.CipherSuiteInvalid

Unlike Oracle, EDB Postgres Advanced Server doesn't return error ORA-28233 if you reencrypt previously encrypted information.

RAW and BLOB are synonyms for the PostgreSQL BYTEA data type. CLOB is a synonym for TEXT .

16.2.4.1 DECRYPT

The DECRYPT function or procedure decrypts data using a user-specified cipher algorithm, key, and optional initialization vector. The signature of the DECRYPT function is:

DECRYPT
 (<src> IN RAW, <typ> IN INTEGER, <key> IN RAW, <iv> IN RAW
 DEFAULT NULL) RETURN RAW

The signature of the DECRYPT procedure is:

DECRYPT
 (<dst> INOUT BLOB, <src> IN BLOB, <typ> IN INTEGER, <key> IN RAW,
 <iv> IN RAW DEFAULT NULL)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 268

or

DECRYPT
 (<dst> INOUT CLOB, <src> IN CLOB, <typ> IN INTEGER, <key> IN RAW,
 <iv> IN RAW DEFAULT NULL)

When invoked as a procedure, DECRYPT returns BLOB or CLOB data to a user-specified BLOB .

Parameters

dst

dst specifies the name of a BLOB to which the output of the DECRYPT procedure is written. The DECRYPT procedure overwrites any existing data currently in dst .

src

src specifies the source data to decrypt. If you're invoking DECRYPT as a function, specify RAW data. If invoking DECRYPT as a procedure, specify BLOB or CLOB data.

typ

typ specifies the block cipher type and any modifiers. Match the type specified when the src was encrypted. EDB Postgres Advanced Server supports the following block cipher algorithms, modifiers,
and cipher suites:

Block cipher algorithms

ENCRYPT_DES CONSTANT INTEGER := 1;

ENCRYPT_3DES CONSTANT INTEGER := 3;

ENCRYPT_AES CONSTANT INTEGER := 4;

ENCRYPT_AES128 CONSTANT INTEGER := 6;

ENCRYPT_AES192 CONSTANT INTEGER := 192;

ENCRYPT_AES256 CONSTANT INTEGER := 256;

Block cipher modifiers

CHAIN_CBC CONSTANT INTEGER := 256;

CHAIN_ECB CONSTANT INTEGER := 768;

Block cipher padding modifiers

PAD_PKCS5 CONSTANT INTEGER := 4096;

PAD_NONE CONSTANT INTEGER := 8192;

Block cipher suites

DES_CBC_PKCS5 CONSTANT INTEGER := ENCRYPT_DES + CHAIN_CBC + PAD_PKCS5;

DES3_CBC_PKCS5 CONSTANT INTEGER := ENCRYPT_3DES + CHAIN_CBC +
PAD_PKCS5;

AES_CBC_PKCS5 CONSTANT INTEGER := ENCRYPT_AES + CHAIN_CBC + PAD_PKCS5;

key

key specifies the user-defined decryption key. Match the key specified when the src was encrypted.

iv

iv (optional) specifies an initialization vector. If an initialization vector was specified when the src was encrypted, you must specify an initialization vector when decrypting the src . The default is
NULL .

Examples

This example uses the DBMS_CRYPTO.DECRYPT function to decrypt an encrypted password retrieved from the passwords table:

CREATE TABLE passwords
(
 principal VARCHAR2(90) PRIMARY KEY, -- username
 ciphertext RAW(9) -- encrypted password
);

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 269

CREATE FUNCTION get_password(username VARCHAR2) RETURN RAW AS
 typ INTEGER := DBMS_CRYPTO.DES_CBC_PKCS5;
 key RAW(128) := 'my secret key';
 iv RAW(100) := 'my initialization vector';
 password RAW(2048);
BEGIN

 SELECT ciphertext INTO password FROM passwords WHERE principal = username;

 RETURN dbms_crypto.decrypt(password, typ, key, iv);
END;

When calling DECRYPT , you must pass the same cipher type, key value, and initialization vector that was used when encrypting the target.

16.2.4.2 ENCRYPT

The ENCRYPT function or procedure uses a user-specified algorithm, key, and optional initialization vector to encrypt RAW , BLOB , or CLOB data. The signature of the ENCRYPT function is:

ENCRYPT
 (<src> IN RAW, <typ> IN INTEGER, <key> IN RAW,
 <iv> IN RAW DEFAULT NULL) RETURN RAW

The signature of the ENCRYPT procedure is:

ENCRYPT
 (<dst> INOUT BLOB, <src> IN BLOB, <typ> IN INTEGER, <key> IN RAW,
 <iv> IN RAW DEFAULT NULL)

or

ENCRYPT
 (<dst> INOUT BLOB, <src> IN CLOB, <typ> IN INTEGER, <key> IN RAW,
 <iv> IN RAW DEFAULT NULL)

When invoked as a procedure, ENCRYPT returns BLOB or CLOB data to a user-specified BLOB .

Parameters

dst

dst specifies the name of a BLOB to which to write the output of the ENCRYPT procedure. The ENCRYPT procedure overwrites any existing data currently in dst .

src

src specifies the source data to encrypt. If you're invoking ENCRYPT as a function, specify RAW data. If invoking ENCRYPT as a procedure, specify BLOB or CLOB data.

typ

typ specifies the block cipher type used by ENCRYPT and any modifiers. EDB Postgres Advanced Server supports the block cipher algorithms, modifiers, and cipher suites shown in the table.

Block cipher algorithms

ENCRYPT_DES CONSTANT INTEGER := 1;

ENCRYPT_3DES CONSTANT INTEGER := 3;

ENCRYPT_AES CONSTANT INTEGER := 4;

ENCRYPT_AES128 CONSTANT INTEGER := 6;

ENCRYPT_AES192 CONSTANT INTEGER := 192;

ENCRYPT_AES256 CONSTANT INTEGER := 256;

Block cipher modifiers

CHAIN_CBC CONSTANT INTEGER := 256;

CHAIN_ECB CONSTANT INTEGER := 768;

Block cipher padding modifiers

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 270

PAD_PKCS5 CONSTANT INTEGER := 4096;

PAD_NONE CONSTANT INTEGER := 8192;

Block cipher suites

DES_CBC_PKCS5 CONSTANT INTEGER := ENCRYPT_DES + CHAIN_CBC + PAD_PKCS5;

DES3_CBC_PKCS5 CONSTANT INTEGER := ENCRYPT_3DES + CHAIN_CBC +
PAD_PKCS5;

AES_CBC_PKCS5 CONSTANT INTEGER := ENCRYPT_AES + CHAIN_CBC + PAD_PKCS5;

Block cipher algorithms

key

key specifies the encryption key.

iv

iv (optional) specifies an initialization vector. By default, iv is NULL .

Examples

This example uses the DBMS_CRYPTO.DES_CBC_PKCS5 Block Cipher Suite (a predefined set of algorithms and modifiers) to encrypt a value retrieved from the passwords table:

CREATE TABLE passwords
(
 principal VARCHAR2(90) PRIMARY KEY, -- username
 ciphertext RAW(9) -- encrypted password
);
CREATE PROCEDURE set_password(username VARCHAR2, cleartext RAW) AS
 typ INTEGER := DBMS_CRYPTO.DES_CBC_PKCS5;
 key RAW(128) := 'my secret key';
 iv RAW(100) := 'my initialization vector';
 encrypted RAW(2048);
BEGIN
 encrypted := dbms_crypto.encrypt(cleartext, typ, key, iv);
 UPDATE passwords SET ciphertext = encrypted WHERE principal = username;
END;

ENCRYPT uses a key value of my secret key and an initialization vector of my initialization vector when encrypting the password. Specify the same key and initialization vector when
decrypting the password.

16.2.4.3 HASH

The HASH function uses a user-specified algorithm to return the hash value of a RAW or CLOB value. The HASH function is available in three forms:

HASH
 (<src> IN RAW, <typ> IN INTEGER) RETURN RAW

HASH
 (<src> IN CLOB, <typ> IN INTEGER) RETURN RAW

Parameters

src

src specifies the value for which the hash value is generated. You can specify a RAW , BLOB , or CLOB value.

typ

typ specifies the HASH function type. EDB Postgres Advanced Server supports the HASH function types shown in the table.

HASH functions

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 271

HASH_MD4 CONSTANT INTEGER := 1;

HASH_MD5 CONSTANT INTEGER := 2;

HASH_SH1 CONSTANT INTEGER := 3;

HASH functions

Examples

This example uses DBMS_CRYPTO.HASH to find the md5 hash value of the string, cleartext source :

DECLARE
 typ INTEGER := DBMS_CRYPTO.HASH_MD5;
 hash_value RAW(100);
BEGIN

 hash_value := DBMS_CRYPTO.HASH('cleartext source', typ);

END;

16.2.4.4 MAC

The MAC function uses a user-specified MAC function to return the hashed MAC value of a RAW or CLOB value. The MAC function is available in three forms:

MAC
 (<src> IN RAW, <typ> IN INTEGER, <key> IN RAW) RETURN RAW

MAC
 (<src> IN CLOB, <typ> IN INTEGER, <key> IN RAW) RETURN RAW

Parameters

src

src specifies the value for which the MAC value is generated. Specify a RAW , BLOB , or CLOB value.

typ

typ specifies the MAC function used. EDB Postgres Advanced Server supports the MAC functions shown in the table.

MAC functions

HMAC_MD5 CONSTANT INTEGER := 1;

HMAC_SH1 CONSTANT INTEGER := 2;

key

key specifies the key used to calculate the hashed MAC value.

Examples

This example finds the hashed MAC value of the string cleartext source :

DECLARE
 typ INTEGER := DBMS_CRYPTO.HMAC_MD5;
 key RAW(100) := 'my secret key';
 mac_value RAW(100);
BEGIN

 mac_value := DBMS_CRYPTO.MAC('cleartext source', typ, key);

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 272

END;

DBMS_CRYPTO.MAC uses a key value of my secret key when calculating the MAC value of cleartext source .

16.2.4.5 RANDOMBYTES

The RANDOMBYTES function returns a RAW value of the specified length, containing cryptographically random bytes. The signature is:

RANDOMBYTES
 (<number_bytes> IN INTEGER) RETURNS RAW

Parameter

number_bytes

number_bytes specifies the number of random bytes to return.

Examples

This example uses RANDOMBYTES to return a value that is 1024 bytes long:

DECLARE
 result RAW(1024);
BEGIN
 result := DBMS_CRYPTO.RANDOMBYTES(1024);
END;

16.2.4.6 RANDOMINTEGER

The RANDOMINTEGER() function returns a random integer between 0 and 268,435,455 . The signature is:

RANDOMINTEGER() RETURNS INTEGER

Examples

This example uses the RANDOMINTEGER function to return a cryptographically strong random INTEGER value:

DECLARE
 result INTEGER;
BEGIN
 result := DBMS_CRYPTO.RANDOMINTEGER();
 DBMS_OUTPUT.PUT_LINE(result);
END;

16.2.4.7 RANDOMNUMBER

The RANDOMNUMBER() function returns a random number between 0 and 268,435,455. The signature is:

RANDOMNUMBER() RETURNS NUMBER

Examples

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 273

This example uses the RANDOMNUMBER function to return a cryptographically strong random number:

DECLARE
 result NUMBER;
BEGIN
 result := DBMS_CRYPTO.RANDOMNUMBER();
 DBMS_OUTPUT.PUT_LINE(result);
END;

16.2.5 DBMS_JOB

The DBMS_JOB package lets you create, schedule, and manage jobs. A job runs a stored procedure that was previously stored in the database. The SUBMIT procedure creates and stores a job
definition. A job identifier is assigned to a job with a stored procedure and the attributes describing when and how often to run the job.

This package relies on the pgAgent scheduler. By default, the EDB Postgres Advanced Server installer installs pgAgent, but you must start the pgAgent service manually before using DBMS_JOB . If you
attempt to use this package to schedule a job after uninstalling pgAgent, DBMS_JOB reports an error. DBMS_JOB verifies that pgAgent is installed but doesn't verify that the service is running.

EDB Postgres Advanced Server's implementation of DBMS_JOB is a partial implementation when compared to Oracle's version. The following table lists the supported DBMS_JOB procedures.

Function/procedure Return
type

Description

BROKEN(job, broken [, next_date]) n/a Specify that a given job is either broken or not broken.

CHANGE(job, what, next_date, interval,
instance, force)

n/a Change the job’s parameters.

INTERVAL(job, interval) n/a Set the execution frequency by means of a date function that is recalculated each time the job is run. This value
becomes the next date/time for execution.

NEXT_DATE(job, next_date) n/a Set the next date/time to run the job.

REMOVE(job) n/a Delete the job definition from the database.

RUN(job) n/a Force execution of a job even if it's marked broken.

SUBMIT(job OUT, what [, next_date [, interval
[, no_parse]]])

n/a Create a job and store its definition in the database.

WHAT(job, what) n/a Change the stored procedure run by a job.

Before using DBMS_JOB , a database superuser must create the pgAgent and DBMS_JOB extension. Use the psql client to connect to a database and invoke the command:

CREATE EXTENSION pgagent;
CREATE EXTENSION dbms_job;

When and how often a job runs depends on two interacting parameters: next_date and interval . The next_date parameter is a date/time value that specifies the next date/time to execute
the job. The interval parameter is a string that contains a date function that evaluates to a date/time value.

Before the job executes, the expression in the interval parameter is evaluated. The resulting value replaces the next_date value stored with the job. The job is then executed. In this manner, the
expression in interval is repeatedly reevaluated before each job executes, supplying the next_date date/time for the next execution.

Note

To start the pgAgent server and execute the job, the database user must be the same user that created a job and schedule.

The following examples use the stored procedure job_proc . The procedure inserts a timestamp into the table jobrun , which contains a single column, VARCHAR2 .

CREATE TABLE jobrun (
 runtime VARCHAR2(40)
);

CREATE OR REPLACE PROCEDURE job_proc
IS
BEGIN
 INSERT INTO jobrun VALUES ('job_proc run at ' || TO_CHAR(SYSDATE,
 'yyyy-mm-dd hh24:mi:ss'));
END;

16.2.5.1 BROKEN

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 274

The BROKEN procedure sets the state of a job to either broken or not broken. You can execute a broken job only by using the RUN procedure.

BROKEN(<job> BINARY_INTEGER, <broken> BOOLEAN [, <next_date> DATE])

Parameters

job

Identifier of the job to set as broken or not broken.

broken

If set to TRUE , the job’s state is set to broken. If set to FALSE , the job’s state is set to not broken. You can run broken jobs only by using the RUN procedure.

next_date

Date/time when the job is to be run. The default is SYSDATE .

Examples

Set the state of a job with job identifier 104 to broken:

BEGIN
 DBMS_JOB.BROKEN(104,true);
END;

Change the state back to not broken:

BEGIN
 DBMS_JOB.BROKEN(104,false);
END;

16.2.5.2 CHANGE

The CHANGE procedure modifies certain job attributes including the stored procedure to run, the next date/time the job runs, and how often it runs.

CHANGE(<job> BINARY_INTEGER <what> VARCHAR2, <next_date> DATE,
 <interval> VARCHAR2, <instance> BINARY_INTEGER, <force> BOOLEAN)

Parameters

job

Identifier of the job to modify.

what

Stored procedure name. Set this parameter to null if you want the existing value to remain unchanged.

next_date

Date/time to run the job next. Set this parameter to null if you want the existing value to remain unchanged.

interval

Date function that, when evaluated, provides the next date/time to run the job. Set this parameter to null if you want the existing value to remain unchanged.

instance

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 275

This argument is ignored but is included for compatibility.

force

This argument is ignored but is included for compatibility.

Examples

Change the job to run next on December 13, 2007. Leave other parameters unchanged.

BEGIN
 DBMS_JOB.CHANGE(104,NULL,TO_DATE('13-DEC-07','DD-MON-YY'),NULL, NULL,
 NULL);
END;

16.2.5.3 INTERVAL

The INTERVAL procedure sets how often to run a job.

INTERVAL(<job> BINARY_INTEGER, <interval> VARCHAR2)

Parameters

job

Identifier of the job to modify.

interval

Date function that, when evaluated, provides the next date/time to run the job. If interval is NULL and the job is complete, the job is removed from the queue.

Examples

Change the job to run once a week:

BEGIN
 DBMS_JOB.INTERVAL(104,'SYSDATE + 7');
END;

16.2.5.4 NEXT_DATE

The NEXT_DATE procedure sets the date/time to run the job next.

NEXT_DATE(<job> BINARY_INTEGER, <next_date> DATE)

Parameters

job

Identifier of the job whose next run date you want to set.

next_date

Date/time when you want the job run next.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 276

Examples

Change the job to run next on December 14, 2007:

BEGIN
 DBMS_JOB.NEXT_DATE(104, TO_DATE('14-DEC-07','DD-MON-YY'));
END;

16.2.5.5 REMOVE

The REMOVE proceduzre deletes the specified job from the database. You must resubmit the job using the SUBMIT procedure to execute it again. The stored procedure that was associated with the job
isn't deleted.

REMOVE(<job> BINARY_INTEGER)

Parameter

job

Identifier of the job to remove from the database.

Examples

Remove a job from the database:

BEGIN
 DBMS_JOB.REMOVE(104);
END;

16.2.5.6 RUN

The RUN procedure forces the job to run even if its state is broken.

RUN(<job> BINARY_INTEGER)

Parameter

job

Identifier of the job to run.

Examples

Force a job to run.

BEGIN
 DBMS_JOB.RUN(104);
END;

16.2.5.7 SUBMIT

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 277

The SUBMIT procedure creates a job definition and stores it in the database. A job consists of:

A job identifier
The stored procedure to execute
When to first run the job
A date function that calculates the next date/time for the job to run

SUBMIT(<job> OUT BINARY_INTEGER, <what> VARCHAR2
 [, <next_date> DATE [, <interval> VARCHAR2 [, <no_parse> BOOLEAN]]])

Parameters

job

Identifier assigned to the job.

what

Name of the stored procedure for the job to execute.

next_date

Date/time to run the job next. The default is SYSDATE .

interval

Date function that, when evaluated, provides the next date/time for the job to run. If interval is set to null, then the job runs only once. Null is the default.

no_parse

If set to TRUE , don't syntax-check the stored procedure upon job creation. Check only when the job first executes. If set to FALSE , check the procedure upon job creation. The default is FALSE .

Note

The no_parse option isn't supported in this implementation of SUBMIT() . It's included only for compatibility.

Examples

This example creates a job using the stored procedure job_proc . The job executes immediately and runs once a day after that, as set by the interval parameter, SYSDATE + 1 .

DECLARE
 jobid INTEGER;
BEGIN
 DBMS_JOB.SUBMIT(jobid,'job_proc;',SYSDATE,
 'SYSDATE + 1');
 DBMS_OUTPUT.PUT_LINE('jobid: ' || jobid);
END;

jobid: 104

The job immediately executes the procedure job_proc , populating the table jobrun with a row:

SELECT * FROM jobrun;

 runtime

 job_proc run at 2007-12-11 11:43:25
(1 row)

16.2.5.8 WHAT

The WHAT procedure changes the stored procedure that the job executes.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 278

WHAT(<job> BINARY_INTEGER, <what> VARCHAR2)

Parameters

job

Identifier of the job whose stored procedure you want to change.

what

Name of the stored procedure to execute.

Examples

Change the job to run the list_emp procedure:

BEGIN
 DBMS_JOB.WHAT(104,'list_emp;');
END;

16.2.6 DBMS_LOB

The DBMS_LOB package lets you operate on large objects. The following table lists the supported functions and procedures. EDB Postgres Advanced Server's implementation of DBMS_LOB is a
partial implementation when compared to Oracle's version. Only the functions and procedures listed in this table are supported.

Function/procedure Return
type

Description

APPEND(dest_lob IN OUT, src_lob) n/a Appends one large object to another.

COMPARE(lob_1, lob_2 [, amount [, offset_1 [, offset_2]]]) INTEGER Compares two large objects.

CONVERTOBLOB(dest_lob IN OUT, src_clob, amount, dest_offset IN OUT, src_offset IN
OUT, blob_csid, lang_context IN OUT, warning OUT)

n/a Converts character data to binary.

CONVERTTOCLOB(dest_lob IN OUT, src_blob, amount, dest_offset IN OUT, src_offset IN
OUT, blob_csid, lang_context IN OUT, warning OUT)

n/a Converts binary data to character.

COPY(dest_lob IN OUT, src_lob, amount [, dest_offset [, src_offset]]) n/a Copies one large object to another.

ERASE(lob_loc IN OUT, amount IN OUT [, offset]) n/a Erases a large object.

GET_STORAGE_LIMIT(lob_loc) INTEGER Gets the storage limit for large objects.

GETLENGTH(lob_loc) INTEGER Gets the length of the large object.

INSTR(lob_loc, pattern [, offset [, nth]]) INTEGER Gets the position of the nth occurrence of a pattern in the
large object starting at offset

READ(lob_loc, amount IN OUT, offset, buffer OUT) n/a Reads a large object.

SUBSTR(lob_loc [, amount [, offset]]) RAW,
VARCHAR2

Gets part of a large object.

TRIM(lob_loc IN OUT, newlen) n/a Trims a large object to the specified length.

WRITE(lob_loc IN OUT, amount, offset, buffer) n/a Writes data to a large object.

WRITEAPPEND(lob_loc IN OUT, amount, buffer) n/a Writes data from the buffer to the end of a large object.

The following table lists the public variables available in the package.

Public variables Data type Value

compress off INTEGER 0

compress_on INTEGER 1

deduplicate_off INTEGER 0

deduplicate_on INTEGER 4

default_csid INTEGER 0

default_lang_ctx INTEGER 0

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 279

encrypt_off INTEGER 0

encrypt_on INTEGER 1

file_readonly INTEGER 0

lobmaxsize INTEGER 1073741823

lob_readonly
INTEGER 0

lob_readwrite INTEGER 1

no_warning INTEGER 0

opt_compress INTEGER 1

opt_deduplicate INTEGER 4

opt_encrypt INTEGER 2

warn_inconvertible_char INTEGER 1

Public variables Data type Value

Lengths and offsets are measured in bytes if the large objects are BLOB . Lengths and offsets are measured in characters if the large objects are CLOB .

16.2.6.1 APPEND

The APPEND procedure appends one large object to another. Both large objects must be the same type.

APPEND(<dest_lob> IN OUT { BLOB | CLOB }, <src_lob> { BLOB | CLOB })

Parameters

dest_lob

Large object locator for the destination object. Must be the same data type as src_lob .

src_lob

Large object locator for the source object. Must be the same data type as dest_lob .

16.2.6.2 COMPARE

The COMPARE procedure performs an exact byte-by-byte comparison of two large objects for a given length at given offsets. The large objects being compared must be the same data type.

<status> INTEGER COMPARE(<lob_1> { BLOB | CLOB },
 <lob_2> { BLOB | CLOB }
 [, <amount> INTEGER [, <offset_1> INTEGER [, <offset_2> INTEGER]]])

Parameters

lob_1

Large object locator of the first large object to compare. Must be the same data type as lob_2 .

lob_2

Large object locator of the second large object to compare. Must be the same data type as lob_1 .

amount

If the data type of the large objects is BLOB , then the comparison is made for amount bytes. If the data type of the large objects is CLOB , then the comparison is made for amount characters. The
default is the maximum size of a large object.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 280

offset_1

Position in the first large object to begin the comparison. The first byte/character is offset 1. The default is 1.

offset_2

Position in the second large object to begin the comparison. The first byte/character is offset 1. The default is 1.

status

Zero if both large objects are exactly the same for the specified length for the specified offsets. Nonzero if the objects aren't the same. NULL if amount , offset_1 , or offset_2 are less than
zero.

16.2.6.3 CONVERTTOBLOB

The CONVERTTOBLOB procedure converts character data to binary.

CONVERTTOBLOB(<dest_lob> IN OUT BLOB, <src_clob> CLOB,
 <amount> INTEGER, <dest_offset> IN OUT INTEGER,
 <src_offset> IN OUT INTEGER, <blob_csid> NUMBER,
 <lang_context> IN OUT INTEGER, <warning> OUT INTEGER)

Parameters

dest_lob

BLOB large object locator to which to convert the character data.

src_clob

CLOB large object locator of the character data to convert.

amount

Number of characters of src_clob to convert.

dest_offset IN

Position in bytes in the destination BLOB where you want to begin writing the source CLOB . The first byte is offset 1.

dest_offset OUT

Position in bytes in the destination BLOB after the write operation completes. The first byte is offset 1.

src_offset IN

Position in characters in the source CLOB where you want to begin conversion to the destination BLOB . The first character is offset 1.

src_offset OUT

Position in characters in the source CLOB after the conversion operation completes. The first character is offset 1.

blob_csid

Character set ID of the converted destination BLOB .

lang_context IN

Language context for the conversion. The default value of 0 is typically used for this setting.

lang_context OUT

Language context after the conversion completes.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 281

warning

0 if the conversion was successful, 1 if a character can't be converted.

16.2.6.4 CONVERTTOCLOB

The CONVERTTOCLOB procedure converts binary data to character.

CONVERTTOCLOB(<dest_lob> IN OUT CLOB, <src_blob> BLOB,
 <amount> INTEGER, <dest_offset> IN OUT INTEGER,
 <src_offset> IN OUT INTEGER, <blob_csid> NUMBER,
 <lang_context> IN OUT INTEGER, <warning> OUT INTEGER)

Parameters

dest_lob

CLOB large object locator to which to convert the binary data.

src_blob

BLOB large object locator of the binary data to convert.

amount

Number of bytes of src_blob to convert.

dest_offset IN

Position in characters in the destination CLOB where you want to begin writing the source BLOB . The first character is offset 1.

dest_offset OUT

Position in characters in the destination CLOB after the write operation completes. The first character is offset 1.

src_offset IN

Position in bytes in the source BLOB where you want the conversion to the destination CLOB to begin. The first byte is offset 1.

src_offset OUT

Position in bytes in the source BLOB after the conversion operation completes. The first byte is offset 1.

blob_csid

Character set ID of the converted destination CLOB .

lang_context IN

Language context for the conversion. The default value of 0 is typically used for this setting.

lang_context OUT

Language context after the conversion completes.

warning

0 if the conversion was successful, 1 if a character can't be converted.

16.2.6.5 COPY

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 282

The COPY procedure copies one large object to another. The source and destination large objects must be the same data type.

COPY(<dest_lob> IN OUT { BLOB | CLOB }, <src_lob>
{ BLOB | CLOB },
 <amount> INTEGER
 [, <dest_offset> INTEGER [, <src_offset> INTEGER]])

Parameters

dest_lob

Large object locator of the large object to which you want to copy src_lob . Must be the same data type as src_lob .

src_lob

Large object locator of the large object to copy to dest_lob . Must be the same data type as dest_lob .

amount

Number of bytes/characters of src_lob to copy.

dest_offset

Position in the destination large object where you want writing of the source large object to begin. The first position is offset 1. The default is 1.

src_offset

Position in the source large object where you want copying to the destination large object to begin. The first position is offset 1. The default is 1.

16.2.6.6 ERASE

The ERASE procedure erases a portion of a large object. To erase a large object means to replace the specified portion with zero-byte fillers for BLOB or with spaces for CLOB . The actual size of the
large object isn't altered.

ERASE(<lob_loc> IN OUT { BLOB | CLOB }, <amount> IN OUT INTEGER
 [, <offset> INTEGER])

Parameters

lob_loc

Large object locator of the large object to erase.

amount IN

Number of bytes/characters to erase.

amount OUT

Number of bytes/characters erased. This value can be smaller than the input value if the end of the large object is reached before amount bytes/characters are erased.

offset

Position in the large object where erasing begins. The first byte/character is position 1. The default is 1.

16.2.6.7 GET_STORAGE_LIMIT

The GET_STORAGE_LIMIT function returns the limit on the largest allowable large object.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 283

<size> INTEGER GET_STORAGE_LIMIT(<lob_loc> BLOB)

<size> INTEGER GET_STORAGE_LIMIT(<lob_loc> CLOB)

Parameters

size

Maximum allowable size of a large object in this database.

lob_loc

This parameter is ignored but is included for compatibility.

16.2.6.8 GETLENGTH

The GETLENGTH function returns the length of a large object.

<amount> INTEGER GETLENGTH(<lob_loc> BLOB)

<amount> INTEGER GETLENGTH(<lob_loc> CLOB)

Parameters

lob_loc

Large object locator of the large object whose length to obtain.

amount

Length of the large object for BLOB or characters for CLOB , in bytes.

16.2.6.9 INSTR

The INSTR function returns the location of the nth occurrence of a given pattern in a large object.

<position> INTEGER INSTR(<lob_loc> { BLOB | CLOB },
 <pattern> { RAW | VARCHAR2 } [, <offset> INTEGER [, <nth> INTEGER]])

Parameters

lob_loc

Large object locator of the large object in which to search for pattern .

pattern

Pattern of bytes or characters to match against the large object, lob . pattern must be RAW if lob_loc is a BLOB . pattern must be VARCHAR2 if lob_loc is a CLOB .

offset

Position in lob_loc to start search for pattern . The first byte/character is position 1. The default is 1.

nth

Search for pattern , nth number of times starting at the position given by offset . The default is 1.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 284

position

Position in the large object where pattern appears the nth time, starting from the position given by offset .

16.2.6.10 READ

The READ procedure reads a portion of a large object into a buffer.

READ(<lob_loc> { BLOB | CLOB }, <amount> IN OUT BINARY_INTEGER,
 <offset> INTEGER, <buffer> OUT { RAW | VARCHAR2 })

Parameters

lob_loc

Large object locator of the large object to read.

amount IN

Number of bytes/characters to read.

amount OUT

Number of bytes/characters read. If there's no more data to read, then amount returns 0 and a DATA_NOT_FOUND exception is thrown.

offset

Position to begin reading. The first byte/character is position 1.

buffer

Variable to receive the large object. If lob_loc is a BLOB , then buffer must be RAW . If lob_loc is a CLOB , then buffer must be VARCHAR2 .

16.2.6.11 SUBSTR

The SUBSTR function returns a portion of a large object.

<data> { RAW | VARCHAR2 } SUBSTR(<lob_loc> { BLOB | CLOB }
 [, <amount> INTEGER [, <offset> INTEGER]])

Parameters

lob_loc

Large object locator of the large object to read.

amount

Number of bytes/characters to return. Default is 32,767.

offset

Position in the large object to begin returning data. The first byte/character is position 1. The default is 1.

data

Returned portion of the large object to read. If lob_loc is a BLOB , the return data type is RAW . If lob_loc is a CLOB , the return data type is VARCHAR2 .

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 285

16.2.6.12 TRIM

The TRIM procedure truncates a large object to the specified length.

TRIM(<lob_loc> IN OUT { BLOB | CLOB }, <newlen> INTEGER)

Parameters

lob_loc

Large object locator of the large object to trim.

newlen

Number of bytes/characters to which you want to trim the large object.

16.2.6.13 WRITE

The WRITE procedure writes data into a large object. Any existing data in the large object at the specified offset for the given length is overwritten by data given in the buffer.

WRITE(<lob_loc> IN OUT { BLOB | CLOB },
 <amount> BINARY_INTEGER,
 <offset> INTEGER, <buffer> { RAW | VARCHAR2 })

Parameters

lob_loc

Large object locator of the large object to write.

amount

The number of bytes/characters in buffer to write to the large object.

offset

The offset in bytes/characters from the beginning of the large object (origin is 1) for the write operation to begin.

buffer

Contains data to write to the large object. If lob_loc is a BLOB , then buffer must be RAW . If lob_loc is a CLOB , then buffer must be VARCHAR2 .

16.2.6.14 WRITEAPPEND

The WRITEAPPEND procedure adds data to the end of a large object.

WRITEAPPEND(<lob_loc> IN OUT { BLOB | CLOB },
 <amount> BINARY_INTEGER, <buffer> { RAW | VARCHAR2 })

Parameters

lob_loc

Large object locator of the large object to which you want to append the data.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 286

amount

Number of bytes/characters from buffer to append to the large object.

buffer

Data to append to the large object. If lob_loc is a BLOB , then buffer must be RAW . If lob_loc is a CLOB , then buffer must be VARCHAR2 .

16.2.7 DBMS_LOCK

EDB Postgres Advanced Server provides support for the DBMS_LOCK.SLEEP procedure.

Function/procedure Return type Description

SLEEP(seconds) n/a Suspends a session for the specified number of seconds .

EDB Postgres Advanced Server's implementation of DBMS_LOCK is a partial implementation when compared to Oracle's version. Only DBMS_LOCK.SLEEP is supported.

SLEEP

The SLEEP procedure suspends the current session for the specified number of seconds.

SLEEP(<seconds> NUMBER)

Parameters

seconds

seconds specifies the number of seconds for which you want to suspend the session. seconds can be a fractional value. For example, enter 1.75 to specify one and three-fourths of a second.

16.2.8 DBMS_MVIEW

Use procedures in the DBMS_MVIEW package to manage and refresh materialized views and their dependencies. EDB Postgres Advanced Server provides support for the following DBMS_MVIEW
procedures:

Procedure Return
type

Description

GET_MV_DEPENDENCIES(list VARCHAR2, deplist VARCHAR2); n/a The GET_MV_DEPENDENCIES procedure returns a
list of dependencies for a specified view.

REFRESH(list VARCHAR2, method VARCHAR2, rollback_seg VARCHAR2 , push_deferred_rpc
BOOLEAN, refresh_after_errors BOOLEAN , purge_option NUMBER, parallelism NUMBER,
heap_size NUMBER , atomic_refresh BOOLEAN , nested BOOLEAN);

n/a
This variation of the REFRESH procedure refreshes all
views named in a comma-separated list of view names.

REFRESH(tab dbms_utility.uncl_array, method VARCHAR2, rollback_seg VARCHAR2,
push_deferred_rpc BOOLEAN, refresh_after_errors BOOLEAN, purge_option NUMBER,
parallelism NUMBER, heap_size NUMBER, atomic_refresh BOOLEAN, nested BOOLEAN);

n/a
This variation of the REFRESH procedure refreshes all
views named in a table of
dbms_utility.uncl_array values.

REFRESH_ALL_MVIEWS(number_of_failures BINARY_INTEGER, method VARCHAR2, rollback_seg
VARCHAR2, refresh_after_errors BOOLEAN, atomic_refresh BOOLEAN);

n/a The REFRESH_ALL_MVIEWS procedure refreshes all
materialized views.

REFRESH_DEPENDENT(number_of_failures BINARY_INTEGER, list VARCHAR2, method VARCHAR2,
rollback_seg VARCHAR2, refresh_after_errors BOOLEAN, atomic_refresh BOOLEAN, nested
BOOLEAN);

n/a
This variation of the REFRESH_DEPENDENT
procedure refreshes all views that depend on the views
listed in a comma-separated list.

REFRESH_DEPENDENT(number_of_failures BINARY_INTEGER, tab dbms_utility.uncl_array, method
VARCHAR2, rollback_seg VARCHAR2, refresh_after_errors BOOLEAN, atomic_refresh BOOLEAN,
nested BOOLEAN);

n/a

This variation of the REFRESH_DEPENDENT
procedure refreshes all views that depend on the views
listed in a table of dbms_utility.uncl_array
values.

EDB Postgres Advanced Server's implementation of DBMS_MVIEW is a partial implementation when compared to Oracle's version. Only those functions and procedures listed in the table are
supported.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 287

16.2.8.1 GET_MV_DEPENDENCIES

When given the name of a materialized view, GET_MV_DEPENDENCIES returns a list of items that depend on the specified view. The signature is:

GET_MV_DEPENDENCIES(
 <list> IN VARCHAR2,
 <deplist> OUT VARCHAR2);

Parameters

list

list specifies the name of a materialized view or a comma-separated list of materialized view names.

deplist

deplist is a comma-separated list of schema-qualified dependencies. deplist is a VARCHAR2 value.

Examples

This example displays a list of the dependencies on a materialized view named public.emp_view .

DECLARE
 deplist VARCHAR2(1000);
BEGIN
 DBMS_MVIEW.GET_MV_DEPENDENCIES('public.emp_view', deplist);
 DBMS_OUTPUT.PUT_LINE('deplist: ' || deplist);
END;

16.2.8.2 REFRESH

Use the REFRESH procedure to refresh all views specified in either a comma-separated list of view names or a table of DBMS_UTILITY.UNCL_ARRAY values. The procedure has two signatures.
Use the first form when specifying a comma-separated list of view names:

REFRESH(
 <list> IN VARCHAR2,
 <method> IN VARCHAR2 DEFAULT NULL,
 <rollback_seg> IN VARCHAR2 DEFAULT NULL,
 <push_deferred_rpc> IN BOOLEAN DEFAULT TRUE,
 <refresh_after_errors> IN BOOLEAN DEFAULT FALSE,
 <purge_option> IN NUMBER DEFAULT 1,
 <parallelism> IN NUMBER DEFAULT 0,
 <heap_size> IN NUMBER DEFAULT 0,
 <atomic_refresh> IN BOOLEAN DEFAULT TRUE,
 <nested> IN BOOLEAN DEFAULT FALSE);

Use the second form to specify view names in a table of DBMS_UTILITY.UNCL_ARRAY values:

REFRESH(
 <tab> IN OUT DBMS_UTILITY.UNCL_ARRAY,
 <method> IN VARCHAR2 DEFAULT NULL,
 <rollback_seg> IN VARCHAR2 DEFAULT NULL,
 <push_deferred_rpc> IN BOOLEAN DEFAULT TRUE,
 <refresh_after_errors> IN BOOLEAN DEFAULT FALSE,
 <purge_option> IN NUMBER DEFAULT 1,
 <parallelism> IN NUMBER DEFAULT 0,
 <heap_size> IN NUMBER DEFAULT 0,
 <atomic_refresh> IN BOOLEAN DEFAULT TRUE,
 <nested> IN BOOLEAN DEFAULT FALSE);

Parameters

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 288

list

list is a VARCHAR2 value that specifies the name of a materialized view or a comma-separated list of materialized view names. The names can be schema-qualified.

tab

tab is a table of DBMS_UTILITY.UNCL_ARRAY values that specify names of a materialized view.

method

method is a VARCHAR2 value that specifies the refresh method to apply to the specified views. The only supported method is C , which performs a complete refresh of the view.

rollback_seg

rollback_seg is accepted for compatibility and ignored. The default is NULL .

push_deferred_rpc

push_deferred_rpc is accepted for compatibility and ignored. The default is TRUE .

refresh_after_errors

refresh_after_errors is accepted for compatibility and ignored. The default is FALSE .

purge_option

purge_option is accepted for compatibility and ignored. The default is 1 .

parallelism

parallelism is accepted for compatibility and ignored. The default is 0 .

heap_size IN NUMBER DEFAULT 0 ,

heap_size is accepted for compatibility and ignored. The default is 0 .

atomic_refresh

atomic_refresh is accepted for compatibility and ignored. The default is TRUE .

nested

nested is accepted for compatibility and ignored. The default is FALSE .

Examples

This example uses DBMS_MVIEW.REFRESH to perform a complete refresh on the public.emp_view materialized view:

EXEC DBMS_MVIEW.REFRESH(list => 'public.emp_view', method => 'C');

16.2.8.3 REFRESH_ALL_MVIEWS

Use the REFRESH_ALL_MVIEWS procedure to refresh any materialized views that weren't refreshed since the table or view on which the view depends was modified. The signature is:

REFRESH_ALL_MVIEWS(
 <number_of_failures> OUT BINARY_INTEGER,
 <method> IN VARCHAR2 DEFAULT NULL,
 <rollback_seg> IN VARCHAR2 DEFAULT NULL,
 <refresh_after_errors> IN BOOLEAN DEFAULT FALSE,
 <atomic_refresh> IN BOOLEAN DEFAULT TRUE);

Parameters

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 289

number_of_failures

number_of_failures is a BINARY_INTEGER that specifies the number of failures that occurred during the refresh.

method

method is a VARCHAR2 value that specifies the refresh method to apply to the specified views. The only supported method is C , which performs a complete refresh of the view.

rollback_seg

rollback_seg is accepted for compatibility and ignored. The default is NULL .

refresh_after_errors

refresh_after_errors is accepted for compatibility and ignored. The default is FALSE .

atomic_refresh

atomic_refresh is accepted for compatibility and ignored. The default is TRUE .

Examples

This example performs a complete refresh on all materialized views:

DECLARE
 errors INTEGER;
BEGIN
 DBMS_MVIEW.REFRESH_ALL_MVIEWS(errors, method => 'C');
END;

Upon completion, errors contains the number of failures.

16.2.8.4 REFRESH_DEPENDENT

Use the REFRESH_DEPENDENT procedure to refresh all material views that depend on the views specified in the call to the procedure. You can specify a comma-separated list or provide the view
names in a table of DBMS_UTILITY.UNCL_ARRAY values.

Use the first form of the procedure to refresh all material views that depend on the views specified in a comma-separated list:

REFRESH_DEPENDENT(
 <number_of_failures> OUT BINARY_INTEGER,
 <list> IN VARCHAR2,
 <method> IN VARCHAR2 DEFAULT NULL,
 <rollback_seg> IN VARCHAR2 DEFAULT NULL
 <refresh_after_errors> IN BOOLEAN DEFAULT FALSE,
 <atomic_refresh> IN BOOLEAN DEFAULT TRUE,
 <nested> IN BOOLEAN DEFAULT FALSE);

Use the second form of the procedure to refresh all material views that depend on the views specified in a table of DBMS_UTILITY.UNCL_ARRAY values:

REFRESH_DEPENDENT(
 <number_of_failures> OUT BINARY_INTEGER,
 <tab> IN DBMS_UTILITY.UNCL_ARRAY,
 <method> IN VARCHAR2 DEFAULT NULL,
 <rollback_seg> IN VARCHAR2 DEFAULT NULL,
 <refresh_after_errors> IN BOOLEAN DEFAULT FALSE,
 <atomic_refresh> IN BOOLEAN DEFAULT TRUE,
 <nested> IN BOOLEAN DEFAULT FALSE);

Parameters

number_of_failures

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 290

number_of_failures is a BINARY_INTEGER that contains the number of failures that occurred during the refresh operation.

list

list is a VARCHAR2 value that specifies the name of a materialized view or a comma-separated list of materialized view names. The names can be schema-qualified.

tab

tab is a table of DBMS_UTILITY.UNCL_ARRAY values that specify the names of a materialized view.

method

method is a VARCHAR2 value that specifies the refresh method to apply to the specified views. The only supported method is C , which performs a complete refresh of the view.

rollback_seg

rollback_seg is accepted for compatibility and ignored. The default is NULL .

refresh_after_errors

refresh_after_errors is accepted for compatibility and ignored. The default is FALSE .

atomic_refresh

atomic_refresh is accepted for compatibility and ignored. The default is TRUE .

nested

nested is accepted for compatibility and ignored. The default is FALSE .

Examples

This example performs a complete refresh on all materialized views that depend on a materialized view named emp_view that resides in the public schema:

DECLARE
 errors INTEGER;
BEGIN
 DBMS_MVIEW.REFRESH_DEPENDENT(errors, list => 'public.emp_view', method =>
'C');
END;

Upon completion, errors contains the number of failures.

16.2.9 DBMS_OUTPUT

The DBMS_OUTPUT package sends messages (lines of text) to a message buffer or gets messages from the message buffer. A message buffer is local to a single session. Use the DBMS_PIPE package
to send messages between sessions.

The procedures and functions available in the DBMS_OUTPUT package are listed in the following table.

Function/procedure Return type Description

DISABLE n/a Disable the capability to send and receive messages.

ENABLE(buffer_size) n/a Enable the capability to send and receive messages.

GET_LINE(line OUT, status OUT) n/a Get a line from the message buffer.

GET_LINES(lines OUT, numlines IN
OUT)

n/a Get multiple lines from the message buffer.

NEW_LINE n/a Puts an end-of-line character sequence.

PUT(item) n/a Puts a partial line without an end-of-line character sequence.

PUT_LINE(item) n/a Puts a complete line with an end-of-line character sequence.

SERVEROUTPUT(stdout) n/a Direct messages from PUT, PUT_LINE, or NEW_LINE to either standard output or the message buffer.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 291

The following table lists the public variables available in the DBMS_OUTPUT package.

Public variables Data type Value Description

chararr TABLE For message lines.

CHARARR

The CHARARR is for storing multiple message lines.

TYPE chararr IS TABLE OF VARCHAR2(32767) INDEX BY BINARY_INTEGER;

DISABLE

The DISABLE procedure clears out the message buffer. You can no longer access any messages in the buffer at the time the DISABLE procedure is executed. Any messages later sent with the PUT ,
PUT_LINE, or NEW_LINE procedures are discarded. No error is returned to the sender when the PUT , PUT_LINE, or NEW_LINE procedures are executed and messages were disabled.

Use the ENABLE or SERVEROUTPUT(TRUE)` procedure to reenable sending and receiving messages.

DISABLE

Examples

This anonymous block disables sending and receiving messages in the current session.

BEGIN
 DBMS_OUTPUT.DISABLE;
END;

ENABLE

The ENABLE procedure enables you to send messages to or retrieve messages from the message buffer. Running SERVEROUTPUT(TRUE) also implicitly performs the ENABLE procedure.

The destination of a message sent with PUT , PUT_LINE , or NEW_LINE depends on the state of SERVEROUTPUT .

If the last state of SERVEROUTPUT is TRUE , the message goes to standard output of the command line.
If the last state of SERVEROUTPUT is FALSE , the message goes to the message buffer.

ENABLE [(<buffer_size> INTEGER)]

Parameter

buffer_size

Maximum length of the message buffer in bytes. If you specify a buffer_size of less than 2000, the buffer size is set to 2000.

Examples

This anonymous block enables messages. Setting SERVEROUTPUT(TRUE) forces them to standard output.

BEGIN
 DBMS_OUTPUT.ENABLE;
 DBMS_OUTPUT.SERVEROUTPUT(TRUE);
 DBMS_OUTPUT.PUT_LINE('Messages enabled');
END;

Messages enabled

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 292

You can achieve the same effect by using SERVEROUTPUT(TRUE) .

BEGIN
 DBMS_OUTPUT.SERVEROUTPUT(TRUE);
 DBMS_OUTPUT.PUT_LINE('Messages enabled');
END;

Messages enabled

This anonymous block enables messages, but setting SERVEROUTPUT(FALSE) directs messages to the message buffer.

BEGIN
 DBMS_OUTPUT.ENABLE;
 DBMS_OUTPUT.SERVEROUTPUT(FALSE);
 DBMS_OUTPUT.PUT_LINE('Message sent to buffer');
END;

GET_LINE

The GET_LINE procedure retrieves a line of text from the message buffer. Only text that was terminated by an end-of-line character sequence is retrieved. That includes complete lines generated
using PUT_LINE or by a series of PUT calls followed by a NEW_LINE call.

GET_LINE(<line> OUT VARCHAR2, <status> OUT INTEGER)

Parameters

line

Variable receiving the line of text from the message buffer.

status

0 if a line was returned from the message buffer, 1 if there was no line to return.

Examples

This anonymous block writes the emp table out to the message buffer as a comma-delimited string for each row.

EXEC DBMS_OUTPUT.SERVEROUTPUT(FALSE);

DECLARE
 v_emprec VARCHAR2(120);
 CURSOR emp_cur IS SELECT * FROM emp ORDER BY empno;
BEGIN
 DBMS_OUTPUT.ENABLE;
 FOR i IN emp_cur LOOP
 v_emprec := i.empno || ',' || i.ename || ',' || i.job || ',' ||
 NVL(LTRIM(TO_CHAR(i.mgr,'9999')),'') || ',' || i.hiredate ||
 ',' || i.sal || ',' ||
 NVL(LTRIM(TO_CHAR(i.comm,'9990.99')),'') || ',' || i.deptno;
 DBMS_OUTPUT.PUT_LINE(v_emprec);
 END LOOP;
END;

This anonymous block reads the message buffer and inserts the messages written by the prior example into a table named messages . The rows in messages are then displayed.

CREATE TABLE messages (
 status INTEGER,
 msg VARCHAR2(100)
);

DECLARE
 v_line VARCHAR2(100);
 v_status INTEGER := 0;
BEGIN
 DBMS_OUTPUT.GET_LINE(v_line,v_status);
 WHILE v_status = 0 LOOP

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 293

 INSERT INTO messages VALUES(v_status, v_line);
 DBMS_OUTPUT.GET_LINE(v_line,v_status);
 END LOOP;
END;

SELECT msg FROM messages;

 msg

 7369,SMITH,CLERK,7902,17-DEC-80 00:00:00,800.00,,20
 7499,ALLEN,SALESMAN,7698,20-FEB-81 00:00:00,1600.00,300.00,30
 7521,WARD,SALESMAN,7698,22-FEB-81 00:00:00,1250.00,500.00,30
 7566,JONES,MANAGER,7839,02-APR-81 00:00:00,2975.00,,20
 7654,MARTIN,SALESMAN,7698,28-SEP-81 00:00:00,1250.00,1400.00,30
 7698,BLAKE,MANAGER,7839,01-MAY-81 00:00:00,2850.00,,30
 7782,CLARK,MANAGER,7839,09-JUN-81 00:00:00,2450.00,,10
 7788,SCOTT,ANALYST,7566,19-APR-87 00:00:00,3000.00,,20
 7839,KING,PRESIDENT,,17-NOV-81 00:00:00,5000.00,,10
 7844,TURNER,SALESMAN,7698,08-SEP-81 00:00:00,1500.00,0.00,30
 7876,ADAMS,CLERK,7788,23-MAY-87 00:00:00,1100.00,,20
 7900,JAMES,CLERK,7698,03-DEC-81 00:00:00,950.00,,30
 7902,FORD,ANALYST,7566,03-DEC-81 00:00:00,3000.00,,20
 7934,MILLER,CLERK,7782,23-JAN-82 00:00:00,1300.00,,10
(14 rows)

GET_LINES

The GET_LINES procedure retrieves one or more lines of text from the message buffer into a collection. Only text that was terminated by an end-of-line character sequence is retrieved. That includes
complete lines generated using PUT_LINE or by a series of PUT calls followed by a NEW_LINE call.

GET_LINES(<lines> OUT CHARARR, <numlines> IN OUT INTEGER)

Parameters

lines

Table receiving the lines of text from the message buffer. See CHARARR for a description of lines.

numlines IN

Number of lines to retrieve from the message buffer.

numlines OUT

Actual number of lines retrieved from the message buffer. If the output value of numlines is less than the input value, then no more lines are left in the message buffer.

Examples

This example uses the GET_LINES procedure to store all rows from the emp table that were placed in the message buffer into an array.

EXEC DBMS_OUTPUT.SERVEROUTPUT(FALSE);

DECLARE
 v_emprec VARCHAR2(120);
 CURSOR emp_cur IS SELECT * FROM emp ORDER BY empno;
BEGIN
 DBMS_OUTPUT.ENABLE;
 FOR i IN emp_cur LOOP
 v_emprec := i.empno || ',' || i.ename || ',' || i.job || ',' ||
 NVL(LTRIM(TO_CHAR(i.mgr,'9999')),'') || ',' || i.hiredate ||
 ',' || i.sal || ',' ||
 NVL(LTRIM(TO_CHAR(i.comm,'9990.99')),'') || ',' || i.deptno;
 DBMS_OUTPUT.PUT_LINE(v_emprec);
 END LOOP;
END;

DECLARE
 v_lines DBMS_OUTPUT.CHARARR;
 v_numlines INTEGER := 14;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 294

 v_status INTEGER := 0;
BEGIN
 DBMS_OUTPUT.GET_LINES(v_lines,v_numlines);
 FOR i IN 1..v_numlines LOOP
 INSERT INTO messages VALUES(v_numlines, v_lines(i));
 END LOOP;
END;

SELECT msg FROM messages;

 msg

 7369,SMITH,CLERK,7902,17-DEC-80 00:00:00,800.00,,20
 7499,ALLEN,SALESMAN,7698,20-FEB-81 00:00:00,1600.00,300.00,30
 7521,WARD,SALESMAN,7698,22-FEB-81 00:00:00,1250.00,500.00,30
 7566,JONES,MANAGER,7839,02-APR-81 00:00:00,2975.00,,20
 7654,MARTIN,SALESMAN,7698,28-SEP-81 00:00:00,1250.00,1400.00,30
 7698,BLAKE,MANAGER,7839,01-MAY-81 00:00:00,2850.00,,30
 7782,CLARK,MANAGER,7839,09-JUN-81 00:00:00,2450.00,,10
 7788,SCOTT,ANALYST,7566,19-APR-87 00:00:00,3000.00,,20
 7839,KING,PRESIDENT,,17-NOV-81 00:00:00,5000.00,,10
 7844,TURNER,SALESMAN,7698,08-SEP-81 00:00:00,1500.00,0.00,30
 7876,ADAMS,CLERK,7788,23-MAY-87 00:00:00,1100.00,,20
 7900,JAMES,CLERK,7698,03-DEC-81 00:00:00,950.00,,30
 7902,FORD,ANALYST,7566,03-DEC-81 00:00:00,3000.00,,20
 7934,MILLER,CLERK,7782,23-JAN-82 00:00:00,1300.00,,10
(14 rows)

NEW_LINE

The NEW_LINE procedure writes an end-of-line character sequence in the message buffer.

NEW_LINE

Parameter

The NEW_LINE procedure expects no parameters.

PUT

The PUT procedure writes a string to the message buffer. No end-of-line character sequence is written at the end of the string. Use the NEW_LINE procedure to add an end-of-line character
sequence.

PUT(<item> VARCHAR2)

Parameter

item

Text written to the message buffer.

Examples

The following example uses the PUT procedure to display a comma-delimited list of employees from the emp table.

DECLARE
 CURSOR emp_cur IS SELECT * FROM emp ORDER BY empno;
BEGIN
 FOR i IN emp_cur LOOP
 DBMS_OUTPUT.PUT(i.empno);
 DBMS_OUTPUT.PUT(',');
 DBMS_OUTPUT.PUT(i.ename);
 DBMS_OUTPUT.PUT(',');
 DBMS_OUTPUT.PUT(i.job);

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 295

 DBMS_OUTPUT.PUT(',');
 DBMS_OUTPUT.PUT(i.mgr);
 DBMS_OUTPUT.PUT(',');
 DBMS_OUTPUT.PUT(i.hiredate);
 DBMS_OUTPUT.PUT(',');
 DBMS_OUTPUT.PUT(i.sal);
 DBMS_OUTPUT.PUT(',');
 DBMS_OUTPUT.PUT(i.comm);
 DBMS_OUTPUT.PUT(',');
 DBMS_OUTPUT.PUT(i.deptno);
 DBMS_OUTPUT.NEW_LINE;
 END LOOP;
END;

7369,SMITH,CLERK,7902,17-DEC-80 00:00:00,800.00,,20
7499,ALLEN,SALESMAN,7698,20-FEB-81 00:00:00,1600.00,300.00,30
7521,WARD,SALESMAN,7698,22-FEB-81 00:00:00,1250.00,500.00,30
7566,JONES,MANAGER,7839,02-APR-81 00:00:00,2975.00,,20
7654,MARTIN,SALESMAN,7698,28-SEP-81 00:00:00,1250.00,1400.00,30
7698,BLAKE,MANAGER,7839,01-MAY-81 00:00:00,2850.00,,30
7782,CLARK,MANAGER,7839,09-JUN-81 00:00:00,2450.00,,10
7788,SCOTT,ANALYST,7566,19-APR-87 00:00:00,3000.00,,20
7839,KING,PRESIDENT,,17-NOV-81 00:00:00,5000.00,,10
7844,TURNER,SALESMAN,7698,08-SEP-81 00:00:00,1500.00,0.00,30
7876,ADAMS,CLERK,7788,23-MAY-87 00:00:00,1100.00,,20
7900,JAMES,CLERK,7698,03-DEC-81 00:00:00,950.00,,30
7902,FORD,ANALYST,7566,03-DEC-81 00:00:00,3000.00,,20
7934,MILLER,CLERK,7782,23-JAN-82 00:00:00,1300.00,,10

PUT_LINE

The PUT_LINE procedure writes a single line to the message buffer including an end-of-line character sequence.

PUT_LINE(<item> VARCHAR2)

Parameter

item

Text to write to the message buffer.

Examples

This example uses the PUT_LINE procedure to display a comma-delimited list of employees from the emp table.

DECLARE
 v_emprec VARCHAR2(120);
 CURSOR emp_cur IS SELECT * FROM emp ORDER BY empno;
BEGIN
 FOR i IN emp_cur LOOP
 v_emprec := i.empno || ',' || i.ename || ',' || i.job || ',' ||
 NVL(LTRIM(TO_CHAR(i.mgr,'9999')),'') || ',' || i.hiredate ||
 ',' || i.sal || ',' ||
 NVL(LTRIM(TO_CHAR(i.comm,'9990.99')),'') || ',' || i.deptno;
 DBMS_OUTPUT.PUT_LINE(v_emprec);
 END LOOP;
END;

7369,SMITH,CLERK,7902,17-DEC-80 00:00:00,800.00,,20
7499,ALLEN,SALESMAN,7698,20-FEB-81 00:00:00,1600.00,300.00,30
7521,WARD,SALESMAN,7698,22-FEB-81 00:00:00,1250.00,500.00,30
7566,JONES,MANAGER,7839,02-APR-81 00:00:00,2975.00,,20
7654,MARTIN,SALESMAN,7698,28-SEP-81 00:00:00,1250.00,1400.00,30
7698,BLAKE,MANAGER,7839,01-MAY-81 00:00:00,2850.00,,30
7782,CLARK,MANAGER,7839,09-JUN-81 00:00:00,2450.00,,10
7788,SCOTT,ANALYST,7566,19-APR-87 00:00:00,3000.00,,20
7839,KING,PRESIDENT,,17-NOV-81 00:00:00,5000.00,,10
7844,TURNER,SALESMAN,7698,08-SEP-81 00:00:00,1500.00,0.00,30
7876,ADAMS,CLERK,7788,23-MAY-87 00:00:00,1100.00,,20
7900,JAMES,CLERK,7698,03-DEC-81 00:00:00,950.00,,30

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 296

7902,FORD,ANALYST,7566,03-DEC-81 00:00:00,3000.00,,20
7934,MILLER,CLERK,7782,23-JAN-82 00:00:00,1300.00,,10

SERVEROUTPUT

The SERVEROUTPUT procedure directs messages to standard output of the command line or to the message buffer. Setting SERVEROUTPUT(TRUE) also performs an implicit execution of
ENABLE .

The default setting of SERVEROUTPUT depends on the implementation. For example, in Oracle SQL*Plus, SERVEROUTPUT(FALSE) is the default. In PSQL, SERVEROUTPUT(TRUE) is the
default. Also, in Oracle SQL*Plus, you control this setting using the SQL*Plus SET comman, not by a stored procedure as implemented in EDB Postgres Advanced Server.

SERVEROUTPUT(<stdout> BOOLEAN)

To get an Oracle-style display output, you can set the dbms_output.serveroutput to FALSE in the postgresql.conf file, which disables the message output. The default is TRUE , which
enables the message output.

Parameter

stdout

Set to TRUE if you want subsequent PUT , PUT_LINE , or NEW_LINE to send text directly to standard output of the command line. Set to FALSE to send text to the message buffer.

Examples

This anonymous block sends the first message to the command line and the second message to the message buffer.

BEGIN
 DBMS_OUTPUT.SERVEROUTPUT(TRUE);
 DBMS_OUTPUT.PUT_LINE('This message goes to the command line');
 DBMS_OUTPUT.SERVEROUTPUT(FALSE);
 DBMS_OUTPUT.PUT_LINE('This message goes to the message buffer');
END;

This message goes to the command line

If, in the same session, the following anonymous block is executed, the message stored in the message buffer from the prior example is flushed. It's displayed on the command line along with the new
message.

BEGIN
 DBMS_OUTPUT.SERVEROUTPUT(TRUE);
 DBMS_OUTPUT.PUT_LINE('Flush messages from the buffer');
END;

This message goes to the message buffer
Flush messages from the buffer

16.2.10 DBMS_PIPE

The DBMS_PIPE package lets you send messages through a pipe in or between sessions connected to the same database cluster.

The table shows the procedures and functions available in the DBMS_PIPE package:

Function/procedure Return type Description

CREATE_PIPE(pipename [, maxpipesize] [, private
])

INTEGER Explicitly create a private pipe if private is true (the default) or a public pipe if private is
false .

NEXT_ITEM_TYPE INTEGER Determine the data type of the next item in a received message.

PACK_MESSAGE(item) n/a Place item in the session’s local message buffer.

PURGE(pipename) n/a Remove unreceived messages from the specified pipe.

RECEIVE_MESSAGE(pipename [, timeout]) INTEGER Get a message from a specified pipe.

REMOVE_PIPE(pipename) INTEGER Delete an explicitly created pipe.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 297

RESET_BUFFER n/a Reset the local message buffer.

SEND_MESSAGE(pipename [, timeout] [, maxpipesize
])

INTEGER Send a message on a pipe.

UNIQUE_SESSION_NAME VARCHAR2 Obtain a unique session name.

UNPACK_MESSAGE(item OUT) n/a Retrieve the next data item from a message into a type-compatible variable, item .

Function/procedure Return type Description

Pipes are categorized as implicit or explicit. An implicit pipe is created if a reference is made to a pipe name that wasn't previously created by the CREATE_PIPE function. For example, if the
SEND_MESSAGE function is executed using a nonexistent pipe name, a new implicit pipe is created with that name. An explicit pipe is created using the CREATE_PIPE function in which the first

parameter specifies the pipe name for the new pipe.

Pipes are also categorized as private or public. Only the user who created the pipe can access a private pipe. Even a superuser can't access a private pipe that was created by another user. Any user who
has access to the DBMS_PIPE package can access a public pipe.

You can create a public pipe only by using the CREATE_PIPE function with the third parameter set to FALSE . You can use the CREATE_PIPE function to create a private pipe by setting the third
parameter to TRUE or by omitting the third parameter. All implicit pipes are private.

The individual data items, or lines, of a message are first built in a local message buffer, unique to the current session. The PACK_MESSAGE procedure builds the message in the session’s local
message buffer. You then use the SEND_MESSAGE function to send the message through the pipe.

Receipt of a message involves the reverse operation. You use the RECEIVE_MESSAGE function to get a message from the specified pipe. The message is written to the session’s local message buffer.
You then use The UNPACK_MESSAGE procedure to transfer the message data items from the message buffer to program variables. If a pipe contains multiple messages, RECEIVE_MESSAGE gets the
messages in FIFO (first-in-first-out) order.

Each session maintains separate message buffers for messages created with the PACK_MESSAGE procedure and messages retrieved by the RECEIVE_MESSAGE function. Thus messages can be
both built and received in the same session. However, if consecutive RECEIVE_MESSAGE calls are made, only the message from the last RECEIVE_MESSAGE call is preserved in the local message
buffer.

16.2.10.1 CREATE_PIPE

The CREATE_PIPE function creates an explicit public pipe or an explicit private pipe with a specified name.

<status> INTEGER CREATE_PIPE(<pipename> VARCHAR2
 [, <maxpipesize> INTEGER] [, <private> BOOLEAN])

Parameters

pipename

Name of the pipe.

maxpipesize

Maximum capacity of the pipe in bytes. Default is 8192 bytes.

private

Create a public pipe if set to FALSE . Create a private pipe if set to TRUE. This is the default.

status

Status code returned by the operation. 0 indicates successful creation.

Examples

This example creates a private pipe named messages :

DECLARE
 v_status INTEGER;
BEGIN
 v_status := DBMS_PIPE.CREATE_PIPE('messages');
 DBMS_OUTPUT.PUT_LINE('CREATE_PIPE status: ' || v_status);

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 298

END;
CREATE_PIPE status: 0

This example creates a public pipe named mailbox :

DECLARE
 v_status INTEGER;
BEGIN
 v_status := DBMS_PIPE.CREATE_PIPE('mailbox',8192,FALSE);
 DBMS_OUTPUT.PUT_LINE('CREATE_PIPE status: ' || v_status);
END;
CREATE_PIPE status: 0

16.2.10.2 NEXT_ITEM_TYPE

The NEXT_ITEM_TYPE function returns an integer code identifying the data type of the next data item in a message that was retrieved into the session’s local message buffer. As each item is moved
off of the local message buffer with the UNPACK_MESSAGE procedure, the NEXT_ITEM_TYPE function returns the data type code for the next available item. A code of 0 is returned when no more
items are left in the message.

<typecode> INTEGER NEXT_ITEM_TYPE

Parameters

typecode

Code identifying the data type of the next data item is shown in the following table.

Type code Data type

0 No more data
items

9 NUMBER

11 VARCHAR2

13 DATE

23 RAW

!!! Note The type codes listed in the table aren't compatible with Oracle databases. Oracle assigns a different numbering sequence to the data types.

Examples

This example shows a pipe packed with a NUMBER item, a VARCHAR2 item, a DATE item, and a RAW item. A second anonymous block then uses the NEXT_ITEM_TYPE function to display the
type code of each item.

DECLARE
 v_number NUMBER := 123;
 v_varchar VARCHAR2(20) := 'Character data';
 v_date DATE := SYSDATE;
 v_raw RAW(4) := '21222324';
 v_status INTEGER;
BEGIN
 DBMS_PIPE.PACK_MESSAGE(v_number);
 DBMS_PIPE.PACK_MESSAGE(v_varchar);
 DBMS_PIPE.PACK_MESSAGE(v_date);
 DBMS_PIPE.PACK_MESSAGE(v_raw);
 v_status := DBMS_PIPE.SEND_MESSAGE('datatypes');
 DBMS_OUTPUT.PUT_LINE('SEND_MESSAGE status: ' || v_status);
EXCEPTION
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE('SQLERRM: ' || SQLERRM);
 DBMS_OUTPUT.PUT_LINE('SQLCODE: ' || SQLCODE);
END;

SEND_MESSAGE status: 0

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 299

DECLARE
 v_number NUMBER;
 v_varchar VARCHAR2(20);
 v_date DATE;
 v_timestamp TIMESTAMP;
 v_raw RAW(4);
 v_status INTEGER;
BEGIN
 v_status := DBMS_PIPE.RECEIVE_MESSAGE('datatypes');
 DBMS_OUTPUT.PUT_LINE('RECEIVE_MESSAGE status: ' || v_status);
 DBMS_OUTPUT.PUT_LINE('----------------------------------');

 v_status := DBMS_PIPE.NEXT_ITEM_TYPE;
 DBMS_OUTPUT.PUT_LINE('NEXT_ITEM_TYPE: ' || v_status);
 DBMS_PIPE.UNPACK_MESSAGE(v_number);
 DBMS_OUTPUT.PUT_LINE('NUMBER Item : ' || v_number);
 DBMS_OUTPUT.PUT_LINE('----------------------------------');

 v_status := DBMS_PIPE.NEXT_ITEM_TYPE;
 DBMS_OUTPUT.PUT_LINE('NEXT_ITEM_TYPE: ' || v_status);
 DBMS_PIPE.UNPACK_MESSAGE(v_varchar);
 DBMS_OUTPUT.PUT_LINE('VARCHAR2 Item : ' || v_varchar);
 DBMS_OUTPUT.PUT_LINE('----------------------------------');

 v_status := DBMS_PIPE.NEXT_ITEM_TYPE;
 DBMS_OUTPUT.PUT_LINE('NEXT_ITEM_TYPE: ' || v_status);
 DBMS_PIPE.UNPACK_MESSAGE(v_date);
 DBMS_OUTPUT.PUT_LINE('DATE Item : ' || v_date);
 DBMS_OUTPUT.PUT_LINE('----------------------------------');

 v_status := DBMS_PIPE.NEXT_ITEM_TYPE;
 DBMS_OUTPUT.PUT_LINE('NEXT_ITEM_TYPE: ' || v_status);
 DBMS_PIPE.UNPACK_MESSAGE(v_raw);
 DBMS_OUTPUT.PUT_LINE('RAW Item : ' || v_raw);
 DBMS_OUTPUT.PUT_LINE('----------------------------------');

 v_status := DBMS_PIPE.NEXT_ITEM_TYPE;
 DBMS_OUTPUT.PUT_LINE('NEXT_ITEM_TYPE: ' || v_status);
 DBMS_OUTPUT.PUT_LINE('---------------------------------');
EXCEPTION
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE('SQLERRM: ' || SQLERRM);
 DBMS_OUTPUT.PUT_LINE('SQLCODE: ' || SQLCODE);
END;

RECEIVE_MESSAGE status: 0

NEXT_ITEM_TYPE: 9
NUMBER Item : 123

NEXT_ITEM_TYPE: 11
VARCHAR2 Item : Character data

NEXT_ITEM_TYPE: 13
DATE Item : 02-OCT-07 11:11:43

NEXT_ITEM_TYPE: 23
RAW Item : 21222324

NEXT_ITEM_TYPE: 0

16.2.10.3 PACK_MESSAGE

The PACK_MESSAGE procedure places an item of data in the session’s local message buffer. You must execute PACK_MESSAGE at least once before issuing a SEND_MESSAGE call.

PACK_MESSAGE(<item> { DATE | NUMBER | VARCHAR2 | RAW })

Use the UNPACK_MESSAGE procedure to obtain data items once the message is retrieved using a RECEIVE_MESSAGE call.

Parameters

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 300

item

An expression evaluating to any of the acceptable parameter data types. The value is added to the session’s local message buffer.

16.2.10.4 PURGE

The PURGE procedure removes the unreceived messages from a specified implicit pipe.

PURGE(<pipename> VARCHAR2)

Use the REMOVE_PIPE function to delete an explicit pipe.

Parameters

pipename

Name of the pipe.

Examples

Two messages are sent on a pipe:

DECLARE
 v_status INTEGER;
BEGIN
 DBMS_PIPE.PACK_MESSAGE('Message #1');
 v_status := DBMS_PIPE.SEND_MESSAGE('pipe');
 DBMS_OUTPUT.PUT_LINE('SEND_MESSAGE status: ' || v_status);

 DBMS_PIPE.PACK_MESSAGE('Message #2');
 v_status := DBMS_PIPE.SEND_MESSAGE('pipe');
 DBMS_OUTPUT.PUT_LINE('SEND_MESSAGE status: ' || v_status);
END;

SEND_MESSAGE status: 0
SEND_MESSAGE status: 0

Receive the first message and unpack it:

DECLARE
 v_item VARCHAR2(80);
 v_status INTEGER;
BEGIN
 v_status := DBMS_PIPE.RECEIVE_MESSAGE('pipe',1);
 DBMS_OUTPUT.PUT_LINE('RECEIVE_MESSAGE status: ' || v_status);
 DBMS_PIPE.UNPACK_MESSAGE(v_item);
 DBMS_OUTPUT.PUT_LINE('Item: ' || v_item);
END;

RECEIVE_MESSAGE status: 0
Item: Message #1

Purge the pipe:

EXEC DBMS_PIPE.PURGE('pipe');

Try to retrieve the next message. The RECEIVE_MESSAGE call returns status code 1 indicating it timed out because no message was available.

DECLARE
 v_item VARCHAR2(80);
 v_status INTEGER;
BEGIN
 v_status := DBMS_PIPE.RECEIVE_MESSAGE('pipe',1);
 DBMS_OUTPUT.PUT_LINE('RECEIVE_MESSAGE status: ' || v_status);

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 301

END;

RECEIVE_MESSAGE status: 1

16.2.10.5 RECEIVE_MESSAGE

The RECEIVE_MESSAGE function obtains a message from a specified pipe.

<status> INTEGER RECEIVE_MESSAGE(<pipename> VARCHAR2
 [, <timeout> INTEGER])

Parameters

pipename

Name of the pipe.

timeout

Wait time (seconds). Default is 86400000 (1000 days).

status

Status code returned by the operation.

The possible status codes are:

Status code Description

0 Success

1 Time out

2 Message too large for the buffer

16.2.10.6 REMOVE_PIPE

The REMOVE_PIPE function deletes an explicit private or explicit public pipe.

<status> INTEGER REMOVE_PIPE(<pipename> VARCHAR2)

Use the REMOVE_PIPE function to delete explicitly created pipes, that is, pipes created with the CREATE_PIPE function.

Parameters

pipename

Name of the pipe.

status

Status code returned by the operation. A status code of 0 is returned even if the named pipe is nonexistent.

Examples

Two messages are sent on a pipe:

DECLARE

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 302

 v_status INTEGER;
BEGIN
 v_status := DBMS_PIPE.CREATE_PIPE('pipe');
 DBMS_OUTPUT.PUT_LINE('CREATE_PIPE status : ' || v_status);

 DBMS_PIPE.PACK_MESSAGE('Message #1');
 v_status := DBMS_PIPE.SEND_MESSAGE('pipe');
 DBMS_OUTPUT.PUT_LINE('SEND_MESSAGE status: ' || v_status);

 DBMS_PIPE.PACK_MESSAGE('Message #2');
 v_status := DBMS_PIPE.SEND_MESSAGE('pipe');
 DBMS_OUTPUT.PUT_LINE('SEND_MESSAGE status: ' || v_status);
END;

CREATE_PIPE status : 0
SEND_MESSAGE status: 0
SEND_MESSAGE status: 0

Receive the first message and unpack it:

DECLARE
 v_item VARCHAR2(80);
 v_status INTEGER;
BEGIN
 v_status := DBMS_PIPE.RECEIVE_MESSAGE('pipe',1);
 DBMS_OUTPUT.PUT_LINE('RECEIVE_MESSAGE status: ' || v_status);
 DBMS_PIPE.UNPACK_MESSAGE(v_item);
 DBMS_OUTPUT.PUT_LINE('Item: ' || v_item);
END;

RECEIVE_MESSAGE status: 0
Item: Message #1

Remove the pipe:

SELECT DBMS_PIPE.REMOVE_PIPE('pipe') FROM DUAL;

remove_pipe

 0
(1 row)

Try to retrieve the next message. The RECEIVE_MESSAGE call returns status code 1 indicating it timed out because the pipe was deleted.

DECLARE
 v_item VARCHAR2(80);
 v_status INTEGER;
BEGIN
 v_status := DBMS_PIPE.RECEIVE_MESSAGE('pipe',1);
 DBMS_OUTPUT.PUT_LINE('RECEIVE_MESSAGE status: ' || v_status);
END;

RECEIVE_MESSAGE status: 1

16.2.10.7 RESET_BUFFER

The RESET_BUFFER procedure resets a pointer to the session’s local message buffer back to the beginning of the buffer. This causes later PACK_MESSAGE calls to overwrite any data items that
were in the message buffer before the RESET_BUFFER call.

RESET_BUFFER

Examples

A message to John is written to the local message buffer. It is replaced by a message to Bob by calling RESET_BUFFER . The message is sent on the pipe.

DECLARE
 v_status INTEGER;
BEGIN

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 303

 DBMS_PIPE.PACK_MESSAGE('Hi, John');
 DBMS_PIPE.PACK_MESSAGE('Can you attend a meeting at 3:00, today?');
 DBMS_PIPE.PACK_MESSAGE('If not, is tomorrow at 8:30 ok with you?');
 DBMS_PIPE.RESET_BUFFER;
 DBMS_PIPE.PACK_MESSAGE('Hi, Bob');
 DBMS_PIPE.PACK_MESSAGE('Can you attend a meeting at 9:30, tomorrow?');
 v_status := DBMS_PIPE.SEND_MESSAGE('pipe');
 DBMS_OUTPUT.PUT_LINE('SEND_MESSAGE status: ' || v_status);
END;

SEND_MESSAGE status: 0

The message to Bob is in the received message:

DECLARE
 v_item VARCHAR2(80);
 v_status INTEGER;
BEGIN
 v_status := DBMS_PIPE.RECEIVE_MESSAGE('pipe',1);
 DBMS_OUTPUT.PUT_LINE('RECEIVE_MESSAGE status: ' || v_status);
 DBMS_PIPE.UNPACK_MESSAGE(v_item);
 DBMS_OUTPUT.PUT_LINE('Item: ' || v_item);
 DBMS_PIPE.UNPACK_MESSAGE(v_item);
 DBMS_OUTPUT.PUT_LINE('Item: ' || v_item);
END;

RECEIVE_MESSAGE status: 0
Item: Hi, Bob
Item: Can you attend a meeting at 9:30, tomorrow?

16.2.10.8 SEND_MESSAGE

The SEND_MESSAGE function sends a message from the session’s local message buffer to the specified pipe.

<status> SEND_MESSAGE(<pipename> VARCHAR2 [, <timeout> INTEGER]
 [, <maxpipesize> INTEGER])

Parameters

pipename

Name of the pipe.

timeout

Wait time (seconds). Default is 86400000 (1000 days).

maxpipesize

Maximum capacity of the pipe in bytes. Default is 8192 bytes.

status

Status code returned by the operation.

The possible status codes are:

Status code Description

0 Success

1 Time out

3 Function interrupted

16.2.10.9 UNIQUE_SESSION_NAME

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 304

The UNIQUE_SESSION_NAME function returns a name that is unique to the current session.

<name> VARCHAR2 UNIQUE_SESSION_NAME

Parameters

name

Unique session name.

Examples

The following anonymous block retrieves and displays a unique session name:

DECLARE
 v_session VARCHAR2(30);
BEGIN
 v_session := DBMS_PIPE.UNIQUE_SESSION_NAME;
 DBMS_OUTPUT.PUT_LINE('Session Name: ' || v_session);
END;

Session Name: PG$PIPE$5$2752

16.2.10.10 UNPACK_MESSAGE

The UNPACK_MESSAGE procedure copies the data items of a message from the local message buffer to a specified program variable. You must place the message in the local message buffer with the
RECEIVE_MESSAGE function before using UNPACK_MESSAGE .

UNPACK_MESSAGE(<item> OUT { DATE | NUMBER | VARCHAR2 | RAW })

Parameters

item

Type-compatible variable that receives a data item from the local message buffer.

16.2.10.11 Comprehensive example

This example uses a pipe as a “mailbox." Three procedures are enclosed in a package named mailbox . These procedures:

1. Create the mailbox.
2. Add a multi-item message to the mailbox (up to three items).
3. Display the full contents of the mailbox.

CREATE OR REPLACE PACKAGE mailbox
IS
 PROCEDURE create_mailbox;
 PROCEDURE add_message (
 p_mailbox VARCHAR2,
 p_item_1 VARCHAR2,
 p_item_2 VARCHAR2 DEFAULT 'END',
 p_item_3 VARCHAR2 DEFAULT 'END'
);
 PROCEDURE empty_mailbox (
 p_mailbox VARCHAR2,
 p_waittime INTEGER DEFAULT 10
);
END mailbox;

CREATE OR REPLACE PACKAGE BODY mailbox

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 305

IS
 PROCEDURE create_mailbox
 IS
 v_mailbox VARCHAR2(30);
 v_status INTEGER;
 BEGIN
 v_mailbox := DBMS_PIPE.UNIQUE_SESSION_NAME;
 v_status := DBMS_PIPE.CREATE_PIPE(v_mailbox,1000,FALSE);
 IF v_status = 0 THEN
 DBMS_OUTPUT.PUT_LINE('Created mailbox: ' || v_mailbox);
 ELSE
 DBMS_OUTPUT.PUT_LINE('CREATE_PIPE failed - status: ' ||
 v_status);
 END IF;
 END create_mailbox;

 PROCEDURE add_message (
 p_mailbox VARCHAR2,
 p_item_1 VARCHAR2,
 p_item_2 VARCHAR2 DEFAULT 'END',
 p_item_3 VARCHAR2 DEFAULT 'END'
)
 IS
 v_item_cnt INTEGER := 0;
 v_status INTEGER;
 BEGIN
 DBMS_PIPE.PACK_MESSAGE(p_item_1);
 v_item_cnt := 1;
 IF p_item_2 != 'END' THEN
 DBMS_PIPE.PACK_MESSAGE(p_item_2);
 v_item_cnt := v_item_cnt + 1;
 END IF;
 IF p_item_3 != 'END' THEN
 DBMS_PIPE.PACK_MESSAGE(p_item_3);
 v_item_cnt := v_item_cnt + 1;
 END IF;
 v_status := DBMS_PIPE.SEND_MESSAGE(p_mailbox);
 IF v_status = 0 THEN
 DBMS_OUTPUT.PUT_LINE('Added message with ' || v_item_cnt ||
 ' item(s) to mailbox ' || p_mailbox);
 ELSE
 DBMS_OUTPUT.PUT_LINE('SEND_MESSAGE in add_message failed - ' ||
 'status: ' || v_status);
 END IF;
 END add_message;

 PROCEDURE empty_mailbox (
 p_mailbox VARCHAR2,
 p_waittime INTEGER DEFAULT 10
)
 IS
 v_msgno INTEGER DEFAULT 0;
 v_itemno INTEGER DEFAULT 0;
 v_item VARCHAR2(100);
 v_status INTEGER;
 BEGIN
 v_status := DBMS_PIPE.RECEIVE_MESSAGE(p_mailbox,p_waittime);
 WHILE v_status = 0 LOOP
 v_msgno := v_msgno + 1;
 DBMS_OUTPUT.PUT_LINE('****** Start message #' || v_msgno ||
 ' ******');
 BEGIN
 LOOP
 v_status := DBMS_PIPE.NEXT_ITEM_TYPE;
 EXIT WHEN v_status = 0;
 DBMS_PIPE.UNPACK_MESSAGE(v_item);
 v_itemno := v_itemno + 1;
 DBMS_OUTPUT.PUT_LINE('Item #' || v_itemno || ': ' ||
 v_item);
 END LOOP;
 DBMS_OUTPUT.PUT_LINE('******* End message #' || v_msgno ||
 ' *******');
 DBMS_OUTPUT.PUT_LINE('*');
 v_itemno := 0;
 v_status := DBMS_PIPE.RECEIVE_MESSAGE(p_mailbox,1);
 END;
 END LOOP;
 DBMS_OUTPUT.PUT_LINE('Number of messages received: ' || v_msgno);
 v_status := DBMS_PIPE.REMOVE_PIPE(p_mailbox);

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 306

 IF v_status = 0 THEN
 DBMS_OUTPUT.PUT_LINE('Deleted mailbox ' || p_mailbox);
 ELSE
 DBMS_OUTPUT.PUT_LINE('Could not delete mailbox - status: '
 || v_status);
 END IF;
 END empty_mailbox;
END mailbox;

The following shows executing the procedures in mailbox . The first procedure creates a public pipe using a name generated by the UNIQUE_SESSION_NAME function.

EXEC mailbox.create_mailbox;

Created mailbox: PG$PIPE$13$3940

Using the mailbox name, any user in the same database with access to the mailbox package and DBMS_PIPE package can add messages:

EXEC mailbox.add_message('PG$PIPE$13$3940','Hi, John','Can you attend a
meeting at 3:00, today?','-- Mary');

Added message with 3 item(s) to mailbox PG$PIPE$13$3940

EXEC mailbox.add_message('PG$PIPE$13$3940','Don''t forget to submit your
report','Thanks,','-- Joe');

Added message with 3 item(s) to mailbox PG$PIPE$13$3940

Finally, the contents of the mailbox can be emptied:

EXEC mailbox.empty_mailbox('PG$PIPE$13$3940');

****** Start message #1 ******
Item #1: Hi, John
Item #2: Can you attend a meeting at 3:00, today?
Item #3: -- Mary
******* End message #1 *******
*
****** Start message #2 ******
Item #1: Don't forget to submit your report
Item #2: Thanks,
Item #3: Joe
******* End message #2 *******
*
Number of messages received: 2
Deleted mailbox PG$PIPE$13$3940

16.2.11 DBMS_PROFILER

The DBMS_PROFILER package collects and stores performance information about the PL/pgSQL and SPL statements that are executed during a performance profiling session. Use these functions
and procedures to control the profiling tool.

Function/procedure Return type Description

FLUSH_DATA Status Code or
Exception

Flushes performance data collected in the current session without terminating the session.
Profiling continues.

GET_VERSION(major OUT, minor OUT) n/a Returns the version number of this package.

INTERNAL_VERSION_CHECK Status Code Confirms that the current version of the profiler works with the current database.

PAUSE_PROFILER Status Code or
Exception

Pauses data collection.

RESUME_PROFILER Status Code or
Exception

Resumes data collection.

START_PROFILER(run_comment, run_comment1 [,
run_number OUT])

Status Code or
Exception

Starts data collection.

STOP_PROFILER Status Code or
Exception

Stops data collection and flushes performance data to the PLSQL_PROFILER_RAWDATA
table.

The functions in the DBMS_PROFILER package return a status code to indicate success or failure. The DBMS_PROFILER procedures raise an exception only if they encounter a failure. The table
shows the status codes and messages returned by the functions and the exceptions raised by the procedures.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 307

Status code Message Exception Description

-1 error version version_mismatch The profiler version and the database are
incompatible.

0 success n/a The operation completed successfully.

1 error_param
profiler_error The operation received an incorrect parameter.

2 error_io profiler_error The data flush operation failed.

FLUSH_DATA

The FLUSH_DATA function/procedure flushes the data collected in the current session without terminating the profiler session. The data is flushed to the tables described in the EDB Postgres
Advanced Server Performance Features Guide. The function and procedure signatures are:

<status> INTEGER FLUSH_DATA

FLUSH_DATA

Parameters

status

Status code returned by the operation.

GET_VERSION

The GET_VERSION procedure returns the version of DBMS_PROFILER . The procedure signature is:

GET_VERSION(<major> OUT INTEGER, <minor> OUT INTEGER)

Parameters

major

The major version number of DBMS_PROFILER .

minor

The minor version number of DBMS_PROFILER .

INTERNAL_VERSION_CHECK

The INTERNAL_VERSION_CHECK function confirms that the current version of DBMS_PROFILER works with the current database. The function signature is:

<status> INTEGER INTERNAL_VERSION_CHECK

Parameters

status

Status code returned by the operation.

PAUSE_PROFILER

The PAUSE_PROFILER function/procedure pauses a profiling session. The function and procedure signatures are:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 308

<status> INTEGER PAUSE_PROFILER

PAUSE_PROFILER

Parameters

status

Status code returned by the operation.

RESUME_PROFILER

The RESUME_PROFILER function/procedure pauses a profiling session. The function and procedure signatures are:

<status> INTEGER RESUME_PROFILER

RESUME_PROFILER

Parameters

status

Status code returned by the operation.

START_PROFILER

The START_PROFILER function/procedure starts a data collection session. The function and procedure signatures are:

<status> INTEGER START_PROFILER(<run_comment> TEXT := SYSDATE,
 <run_comment1> TEXT := '' [, <run_number> OUT INTEGER])

START_PROFILER(<run_comment> TEXT := SYSDATE,
 <run_comment1> TEXT := '' [, <run_number> OUT INTEGER])

Parameters

run_comment

A user-defined comment for the profiler session. The default value is SYSDATE .

run_comment1

An additional user-defined comment for the profiler session. The default value is ''.

run_number

The session number of the profiler session.

status

Status code returned by the operation.

STOP_PROFILER

The STOP_PROFILER function/procedure stops a profiling session and flushes the performance information to the DBMS_PROFILER tables and view. The function and procedure signatures are:

<status> INTEGER STOP_PROFILER

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 309

STOP_PROFILER

Parameters

status

Status code returned by the operation.

Using DBMS_PROFILER

The DBMS_PROFILER package collects and stores performance information about the PL/pgSQL and SPL statements that are executed during a profiling session. You can review the performance
information in the tables and views provided by the profiler.

DBMS_PROFILER works by recording a set of performance-related counters and timers for each line of PL/pgSQL or SPL statement that executes in a profiling session. The counters and timers are
stored in a table named SYS.PLSQL_PROFILER_DATA . When you complete a profiling session, DBMS_PROFILER writes a row to the performance statistics table for each line of PL/pgSQL or SPL
code that executed in the session. For example, suppose you execute the following function:

1 - CREATE OR REPLACE FUNCTION getBalance(acctNumber INTEGER)
2 - RETURNS NUMERIC AS $$
3 - DECLARE
4 - result NUMERIC;
5 - BEGIN
6 - SELECT INTO result balance FROM acct WHERE id = acctNumber;
7 -
8 - IF (result IS NULL) THEN
9 - RAISE INFO 'Balance is null';
10- END IF;
11-
12- RETURN result;
13- END;
14- $$ LANGUAGE 'plpgsql';

DBMS_PROFILER adds one PLSQL_PROFILER_DATA entry for each line of code in the getBalance() function, including blank lines and comments. The entry corresponding to the SELECT
statement executed exactly one time and required a very small amount of time to execute. On the other hand, the entry corresponding to the RAISE INFO statement executed once or not at all,
depending on the value for the balance column.

Some of the lines in this function contain no executable code so the performance statistics for those lines always contains zero values.

To start a profiling session, invoke the DBMS_PROFILER.START_PROFILER function or procedure. Once you've invoked START_PROFILER , EDB Postgres Advanced Server profiles every
PL/pgSQL or SPL function, procedure, trigger, or anonymous block that your session executes until you either stop or pause the profiler by calling STOP_PROFILER or PAUSE_PROFILER .

Note

When you start or resume the profiler, the profiler gathers performance statistics only for functions/procedures/triggers that start after the call to START_PROFILER (or
RESUME_PROFILER).

While the profiler is active, EDB Postgres Advanced Server records a large set of timers and counters in memory. When you invoke the STOP_PROFILER or FLUSH_DATA function/procedure,
DBMS_PROFILER writes those timers and counters to a set of three tables:

SYS.PLSQL_PROFILER_RAWDATA

Contains the performance counters and timers for each statement executed in the session.

SYS.PLSQL_PROFILER_RUNS

Contains a summary of each run, aggregating the information found in PLSQL_PROFILER_RAWDATA .

SYS.PLSQL_PROFILER_UNITS

Contains a summary of each code unit (function, procedure, trigger, or anonymous block) executed in a session.

In addition, DBMS_PROFILER defines a view, SYS.PLSQL_PROFILER_DATA , which contains a subset of the PLSQL_PROFILER_RAWDATA table.

A user who is not a superuser can gather profiling information but can't view that profiling information unless a superuser grants specific privileges on the profiling tables stored in the SYS schema.
This permits a nonprivileged user to gather performance statistics without exposing information that the administrator might want to keep secret.

Querying the DBMS_PROFILER tables and view

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 310

The following example uses DBMS_PROFILER to retrieve performance information for procedures, functions, and triggers included in the sample data distributed with EDB Postgres Advanced Server.

1. Open the EDB-PSQL command line, and establish a connection to the EDB Postgres Advanced Server database. Use an EXEC statement to start the profiling session:

acctg=# EXEC dbms_profiler.start_profiler('profile list_emp');

EDB-SPL Procedure successfully completed

Note

The call to start_profiler() includes a comment that DBMS_PROFILER associates with the profiler session.

2. Call the list_emp function:

acctg=# SELECT list_emp();
INFO: EMPNO ENAME
INFO: ----- -------
INFO: 7369 SMITH
INFO: 7499 ALLEN
INFO: 7521 WARD
INFO: 7566 JONES
INFO: 7654 MARTIN
INFO: 7698 BLAKE
INFO: 7782 CLARK
INFO: 7788 SCOTT
INFO: 7839 KING
INFO: 7844 TURNER
INFO: 7876 ADAMS
INFO: 7900 JAMES
INFO: 7902 FORD
INFO: 7934 MILLER
 list_emp

(1 row)

3. Stop the profiling session with a call to dbms_profiler.stop_profiler :

acctg=# EXEC dbms_profiler.stop_profiler;

EDB-SPL Procedure successfully completed

4. Start a new session with the dbms_profiler.start_profiler function followed by a new comment:

acctg=# EXEC dbms_profiler.start_profiler('profile get_dept_name and
emp_sal_trig');

EDB-SPL Procedure successfully completed

5. Invoke the get_dept_name function:

acctg=# SELECT get_dept_name(10);
 get_dept_name

 ACCOUNTING
(1 row)

6. Execute an UPDATE statement that causes a trigger to execute:

acctg=# UPDATE memp SET sal = 500 WHERE empno = 7902;
INFO: Updating employee 7902
INFO: ..Old salary: 3000.00
INFO: ..New salary: 500.00
INFO: ..Raise: -2500.00
INFO: User enterprisedb updated employee(s) on 04-FEB-14
UPDATE 1

7. End the profiling session and flush the performance information to the profiling tables:

acctg=# EXEC dbms_profiler.stop_profiler;

EDB-SPL Procedure successfully completed

8. Query the plsql_profiler_runs table to view a list of the profiling sessions, arranged by runid:

acctg=# SELECT * FROM plsql_profiler_runs;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 311

 runid | related_run | run_owner | run_date
 | run_comment | run_total_time | run_system_info
 | run_comment1 | spare1
-------+-------------+--------------+---------------------------+-------------
---------------------------+----------------+-----------------+--------------
+--------
 1 | | enterprisedb | 04-FEB-14 09:32:48.874315 | profile
 list_emp | 4154 |
 | |
 2 | | enterprisedb | 04-FEB-14 09:41:30.546503 | profile
 get_dept_name and emp_sal_trig | 2088 |
 | |
(2 rows)

9. Query the plsql_profiler_units table to view the amount of time consumed by each unit (function, procedure, or trigger):

acctg=# SELECT * FROM plsql_profiler_units;
 runid | unit_number | unit_type | unit_owner |
 unit_name | unit_timestamp | total_time | spare1 | spare2
-------+-------------+-----------+--------------+----------------------------
-----+----------------+------------+--------+--------
 1 | 16999 | FUNCTION | enterprisedb |
 list_emp() | | 4 | |
 2 | 17002 | FUNCTION | enterprisedb |
 user_audit_trig() | | 1 | |
 2 | 17000 | FUNCTION | enterprisedb | get_dept_name(p_deptno
 numeric) | | 1 | |
 2 | 17004 | FUNCTION | enterprisedb |
 emp_sal_trig() | | 1 | |
(4 rows)

10. Query the plsql_profiler_rawdata table to view a list of the wait-event counters and wait-event times:

acctg=# SELECT runid, sourcecode, func_oid, line_number, exec_count,
tuples_returned, time_total FROM plsql_profiler_rawdata;

 runid | sourcecode |
 func_oid | line_number | exec_count | tuples_returned | time_total
-------+---+---
-------+-------------+------------+-----------------+------------
 1 | DECLARE
 | 16999 | 1 | 0 | 0 | 0
 1 | v_empno NUMERIC(4);
 | 16999 | 2 | 0 | 0 | 0
 1 | v_ename VARCHAR(10);
 | 16999 | 3 | 0 | 0 | 0
 1 | emp_cur CURSOR FOR
 | 16999 | 4 | 0 | 0 | 0
 1 | SELECT empno, ename FROM memp ORDER BY empno;
 | 16999 | 5 | 0 | 0 | 0
 1 | BEGIN
 | 16999 | 6 | 0 | 0 | 0
 1 | OPEN emp_cur;
 | 16999 | 7 | 0 | 0 | 0
 1 | RAISE INFO 'EMPNO ENAME';
 | 16999 | 8 | 1 | 0 | 0.001621
 1 | RAISE INFO '----- -------';
 | 16999 | 9 | 1 | 0 | 0.000301
 1 | LOOP
 | 16999 | 10 | 1 | 0 | 4.6e-05
 1 | FETCH emp_cur INTO v_empno, v_ename;
 | 16999 | 11 | 1 | 0 | 0.001114
 1 | EXIT WHEN NOT FOUND;
 | 16999 | 12 | 15 | 0 | 0.000206
 1 | RAISE INFO '% %', v_empno, v_ename;
 | 16999 | 13 | 15 | 0 | 8.3e-05
 1 | END LOOP;
 | 16999 | 14 | 14 | 0 | 0.000773
 1 | CLOSE emp_cur;
 | 16999 | 15 | 0 | 0 | 0
 1 | RETURN;
 | 16999 | 16 | 1 | 0 | 1e-05
 1 | END;
 | 16999 | 17 | 1 | 0 | 0
 1 |
 | 16999 | 18 | 0 | 0 | 0
 2 | DECLARE
 | 17002 | 1 | 0 | 0 | 0
 2 | v_action VARCHAR(24);

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 312

 | 17002 | 2 | 0 | 0 | 0
 2 | v_text TEXT;
 | 17002 | 3 | 0 | 0 | 0
 2 | BEGIN
 | 17002 | 4 | 0 | 0 | 0
 2 | IF TG_OP = 'INSERT' THEN
 | 17002 | 5 | 0 | 0 | 0
 2 | v_action := ' added employee(s) on ';
 | 17002 | 6 | 1 | 0 | 0.000143
 2 | ELSIF TG_OP = 'UPDATE' THEN
 | 17002 | 7 | 0 | 0 | 0
 2 | v_action := ' updated employee(s) on ';
 | 17002 | 8 | 0 | 0 | 0
 2 | ELSIF TG_OP = 'DELETE' THEN
 | 17002 | 9 | 1 | 0 | 3.2e-05
 2 | v_action := ' deleted employee(s) on ';
 | 17002 | 10 | 0 | 0 | 0
 2 | END IF;
 | 17002 | 11 | 0 | 0 | 0
 2 | v_text := 'User ' || USER || v_action || CURRENT_DATE;
 | 17002 | 12 | 0 | 0 | 0
 2 | RAISE INFO ' %', v_text;
 | 17002 | 13 | 1 | 0 | 0.000383
 2 | RETURN NULL;
 | 17002 | 14 | 1 | 0 | 6.3e-05
 2 | END;
 | 17002 | 15 | 1 | 0 | 3.6e-05
 2 |
 | 17002 | 16 | 0 | 0 | 0
 2 | DECLARE
 | 17000 | 1 | 0 | 0 | 0
 2 | v_dname VARCHAR(14);
 | 17000 | 2 | 0 | 0 | 0
 2 | BEGIN
 | 17000 | 3 | 0 | 0 | 0
 2 | SELECT INTO v_dname dname FROM dept WHERE deptno = p_deptno;
 | 17000 | 4 | 0 | 0 | 0
 2 | RETURN v_dname;
 | 17000 | 5 | 1 | 0 | 0.000647
 2 | IF NOT FOUND THEN
 | 17000 | 6 | 1 | 0 | 2.6e-05
 2 | RAISE INFO 'Invalid department number %', p_deptno;
 | 17000 | 7 | 0 | 0 | 0
 2 | RETURN '';
 | 17000 | 8 | 0 | 0 | 0
 2 | END IF;
 | 17000 | 9 | 0 | 0 | 0
 2 | END;
 | 17000 | 10 | 0 | 0 | 0
 2 |
 | 17000 | 11 | 0 | 0 | 0
 2 | DECLARE
 | 17004 | 1 | 0 | 0 | 0
 2 | sal_diff NUMERIC(7,2);
 | 17004 | 2 | 0 | 0 | 0
 2 | BEGIN
 | 17004 | 3 | 0 | 0 | 0
 2 | IF TG_OP = 'INSERT' THEN
 | 17004 | 4 | 0 | 0 | 0
 2 | RAISE INFO 'Inserting employee %', NEW.empno;
 | 17004 | 5 | 1 | 0 | 8.4e-05
 2 | RAISE INFO '..New salary: %', NEW.sal;
 | 17004 | 6 | 0 | 0 | 0
 2 | RETURN NEW;
 | 17004 | 7 | 0 | 0 | 0
 2 | END IF;
 | 17004 | 8 | 0 | 0 | 0
 2 | IF TG_OP = 'UPDATE' THEN
 | 17004 | 9 | 0 | 0 | 0
 2 | sal_diff := NEW.sal - OLD.sal;
 | 17004 | 10 | 1 | 0 | 0.000355
 2 | RAISE INFO 'Updating employee %', OLD.empno;
 | 17004 | 11 | 1 | 0 | 0.000177
 2 | RAISE INFO '..Old salary: %', OLD.sal;
 | 17004 | 12 | 1 | 0 | 5.5e-05
 2 | RAISE INFO '..New salary: %', NEW.sal;
 | 17004 | 13 | 1 | 0 | 3.1e-05
 2 | RAISE INFO '..Raise : %', sal_diff;
 | 17004 | 14 | 1 | 0 | 2.8e-05

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 313

 2 | RETURN NEW;
 | 17004 | 15 | 1 | 0 | 2.7e-05
 2 | END IF;
 | 17004 | 16 | 1 | 0 | 1e-06
 2 | IF TG_OP = 'DELETE' THEN
 | 17004 | 17 | 0 | 0 | 0
 2 | RAISE INFO 'Deleting employee %', OLD.empno;
 | 17004 | 18 | 0 | 0 | 0
 2 | RAISE INFO '..Old salary: %', OLD.sal;
 | 17004 | 19 | 0 | 0 | 0
 2 | RETURN OLD;
 | 17004 | 20 | 0 | 0 | 0
 2 | END IF;
 | 17004 | 21 | 0 | 0 | 0
 2 | END;
 | 17004 | 22 | 0 | 0 | 0
 2 |
 | 17004 | 23 | 0 | 0 | 0
 (68 rows)

11. Query the plsql_profiler_data view to review a subset of the information found in plsql_profiler_rawdata table:

acctg=# SELECT * FROM plsql_profiler_data;
runid | unit_number | line# | total_occur | total_time | min_time | max_time
| spare1 | spare2 | spare3 | spare4
-------+-------------+-------+-------------+------------+----------+---------
-+--------+--------+--------+--------
 1 | 16999 | 1 | 0 | 0 | 0 |
 0 | | | |
 1 | 16999 | 2 | 0 | 0 | 0 |
 0 | | | |
 1 | 16999 | 3 | 0 | 0 | 0 |
 0 | | | |
 1 | 16999 | 4 | 0 | 0 | 0 |
 0 | | | |
 1 | 16999 | 5 | 0 | 0 | 0 |
 0 | | | |
 1 | 16999 | 6 | 0 | 0 | 0 |
 0 | | | |
 1 | 16999 | 7 | 0 | 0 | 0 |
 0 | | | |
 1 | 16999 | 8 | 1 | 0.001621 | 0.001621 |
 0.001621 | | | |
 1 | 16999 | 9 | 1 | 0.000301 | 0.000301 |
 0.000301 | | | |
 1 | 16999 | 10 | 1 | 4.6e-05 | 4.6e-05 | 4.6e-
 05 | | | |
 1 | 16999 | 11 | 1 | 0.001114 | 0.001114 |
 0.001114 | | | |
 1 | 16999 | 12 | 15 | 0.000206 | 5e-06 | 7.8e-
 05 | | | |
 1 | 16999 | 13 | 15 | 8.3e-05 | 2e-06 | 4.7e-
 05 | | | |
 1 | 16999 | 14 | 14 | 0.000773 | 4.7e-05 |
 0.000116 | | | |
 1 | 16999 | 15 | 0 | 0 | 0 |
 0 | | | |
 1 | 16999 | 16 | 1 | 1e-05 | 1e-05 | 1e-
 05 | | | |
 1 | 16999 | 17 | 1 | 0 | 0 |
 0 | | | |
 1 | 16999 | 18 | 0 | 0 | 0 |
 0 | | | |
 2 | 17002 | 1 | 0 | 0 | 0 |
 0 | | | |
 2 | 17002 | 2 | 0 | 0 | 0 |
 0 | | | |
 2 | 17002 | 3 | 0 | 0 | 0 |
 0 | | | |
 2 | 17002 | 4 | 0 | 0 | 0 |
 0 | | | |
 2 | 17002 | 5 | 0 | 0 | 0 |
 0 | | | |
 2 | 17002 | 6 | 1 | 0.000143 | 0.000143 |
 0.000143 | | | |
 2 | 17002 | 7 | 0 | 0 | 0 |
 0 | | | |
 2 | 17002 | 8 | 0 | 0 | 0 |

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 314

 0 | | | |
 2 | 17002 | 9 | 1 | 3.2e-05 | 3.2e-05 | 3.2e-
 05 | | | |
 2 | 17002 | 10 | 0 | 0 | 0 |
 0 | | | |
 2 | 17002 | 11 | 0 | 0 | 0 |
 0 | | | |
 2 | 17002 | 12 | 0 | 0 | 0 |
 0 | | | |
 2 | 17002 | 13 | 1 | 0.000383 | 0.000383 |
 0.000383 | | | |
 2 | 17002 | 14 | 1 | 6.3e-05 | 6.3e-05 | 6.3e-
 05 | | | |
 2 | 17002 | 15 | 1 | 3.6e-05 | 3.6e-05 | 3.6e-
 05 | | | |
 2 | 17002 | 16 | 0 | 0 | 0 |
 0 | | | |
 2 | 17000 | 1 | 0 | 0 | 0 |
 0 | | | |
 2 | 17000 | 2 | 0 | 0 | 0 |
 0 | | | |
 2 | 17000 | 3 | 0 | 0 | 0 |
 0 | | | |
 2 | 17000 | 4 | 0 | 0 | 0 |
 0 | | | |
 2 | 17000 | 5 | 1 | 0.000647 | 0.000647 |
 0.000647 | | | |
 2 | 17000 | 6 | 1 | 2.6e-05 | 2.6e-05 | 2.6e-
 05 | | | |
 2 | 17000 | 7 | 0 | 0 | 0 |
 0 | | | |
 2 | 17000 | 8 | 0 | 0 | 0 |
 0 | | | |
 2 | 17000 | 9 | 0 | 0 | 0 |
 0 | | | |
 2 | 17000 | 10 | 0 | 0 | 0 |
 0 | | | |
 2 | 17000 | 11 | 0 | 0 | 0 |
 0 | | | |
 2 | 17004 | 1 | 0 | 0 | 0 |
 0 | | | |
 2 | 17004 | 2 | 0 | 0 | 0 |
 0 | | | |
 2 | 17004 | 3 | 0 | 0 | 0 |
 0 | | | |
 2 | 17004 | 4 | 0 | 0 | 0 |
 0 | | | |
 2 | 17004 | 5 | 1 | 8.4e-05 | 8.4e-05 | 8.4e-
 05 | | | |
 2 | 17004 | 6 | 0 | 0 | 0 |
 0 | | | |
 2 | 17004 | 7 | 0 | 0 | 0 |
 0 | | | |
 2 | 17004 | 8 | 0 | 0 | 0 |
 0 | | | |
 2 | 17004 | 9 | 0 | 0 | 0 |
 0 | | | |
 2 | 17004 | 10 | 1 | 0.000355 | 0.000355 |
 0.000355 | | | |
 2 | 17004 | 11 | 1 | 0.000177 | 0.000177 |
 0.000177 | | | |
 2 | 17004 | 12 | 1 | 5.5e-05 | 5.5e-05 | 5.5e-
 05 | | | |
 2 | 17004 | 13 | 1 | 3.1e-05 | 3.1e-05 | 3.1e-
 05 | | | |
 2 | 17004 | 14 | 1 | 2.8e-05 | 2.8e-05 | 2.8e-
 05 | | | |
 2 | 17004 | 15 | 1 | 2.7e-05 | 2.7e-05 | 2.7e-
 05 | | | |
 2 | 17004 | 16 | 1 | 1e-06 | 1e-06 | 1e-
 06 | | | |
 2 | 17004 | 17 | 0 | 0 | 0 |
 0 | | | |
 2 | 17004 | 18 | 0 | 0 | 0 |
 0 | | | |
 2 | 17004 | 19 | 0 | 0 | 0 |
 0 | | | |
 2 | 17004 | 20 | 0 | 0 | 0 |
 0 | | | |

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 315

 2 | 17004 | 21 | 0 | 0 | 0 |
 0 | | | |
 2 | 17004 | 22 | 0 | 0 | 0 |
 0 | | | |
 2 | 17004 | 23 | 0 | 0 | 0 |
 0 | | | |
(68 rows)

DBMS_PROFILER reference

The EDB Postgres Advanced Server installer creates the following tables and views that you can query to review PL/SQL performance profile information:

Table name Description

PLSQL_PROFILER_RUNS Table containing information about all profiler runs, organized by runid .

PLSQL_PROFILER_UNITS Table containing information about all profiler runs, organized by unit.

PLSQL_PROFILER_DATA View containing performance statistics.

PLSQL_PROFILER_RAWDATA Table containing the performance statistics and the extended performance statistics for DRITA counters and timers.

PLSQL_PROFILER_RUNS

The PLSQL_PROFILER_RUNS table contains the following columns:

Column Data type Description

runid INTEGER (NOT NULL) Unique identifier (plsql_profiler_runnumber)

related_run INTEGER The runid of a related run

run_owner TEXT The role that recorded the profiling session

run_date TIMESTAMP WITHOUT TIME ZONE The profiling session start time

run_comment TEXT User comments relevant to this run

run_total_time BIGINT Run time (in microseconds)

run_system_info TEXT Currently unused

run_comment1 TEXT Additional user comments

spare1 TEXT Currently unused

PLSQL_PROFILER_UNITS

The PLSQL_PROFILER_UNITS table contains the following columns:

Column Data type Description

runid INTEGER Unique identifier (plsql_profiler_runnumber)

unit_number OID Corresponds to the OID of the row in the pg_proc table that identifies the unit

unit_type TEXT PL/SQL function, procedure, trigger or anonymous block

unit_owner TEXT The identity of the role that owns the unit

unit_name TEXT The complete signature of the unit

unit_timestamp TIMESTAMP WITHOUT TIME ZONE Creation date of the unit (currently NULL)

total_time BIGINT Time spent within the unit (in milliseconds)

spare1 BIGINT Currently unused

spare2 BIGINT Currently unused

PLSQL_PROFILER_DATA

The PLSQL_PROFILER_DATA view contains the following columns:

Column Data type Description

runid INTEGER Unique identifier (plsql_profiler_runnumber)

unit_number OID Object ID of the unit that contains the current line

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 316

line# INTEGER Current line number of the profiled workload

total_occur BIGINT The number of times that the line was executed

total_time DOUBLE PRECISION The amount of time spent executing the line (in seconds)

min_time DOUBLE PRECISION The minimum execution time for the line

max_time DOUBLE PRECISION The maximum execution time for the line

spare1 NUMBER Currently unused

spare2 NUMBER Currently unused

spare3 NUMBER Currently unused

spare4 NUMBER Currently unused

Column Data type Description

PLSQL_PROFILER_RAWDATA

The PLSQL_PROFILER_RAWDATA table contains the statistical and wait-events information found in the PLSQL_PROFILER_DATA view, as well as the performance statistics returned by the
DRITA counters and timers.

Column Data type Description

runid INTEGER The run identifier (plsql_profiler_runnumber) .

sourcecode TEXT The individual line of profiled code.

func_oid OID Object ID of the unit that contains the current line.

line_number INTEGER Current line number of the profiled workload.

exec_count BIGINT The number of times that the line was executed.

tuples_returned BIGINT Currently unused.

time_total
DOUBLE
PRECISIO
N

The amount of time spent executing the line, in seconds.

time_shortest
DOUBLE
PRECISIO
N

The minimum execution time for the line.

time_longest
DOUBLE
PRECISIO
N

The maximum execution time for the line.

num_scans BIGINT Currently unused.

tuples_fetched BIGINT Currently unused.

tuples_inserted BIGINT Currently unused.

tuples_updated BIGINT Currently unused.

tuples_deleted BIGINT Currently unused.

blocks_fetched BIGINT Currently unused.

blocks_hit BIGINT Currently unused.

wal_write BIGINT A server has waited for a write to the write-ahead log buffer. Expect this value to be high.

wal_flush BIGINT A server has waited for the write-ahead log to flush to disk.

wal_file_sync BIGINT A server has waited for the write-ahead log to sync to disk (related to the wal_sync_method parameter which, by default, is 'fsync' - better
performance can be gained by changing this parameter to open_sync).

db_file_read BIGINT A server has waited for the completion of a read (from disk).

db_file_write BIGINT A server has waited for the completion of a write (to disk).

db_file_sync BIGINT A server has waited for the operating system to flush all changes to disk.

db_file_extend BIGINT A server has waited for the operating system while adding a new page to the end of a file.

sql_parse BIGINT Currently unused.

query_plan BIGINT A server has generated a query plan.

other_lwlock_acquire BIGINT A server has waited for other light-weight lock to protect data.

shared_plan_cache_co
llision

BIGINT A server has waited for the completion of the shared_plan_cache_collision event.

shared_plan_cache_in
sert

BIGINT A server has waited for the completion of the shared_plan_cache_insert event.

shared_plan_cache_hi
t

BIGINT A server has waited for the completion of the shared_plan_cache_hit event.

shared_plan_cache_mi
ss

BIGINT A server has waited for the completion of the shared_plan_cache_miss event.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 317

shared_plan_cache_lo
ck

BIGINT A server has waited for the completion of the shared_plan_cache_lock event.

shared_plan_cache_bu
sy

BIGINT A server has waited for the completion of the shared_plan_cache_busy event.

shmemindexlock BIGINT A server has waited to find or allocate space in the shared memory.

oidgenlock BIGINT A server has waited to allocate or assign an OID.

xidgenlock BIGINT A server has waited to allocate or assign a transaction ID.

procarraylock BIGINT A server has waited to get a snapshot or clearing a transaction ID at transaction end.

sinvalreadlock BIGINT A server has waited to retrieve or remove messages from shared invalidation queue.

sinvalwritelock BIGINT A server has waited to add a message to the shared invalidation queue.

walbufmappinglock BIGINT A server has waited to replace a page in WAL buffers.

walwritelock BIGINT A server has waited for WAL buffers to be written to disk.

controlfilelock BIGINT A server has waited to read or update the control file or creation of a new WAL file.

checkpointlock BIGINT A server has waited to perform a checkpoint.

clogcontrollock BIGINT A server has waited to read or update the transaction status.

subtranscontrollock BIGINT A server has waited to read or update the sub-transaction information.

multixactgenlock BIGINT A server has waited to read or update the shared multixact state.

multixactoffsetcontr
ollock

BIGINT A server has waited to read or update multixact offset mappings.

multixactmembercontr
ollock

BIGINT A server has waited to read or update multixact member mappings.

relcacheinitlock BIGINT A server has waited to read or write the relation cache initialization file.

checkpointercommlock BIGINT A server has waited to manage the fsync requests.

twophasestatelock BIGINT A server has waited to read or update the state of prepared transactions.

tablespacecreatelock BIGINT A server has waited to create or drop the tablespace.

btreevacuumlock BIGINT A server has waited to read or update the vacuum related information for a B-tree index.

addinshmeminitlock BIGINT A server has waited to manage space allocation in shared memory.

autovacuumlock BIGINT The autovacuum launcher waiting to read or update the current state of autovacuum workers.

autovacuumschedulelo
ck

BIGINT A server has waited to ensure that the table selected for a vacuum still needs vacuuming.

syncscanlock BIGINT A server has waited to get the start location of a scan on a table for synchronized scans.

relationmappinglock BIGINT A server has waited to update the relation map file used to store catalog to file node mapping.

asyncctllock BIGINT A server has waited to read or update shared notification state.

asyncqueuelock BIGINT A server has waited to read or update the notification messages.

serializablexacthash
lock

BIGINT A server has waited to retrieve or store information about serializable transactions.

serializablefinished
listlock

BIGINT A server has waited to access the list of finished serializable transactions.

serializablepredicat
elocklistlock

BIGINT A server has waited to perform an operation on a list of locks held by serializable transactions.

oldserxidlock BIGINT A server has waited to read or record the conflicting serializable transactions.

syncreplock BIGINT A server has waited to read or update information about synchronous replicas.

backgroundworkerlock BIGINT A server has waited to read or update the background worker state.

dynamicsharedmemoryc
ontrollock

BIGINT A server has waited to read or update the dynamic shared memory state.

autofilelock BIGINT A server has waited to update the postgresql.auto.conf file.

replicationslotalloc
ationlock

BIGINT A server has waited to allocate or free a replication slot.

replicationslotcontr
ollock

BIGINT A server has waited to read or update replication slot state.

committscontrollock BIGINT A server has waited to read or update transaction commit timestamps.

committslock BIGINT A server has waited to read or update the last value set for the transaction timestamp.

replicationoriginloc
k

BIGINT A server has waited to set up, drop, or use replication origin.

multixacttruncationl
ock

BIGINT A server has waited to read or truncate multixact information.

oldsnapshottimemaplo
ck

BIGINT A server has waited to read or update old snapshot control information.

backendrandomlock BIGINT A server has waited to generate a random number.

Column Data type Description

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 318

logicalrepworkerlock BIGINT A server has waited for the action on logical replication worker to finish.

clogtruncationlock BIGINT A server has waited to truncate the write-ahead log or waiting for write-ahead log truncation to finish.

bulkloadlock BIGINT A server has waited for the bulkloadlock to bulk upload the data.

edbresourcemanagerlo
ck

BIGINT The edbresourcemanagerlock provides detail about edb resource manager lock module.

wal_write_time BIGINT The amount of time that the server has waited for a wal_write wait event to write to the write-ahead log buffer (expect this value to be high).

wal_flush_time BIGINT The amount of time that the server has waited for a wal_flush wait event to write-ahead log to flush to disk.

wal_file_sync_time BIGINT
The amount of time that the server has waited for a wal_file_sync wait event to write-ahead log to sync to disk (related to the
wal_sync_method parameter which, by default, is 'fsync' - better performance can be gained by changing this parameter to open_sync).

db_file_read_time BIGINT The amount of time that the server has waited for the db_file_read wait event for completion of a read (from disk).

db_file_write_time BIGINT The amount of time that the server has waited for the db_file_write wait event for completion of a write (to disk).

db_file_sync_time BIGINT The amount of time that the server has waited for the db_file_sync wait event to sync all changes to disk.

db_file_extend_time BIGINT The amount of time that the server has waited for the db_file_extend wait event while adding a new page to the end of a file.

sql_parse_time BIGINT The amount of time that the server has waited for the sql_parse wait event to parse a SQL statement.

query_plan_time BIGINT The amount of time that the server has waited for the query_plan wait event to compute the execution plan for a SQL statement.

other_lwlock_acquire
_time

BIGINT The amount of time that the server has waited for the other_lwlock_acquire wait event to protect data.

shared_plan_cache_co
llision_time

BIGINT The amount of time that the server has waited for the shared_plan_cache_collision wait event.

shared_plan_cache_in
sert_time

BIGINT The amount of time that the server has waited for the shared_plan_cache_insert wait event.

shared_plan_cache_hi
t_time

BIGINT The amount of time that the server has waited for the shared_plan_cache_hit wait event.

shared_plan_cache_mi
ss_time

BIGINT The amount of time that the server has waited for the shared_plan_cache_miss wait event.

shared_plan_cache_lo
ck_time

BIGINT The amount of time that the server has waited for the shared_plan_cache_lock wait event.

shared_plan_cache_bu
sy_time

BIGINT The amount of time that the server has waited for the shared_plan_cache_busy wait event.

shmemindexlock_time BIGINT The amount of time that the server has waited for the shmemindexlock wait event to find or allocate space in the shared memory.

oidgenlock_time BIGINT The amount of time that the server has waited for the oidgenlock wait event to allocate or assign an OID.

xidgenlock_time BIGINT The amount of time that the server has waited for xidgenlock wait event to allocate or assign a transaction ID.

procarraylock_time BIGINT The amount of time that the server has waited for a procarraylock wait event to clear a transaction ID at transaction end.

sinvalreadlock_time BIGINT The amount of time that the server has waited for a sinvalreadlock wait event to retrieve or remove messages from shared invalidation queue.

sinvalwritelock_time BIGINT The amount of time that the server has waited for a sinvalwritelock wait event to add a message to the shared invalidation queue.

walbufmappinglock_ti
me

BIGINT The amount of time that the server has waited for a walbufmappinglock wait event to replace a page in WAL buffers.

walwritelock_time BIGINT The amount of time that the server has waited for a walwritelock wait event to write the WAL buffers to disk.

controlfilelock_time BIGINT The amount of time that the server has waited for a controlfilelock wait event to read or update the control file or to create a new WAL file.

checkpointlock_time BIGINT The amount of time that the server has waited for a checkpointlock wait event to perform a checkpoint.

clogcontrollock_time BIGINT The amount of time that the server has waited for a clogcontrollock wait event to read or update the transaction status.

subtranscontrollock_
time

BIGINT The amount of time that the server has waited for the subtranscontrollock wait event to read or update the sub-transaction information.

multixactgenlock_tim
e

BIGINT The amount of time that the server has waited for the multixactgenlock wait event to read or update the shared multixact state.

multixactoffsetcontr
ollock_time

BIGINT The amount of time that the server has waited for the multixactoffsetcontrollock wait event to read or update multixact offset mappings.

multixactmembercontr
ollock_time

BIGINT The amount of time that the server has waited for the multixactmembercontrollock wait event to read or update multixact member
mappings.

relcacheinitlock_tim
e

BIGINT The amount of time that the server has waited for the relcacheinitlock wait event to read or write the relation cache initialization file.

checkpointercommlock
_time

BIGINT The amount of time that the server has waited for the checkpointercommlock wait event to manage the fsync requests.

twophasestatelock_ti
me

BIGINT The amount of time that the server has waited for the twophasestatelock wait event to read or update the state of prepared transactions.

tablespacecreatelock
_time

BIGINT The amount of time that the server has waited for the tablespacecreatelock wait event to create or drop the tablespace.

btreevacuumlock_time BIGINT The amount of time that the server has waited for the btreevacuumlock wait event to read or update the vacuum related information for a B-tree
index.

Column Data type Description

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 319

addinshmeminitlock_t
ime

BIGINT The amount of time that the server has waited for the addinshmeminitlock wait event to manage space allocation in shared memory.

autovacuumlock_time BIGINT The amount of time that the server has waited for the autovacuumlock wait event to read or update the current state of autovacuum workers.

autovacuumschedulelo
ck_time

BIGINT The amount of time that the server has waited for the autovacuumschedulelock wait event to ensure that the table selected for a vacuum still
needs vacuuming.

syncscanlock_time BIGINT The amount of time that the server has waited for the syncscanlock wait event to get the start location of a scan on a table for synchronized
scans.

relationmappinglock_
time

BIGINT The amount of time that the server has waited for the relationmappinglock wait event to update the relation map file used to store catalog to
file node mapping.

asyncctllock_time BIGINT The amount of time that the server has waited for the asyncctllock wait event to read or update shared notification state.

asyncqueuelock_time BIGINT The amount of time that the server has waited for the asyncqueuelock wait event to read or update the notification messages.

serializablexacthash
lock_time

BIGINT The amount of time that the server has waited for the serializablexacthashlock wait event to retrieve or store information about
serializable transactions.

serializablefinished
listlock_time

BIGINT The amount of time that the server has waited for the serializablefinishedlistlock wait event to access the list of finished serializable
transactions.

serializablepredicat
elocklistlock_time

BIGINT The amount of time that the server has waited for the serializablepredicatelocklistlock wait event to perform an operation on a list of
locks held by serializable transactions.

oldserxidlock_time BIGINT The amount of time that the server has waited for the oldserxidlock wait event to read or record the conflicting serializable transactions.

syncreplock_time BIGINT The amount of time that the server has waited for the syncreplock wait event to read or update information about synchronous replicas.

backgroundworkerlock
_time

BIGINT The amount of time that the server has waited for the backgroundworkerlock wait event to read or update the background worker state.

dynamicsharedmemoryc
ontrollock_time

BIGINT The amount of time that the server has waited for the dynamicsharedmemorycontrollock wait event to read or update the dynamic shared
memory state.

autofilelock_time BIGINT The amount of time that the server has waited for the autofilelock wait event to update the postgresql.auto.conf file.

replicationslotalloc
ationlock_time

BIGINT The amount of time that the server has waited for the replicationslotallocationlock wait event to allocate or free a replication slot.

replicationslotcontr
ollock_time

BIGINT The amount of time that the server has waited for the replicationslotcontrollock wait event to read or update replication slot state.

committscontrollock_
time

BIGINT The amount of time that the server has waited for the committscontrollock wait event to read or update transaction commit timestamps.

committslock_time BIGINT The amount of time that the server has waited for the committslock wait event to read or update the last value set for the transaction
timestamp.

replicationoriginloc
k_time

BIGINT The amount of time that the server has waited for the replicationoriginlock wait event to set up, drop, or use replication origin.

multixacttruncationl
ock_time

BIGINT The amount of time that the server has waited for the multixacttruncationlock wait event to read or truncate multixact information.

oldsnapshottimemaplo
ck_time

BIGINT The amount of time that the server has waited for the oldsnapshottimemaplock wait event to read or update old snapshot control
information.

backendrandomlock_ti
me

BIGINT The amount of time that the server has waited for the backendrandomlock wait event to generate a random number.

logicalrepworkerlock
_time

BIGINT The amount of time that the server has waited for the logicalrepworkerlock wait event for an action on logical replication worker to finish.

clogtruncationlock_t
ime

BIGINT The amount of time that the server has waited for the clogtruncationlock wait event to truncate the write-ahead log or waiting for write-
ahead log truncation to finish.

bulkloadlock_time BIGINT The amount of time that the server has waited for the bulkloadlock wait event to bulk upload the data.

edbresourcemanagerlo
ck_time

BIGINT The amount of time that the server has waited for the edbresourcemanagerlock wait event.

totalwaits BIGINT The total number of event waits.

totalwaittime BIGINT The total time spent waiting for an event.

Column Data type Description

16.2.12 DBMS_RANDOM

The DBMS_RANDOM package provides methods to generate random values. The procedures and functions available in the DBMS_RANDOM package are listed in the following table.

Function/procedure Return type Description

INITIALIZE(val) n/a Initializes the DBMS_RANDOM package with the specified seed value . Deprecated, but supported for backward compatibility.

NORMAL() NUMBER Returns a random NUMBER .

RANDOM INTEGER Returns a random INTEGER with a value greater than or equal to -2^31 and less than 2^31. Deprecated, but supported for backward compatibility.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 320

SEED(val) n/a Resets the seed with the specified value .

SEED(val) n/a Resets the seed with the specified value .

STRING(opt, len) VARCHAR2 Returns a random string.

TERMINATE n/a TERMINATE has no effect. Deprecated, but supported for backward compatibility.

VALUE NUMBER Returns a random number with a value greater than or equal to 0 and less than 1 , with 38-digit precision.

VALUE(low, high) NUMBER Returns a random number with a value greater than or equal to low and less than high .

Function/procedure Return type Description

INITIALIZE

The INITIALIZE procedure initializes the DBMS_RANDOM package with a seed value. The signature is:

INITIALIZE(<val> IN INTEGER)

This procedure is deprecated. It is included for backward compatibility.

Parameters

val

val is the seed value used by the DBMS_RANDOM package algorithm.

Example

The following code shows a call to the INITIALIZE procedure that initializes the DBMS_RANDOM package with the seed value 6475:

DBMS_RANDOM.INITIALIZE(6475);

NORMAL

The NORMAL function returns a random number of type NUMBER . The signature is:

<result> NUMBER NORMAL()

Parameters

result

result is a random value of type NUMBER .

Example

The following code shows a call to the NORMAL function:

x:= DBMS_RANDOM.NORMAL();

RANDOM

The RANDOM function returns a random INTEGER value that is greater than or equal to -2 ^31 and less than 2 ^31. The signature is:

<result> INTEGER RANDOM()

This function is deprecated. It is included for backward compatibility.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 321

Parameters

result

result is a random value of type INTEGER .

Example

The following code shows a call to the RANDOM function. The call returns a random number:

x := DBMS_RANDOM.RANDOM();

SEED

The first form of the SEED procedure resets the seed value for the DBMS_RANDOM package with an INTEGER value. The SEED procedure is available in two forms. The signature of the first form is:

SEED(<val> IN INTEGER)

Parameters

val

val is the seed value used by the DBMS_RANDOM package algorithm.

Example

The following code shows a call to the SEED procedure. The call sets the seed value at 8495.

DBMS_RANDOM.SEED(8495);

SEED

The second form of the SEED procedure resets the seed value for the DBMS_RANDOM package with a string value. The SEED procedure is available in two forms. The signature of the second form is:

SEED(<val> IN VARCHAR2)

Parameters

val

val is the seed value used by the DBMS_RANDOM package algorithm.

Example

The following code shows a call to the SEED procedure. The call sets the seed value to abc123 .

DBMS_RANDOM.SEED('abc123');

STRING

The STRING function returns a random VARCHAR2 string in a user-specified format. The signature of the STRING function is:

<result> VARCHAR2 STRING(<opt> IN CHAR, <len> IN NUMBER)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 322

Parameters

opt

Formatting option for the returned string. option can be:

Option Specifies formatting option

u or U Uppercase alpha string

l or L Lowercase alpha string

a or A Mixed-case string

x or X Uppercase alphanumeric
string

p or P Any printable characters

len

The length of the returned string.

result

result is a random value of type VARCHAR2 .

Example

The following code shows a call to the STRING function. The call returns a random alphanumeric character string that is 10 characters long.

x := DBMS_RANDOM.STRING('X', 10);

TERMINATE

The TERMINATE procedure has no effect. The signature is:

TERMINATE

The TERMINATE procedure is deprecated. The procedure is supported for compatibility.

VALUE

The VALUE function returns a random NUMBER that is greater than or equal to 0 and less than 1, with 38-digit precision. The VALUE function has two forms. The signature of the first form is:

<result> NUMBER VALUE()

Parameters

result

result is a random value of type NUMBER .

Example

The following code shows a call to the VALUE function. The call returns a random NUMBER :

x := DBMS_RANDOM.VALUE();

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 323

VALUE

The VALUE function returns a random NUMBER with a value that is between boundaries that you specify. The VALUE function has two forms. The signature of the second form is:

<result> NUMBER VALUE(<low> IN NUMBER, <high> IN NUMBER)

Parameters

low

low specifies the lower boundary for the random value. The random value can be equal to low .

high

high specifies the upper boundary for the random value. The random value is less than high .

result

result is a random value of type NUMBER .

Example

The following code shows a call to the VALUE function. The call returns a random NUMBER with a value that is greater than or equal to 1 and less than 100:

x := DBMS_RANDOM.VALUE(1, 100);

16.2.13 DBMS_REDACT

The DBMS_REDACT package enables you to redact or mask data returned by a query. The DBMS_REDACT package provides a procedure to create, alter, enable, disable, and drop policies. The
procedures available in the DBMS_REDACT package are listed in the following table.

Function/procedure
Function
or
Procedure

Ret
urn
Ty
pe

Description

ADD_POLICY(object_schema, object_name, policy_name, policy_description, column_name, column_description,
function_type, function_parameters, expression, enable, regexp_pattern, regexp_replace_string,
regexp_position, regexp_occurence, regexp_match_parameter, custom_function_expression)

Procedure n/a
Adds a data
redaction policy.

ALTER_POLICY(object_schema, object_name, policy_name, action, column_name, function_type,
function_parameters, expression, regexp_pattern, regexp_replace_string, regexp_position, regexp_occurence,
regexp_match_parameter, policy_description, column_description, custom_function_expression)

Procedure n/a
Alters the existing
data redaction
policy.

DISABLE_POLICY(object_schema, object_name, policy_name) Procedure n/a
Disables the
existing data
redaction policy.

ENABLE_POLICY(object_schema, object_name, policy_name) Procedure n/a

Enables a
previously
disabled data
redaction policy.

DROP_POLICY(object_schema, object_name, policy_name) Procedure n/a Drops a data
redaction policy.

UPDATE_FULL_REDACTION_VALUES(number_val, binfloat_val, bindouble_val, char_val, varchar_val, nchar_val,
nvarchar_val, datecol_val, ts_val, tswtz_val, blob_val, clob_val, nclob_val) Procedure n/a

Updates the full
redaction default
values for the
specified
datatype.

The data redaction feature uses the DBMS_REDACT package to define policies or conditions to redact data in a column based on the table column type and redaction type.

You must be the owner of the table to create or change the data redaction policies. The users are exempted from all the column redaction policies, which the table owner or superuser is by default.

Using DBMS_REDACT constants and function parameters

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 324

The DBMS_REDACT package uses the constants and redacts the column data by using any one of the data redaction types. The redaction type can be decided based on the function_type
parameter of dbms_redact.add_policy and dbms_redact.alter_policy procedure. The table highlights the values for function_type parameters of dbms_redact.add_policy
and dbms_redact.alter_policy .

Constant Type Value Description

NONE INTEGER 0 No redaction, zero effect on the result of a query against table.

FULL INTEGER 1 Full redaction, redacts full values of the column data.

PARTIAL INTEGER 2 Partial redaction, redacts a portion of the column data.

RANDOM INTEGER 4 Random redaction, each query results in a different random value depending on the datatype of the column.

REGEXP INTEGER 5 Regular-expression-based redaction, searches for the pattern of data to redact.

CUSTOM INTEGER 99 Custom redaction type.

The following table shows the values for the action parameter of dbms_redact.alter_policy .

Constant Type Value Description

ADD_COLUMN INTEGER 1 Adds a column to the redaction policy.

DROP_COLUMN INTEGER 2 Drops a column from the redaction policy.

MODIFY_EXPRESSION INTEGER 3 Modifies the expression of a redaction policy. The redaction is applied when the expression evaluates to the BOOLEAN value to TRUE .

MODIFY_COLUMN INTEGER 4 Modifies a column in the redaction policy to change the redaction function type or function parameter.

SET_POLICY_DESCRIPTION INTEGER 5 Sets the redaction policy description.

SET_COLUMN_DESCRIPTION INTEGER 6 Sets a description for the redaction performed on the column.

The partial data redaction enables you to redact only a portion of the column data. To use partial redaction, you must set the dbms_redact.add_policy procedure function_type parameter
to dbms_redact.partial and use the function_parameters parameter to specify the partial redaction behavior.

The data redaction feature provides a predefined format to configure policies that use the following datatype:

Character
Number
Datetime

The following table highlights the format descriptor for partial redaction with respect to datatype. The example shows how to perform a redaction for a string datatype (in this scenario, a Social Security
Number (SSN)), a Number datatype, and a DATE datatype.

Datatype Format
descriptor

Description Examples

Character

REDACT_
PARTIAL
INPUT
FORMAT

Specifies the input format. Enter V for each character from the input
string to be possibly redacted. Enter F for each character from the
input string that can be considered as a separator such as blank
spaces or hyphens.

Consider 'VVVFVVFVVVV,VVV-VV-VVVV,X,1,5' for masking first 5 digits of SSN strings
such as 123-45-6789 , adding a hyphen to format it and thereby resulting in strings such as
XXX-XX-6789. The field value VVVFVVFVVVV for matching SSN strings such as 123-
45-6789 .

REDACT_
PARTIAL
_OUTPUT
_FORMAT

Specifies the output format. Enter V for each character from the input
string to be possibly redacted. Replace each F character from the
input format with a character such as a hyphen or any other separator.

The field value VVV-VV-VVVV can be used to redact SSN strings into XXX-XX-6789
where X comes from REDACT_PARTIAL_MASKCHAR field.

REDACT_
PARTIAL
_MASKCH
AR

Specifies the character to use for redaction. The value X for redacting SSN strings into XXX-XX-6789 .

REDACT_
PARTIAL
_MASKFR
OM

Specifies the V in the input format from which to start the redaction.
The value 1 for redacting SSN strings starting at the first V of the input format of
VVVFVVFVVVV into strings such as XXX-XX-6789 .

REDACT_
PARTIAL
_MASKTO

Specifies the V in the input format at which to end the redaction.
The value 5 for redacting SSN strings up to and including the fifth V in the input format of
VVVFVVFVVVV into strings such as XXX-XX-6789 .

Number

REDACT_
PARTIAL
_MASKCH
AR

Specifies the character to display in the range between 0 and 9.
‘9, 1, 5’ for redacting the first five digits of the Social Security Number 123456789

into 999996789 .

REDACT_
PARTIAL
_MASKFR
OM

Specifies the start-digit position for redaction.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 325

REDACT_
PARTIAL
_MASKTO

Specifies the end-digit position for redaction.

Datetime

REDACT_
PARTIAL
_DATE_M
ONTH

‘m’ redacts the month. To mask a specific month, specify ‘m#’ ,
where # indicates the month specified by its number between 1 and
12 .

m3 displays as March.

REDACT_
PARTIAL
_DATE_D
AY

‘d’ redacts the day of the month. To mask with a day of the month,
append 1-31 to a lowercase d .

d3 displays as 03 .

REDACT_
PARTIAL
_DATE_Y
EAR

‘y’ redacts the year. To mask with a year, append 1-9999 to a
lowercase y .

y1960 displays as 60 .

REDACT_
PARTIAL
_DATE_H
OUR

‘h’ redacts the hour. To mask with an hour, append 0-23 to a
lowercase h .

h18 displays as 18 .

REDACT_
PARTIAL
_DATE_M
INUTE

‘m’ redacts the minute. To mask with a minute, append 0-59 to a
lowercase m .

m20 displays as 20 .

REDACT_
PARTIAL
_DATE_S
ECOND

‘s’ redacts the second. To mask with a second, append 0-59 to a
lowercase s .

s40 displays as 40 .

Datatype Format
descriptor

Description Examples

The following table represents function_parameters values that you can use in partial redaction.

Function parameter Data
type

Value Description

REDACT_US_SSN_F
5

VAR
CHAR
2

'VVVFVVFVVVV,VVV-VV-
VVVV,X,1,5' Redacts the first 5 numbers of SSN. Example: The number 123-45-6789 becomes XXX-XX-6789 .

REDACT_US_SSN_L
4

VAR
CHAR
2

'VVVFVVFVVVV,VVV-VV-
VVVV,X,6,9' Redacts the last 4 numbers of SSN. Example: The number 123-45-6789 becomes 123-45-XXXX .

REDACT_US_SSN_E
NTIRE

VAR
CHAR
2

'VVVFVVFVVVV,VVV-VV-
VVVV,X,1,9' Redacts the entire SSN. Example: The number 123-45-6789 becomes XXX-XX-XXXX .

REDACT_NUM_US_S
SN_F5

VAR
CHAR
2

'9,1,5'
Redacts the first 5 numbers of SSN when the column is a number datatype. Example: The number 123456789
becomes 999996789 .

REDACT_NUM_US_S
SN_L4

VAR
CHAR
2

'9,6,9'
Redacts the last 4 numbers of SSN when the column is a number datatype. Example: The number 123456789
becomes 123459999 .

REDACT_NUM_US_S
SN_ENTIRE

VAR
CHAR
2

'9,1,9'
Redacts the entire SSN when the column is a number datatype. Example: The number 123456789 becomes
999999999 .

REDACT_ZIP_CODE
VAR
CHAR
2

'VVVVV,VVVVV,X,1,5' Redacts a 5 digit zip code. Example: 12345 becomes XXXXX .

REDACT_NUM_ZIP_
CODE

VAR
CHAR
2

'9,1,5' Redacts a 5 digit zip code when the column is a number datatype. Example: 12345 becomes 99999 .

REDACT_CCN16_F1
2

VAR
CHAR
2

'VVVVFVVVVFVVVVFVVVV,VVVV-
VVVV-VVVV-VVVV,*,1,12'

Redacts a 16 digit credit card number and displays only 4 digits. Example: 1234 5678 9000 2358 becomes
****-****-****-2358 .

REDACT_DATE_MIL
LENNIUM

VAR
CHAR
2

'm1d1y2000' Redacts a date that is in the DD-MM-YY format. Example: Redacts all date to 01-JAN-2000 .

REDACT_DATE_EPO
CH

VAR
CHAR
2

'm1d1y1970' Redacts all dates to 01-JAN-70 .

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 326

REDACT_AMEX_CCN
_FORMATTED

VAR
CHAR
2

'VVVVFVVVVVVFVVVVV,VVVV-
VVVVVV-VVVVV,*,1,10'

Redacts the Amercian Express credit card number and replaces the digit with * except for the last 5 digits. Example:
The credit card number 1234 567890 34500 becomes **** ****** 34500 .

REDACT_AMEX_CCN
_NUMBER

VAR
CHAR
2

'0,1,10'
Redacts the Amercian Express credit card number and replaces the digit with 0 except for the last 5 digits. Example:
The credit card number 1234 567890 34500 becomes 0000 000000 34500 .

REDACT_SIN_FORM
ATTED

VAR
CHAR
2

'VVVFVVVFVVV,VVV-VVV-
VVV,*,1,6'

Redacts the Social Insurance Number by replacing the first 6 digits by * . Example: 123-456-789 becomes ***-
***-789 .

REDACT_SIN_NUMB
ER

VAR
CHAR
2

'9,1,6'
Redacts the Social Insurance Number by replacing the first 6 digits by 9 . Example: 123456789 becomes
999999789 .

REDACT_SIN_UNFO
RMATTED

VAR
CHAR
2

'VVVVVVVVV,VVVVVVVVV,*,1,6'
Redacts the Social Insurance Number by replacing the first 6 digits by * . Example: 123456789 becomes
******789 .

REDACT_CCN_FORM
ATTED

VAR
CHAR
2

'VVVVFVVVVFVVVVFVVVV,VVVV-
VVVV-VVVV-VVVV,*,1,12'

Redacts a credit card number by * and displays only 4 digits. Example: The credit card number 1234-5678-9000-
4671 becomes ****-****-****-4671 .

REDACT_CCN_NUMB
ER

VAR
CHAR
2

'9,1,12'
Redacts a credit card number by 0 except the last 4 digits. Example: The credit card number 1234567890004671
becomes 0000000000004671 .

REDACT_NA_PHONE
_FORMATTED

VAR
CHAR
2

‘VVVFVVVFVVVV,VVV-VVV-
VVVV,X,4,10'

Redacts the North American phone number by X leaving the area code. Example: 123-456-7890 becomes 123-
XXX-XXXX .

REDACT_NA_PHONE
_NUMBER

VAR
CHAR
2

'0,4,10'
Redacts the North American phone number by 0 leaving the area code. Example: 1234567890 becomes
1230000000 .

REDACT_NA_PHONE
_UNFORMATTED

VAR
CHAR
2

'VVVVVVVVVV,VVVVVVVVVV,X,4,1
0'

Redacts the North American phone number by X leaving the area code. Example: 1234567890 becomes
123XXXXXXX .

REDACT_UK_NIN_F
ORMATTED

VAR
CHAR
2

'VVFVVFVVFVVFV,VV VV VV VV
V,X,3,8'

Redacts the UK National Insurance Number by X but leaving the alphabetic characters. Example: NY 22 01 34 D
becomes NY XX XX XX D .

REDACT_UK_NIN_U
NFORMATTED

VAR
CHAR
2

'VVVVVVVVV,VVVVVVVVV,X,3,8'
Redacts the UK National Insurance Number by X but leaving the alphabetic characters. Example: NY220134D
becomes NYXXXXXXD .

Function parameter Data
type

Value Description

A regular expression-based redaction searches for patterns of data to redact. The regexp_pattern search the values for the regexp_replace_string to change the value. The following table
shows the regexp_pattern values that you can use during REGEXP based redaction.

Function parameter and description Data
type

Value

RE_PATTERN_CC_L6_T4 : Searches for the middle digits of a credit card number that includes 6 leading digits and 4 trailing digits.
The regexp_replace_string setting to use with the format is RE_REDACT_CC_MIDDLE_DIGITS that replaces the identified pattern with the
characters specified by the RE_REDACT_CC_MIDDLE_DIGITS parameter.

VA
RCH
AR2

'(\d\d\d\d\d\d)
(\d\d\d*)(\d\d\d\d)'

RE_PATTERN_ANY_DIGIT : Searches for any digit and replaces the identified pattern with the characters specified by the following values of the
regexp_replace_string parameter.
regexp_replace_string=> RE_REDACT_WITH_SINGLE_X

(replaces any matched digit with the X character).
regexp_replace_string=> RE_REDACT_WITH_SINGLE_1

(replaces any matched digit with the 1 character).

VA
RCH
AR2

'\d'

RE_PATTERN_US_PHONE : Searches for the U.S. phone number and replaces the identified pattern with the characters specified by the
regexp_replace_string parameter.
regexp_replace_string=> RE_REDACT_US_PHONE_L7

(searches the phone number and then replaces the last 7 digits).

VA
RCH
AR2

'(\(\d\d\d\)|\d\d\d)-
(\d\d\d)-(\d\d\d\d)'

RE_PATTERN_EMAIL_ADDRESS : Searches for the email address and replaces the identified pattern with the characters specified by the following
values of the regexp_replace_string parameter.
regexp_replace_string=> RE_REDACT_EMAIL_NAME

(finds the email address and redacts the email username).
regexp_replace_string=> RE_REDACT_EMAIL_DOMAIN

(finds the email address and redacts the email domain).
regexp_replace_string=> RE_REDACT_EMAIL_ENTIRE

(finds the email address and redacts the entire email address).

VA
RCH
AR2

'([A-Za-z0-9._%+-
]+)@([A-Za-z0-9.-]+\.

[A-Za-z]{2,4})'

RE_PATTERN_IP_ADDRESS : Searches for an IP address and replaces the identified pattern with the characters specified by the
regexp_replace_string parameter. The regexp_replace_string parameter to be used is RE_REDACT_IP_L3 that replaces the last

section of an IP address with 999 and indicates it is redacted.

VA
RCH
AR2

'(\d{1,3}\.\d{1,3}\.\d
{1,3})\.\d{1,3}'

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 327

RE_PATTERN_AMEX_CCN : Searches for the American Express credit card number. The regexp_replace_string parameter to be used is
RE_REDACT_AMEX_CCN that redacts all of the digits except the last 5.

VA
RCH
AR2

'.*(\d\d\d\d\d)$'

RE_PATTERN_CCN : Searches for the credit card number other than American Express credit cards. The regexp_replace_string parameter to be
used is RE_REDACT_CCN that redacts all of the digits except the last 4.

VA
RCH
AR2

'.*(\d\d\d\d)$'

RE_PATTERN_US_SSN : Searches the SSN number and replaces the identified pattern with the characters specified by the
regexp_replace_string parameter.
'\1-XXX-XXXX' or 'XXX-XXX-\3' return 123-XXX-XXXX or XXX-XXX-6789 for the value '123-45-6789' respectively.

VA
RCH
AR2

'(\d\d\d)-(\d\d)-
(\d\d\d\d)'

Function parameter and description Data
type

Value

This table shows the regexp_replace_string values that you can use during REGEXP based redaction.

Function parameter Data
type

Value Description

RE_REDACT_CC_MIDDL
E_DIGITS

VARCH
AR2

'\1XXXXXX\
3'

Redacts the middle digits of a credit card number according to the regexp_pattern parameter with the RE_PATTERN_CC_L6_T4
format and replaces each redacted character with an X .

Example: The credit card number 1234 5678 9000 2490 becomes 1234 56XX XXXX 2490 .

RE_REDACT_WITH_SIN
GLE_X

VARCH
AR2

'X'

Replaces the data with a single X character for each matching pattern as specified by setting the regexp_pattern parameter with
the RE_PATTERN_ANY_DIGIT format.

Example: The credit card number 1234 5678 9000 2490 becomes XXXX XXXX XXXX XXXX .

RE_REDACT_WITH_SIN
GLE_1

VARCH
AR2

'1'

Replaces the data with a single 1 digit for each of the data digits as specified by setting the regexp_pattern parameter with the
RE_PATTERN_ANY_DIGIT format.

Example: The credit card number 1234 5678 9000 2490 becomes 1111 1111 1111 1111 .

RE_REDACT_US_PHONE
_L7

VARCH
AR2

'\1-XXX-
XXXX'

Redacts the last 7 digits of U.S phone number according to the regexp_pattern parameter with the RE_PATTERN_US_PHONE
format and replaces each redacted character with an X .

Example: The phone number 123-444-5900 becomes 123-XXX-XXXX .

RE_REDACT_EMAIL_NA
ME

VARCH
AR2

'xxxx@\2'

Redacts the email name according to the regexp_pattern parameter with the RE_PATTERN_EMAIL_ADDRESS format and
replaces the email username with the four x characters.

Example: The email address sjohn@example.com becomes xxxx@example.com .

RE_REDACT_EMAIL_DO
MAIN

VARCH
AR2

'\1@xxxxx.
com'

Redacts the email domain name according to the regexp_pattern parameter with the RE_PATTERN_EMAIL_ADDRESS format
and replaces the domain with the five x characters.

Example: The email address sjohn@example.com becomes sjohn@xxxxx.com .

RE_REDACT_EMAIL_EN
TIRE

VARCH
AR2

'xxxx@xxxx
x.com'

Redacts the entire email address according to the regexp_pattern parameter with the RE_PATTERN_EMAIL_ADDRESS format
and replaces the email address with the x characters.

Example: The email address sjohn@example.com becomes xxxx@xxxxx.com .

RE_REDACT_IP_L3 VARCH
AR2

'\1.999'

Redacts the last 3 digits of an IP address according to the regexp_pattern parameter with the RE_PATTERN_IP_ADDRESS
format.

Example: The IP address 172.0.1.258 becomes 172.0.1.999 , which is an invalid IP address.

RE_REDACT_AMEX_CCN VARCH
AR2

'*********
*\1'

Redacts the first 10 digits of an American Express credit card number according to the regexp_pattern parameter with the
RE_PATTERN_AMEX_CCN format.

Example: 123456789062816 becomes **********62816 .

RE_REDACT_CCN VARCH
AR2

'*********
***\1'

Redacts the first 12 digits of a credit card number as specified by the regexp_pattern parameter with the RE_PATTERN_CCN
format.

Example: 8749012678345671 becomes ************5671 .

The following tables show the regexp_position value and regexp_occurence values that you can use during REGEXP based redaction.

Function
parameter

Data type Valu
e

Description

RE_BEGINNING INTEGE
R

1 Specifies the position of a character where search must begin. By default, the value is 1 that indicates the search begins at the first character of
source_char .

Function parameter Data type Value Description

RE_ALL INTEGER 0 Specifies the replacement occurrence of a substring. If the value is 0 , then the replacement of each matching substring occurs.

RE_FIRST INTEGER 1 Specifies the replacement occurrence of a substring. If the value is 1 , then the replacement of the first matching substring occurs.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 328

The following table shows the regexp_match_parameter values that you can use during REGEXP based redaction which lets you change the default matching behavior of a function.

Function parameter Data type Value Description

RE_CASE_SENSITIVE VARCHAR2 'c' Specifies the case-sensitive matching.

RE_CASE_INSENSITIVE VARCHAR2 'i' Specifies the case-insensitive matching.

RE_MULTIPLE_LINES VARCHAR2 'm' Treats the source string as multiple lines but if you omit this parameter, then it indicates as a single line.

RE_NEWLINE_WILDCARD VARCHAR2 'n' Specifies the period (.), but if you omit this parameter, then the period does not match the newline
character.

RE_IGNORE_WHITESPACE VARCHAR2 'x' Ignores the whitespace characters.

Note

If you create a redaction policy based on a numeric-type column, then make sure that the result after redaction is a number and set the replacement string accordingly to avoid runtime errors.

Note

If you create a redaction policy based on a character-type column, then make sure that a length of the result after redaction is compatible with the column type and set the replacement string
accordingly to avoid runtime errors.

ADD_POLICY

The add_policy procedure creates a new data redaction policy for a table.

PROCEDURE add_policy (
 <object_schema> IN VARCHAR2 DEFAULT NULL,
 <object_name> IN VARCHAR2,
 <policy_name> IN VARCHAR2,
 <policy_description> IN VARCHAR2 DEFAULT NULL,
 <column_name> IN VARCHAR2 DEFAULT NULL,
 <column_description> IN VARCHAR2 DEFAULT NULL,
 <function_type> IN INTEGER DEFAULT DBMS_REDACT.FULL,
 <function_parameters> IN VARCHAR2 DEFAULT NULL,
 <expression> IN VARCHAR2,
 <enable> IN BOOLEAN DEFAULT TRUE,
 <regexp_pattern> IN VARCHAR2 DEFAULT NULL,
 <regexp_replace_string> IN VARCHAR2 DEFAULT NULL,
 <regexp_position> IN INTEGER DEFAULT DBMS_REDACT.RE_BEGINNING,
 <regexp_occurrence> IN INTEGER DEFAULT DBMS_REDACT.RE_ALL,
 <regexp_match_parameter> IN VARCHAR2 DEFAULT NULL,
 <custom_function_expression> IN VARCHAR2 DEFAULT NULL
)

Parameters

object_schema

Specifies the name of the schema in which the object resides and on which the data redaction policy is applied. If you specify NULL , then the given object is searched by the order specified by
search_path setting.

object_name

Name of the table on which the data redaction policy is created.

policy_name

Name of the policy to add. Ensure that the policy_name is unique for the table on which the policy is created.

policy_description

Specify the description of a redaction policy.

column_name

Name of the column to which the redaction policy applies. To redact more than one column, use the alter_policy procedure to add more columns.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 329

column_description

Description of the column to redact. The column_description isn't supported, but if you specify the description for a column, a warning message appears.

function_type

The type of redaction function to use. The possible values are NONE , FULL , PARTIAL , RANDOM , REGEXP , and CUSTOM .

function_parameters

Specifies the function parameters for the partition redaction and is applicable only for partial redaction.

expression

Specifies the Boolean expression for the table and determines how to apply the policy. The redaction occurs if this policy expression evaluates to TRUE .

enable

When set to TRUE , the policy is enabled upon creation. The default is TRUE . When set to FALSE , the policy is disabled, but you can enable the policy cby calling the enable_policy procedure.

regexp_pattern

Specifies the regular expression pattern to redact data. If the regexp_pattern doesn't match, then the NULL value is returned.

regexp_replace_string

Specifies the replacement string value.

regexp_position

Specifies the position of a character where search must begin. By default, the function parameter is RE_BEGINNING .

regexp_occurrence

Specifies the replacement occurrence of a substring. If the constant is RE_ALL , then the replacement of each matching substring occurs. If the constant is RE_FIRST , then the replacement of the
first matching substring occurs.

regexp_match_parameter

Changes the default matching behavior of a function. The possible regexp_match_parameter constants can be ‘RE_CASE_SENSITIVE’ , ‘RE_CASE_INSENSITIVE’ ,
‘RE_MULTIPLE_LINES’ , ‘RE_NEWLINE_WILDCARD’ , and ‘RE_IGNORE_WHITESPACE’ .

!!!Note For more information on constants , function_parameters , or regexp , see Using DBMS_REDACT Constants and Function Parameters.

custom_function_expression

The custom_function_expression applies only for the CUSTOM redaction type. The custom_function_expression is a function expression, that is, a schema-qualified function with a
parameter such as schema_name.function_name (argument1, …) that allows a user to use their redaction logic to redact the column data.

Example

This example shows how to create a policy and use full redaction for values in the payment_details_tab table customer id column.

edb=# CREATE TABLE payment_details_tab (
customer_id NUMBER NOT NULL,
card_string VARCHAR2(19) NOT NULL);
CREATE TABLE

edb=# BEGIN
 INSERT INTO payment_details_tab VALUES (4000, '1234-1234-1234-1234');
 INSERT INTO payment_details_tab VALUES (4001, '2345-2345-2345-2345');
END;

EDB-SPL Procedure successfully completed

edb=# CREATE USER redact_user;
CREATE ROLE
edb=# GRANT SELECT ON payment_details_tab TO redact_user;
GRANT

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 330

\c edb base_user

BEGIN
 DBMS_REDACT.add_policy(
 object_schema => 'public',
 object_name => 'payment_details_tab',
 policy_name => 'redactPolicy_001',
 policy_description => 'redactPolicy_001 for payment_details_tab table',
 column_name => 'customer_id',
 function_type => DBMS_REDACT.full,
 expression => '1=1',
 enable => TRUE);
END;

Redacted Result:

edb=# \c edb redact_user
You are now connected to database "edb" as user "redact_user".

edb=> select customer_id from payment_details_tab order by 1;
 customer_id

 0
 0
(2 rows)

ALTER_POLICY

The alter_policy procedure alters or modifies an existing data redaction policy for a table.

PROCEDURE alter_policy (
 <object_schema> IN VARCHAR2 DEFAULT NULL,
 <object_name> IN VARCHAR2,
 <policy_name> IN VARCHAR2,
 <action> IN INTEGER DEFAULT DBMS_REDACT.ADD_COLUMN,
 <column_name> IN VARCHAR2 DEFAULT NULL,
 <function_type> IN INTEGER DEFAULT DBMS_REDACT.FULL,
 <function_parameters> IN VARCHAR2 DEFAULT NULL,
 <expression> IN VARCHAR2 DEFAULT NULL,
 <regexp_pattern> IN VARCHAR2 DEFAULT NULL,
 <regexp_replace_string> IN VARCHAR2 DEFAULT NULL,
 <regexp_position> IN INTEGER DEFAULT DBMS_REDACT.RE_BEGINNING,
 <regexp_occurrence> IN INTEGER DEFAULT DBMS_REDACT.RE_ALL,
 <regexp_match_parameter> IN VARCHAR2 DEFAULT NULL,
 <policy_description> IN VARCHAR2 DEFAULT NULL,
 <column_description> IN VARCHAR2 DEFAULT NULL,
 <custom_function_expression> IN VARCHAR2 DEFAULT NULL
)

Parameters

object_schema

Specifies the name of the schema in which the object resides and on which to alter the data redaction policy. If you specify NULL , then the given object is searched by the order specified by
search_path setting.

object_name

Name of the table to which to alter a data redaction policy.

policy_name

Name of the policy to alter.

action

The action to perform. For more information about action parameters see, Using DBMS_REDACT Constants and Function Parameters

column_name

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 331

Name of the column to which the redaction policy applies.

function_type

The type of redaction function to use. The possible values are NONE , FULL , PARTIAL , RANDOM , REGEXP , and CUSTOM .

function_parameters

Specifies the function parameters for the redaction function.

expression

Specifies the Boolean expression for the table and determines how to apply the policy. The redaction occurs if this policy expression evaluates to TRUE .

regexp_pattern

Enables the use of regular expressions to redact data. If the regexp_pattern doesn't match the data, then the NULL value is returned.

regexp_replace_string

Specifies the replacement string value.

regexp_position

Specifies the position of a character where search must begin. By default, the function parameter is RE_BEGINNING .

regexp_occurence

Specifies the replacement occurrence of a substring. If the constant is RE_ALL , then the replacement of each matching substring occurs. If the constant is RE_FIRST , then the replacement of the
first matching substring occurs.

regexp_match_parameter

Changes the default matching behavior of a function. The possible regexp_match_parameter constants can be ‘RE_CASE_SENSITIVE’ , ‘RE_CASE_INSENSITIVE’ ,
‘RE_MULTIPLE_LINES’ , ‘RE_NEWLINE_WILDCARD’ , and ‘RE_IGNORE_WHITESPACE’ .

!!!Note For more information on constants , function_parameters , or regexp , see Using DBMS_REDACT Constants and Function Parameters.

policy_description

Specify the description of a redaction policy.

column_description

Description of the column to redact. The column_description isn't supported, but if you specify the description for a column, a warning message appears.

custom_function_expression

The custom_function_expression applies only for the CUSTOM redaction type. The custom_function_expression is a function expression, that is, a schema-qualified function with a
parameter such as schema_name.function_name (argument1, …) that allows a user to use their redaction logic to redact the column data.

Example

This example shows how to alter a policy using partial redaction for values in the payment_details_tab table card_string (usually a credit card number) column.

\c edb base _user

BEGIN
 DBMS_REDACT.alter_policy (
 object_schema => 'public',
 object_name => 'payment_details_tab',
 policy_name => 'redactPolicy_001',
 action => DBMS_REDACT.ADD_COLUMN,
 column_name => 'card_string',
 function_type => DBMS_REDACT.partial,
 function_parameters => DBMS_REDACT.REDACT_CCN16_F12);
END;

Redacted Result:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 332

edb=# \c - redact_user
You are now connected to database "edb" as user "redact_user".
edb=> SELECT * FROM payment_details_tab;
 customer_id | card_string
-------------+---------------------
 0 | ****-****-****-1234
 0 | ****-****-****-2345
(2 rows)

DISABLE_POLICY

The disable_policy procedure disables an existing data redaction policy.

PROCEDURE disable_policy (
 <object_schema> IN VARCHAR2 DEFAULT NULL,
 <object_name> IN VARCHAR2,
 <policy_name> IN VARCHAR2
)

Parameters

object_schema

Specifies the name of the schema in which the object resides and on which to apply the data redaction policy. If you specify NULL , then the given object is searched by the order specified by
search_path setting.

object_name

Name of the table for which to disable a data redaction policy.

policy_name

Name of the policy to disable.

Example

This example shows how to disable a policy.

\c edb base_user

BEGIN
 DBMS_REDACT.disable_policy(
 object_schema => 'public',
 object_name => 'payment_details_tab',
 policy_name => 'redactPolicy_001');
END;

Redacted Result: Data is no longer redacted after disabling a policy.

ENABLE_POLICY

The enable_policy procedure enables the previously disabled data redaction policy.

PROCEDURE enable_policy (
 <object_schema> IN VARCHAR2 DEFAULT NULL,
 <object_name> IN VARCHAR2,
 <policy_name> IN VARCHAR2
)

Parameters

object_schema

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 333

Specifies the name of the schema in which the object resides and on which to apply the data redaction policy. If you specify NULL , then the given object is searched by the order specified by
search_path setting.

object_name

Name of the table to which to enable a data redaction policy.

policy_name

Name of the policy to enable.

Example

This example shows how to enable a policy.

\c edb base_user

BEGIN
 DBMS_REDACT.enable_policy(
 object_schema => 'public',
 object_name => 'payment_details_tab',
 policy_name => 'redactPolicy_001');
END;

Redacted Result: Data is redacted after enabling a policy.

DROP_POLICY

The drop_policy procedure drops a data redaction policy by removing the masking policy from a table.

PROCEDURE drop_policy (
 <object_schema> IN VARCHAR2 DEFAULT NULL,
 <object_name> IN VARCHAR2,
 <policy_name> IN VARCHAR2
)

Parameters

object_schema

Specifies the name of the schema in which the object resides and on which to apply the data redaction policy. If you specify NULL , then the given object is searched by the order specified by
search_path setting.

object_name

Name of the table from which to drop a data redaction policy.

policy_name

Name of the policy to drop.

Example

This example shows how to drop a policy.

\c edb base_user

BEGIN
 DBMS_REDACT.drop_policy(
 object_schema => 'public',
 object_name => 'payment_details_tab',
 policy_name => 'redactPolicy_001');
END;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 334

Redacted Result: The server drops the specified policy.

UPDATE_FULL_REDACTION_VALUES

The update_full_redaction_values procedure updates the default displayed values for a data redaction policy. You can view these default values using the
redaction_values_for_type_full view that uses the full redaction type.

PROCEDURE update_full_redaction_values (
 <number_val> IN NUMBER DEFAULT NULL,
 <binfloat_val> IN FLOAT4 DEFAULT NULL,
 <bindouble_val> IN FLOAT8 DEFAULT NULL,
 <char_val> IN CHAR DEFAULT NULL,
 <varchar_val> IN VARCHAR2 DEFAULT NULL,
 <nchar_val> IN NCHAR DEFAULT NULL,
 <nvarchar_val> IN NVARCHAR2 DEFAULT NULL,
 <datecol_val> IN DATE DEFAULT NULL,
 <ts_val> IN TIMESTAMP DEFAULT NULL,
 <tswtz_val> IN TIMESTAMPTZ DEFAULT NULL,
 <blob_val> IN BLOB DEFAULT NULL,
 <clob_val> IN CLOB DEFAULT NULL,
 <nclob_val> IN CLOB DEFAULT NULL
)

Parameters

number_val

Updates the default value for columns of the NUMBER datatype.

binfloat_val

The FLOAT4 datatype is a random value. The binary float datatype isn't supported.

bindouble_val

The FLOAT8 datatype is a random value. The binary double datatype isn;t supported.

char_val

Updates the default value for columns of the CHAR datatype.

varchar_val

Updates the default value for columns of the VARCHAR2 datatype.

nchar_val

The nchar_val is mapped to CHAR datatype and returns the CHAR value.

nvarchar_val

The nvarchar_val is mapped to VARCHAR2 datatype and returns the VARCHAR value.

datecol_val

Updates the default value for columns of the DATE datatype.

ts_val

Updates the default value for columns of the TIMESTAMP datatype.

tswtz_val

Updates the default value for columns of the TIMESTAMPTZ datatype.

blob_val

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 335

Updates the default value for columns of the BLOB datatype.

clob_val

Updates the default value for columns of the CLOB datatype.

nclob_val

The nclob_val is mapped to CLOB datatype and returns the CLOB value.

Example

This example shows how to update the full redaction values. Before updating the values, you can view the default values using the redaction_values_for_type_full view.

edb=# \x
Expanded display is on.
edb=# SELECT number_value, char_value, varchar_value, date_value,
 timestamp_value, timestamp_with_time_zone_value, blob_value,
clob_value
FROM redaction_values_for_type_full;
-[RECORD 1]------------------+--------------------------
number_value | 0
char_value |
varchar_value |
date_value | 01-JAN-01 00:00:00
timestamp_value | 01-JAN-01 01:00:00
timestamp_with_time_zone_value | 31-DEC-00 20:00:00 -05:00
blob_value | \x5b72656461637465645d
clob_value | [redacted]
(1 row)

Update the default values for full redaction type. The NULL values are ignored.

\c edb base_user

edb=# BEGIN
 DBMS_REDACT.update_full_redaction_values (
 number_val => 9999999,
 char_val => 'Z',
 varchar_val => 'V',
 datecol_val => to_date('17/10/2018', 'DD/MM/YYYY'),
 ts_val => to_timestamp('17/10/2018 11:12:13', 'DD/MM/YYYY HH24:MI:SS'),
 tswtz_val => NULL,
 blob_val => 'NEW REDACTED VALUE',
 clob_val => 'NEW REDACTED VALUE');
END;

You can now see the updated values using the redaction_values_for_type_full view.

EDB-SPL Procedure successfully completed
edb=# SELECT number_value, char_value, varchar_value, date_value,
 timestamp_value, timestamp_with_time_zone_value, blob_value,
clob_value
FROM redaction_values_for_type_full;
-[RECORD 1]------------------+---------------------------------------
number_value | 9999999
char_value | Z
varchar_value | V
date_value | 17-OCT-18 00:00:00
timestamp_value | 17-OCT-18 11:12:13
timestamp_with_time_zone_value | 31-DEC-00 20:00:00 -05:00
blob_value | \x4e45572052454441435445442056414c5545
clob_value | NEW REDACTED VALUE
(1 row)

Redacted Result:

edb=# \c edb redact_user
You are now connected to database "edb" as user "redact_user".

edb=> select * from payment_details_tab order by 1;
 customer_id | card_string

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 336

-------------+-------------
 9999999 | V
 9999999 | V
(2 rows)

16.2.14 DBMS_RLS

The DBMS_RLS package enables you to implement Virtual Private Database on certain EDB Postgres Advanced Server database objects.

EDB Postgres Advanced Server's implementation of DBMS_RLS is a partial implementation when compared to Oracle's version. Only those functions and procedures listed in the table are supported.

Function/procedure
Function
or
procedure

Ret
urn
typ
e

Description

ADD_POLICY(object_schema, object_name, policy_name, function_schema, policy_function [, statement_types [,
update_check [, enable [, static_policy [, policy_type [, long_predicate [, sec_relevant_cols [,
sec_relevant_cols_opt]]]]]]]])

Procedure n/a
Add a security
policy to a
database object.

DROP_POLICY(object_schema, object_name, policy_name) Procedure n/a
Remove a security
policy from a
database object.

ENABLE_POLICY(object_schema, object_name, policy_name, enable) Procedure n/a Enable or disable a
security policy.

Virtual Private Database is a type of fine-grained access control using security policies. Fine-grained access control in Virtual Private Database means that you can control access to data down to specific
rows as defined by the security policy.

The rules that encode a security policy are defined in a policy function, which is an SPL function with certain input parameters and return values. The security policy is the named association of the
policy function to a particular database object, typically a table.

Note

In EDB Postgres Advanced Server, you can write the policy function in any language supported by EDB Postgres Advanced Server, such as SQL, PL/pgSQL, and SPL.

Note

The database objects currently supported by EDB Postgres Advanced Server Virtual Private Database are tables. You can't apply policies to views or synonyms.

Virtual Private Database has these advantages:

It provides a fine-grained level of security. Database object-level privileges given by the GRANT command determine access privileges to the entire instance of a database object, while Virtual
Private Database provides access control for the individual rows of a database object instance.
You can apply a different security policy depending on the type of SQL command (INSERT , UPDATE , DELETE , or SELECT).
The security policy can vary dynamically for each applicable SQL command affecting the database object, depending on factors such as the session user of the application accessing the database
object.
Invoking the security policy is transparent to all applications that access the database object. Thus, you don't have to modify individual applications to apply the security policy.
Once a security policy is enabled, applications (including new applications) can't circumvent the security policy except by the system privilege described in the note that follows.
Even superusers can't circumvent the security policy except by the system privilege described in the note that follows.

Note

The only way to circumvent security policies is if the EXEMPT ACCESS POLICY system privilege is granted to a user. Grant the EXEMPT ACCESS POLICY privilege with extreme care as
a user with this privilege is exempted from all policies in the database.

The DBMS_RLS package provides procedures to create policies, remove policies, enable policies, and disable policies.

The process for implementing Virtual Private Database is as follows:

1. Create a policy function. The function must have two input parameters of type VARCHAR2 . The first input parameter is for the schema containing the database object to which the policy applies.
The second input parameter is for the name of that database object. The function must have a VARCHAR2 return type and return a string in the form of a WHERE clause predicate. This
predicate is dynamically appended as an AND condition to the SQL command that acts on the database object. Thus, rows that don't satisfy the policy function predicate are filtered out from the
SQL command result set.

2. Use the ADD_POLICY procedure to define a new policy, which is the association of a policy function with a database object. With the ADD_POLICY procedure, you can also specify:
The types of SQL commands (INSERT , UPDATE , DELETE , or SELECT) to which the policy applies
Whether to enable the policy at the time of its creation
Whether the policy applies to newly inserted rows or the modified image of updated rows

3. Use the ENABLE_POLICY procedure to disable or enable an existing policy.
4. Use the DROP_POLICY procedure to remove an existing policy. The DROP_POLICY procedure doesn't drop the policy function or the associated database object.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 337

Once you create policies, you can view them in the catalog views compatible with Oracle databases: ALL_POLICIES , DBA_POLICIES , or USER_POLICIES . The supported compatible views are
listed in Catalog views.

The SYS_CONTEXT function is often used with DBMS_RLS . The signature is:

SYS_CONTEXT(<namespace>, <attribute>)

Where:

namespace is a VARCHAR2 . The only accepted value is USERENV . Any other value returns NULL .

attribute is a VARCHAR2 . Possible values are:

attribute Value Equivalent value

SESSION_USER pg_catalog.session_user

CURRENT_USER pg_catalog.current_user

CURRENT_SCHEMA pg_catalog.current_schema

HOST pg_catalog.inet_host

IP_ADDRESS pg_catalog.inet_client_addr

SERVER_HOST pg_catalog.inet_server_addr

The examples used to illustrate the DBMS_RLS package are based on a modified copy of the sample emp table provided with EDB Postgres Advanced Server along with a role named salesmgr that
is granted all privileges on the table. You can create the modified copy of the emp table named vpemp and the salesmgr role as follows:

CREATE TABLE public.vpemp AS SELECT empno, ename, job, sal, comm, deptno
FROM emp;
ALTER TABLE vpemp ADD authid VARCHAR2(12);
UPDATE vpemp SET authid = 'researchmgr' WHERE deptno = 20;
UPDATE vpemp SET authid = 'salesmgr' WHERE deptno = 30;
SELECT * FROM vpemp;

empno | ename | job | sal | comm | deptno | authid
-------+--------+-----------+---------+---------+--------+-------------
 7782 | CLARK | MANAGER | 2450.00 | | 10 |
 7839 | KING | PRESIDENT | 5000.00 | | 10 |
 7934 | MILLER | CLERK | 1300.00 | | 10 |
 7369 | SMITH | CLERK | 800.00 | | 20 | researchmgr
 7566 | JONES | MANAGER | 2975.00 | | 20 | researchmgr
 7788 | SCOTT | ANALYST | 3000.00 | | 20 | researchmgr
 7876 | ADAMS | CLERK | 1100.00 | | 20 | researchmgr
 7902 | FORD | ANALYST | 3000.00 | | 20 | researchmgr
 7499 | ALLEN | SALESMAN | 1600.00 | 300.00 | 30 | salesmgr
 7521 | WARD | SALESMAN | 1250.00 | 500.00 | 30 | salesmgr
 7654 | MARTIN | SALESMAN | 1250.00 | 1400.00 | 30 | salesmgr
 7698 | BLAKE | MANAGER | 2850.00 | | 30 | salesmgr
 7844 | TURNER | SALESMAN | 1500.00 | 0.00 | 30 | salesmgr
 7900 | JAMES | CLERK | 950.00 | | 30 | salesmgr
(14 rows)

CREATE ROLE salesmgr WITH LOGIN PASSWORD 'password';
GRANT ALL ON vpemp TO salesmgr;

ADD_POLICY

The ADD_POLICY procedure creates a new policy by associating a policy function with a database object.

You must be a superuser to execute this procedure.

ADD_POLICY(<object_schema> VARCHAR2, <object_name> VARCHAR2,
 <policy_name> VARCHAR2, <function_schema> VARCHAR2,
 <policy_function> VARCHAR2
 [, <statement_types> VARCHAR2
 [, <update_check> BOOLEAN
 [, <enable> BOOLEAN
 [, <static_policy> BOOLEAN
 [, <policy_type> INTEGER
 [, <long_predicate> BOOLEAN

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 338

 [, <sec_relevant_cols> VARCHAR2
 [, <sec_relevant_cols_opt> INTEGER]]]]]]]])

Parameters

object_schema

Name of the schema containing the database object to which to apply the policy.

object_name

Name of the database object to which to apply the policy. A given database object can have more than one policy applied to it.

policy_name

Name assigned to the policy. The combination of database object (identified by object_schema and object_name) and policy name must be unique in the database.

function_schema

Name of the schema containing the policy function.

!!! Note The policy function might belong to a package. In this case function_schema must contain the name of the schema in which the package is defined.

policy_function

Name of the SPL function that defines the rules of the security policy. You can specify the same function in more than one policy.

!!! Note The policy function might belong to a package. In this case policy_function must also contain the package name in dot notation (that is, package_name.function_name).

statement_types

Comma-separated list of SQL commands to which the policy applies. Valid SQL commands are INSERT , UPDATE , DELETE , and SELECT . The default is INSERT,UPDATE,DELETE,SELECT .

!!! Note EDB Postgres Advanced Server accepts INDEX as a statement type but it is ignored. Policies aren't applied to index operations in EDB Postgres Advanced Server.

update_check

Applies to INSERT and UPDATE SQL commands only.

When set to TRUE , the policy is applied to newly inserted rows and to the modified image of updated rows. If any of the new or modified rows don't qualify according to the policy function
predicate, then the INSERT or UPDATE command throws an exception and no rows are inserted or modified by the INSERT or UPDATE command.
When set to FALSE , the policy isn't applied to newly inserted rows or the modified image of updated rows. Thus, a newly inserted row might not appear in the result set of a subsequent SQL
command that invokes the same policy. Similarly, rows that qualified according to the policy prior to an UPDATE command might not appear in the result set of a subsequent SQL command that
invokes the same policy.
The default is FALSE .

enable

When set to TRUE , the policy is enabled and applied to the SQL commands given by the statement_types parameter. When set to FALSE the policy is disabled and not applied to any SQL
commands. You can enable the policy using the ENABLE_POLICY procedure. The default is TRUE .

static_policy

In Oracle, when set to TRUE , the policy is static, which means the policy function is evaluated once per database object the first time it's invoked by a policy on that database object. The resulting
policy function predicate string is saved in memory and reused for all invocations of that policy on that database object while the database server instance is running.

When set to FALSE , the policy is dynamic, which means the policy function is reevaluated and the policy function predicate string regenerated for all invocations of the policy.

The default is FALSE .

Note

In Oracle 10g, the policy_type parameter was introduced, which is intended to replace the static_policy parameter. In Oracle, if the policy_type parameter isn't set to
its default value of NULL , the policy_type parameter setting overrides the static_policy setting.

Note

The setting of static_policy is ignored by EDB Postgres Advanced Server. EDB Postgres Advanced Server implements only the dynamic policy, regardless of the setting of the
static_policy parameter.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 339

policy_type

In Oracle, determines when the policy function is reevaluated and, hence, if and when the predicate string returned by the policy function changes. The default is NULL .

!!! Note This parameter setting is ignored by EDB Postgres Advanced Server. EDB Postgres Advanced Server always assumes a dynamic policy.

long_predicate

In Oracle, allows predicates up to 32K bytes if set to TRUE . Otherwise predicates are limited to 4000 bytes. The default is FALSE .

!!! Note This parameter setting is ignored by EDB Postgres Advanced Server. An EDB Postgres Advanced Server policy function can return a predicate of unlimited length for all practical purposes.

sec_relevant_cols

Comma-separated list of columns of object_name . Provides column-level Virtual Private Database for the listed columns. The policy is enforced if any of the listed columns are referenced in a SQL
command of a type listed in statement_types . The policy isn't enforced if no such columns are referenced.

The default is NULL , which has the same effect as if all of the database object’s columns were included in sec_relevant_cols .

sec_relevant_cols_opt

In Oracle, if sec_relevant_cols_opt is set to DBMS_RLS.ALL_ROWS (INTEGER constant of value 1), then the columns listed in sec_relevant_cols return NULL on all rows where the
applied policy predicate is false. (If sec_relevant_cols_opt isn't set to DBMS_RLS.ALL_ROWS , these rows aren't returned at all in the result set.) The default is NULL .

!!! Note EDB Postgres Advanced Server doesn't support DBMS_RLS.ALL_ROWS . EDB Postgres Advanced Server throws an error if sec_relevant_cols_opt is set to DBMS_RLS.ALL_ROWS
(INTEGER value of 1).

Examples

This example uses the following policy function:

CREATE OR REPLACE FUNCTION verify_session_user (
 p_schema VARCHAR2,
 p_object VARCHAR2
)
RETURN VARCHAR2
IS
BEGIN
 RETURN 'authid = SYS_CONTEXT(''USERENV'', ''SESSION_USER'')';
END;

This function generates the predicate authid = SYS_CONTEXT('USERENV', 'SESSION_USER') , which is added to the WHERE clause of any SQL command of the type specified in the
ADD_POLICY procedure.

This limits the effect of the SQL command to those rows where the content of the authid column is the same as the session user.

Note

This example uses the SYS_CONTEXT function to return the login user name. In Oracle the SYS_CONTEXT function is used to return attributes of an application context. The first
parameter of the SYS_CONTEXT function is the name of an application context. The second parameter is the name of an attribute set in the application context. USERENV is a special built-
in namespace that describes the current session. EDB Postgres Advanced Server doesn't support application contexts. It supports only this specific usage of the SYS_CONTEXT function.

The following anonymous block calls the ADD_POLICY procedure to create a policy named secure_update . The policy applies to the vpemp table using the function verify_session_user
whenever an INSERT , UPDATE , or DELETE SQL command is given referencing the vpemp table.

DECLARE
 v_object_schema VARCHAR2(30) := 'public';
 v_object_name VARCHAR2(30) := 'vpemp';
 v_policy_name VARCHAR2(30) := 'secure_update';
 v_function_schema VARCHAR2(30) := 'enterprisedb';
 v_policy_function VARCHAR2(30) := 'verify_session_user';
 v_statement_types VARCHAR2(30) := 'INSERT,UPDATE,DELETE';
 v_update_check BOOLEAN := TRUE;
 v_enable BOOLEAN := TRUE;
BEGIN
 DBMS_RLS.ADD_POLICY(
 v_object_schema,
 v_object_name,
 v_policy_name,
 v_function_schema,
 v_policy_function,

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 340

 v_statement_types,
 v_update_check,
 v_enable
);
END;

After successfully creating the policy, a terminal session is started by user salesmgr . The following query shows the content of the vpemp table:

edb=# \c edb salesmgr
Password for user salesmgr:
You are now connected to database "edb" as user "salesmgr".
edb=> SELECT * FROM vpemp;
 empno | ename | job | sal | comm | deptno | authid
-------+--------+-----------+---------+---------+--------+-------------
 7782 | CLARK | MANAGER | 2450.00 | | 10 |
 7839 | KING | PRESIDENT | 5000.00 | | 10 |
 7934 | MILLER | CLERK | 1300.00 | | 10 |
 7369 | SMITH | CLERK | 800.00 | | 20 | researchmgr
 7566 | JONES | MANAGER | 2975.00 | | 20 | researchmgr
 7788 | SCOTT | ANALYST | 3000.00 | | 20 | researchmgr
 7876 | ADAMS | CLERK | 1100.00 | | 20 | researchmgr
 7902 | FORD | ANALYST | 3000.00 | | 20 | researchmgr
 7499 | ALLEN | SALESMAN | 1600.00 | 300.00 | 30 | salesmgr
 7521 | WARD | SALESMAN | 1250.00 | 500.00 | 30 | salesmgr
 7654 | MARTIN | SALESMAN | 1250.00 | 1400.00 | 30 | salesmgr
 7698 | BLAKE | MANAGER | 2850.00 | | 30 | salesmgr
 7844 | TURNER | SALESMAN | 1500.00 | 0.00 | 30 | salesmgr
 7900 | JAMES | CLERK | 950.00 | | 30 | salesmgr
(14 rows)

An unqualified UPDATE command (no WHERE clause) is issued by the salesmgr user:

edb=> UPDATE vpemp SET comm = sal * .75;
UPDATE 6

Instead of updating all rows in the table, the policy restricts the effect of the update to only those rows where the authid column contains the value salesmgr as specified by the policy function
predicate authid = SYS_CONTEXT('USERENV', 'SESSION_USER') .

The following query shows that the comm column was changed only for those rows where authid contains salesmgr . All other rows are unchanged.

edb=> SELECT * FROM vpemp;
 empno | ename | job | sal | comm | deptno | authid
-------+--------+-----------+---------+---------+--------+-------------
 7782 | CLARK | MANAGER | 2450.00 | | 10 |
 7839 | KING | PRESIDENT | 5000.00 | | 10 |
 7934 | MILLER | CLERK | 1300.00 | | 10 |
 7369 | SMITH | CLERK | 800.00 | | 20 | researchmgr
 7566 | JONES | MANAGER | 2975.00 | | 20 | researchmgr
 7788 | SCOTT | ANALYST | 3000.00 | | 20 | researchmgr
 7876 | ADAMS | CLERK | 1100.00 | | 20 | researchmgr
 7902 | FORD | ANALYST | 3000.00 | | 20 | researchmgr
 7499 | ALLEN | SALESMAN | 1600.00 | 1200.00 | 30 | salesmgr
 7521 | WARD | SALESMAN | 1250.00 | 937.50 | 30 | salesmgr
 7654 | MARTIN | SALESMAN | 1250.00 | 937.50 | 30 | salesmgr
 7698 | BLAKE | MANAGER | 2850.00 | 2137.50 | 30 | salesmgr
 7844 | TURNER | SALESMAN | 1500.00 | 1125.00 | 30 | salesmgr
 7900 | JAMES | CLERK | 950.00 | 712.50 | 30 | salesmgr
(14 rows)

Furthermore, since the update_check parameter was set to TRUE in the ADD_POLICY procedure, the following INSERT command throws an exception. The value given for the authid
column, researchmgr , doesn't match the session user (salesmgr) and hence fails the policy.

edb=> INSERT INTO vpemp VALUES (9001,'SMITH','ANALYST',3200.00,NULL,20,
'researchmgr');
ERROR: policy with check option violation
DETAIL: Policy predicate was evaluated to FALSE with the updated values

If update_check is set to FALSE , the preceding INSERT command succeeds.

This example uses the sec_relevant_cols parameter to apply a policy only when certain columns are referenced in the SQL command. The following policy function is used for this example, which
selects rows where the employee salary is less than 2000 .

CREATE OR REPLACE FUNCTION sal_lt_2000 (

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 341

 p_schema VARCHAR2,
 p_object VARCHAR2
)
RETURN VARCHAR2
IS
BEGIN
 RETURN 'sal < 2000';
END

The policy is created so that it's enforced only if a SELECT command includes columns sal or comm :

DECLARE
 v_object_schema VARCHAR2(30) := 'public';
 v_object_name VARCHAR2(30) := 'vpemp';
 v_policy_name VARCHAR2(30) := 'secure_salary';
 v_function_schema VARCHAR2(30) := 'enterprisedb';
 v_policy_function VARCHAR2(30) := 'sal_lt_2000';
 v_statement_types VARCHAR2(30) := 'SELECT';
 v_sec_relevant_cols VARCHAR2(30) := 'sal,comm';
BEGIN
 DBMS_RLS.ADD_POLICY(
 v_object_schema,
 v_object_name,
 v_policy_name,
 v_function_schema,
 v_policy_function,
 v_statement_types,
 sec_relevant_cols => v_sec_relevant_cols
);
END;

If a query doesn't reference columns sal or comm , then the policy isn't applied. The following query returns all 14 rows of table vpemp :

edb=# SELECT empno, ename, job, deptno, authid FROM vpemp;
 empno | ename | job | deptno | authid
-------+--------+-----------+--------+-------------
 7782 | CLARK | MANAGER | 10 |
 7839 | KING | PRESIDENT | 10 |
 7934 | MILLER | CLERK | 10 |
 7369 | SMITH | CLERK | 20 | researchmgr
 7566 | JONES | MANAGER | 20 | researchmgr
 7788 | SCOTT | ANALYST | 20 | researchmgr
 7876 | ADAMS | CLERK | 20 | researchmgr
 7902 | FORD | ANALYST | 20 | researchmgr
 7499 | ALLEN | SALESMAN | 30 | salesmgr
 7521 | WARD | SALESMAN | 30 | salesmgr
 7654 | MARTIN | SALESMAN | 30 | salesmgr
 7698 | BLAKE | MANAGER | 30 | salesmgr
 7844 | TURNER | SALESMAN | 30 | salesmgr
 7900 | JAMES | CLERK | 30 | salesmgr
(14 rows)

If the query references the sal or comm columns, then the policy is applied to the query, eliminating any rows where sal is greater than or equal to 2000 :

edb=# SELECT empno, ename, job, sal, comm, deptno, authid FROM vpemp;
 empno | ename | job | sal | comm | deptno | authid
-------+--------+----------+---------+---------+--------+-------------
 7934 | MILLER | CLERK | 1300.00 | | 10 |
 7369 | SMITH | CLERK | 800.00 | | 20 | researchmgr
 7876 | ADAMS | CLERK | 1100.00 | | 20 | researchmgr
 7499 | ALLEN | SALESMAN | 1600.00 | 1200.00 | 30 | salesmgr
 7521 | WARD | SALESMAN | 1250.00 | 937.50 | 30 | salesmgr
 7654 | MARTIN | SALESMAN | 1250.00 | 937.50 | 30 | salesmgr
 7844 | TURNER | SALESMAN | 1500.00 | 1125.00 | 30 | salesmgr
 7900 | JAMES | CLERK | 950.00 | 712.50 | 30 | salesmgr
(8 rows)

DROP_POLICY

The DROP_POLICY procedure deletes an existing policy. The DROP_POLICY procedure doesn't delete the policy function and database object associated with the policy.

You must be a superuser to execute this procedure.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 342

DROP_POLICY(<object_schema> VARCHAR2, <object_name> VARCHAR2,
 <policy_name> VARCHAR2)

Parameters

object_schema

Name of the schema containing the database object to which the policy applies.

object_name

Name of the database object to which the policy applies.

policy_name

Name of the policy to delete.

Examples

This example deletes policy secure_update on table public.vpemp :

DECLARE
 v_object_schema VARCHAR2(30) := 'public';
 v_object_name VARCHAR2(30) := 'vpemp';
 v_policy_name VARCHAR2(30) := 'secure_update';
BEGIN
 DBMS_RLS.DROP_POLICY(
 v_object_schema,
 v_object_name,
 v_policy_name
);
END;

ENABLE_POLICY

The ENABLE_POLICY procedure enables or disables an existing policy on the specified database object.

You must be a superuser to execute this procedure.

ENABLE_POLICY(<object_schema> VARCHAR2, <object_name> VARCHAR2,
 <policy_name> VARCHAR2, <enable> BOOLEAN)

Parameters

object_schema

Name of the schema containing the database object to which the policy applies.

object_name

Name of the database object to which the policy applies.

policy_name

Name of the policy to enable or disable.

enable

When set to TRUE , the policy is enabled. When set to FALSE , the policy is disabled.

Examples

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 343

This example disables policy secure_update on table public.vpemp :

DECLARE
 v_object_schema VARCHAR2(30) := 'public';
 v_object_name VARCHAR2(30) := 'vpemp';
 v_policy_name VARCHAR2(30) := 'secure_update';
 v_enable BOOLEAN := FALSE;
BEGIN
 DBMS_RLS.ENABLE_POLICY(
 v_object_schema,
 v_object_name,
 v_policy_name,
 v_enable
);
END;

16.2.15 DBMS_SCHEDULER

The DBMS_SCHEDULER package provides a way to create and manage Oracle-style jobs, programs, and job schedules. The DBMS_SCHEDULER package implements the following functions and
procedures:

Function/procedure Return
type

Description

CREATE_JOB(job_name, job_type, job_action, number_of_arguments, start_date,
repeat_interval, end_date, job_class, enabled, auto_drop, comments)

n/a Use the first form of the CREATE_JOB procedure to create a job,
specifying program and schedule details by means of parameters.

CREATE_JOB(job_name, program_name, schedule_name, job_class, enabled,
auto_drop, comments)

n/a Use the second form of CREATE_JOB to create a job that uses a
named program and named schedule.

CREATE_PROGRAM(program_name, program_type, program_action,
number_of_arguments, enabled, comments)

n/a Use CREATE_PROGRAM to create a program.

CREATE_SCHEDULE(schedule_name, start_date, repeat_interval, end_date,
comments)

n/a Use the CREATE_SCHEDULE procedure to create a schedule.

DEFINE_PROGRAM_ARGUMENT(program_name, argument_position, argument_name,
argument_type, default_value, out_argument)

n/a Use the first form of the DEFINE_PROGRAM_ARGUMENT procedure
to define a program argument that has a default value.

DEFINE_PROGRAM_ARGUMENT(program_name, argument_position, argument_name,
argument_type, out_argument)

n/a Use the first form of the DEFINE_PROGRAM_ARGUMENT procedure
to define a program argument that doesn't have a default value.

DISABLE(name, force, commit_semantics) n/a Use the DISABLE procedure to disable a job or program.

DROP_JOB(job_name, force, defer, commit_semantics) n/a Use the DROP_JOB procedure to drop a job.

DROP_PROGRAM(program_name, force) n/a Use the DROP_PROGRAM procedure to drop a program.

DROP_PROGRAM_ARGUMENT(program_name, argument_position) n/a Use the first form of DROP_PROGRAM_ARGUMENT to drop a program
argument by specifying the argument position.

DROP_PROGRAM_ARGUMENT(program_name, argument_name) n/a Use the second form of DROP_PROGRAM_ARGUMENT to drop a
program argument by specifying the argument name.

DROP_SCHEDULE(schedule_name, force) n/a Use the DROP SCHEDULE procedure to drop a schedule.

ENABLE(name, commit_semantics) n/a Use the ENABLE command to enable a program or job.

EVALUATE_CALENDAR_STRING(calendar_string, start_date, return_date_after,
next_run_date)

n/a Use EVALUATE_CALENDAR_STRING to review the execution date
described by a user-defined calendar schedule.

RUN_JOB(job_name, use_current_session, manually) n/a Use the RUN_JOB procedure to execute a job immediately.

SET_JOB_ARGUMENT_VALUE(job_name, argument_position, argument_value) n/a Use the first form of SET_JOB_ARGUMENT_VALUE to set the value
of a job argument described by the argument's position.

SET_JOB_ARGUMENT_VALUE(job_name, argument_name, argument_value) n/a Use the second form of SET_JOB_ARGUMENT_VALUE to set the
value of a job argument described by the argument's name.

EDB Postgres Advanced Server's implementation of DBMS_SCHEDULER is a partial implementation when compared to Oracle's version. Only those functions and procedures listed in the table are
supported.

The DBMS_SCHEDULER package depends on the pgAgent service. You must have a pgAgent service installed and running on your server before using DBMS_SCHEDULER .

Before using DBMS_SCHEDULER , a database superuser must create the catalog tables in which the DBMS_SCHEDULER programs, schedules, and jobs are stored. Use the psql client to connect to
the database, and invoke the command:

CREATE EXTENSION dbms_scheduler;

By default, the dbms_scheduler extension resides in the contrib/dbms_scheduler_ext subdirectory under the EDB Postgres Advanced Server installation.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 344

After creating the DBMS_SCHEDULER tables, only a superuser can perform a dump or reload of the database.

16.2.15.1 Using calendar syntax to specify a repeating interval

The CREATE_JOB and CREATE_SCHEDULE procedures use Oracle-style calendar syntax to define the interval with which a job or schedule is repeated. Provide the scheduling information in the
repeat_interval parameter of each procedure.

repeat_interval is a value or series of values that define the interval between the executions of the scheduled job. Each value is composed of a token, an equals sign, and the units on which the
schedule executes. Separate multiple token values with a semi-colon (;).

For example, the following value defines a schedule that's executed each weeknight at 5:45:

FREQ=DAILY;BYDAY=MON,TUE,WED,THU,FRI;BYHOUR=17;BYMINUTE=45

EDB Postgres Advanced Server supports the token types and syntax described in the table.

Token type Syntax Valid values

FREQ FREQ=predefined_interv
al

Where predefined_interval is one of the following: YEARLY , MONTHLY , WEEKLY , DAILY , HOURLY , MINUTELY . The
SECONDLY keyword isn't supported.

BYMONTH BYMONTH=month(,
month)...

Where month is the three-letter abbreviation of the month name: JAN , FEB , MAR , APR , MAY , JUN , JUL , AUG , SEP , OCT , NOV ,
DEC

BYMONTH BYMONTH=month (,
month)...

Where month is the numeric value representing the month: 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12

BYMONTHD
AY

BYMONTHDAY=day_of_mont
h

Where day_of_month is a value from 1 through 31

BYDAY BYDAY=weekday Where weekday is a three-letter abbreviation or single-digit value representing the day of the week.

Monday | MON | 1 |

Tuesday | TUE | 2 |

Wednesday | WED | 3 |

Thursday | THU | 4 |

Friday | FRI | 5 |

Saturday | SAT | 6 |

Sunday | SUN | 7 |

BYDATE
BYDATE=date(,
date)...

Where date is YYYYMMDD .

YYYY is a four-digit year representation of the year,
MM is a two-digit representation of the month,

and DD is a two-digit day representation of the day.

BYDATE BYDATE=date(,
date)...

Where date is MMDD .

MM is a two-digit representation of the month,
and DD is a two-digit day representation of the day

BYHOUR BYHOUR=hour Where hour is a value from 0 through 23 .

BYMINUTE BYMINUTE=minute Where minute is a value from 0 through 59 .

16.2.15.2 CREATE_JOB

Use the CREATE_JOB procedure to create a job. The procedure comes in two forms. The first form of the procedure specifies a schedule in the job definition as well as a job action to invoke when the
job executes:

CREATE_JOB(
 <job_name> IN VARCHAR2,
 <job_type> IN VARCHAR2,
 <job_action> IN VARCHAR2,
 <number_of_arguments> IN PLS_INTEGER DEFAULT 0,
 <start_date> IN TIMESTAMP WITH TIME ZONE DEFAULT NULL,
 <repeat_interval> IN VARCHAR2 DEFAULT NULL,
 <end_date> IN TIMESTAMP WITH TIME ZONE DEFAULT NULL,
 <job_class> IN VARCHAR2 DEFAULT 'DEFAULT_JOB_CLASS',
 <enabled> IN BOOLEAN DEFAULT FALSE,
 <auto_drop> IN BOOLEAN DEFAULT TRUE,
 <comments> IN VARCHAR2 DEFAULT NULL)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 345

The second form uses a job schedule to specify the schedule on which the job executes and specifies the name of a program to execute when the job runs:

CREATE_JOB(
 <job_name> IN VARCHAR2,
 <program_name> IN VARCHAR2,
 <schedule_name> IN VARCHAR2,
 <job_class> IN VARCHAR2 DEFAULT 'DEFAULT_JOB_CLASS',
 <enabled> IN BOOLEAN DEFAULT FALSE,
 <auto_drop> IN BOOLEAN DEFAULT TRUE,
 <comments> IN VARCHAR2 DEFAULT NULL)

Parameters

job_name

job_name specifies the optionally schema-qualified name of the job being created.

job_type

job_type specifies the type of job. The current implementation of CREATE_JOB supports a job type of PLSQL_BLOCK or STORED_PROCEDURE .

job_action

If job_type is PLSQL_BLOCK , job_action specifies the content of the PL/SQL block to invoke when the job executes. The block must be terminated with a semi-colon (;).

If job_type is STORED_PROCEDURE , job_action specifies the optionally schema-qualified name of the procedure.

number_of_arguments

number_of_arguments is an integer value that specifies the number of arguments expected by the job. The default is 0 .

start_date

start_date is a TIMESTAMP WITH TIME ZONE value that specifies the first time that the job is scheduled to execute. The default value is NULL , indicating to schedule the job to execute when
the job is enabled.

repeat_interval

repeat_interval is a VARCHAR2 value that specifies how often the job repeats. If you don't specify a repeat_interval , the job executes only once. The default value is NULL .

end_date

end_date is a TIMESTAMP WITH TIME ZONE value that specifies a time after which the job no longer executes. If you specify a date, the end_date must be after start_date . The default
value is NULL .

If you don't specify an end_date and you do specify a repeat_interval , the job repeats indefinitely until you disable it.

program_name

program_name is the name of a program for the job to execute.

schedule_name

schedule_name is the name of the schedule associated with the job.

job_class

job_class is accepted for compatibility and ignored.

enabled

enabled is a Boolean value that specifies if the job is enabled when created. By default, a job is created in a disabled state, with enabled set to FALSE . To enable a job, specify a value of TRUE
when creating the job, or enable the job with the DBMS_SCHEDULER.ENABLE procedure.

auto_drop

The auto_drop parameter is accepted for compatibility and is ignored. By default, a job's status is changed to DISABLED after the time specified in end_date .

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 346

comments

Use the comments parameter to specify a comment about the job.

Example

This example shows a call to the CREATE_JOB procedure:

EXEC
 DBMS_SCHEDULER.CREATE_JOB (
 job_name => 'update_log',
 job_type => 'PLSQL_BLOCK',
 job_action => 'BEGIN INSERT INTO my_log VALUES(current_timestamp);
 END;',
 start_date => '01-JUN-15 09:00:00.000000',
 repeat_interval => 'FREQ=DAILY;BYDAY=MON,TUE,WED,THU,FRI;BYHOUR=17;',
 end_date => NULL,
 enabled => TRUE,
 comments => 'This job adds a row to the my_log table.');

The code fragment creates a job named update_log that executes each weeknight at 5:00. The job executes a PL/SQL block that inserts the current timestamp into a logfile (my_log). Since no
end_date is specified, the job executes until disabled by the DBMS_SCHEDULER.DISABLE procedure.

16.2.15.3 CREATE_PROGRAM

Use the CREATE_PROGRAM procedure to create a DBMS_SCHEDULER program. The signature is:

CREATE_PROGRAM(
 <program_name> IN VARCHAR2,
 <program_type> IN VARCHAR2,
 <program_action> IN VARCHAR2,
 <number_of_arguments> IN PLS_INTEGER DEFAULT 0,
 <enabled> IN BOOLEAN DEFAULT FALSE,
 <comments> IN VARCHAR2 DEFAULT NULL)

Parameters

program_name

program_name specifies the name of the program that's being created.

program_type

program_type specifies the type of program. The current implementation of CREATE_PROGRAM supports a program_type of PLSQL_BLOCK or PROCEDURE .

program_action

If program_type is PLSQL_BLOCK, program_action contains the PL/SQL block that executes when the program is invoked. The PL/SQL block must be terminated with a semi-colon (;).

If program_type is PROCEDURE , program_action contains the name of the stored procedure.

number_of_arguments

If program_type is PLSQL_BLOCK , this argument is ignored.

If program_type is PROCEDURE , number_of_arguments specifies the number of arguments required by the procedure. The default value is 0 .

enabled

enabled specifies if the program is created enabled or disabled:

If enabled is TRUE , the program is created enabled.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 347

If enabled is FALSE , the program is created disabled. Use the DBMS_SCHEDULER.ENABLE program to enable a disabled program.

The default value is FALSE .

comments

Use the comments parameter to specify a comment about the program. By default, this parameter is NULL .

Example

The following call to the CREATE_PROGRAM procedure creates a program named update_log :

EXEC
 DBMS_SCHEDULER.CREATE_PROGRAM (
 program_name => 'update_log',
 program_type => 'PLSQL_BLOCK',
 program_action => 'BEGIN INSERT INTO my_log VALUES(current_timestamp);
 END;',
 enabled => TRUE,
 comments => 'This program adds a row to the my_log table.');

update_log is a PL/SQL block that adds a row containing the current date and time to the my_log table. The program is enabled when the CREATE_PROGRAM procedure executes.

16.2.15.4 CREATE_SCHEDULE

Use the CREATE_SCHEDULE procedure to create a job schedule. The signature of the CREATE_SCHEDULE procedure is:

CREATE_SCHEDULE(
 <schedule_name> IN VARCHAR2,
 <start_date> IN TIMESTAMP WITH TIME ZONE DEFAULT NULL,
 <repeat_interval> IN VARCHAR2,
 <end_date> IN TIMESTAMP WITH TIME ZONE DEFAULT NULL,
 <comments> IN VARCHAR2 DEFAULT NULL)

Parameters

schedule_name

schedule_name specifies the name of the schedule.

start_date

start_date is a TIMESTAMP WITH TIME ZONE value that specifies the date and time that the schedule is eligible to execute. If you don't specify a start_date , the date that the job is
enabled is used as the start_date . By default, start_date is NULL .

repeat_interval

repeat_interval is a VARCHAR2 value that specifies how often the job repeats. If you don't specify a repeat_interval , the job executes only once, on the date specified by start_date .

!!! Note You must provide a value for either start_date or repeat_interval . If both start_date and repeat_interval are NULL , the server returns an error.

end_date

end_date is a TIMESTAMP WITH TIME ZONE value that specifies a time after which the schedule no longer executes. If you specify a date, the end_date must be after the start_date . The
default value is NULL .

!!! Note If you specify a repeat_interval and don't specify an end_date , the schedule repeats indefinitely until you disable it.

comments

Use the comments parameter to specify a comment about the schedule. By default, this parameter is NULL .

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 348

Example

This code fragment calls CREATE_SCHEDULE to create a schedule named weeknights_at_5 :

EXEC
 DBMS_SCHEDULER.CREATE_SCHEDULE (
 schedule_name => 'weeknights_at_5',
 start_date => '01-JUN-13 09:00:00.000000',
 repeat_interval => 'FREQ=DAILY;BYDAY=MON,TUE,WED,THU,FRI;BYHOUR=17;',
 comments => 'This schedule executes each weeknight at 5:00');

The schedule executes each weeknight, at 5:00, effective after June 1, 2013. Since no end_date is specified, the schedule executes indefinitely until disabled with DBMS_SCHEDULER.DISABLE .

16.2.15.5 DEFINE_PROGRAM_ARGUMENT

Use the DEFINE_PROGRAM_ARGUMENT procedure to define a program argument. The DEFINE_PROGRAM_ARGUMENT procedure comes in two forms. The first form defines an argument with a
default value:

DEFINE_PROGRAM_ARGUMENT(
 <program_name> IN VARCHAR2,
 <argument_position> IN PLS_INTEGER,
 <argument_name> IN VARCHAR2 DEFAULT NULL,
 <argument_type> IN VARCHAR2,
 <default_value> IN VARCHAR2,
 <out_argument> IN BOOLEAN DEFAULT FALSE)

The second form defines an argument without a default value:

DEFINE_PROGRAM_ARGUMENT(
 <program_name> IN VARCHAR2,
 <argument_position> IN PLS_INTEGER,
 <argument_name> IN VARCHAR2 DEFAULT NULL,
 <argument_type> IN VARCHAR2,
 <out_argument> IN BOOLEAN DEFAULT FALSE)

Parameters

program_name

program_name is the name of the program to which the arguments belong.

argument_position

argument_position specifies the position of the argument as it's passed to the program.

argument_name

argument_name specifies the optional name of the argument. By default, argument_name is NULL .

argument_type IN VARCHAR2

argument_type specifies the data type of the argument.

default_value

default_value specifies the default value assigned to the argument. default_value is overridden by a value specified by the job when the job executes.

out_argument IN BOOLEAN DEFAULT FALSE

out_argument isn't currently used. If specified, the value must be FALSE .

Example

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 349

This code fragment uses the DEFINE_PROGRAM_ARGUMENT procedure to define the first and second arguments in a program named add_emp :

EXEC
 DBMS_SCHEDULER.DEFINE_PROGRAM_ARGUMENT(
 program_name => 'add_emp',
 argument_position => 1,
 argument_name => 'dept_no',
 argument_type => 'INTEGER,
 default_value => '20');
EXEC
 DBMS_SCHEDULER.DEFINE_PROGRAM_ARGUMENT(
 program_name => 'add_emp',
 argument_position => 2,
 argument_name => 'emp_name',
 argument_type => 'VARCHAR2');

The first argument is an INTEGER value named dept_no that has a default value of 20 . The second argument is a VARCHAR2 value named emp_name and doesn't have a default value.

16.2.15.6 DISABLE

Use the DISABLE procedure to disable a program or a job. The signature of the DISABLE procedure is:

DISABLE(
 <name> IN VARCHAR2,
 <force> IN BOOLEAN DEFAULT FALSE,
 <commit_semantics> IN VARCHAR2 DEFAULT 'STOP_ON_FIRST_ERROR')

Parameters

name

name specifies the name of the program or job that's being disabled.

force

force is accepted for compatibility and ignored.

commit_semantics

commit_semantics tells the server how to handle an error encountered while disabling a program or job. By default, commit_semantics is set to STOP_ON_FIRST_ERROR , which means to
stop when an error is encountered. Any programs or jobs that were successfully disabled before the error are committed to disk.

The TRANSACTIONAL and ABSORB_ERRORS keywords are accepted for compatibility and ignored.

Example

The following call to the DISABLE procedure disables a program named update_emp :

DBMS_SCHEDULER.DISABLE('update_emp');

16.2.15.7 DROP_JOB

Use the DROP_JOB procedure to drop a job, drop any arguments that belong to the job, and eliminate any future job executions. The signature of the procedure is:

DROP_JOB(
 <job_name> IN VARCHAR2,
 <force> IN BOOLEAN DEFAULT FALSE,
 <defer> IN BOOLEAN DEFAULT FALSE,
 <commit_semantics> IN VARCHAR2 DEFAULT 'STOP_ON_FIRST_ERROR')

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 350

Parameters

job_name

job_name specifies the name of the job that's being dropped.

force

force is accepted for compatibility and ignored.

defer

defer is accepted for compatibility and ignored.

commit_semantics

commit_semantics tells the server how to handle an error encountered while dropping a program or job. By default, commit_semantics is set to STOP_ON_FIRST_ERROR , which means to
stop when an error is encountered.

The TRANSACTIONAL and ABSORB_ERRORS keywords are accepted for compatibility and ignored.

Example

The following call to DROP_JOB drops a job named update_log :

DBMS_SCHEDULER.DROP_JOB('update_log');

16.2.15.8 DROP_PROGRAM

The DROP_PROGRAM procedure drops a program. The signature of the DROP_PROGRAM procedure is:

DROP_PROGRAM(
 <program_name> IN VARCHAR2,
 <force> IN BOOLEAN DEFAULT FALSE)

Parameters

program_name

program_name specifies the name of the program that's being dropped.

force

force is a Boolean value that tells the server how to handle programs with dependent jobs.

Specify FALSE to return an error if the program is referenced by a job.

Specify TRUE to disable any jobs that reference the program before dropping the program.

The default value is FALSE .

Example

The following call to DROP_PROGRAM drops a job named update_emp :

DBMS_SCHEDULER.DROP_PROGRAM('update_emp');

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 351

16.2.15.9 DROP_PROGRAM_ARGUMENT

Use the DROP_PROGRAM_ARGUMENT procedure to drop a program argument. The DROP_PROGRAM_ARGUMENT procedure comes in two forms. The first form uses an argument position to specify
the argument to drop:

DROP_PROGRAM_ARGUMENT(
 <program_name> IN VARCHAR2,
 <argument_position> IN PLS_INTEGER)

The second form takes the argument name:

DROP_PROGRAM_ARGUMENT(
 <program_name> IN VARCHAR2,
 <argument_name> IN VARCHAR2)

Parameters

program_name

program_name specifies the name of the program that's being modified.

argument_position

argument_position specifies the position of the argument that's being dropped.

argument_name

argument_name specifies the name of the argument that's being dropped.

Examples

The following call to DROP_PROGRAM_ARGUMENT drops the first argument in the update_emp program:

DBMS_SCHEDULER.DROP_PROGRAM_ARGUMENT('update_emp', 1);

The following call to DROP_PROGRAM_ARGUMENT drops an argument named emp_name :

DBMS_SCHEDULER.DROP_PROGRAM_ARGUMENT(update_emp', 'emp_name');

16.2.15.10 DROP_SCHEDULE

Use the DROP_SCHEDULE procedure to drop a schedule. The signature is:

DROP_SCHEDULE(
 <schedule_name> IN VARCHAR2,
 <force> IN BOOLEAN DEFAULT FALSE)

Parameters

schedule_name

schedule_name specifies the name of the schedule that's being dropped.

force

force specifies the behavior of the server if the specified schedule is referenced by any job:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 352

Specify FALSE to return an error if the specified schedule is referenced by a job. This is the default behavior.
Specify TRUE to disable to any jobs that use the specified schedule before dropping the schedule. Any running jobs are allowed to complete before the schedule is dropped.

Example

The following call to DROP_SCHEDULE drops a schedule named weeknights_at_5 :

DBMS_SCHEDULER.DROP_SCHEDULE('weeknights_at_5', TRUE);

The server disables any jobs that use the schedule before dropping the schedule.

16.2.15.11 ENABLE

Use the ENABLE procedure to enable a disabled program or job.

The signature of the ENABLE procedure is:

ENABLE(
 <name> IN VARCHAR2,
 <commit_semantics> IN VARCHAR2 DEFAULT 'STOP_ON_FIRST_ERROR')

Parameters

name

name specifies the name of the program or job that's being enabled.

commit_semantics

commit_semantics tells the server how to handle an error encountered while enabling a program or job. By default, commit_semantics is set to STOP_ON_FIRST_ERROR , tellin the server
to stop when it encounters an error.

The TRANSACTIONAL and ABSORB_ERRORS keywords are accepted for compatibility and ignored.

Example

The following call to DBMS_SCHEDULER.ENABLE enables the update_emp program:

DBMS_SCHEDULER.ENABLE('update_emp');

16.2.15.12 EVALUATE_CALENDAR_STRING

Use the EVALUATE_CALENDAR_STRING procedure to evaluate the repeat_interval value specified when creating a schedule with the CREATE_SCHEDULE procedure. The
EVALUATE_CALENDAR_STRING procedure returns the date and time that a specified schedule executes without actually scheduling the job.

The signature of the EVALUATE_CALENDAR_STRING procedure is:

EVALUATE_CALENDAR_STRING(
 <calendar_string> IN VARCHAR2,
 <start_date> IN TIMESTAMP WITH TIME ZONE,
 <return_date_after> IN TIMESTAMP WITH TIME ZONE,
 <next_run_date> OUT TIMESTAMP WITH TIME ZONE)

Parameters

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 353

calendar_string

calendar_string is the calendar string that describes a repeat_interval that's being evaluated.

start_date IN TIMESTAMP WITH TIME ZONE

start_date is the date and time after which the repeat_interval becomes valid.

return_date_after

Use the return_date_after parameter to specify the date and time for EVALUATE_CALENDAR_STRING to use as a starting date when evaluating the repeat_interval .

For example, if you specify a return_date_after value of 01-APR-13 09.00.00.000000 , EVALUATE_CALENDAR_STRING returns the date and time of the first iteration of the schedule
after April 1st, 2013.

next_run_date OUT TIMESTAMP WITH TIME ZONE

next_run_date is an OUT parameter that contains the first occurrence of the schedule after the date specified by the return_date_after parameter.

Example

This example evaluates a calendar string and returns the first date and time that the schedule will execute after June 15, 2013:

DECLARE
 result TIMESTAMP;
BEGIN

 DBMS_SCHEDULER.EVALUATE_CALENDAR_STRING
 (
 'FREQ=DAILY;BYDAY=MON,TUE,WED,THU,FRI;BYHOUR=17;',
 '15-JUN-2013', NULL, result
);

 DBMS_OUTPUT.PUT_LINE('next_run_date: ' || result);
END;
/

next_run_date: 17-JUN-13 05.00.00.000000 PM

Because June 15, 2013 is a Saturday, the schedule will execute on Monday, June 17, 2013 at 5:00 pm.

16.2.15.13 RUN_JOB

Use the RUN_JOB procedure to execute a job immediately. The signature of the RUN_JOB procedure is:

RUN_JOB(
 <job_name> IN VARCHAR2,
 <use_current_session> IN BOOLEAN DEFAULT TRUE

Parameters

job_name

job_name specifies the name of the job to execute.

use_current_session

By default, the job executes in the current session. If specified, use_current_session must be set to TRUE . If use_current_session is set to FALSE , EDB Postgres Advanced Server
returns an error.

Example

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 354

The following call to RUN_JOB executes a job named update_log :

DBMS_SCHEDULER.RUN_JOB('update_log', TRUE);

Passing a value of TRUE as the second argument instructs the server to invoke the job in the current session.

16.2.15.14 SET_JOB_ARGUMENT_VALUE

Use the SET_JOB_ARGUMENT_VALUE procedure to specify a value for an argument. The SET_JOB_ARGUMENT_VALUE procedure comes in two forms. The first form specifies the argument to
modify by position:

SET_JOB_ARGUMENT_VALUE(
 <job_name> IN VARCHAR2,
 <argument_position> IN PLS_INTEGER,
 <argument_value> IN VARCHAR2)

The second form uses an argument name to specify the argument to modify:

SET_JOB_ARGUMENT_VALUE(
 <job_name> IN VARCHAR2,
 <argument_name> IN VARCHAR2,
 <argument_value> IN VARCHAR2)

Argument values set by the SET_JOB_ARGUMENT_VALUE procedure override any values set by default.

Parameters

job_name

job_name specifies the name of the job to which the modified argument belongs.

argument_position

Use argument_position to specify the argument position for which the value is set.

argument_name

Use argument_name to specify the argument by name for which the value is set.

argument_value

argument_value specifies the new value of the argument.

Examples

This example assigns a value of 30 to the first argument in the update_emp job:

DBMS_SCHEDULER.SET_JOB_ARGUMENT_VALUE('update_emp', 1, '30');

This example sets the emp_name argument to SMITH :

DBMS_SCHEDULER.SET_JOB_ARGUMENT_VALUE('update_emp', 'emp_name', 'SMITH');

16.2.16 DBMS_SESSION

EDB Postgres Advanced Server provides support for the following DBMS_SESSION.SET_ROLE procedure:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 355

Function/procedure Return type Description

SET_ROLE(role_cmd) n/a Executes a SET ROLE statement followed by the string value specified in role_cmd .

EDB Postgres Advanced Server's implementation of DBMS_SESSION is a partial implementation when compared to Oracle's version. Only DBMS_SESSION.SET_ROLE is supported.

SET_ROLE

The SET_ROLE procedure sets the current session user to the role specified in role_cmd . After invoking the SET_ROLE procedure, the current session uses the permissions assigned to the
specified role. The signature of the procedure is:

SET_ROLE(<role_cmd>)

The SET_ROLE procedure appends the value specified for role_cmd to the SET ROLE statement and then invokes the statement.

Parameters

role_cmd

role_cmd specifies a role name in the form of a string value.

Example

This call to the SET_ROLE procedure invokes the SET ROLE command to set the identity of the current session user to manager:

edb=# exec DBMS_SESSION.SET_ROLE('manager');

16.2.17 DBMS_SQL

The DBMS_SQL package provides an application interface compatible with Oracle databases to the EDB dynamic SQL functionality. With DBMS_SQL you can construct queries and other commands
at runtime rather than when you write the application. EDB Postgres Advanced Server offers native support for dynamic SQL. DBMS_SQL provides a way to use dynamic SQL in a way that's compatible
with Oracle databases without modifying your application.

DBMS_SQL assumes the privileges of the current user when executing dynamic SQL statements.

EDB Postgres Advanced Server's implementation of DBMS_SQL is a partial implementation when compared to Oracle's version. Only those functions and procedures listed in the table are supported.

Function/procedure Function or
procedure

Return
type

Description

BIND_VARIABLE(c, name, value [, out_value_size]) Procedure n/a Bind a value to a variable.

BIND_VARIABLE_CHAR(c, name, value [, out_value_size]) Procedure n/a Bind a CHAR value to a variable.

BIND_VARIABLE_RAW(c, name, value [, out_value_size]) Procedure n/a Bind a RAW value to a variable.

CLOSE_CURSOR(c IN OUT) Procedure n/a Close a cursor.

COLUMN_VALUE(c, position, value OUT [, column_error OUT [,
actual_length OUT]])

Procedure n/a Return a column value into a variable.

COLUMN_VALUE_CHAR(c, position, value OUT [, column_error OUT [,
actual_length OUT]])

Procedure n/a Return a CHAR column value into a variable.

COLUMN_VALUE_RAW(c, position, value OUT [, column_error OUT [,
actual_length OUT]])

Procedure n/a Return a RAW column value into a variable.

COLUMN_VALUE_LONG(c, position, length, offset, value OUT, value_length
OUT

Procedure n/a Return a part of the LONG column value into a variable.

DEFINE_COLUMN(c, position, column [, column_size]) Procedure n/a Define a column in the SELECT list.

DEFINE_COLUMN_CHAR(c, position, column, column_size) Procedure n/a Define a CHAR column in the SELECT list.

DEFINE_COLUMN_RAW(c, position, column, column_size) Procedure n/a Define a RAW column in the SELECT list.

DEFINE_COLUMN_LONG(c, position) Procedure n/a Define a LONG column in the SELECT list.

DESCRIBE_COLUMNS Procedure n/a Define columns to hold a cursor result set.

EXECUTE(c) Function
INTEGE
R

Execute a cursor.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 356

EXECUTE_AND_FETCH(c [, exact]) Function
INTEGE
R

Execute a cursor and fetch a single row.

FETCH_ROWS(c) Function
INTEGE
R

Fetch rows from the cursor.

IS_OPEN(c) Function
BOOLEA
N

Check if a cursor is open.

LAST_ROW_COUNT Function
INTEGE
R

Return cumulative number of rows fetched.

LAST_ERROR_POSITION Function
INTEGE
R

Return byte offset in the SQL statement text where the
error occurred.

OPEN_CURSOR Function
INTEGE
R

Open a cursor.

PARSE(c, statement, language_flag) Procedure n/a Parse a statement.

Function/procedure Function or
procedure

Return
type

Description

The following table lists the public variables available in the DBMS_SQL package.

Public variables Data type Value Description

native INTEGER 1 Provided for compatibility with Oracle syntax. See DBMS_SQL.PARSE for more information.

V6 INTEGER 2 Provided for compatibility with Oracle syntax. See DBMS_SQL.PARSE for more information.

V7 INTEGER 3 Provided for compatibility with Oracle syntax. See DBMS_SQL.PARSE for more information

16.2.17.1 BIND_VARIABLE

The BIND_VARIABLE procedure associates a value with an IN or IN OUT bind variable in a SQL command.

BIND_VARIABLE(<c> NUMBER, <name> VARCHAR2,
 <value> { BLOB | CLOB | DATE | FLOAT | INTEGER | NUMBER | TIMESTAMP | VARCHAR2 }
 [, <out_value_size> NUMBER])

Parameters

c

Cursor ID of the cursor for the SQL command with bind variables.

name

Name of the bind variable in the SQL command.

value

Value to be assigned.

out_value_size

If name is an IN OUT variable, defines the maximum length of the output value. If not specified, the length of value is assumed.

Examples

The following anonymous block uses bind variables to insert a row into the emp table.

DECLARE
 curid NUMBER;
 v_sql VARCHAR2(150) := 'INSERT INTO emp VALUES ' ||
 '(:p_empno, :p_ename, :p_job, :p_mgr, ' ||
 ':p_hiredate, :p_sal, :p_comm, :p_deptno)';
 v_empno emp.empno%TYPE;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 357

 v_ename emp.ename%TYPE;
 v_job emp.job%TYPE;
 v_mgr emp.mgr%TYPE;
 v_hiredate emp.hiredate%TYPE;
 v_sal emp.sal%TYPE;
 v_comm emp.comm%TYPE;
 v_deptno emp.deptno%TYPE;
 v_status INTEGER;
BEGIN
 curid := DBMS_SQL.OPEN_CURSOR;
 DBMS_SQL.PARSE(curid,v_sql,DBMS_SQL.native);
 v_empno := 9001;
 v_ename := 'JONES';
 v_job := 'SALESMAN';
 v_mgr := 7369;
 v_hiredate := TO_DATE('13-DEC-07','DD-MON-YY');
 v_sal := 8500.00;
 v_comm := 1500.00;
 v_deptno := 40;
 DBMS_SQL.BIND_VARIABLE(curid,':p_empno',v_empno);
 DBMS_SQL.BIND_VARIABLE(curid,':p_ename',v_ename);
 DBMS_SQL.BIND_VARIABLE(curid,':p_job',v_job);
 DBMS_SQL.BIND_VARIABLE(curid,':p_mgr',v_mgr);
 DBMS_SQL.BIND_VARIABLE(curid,':p_hiredate',v_hiredate);
 DBMS_SQL.BIND_VARIABLE(curid,':p_sal',v_sal);
 DBMS_SQL.BIND_VARIABLE(curid,':p_comm',v_comm);
 DBMS_SQL.BIND_VARIABLE(curid,':p_deptno',v_deptno);
 v_status := DBMS_SQL.EXECUTE(curid);
 DBMS_OUTPUT.PUT_LINE('Number of rows processed: ' || v_status);
 DBMS_SQL.CLOSE_CURSOR(curid);
END;

Number of rows processed: 1

16.2.17.2 BIND_VARIABLE_CHAR

The BIND_VARIABLE_CHAR procedure associates a CHAR value with an IN or IN OUT bind variable in a SQL command.

BIND_VARIABLE_CHAR(<c> NUMBER, <name> VARCHAR2, <value> CHAR
 [, <out_value_size> NUMBER])

Parameters

c

Cursor ID of the cursor for the SQL command with bind variables.

name

Name of the bind variable in the SQL command.

value

Value of type CHAR to be assigned.

out_value_size

If name is an IN OUT variable, defines the maximum length of the output value. If not specified, the length of value is assumed.

16.2.17.3 BIND_VARIABLE_RAW

The BIND_VARIABLE_RAW procedure associates a RAW value with an IN or IN OUT bind variable in a SQL command.

BIND_VARIABLE_RAW(<c> NUMBER, <name> VARCHAR2, <value> RAW
 [, <out_value_size> NUMBER])

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 358

Parameters

c

Cursor ID of the cursor for the SQL command with bind variables.

name

Name of the bind variable in the SQL command.

value

Value of type RAW to be assigned.

out_value_size

If name is an IN OUT variable, defines the maximum length of the output value. If not specified, the length of value is assumed.

16.2.17.4 CLOSE_CURSOR

The CLOSE_CURSOR procedure closes an open cursor. The resources allocated to the cursor are released and you can no longer use it.

CLOSE_CURSOR(<c> IN OUT NUMBER)

Parameters

c

Cursor ID of the cursor to be closed.

Examples

This example closes an open cursor:

DECLARE
 curid NUMBER;
 v_sql VARCHAR2(150);
 v_status INTEGER;
BEGIN
 v_sql:='INSERT INTO emp VALUES (9001,''JONES'',''SALESMAN'',7369,TO_DATE(''13-DEC-07'',''DD-MON-YY''),8500.00,1500.00,50)';
 curid := DBMS_SQL.OPEN_CURSOR;
 DBMS_SQL.PARSE(curid,v_sql,DBMS_SQL.native);
 v_status := DBMS_SQL.EXECUTE(curid);
 DBMS_OUTPUT.PUT_LINE('Number of rows processed: ' || v_status);
 DBMS_SQL.CLOSE_CURSOR(curid);
END;

16.2.17.5 COLUMN_VALUE

The COLUMN_VALUE procedure defines a variable to receive a value from a cursor.

COLUMN_VALUE(<c> NUMBER, <position> NUMBER, <value> OUT { BLOB | CLOB | DATE | FLOAT |
 INTEGER | NUMBER | TIMESTAMP | VARCHAR2 }
 [, <column_error> OUT NUMBER [, <actual_length> OUT INTEGER]])

Parameters

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 359

c

Cursor id of the cursor returning data to the variable being defined.

position

Position of the returned data in the cursor. The first value in the cursor is position 1.

value

Variable receiving the data returned in the cursor by a prior fetch call.

column_error

Error number associated with the column, if any.

actual_length

Actual length of the data prior to any truncation.

Examples

This example shows the portion of an anonymous block that receives the values from a cursor using the COLUMN_VALUE procedure.

DECLARE
 curid NUMBER;
 v_empno NUMBER(4);
 v_ename VARCHAR2(10);
 v_hiredate DATE;
 v_sal NUMBER(7,2);
 v_comm NUMBER(7,2);
 v_sql VARCHAR2(50) := 'SELECT empno, ename, hiredate, sal, ' ||
 'comm FROM emp';
 v_status INTEGER;
BEGIN
 curid := DBMS_SQL.OPEN_CURSOR;
 DBMS_SQL.PARSE(curid,v_sql,DBMS_SQL.native);
 DBMS_SQL.DEFINE_COLUMN(curid,1,v_empno);
 DBMS_SQL.DEFINE_COLUMN(curid,2,v_ename);
 DBMS_SQL.DEFINE_COLUMN(curid,3,v_hiredate);
 DBMS_SQL.DEFINE_COLUMN(curid,4,v_sal);
 DBMS_SQL.DEFINE_COLUMN(curid,5,v_comm);
 v_status := DBMS_SQL.EXECUTE(curid); .
 LOOP
 v_status := DBMS_SQL.FETCH_ROWS(curid);
 EXIT WHEN v_status = 0;
 DBMS_SQL.COLUMN_VALUE(curid,1,v_empno);
 DBMS_SQL.COLUMN_VALUE(curid,2,v_ename);
 DBMS_SQL.COLUMN_VALUE(curid,3,v_hiredate);
 DBMS_SQL.COLUMN_VALUE(curid,4,v_sal);
 DBMS_SQL.COLUMN_VALUE(curid,4,v_sal);
 DBMS_SQL.COLUMN_VALUE(curid,5,v_comm);
 DBMS_OUTPUT.PUT_LINE(v_empno || ' ' || RPAD(v_ename,10) || ' ' ||
 TO_CHAR(v_hiredate,'yyyy-mm-dd') || ' ' ||
 TO_CHAR(v_sal,'9,999.99') || ' ' ||
 TO_CHAR(NVL(v_comm,0),'9,999.99'));
 END LOOP;
 DBMS_SQL.CLOSE_CURSOR(curid);
END;

16.2.17.6 COLUMN_VALUE_CHAR

The COLUMN_VALUE_CHAR procedure defines a variable to receive a CHAR value from a cursor.

COLUMN_VALUE_CHAR(<c> NUMBER, <position> NUMBER, <value> OUT CHAR
 [, <column_error> OUT NUMBER [, <actual_length> OUT INTEGER]])

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 360

Parameters

c

Cursor id of the cursor returning data to the variable being defined.

position

Position of the returned data in the cursor. The first value in the cursor is position 1.

value

Variable of data type CHAR receiving the data returned in the cursor by a prior fetch call.

column_error

Error number associated with the column, if any.

actual_length

Actual length of the data prior to any truncation.

16.2.17.7 COLUMN_VALUE_RAW

The COLUMN_VALUE_RAW procedure defines a variable to receive a RAW value from a cursor.

COLUMN_VALUE_RAW(<c> NUMBER, <position> NUMBER, <value> OUT RAW
 [, <column_error> OUT NUMBER [, <actual_length> OUT INTEGER]])

Parameters

c

Cursor id of the cursor returning data to the variable being defined.

position

Position of the returned data in the cursor. The first value in the cursor is position 1.

value

Variable of data type RAW receiving the data returned in the cursor by a prior fetch call.

column_error

Error number associated with the column, if any.

actual_length

Actual length of the data prior to any truncation.

COLUMN_VALUE_LONG

The COLUMN_VALUE_LONG procedure returns a part of the value of a LONG column.

COLUMN_VALUE_LONG(<c> NUMBER, <position> NUMBER, <length> NUMBER,
<offset> NUMBER, <value> OUT VARCHAR2, <value_length> OUT INTEGER)

Parameters

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 361

c

Cursor id of the cursor from which to get a value.

position

Position of the column of which to get a value.

length

Number of bytes of the long value to fetch.

offset

Offset into the long field for start of fetch.

value

Value of the column.

value_length

Number of bytes returned in value.

For an example, see DEFINE_COLUMN_LONG.

16.2.17.8 DEFINE_COLUMN

The DEFINE_COLUMN procedure defines a column or expression in the SELECT list to be returned and retrieved in a cursor.

DEFINE_COLUMN(<c> NUMBER, <position> NUMBER, <column> { BLOB | CLOB | DATE | FLOAT |
 INTEGER | NUMBER | TIMESTAMP | VARCHAR2 }
 [, <column_size> NUMBER])

Parameters

c

Cursor id of the cursor associated with the SELECT command.

position

Position of the column or expression in the SELECT list that's being defined.

column

A variable of the same data type as the column or expression in position position of the SELECT list.

column_size

The maximum length of the returned data. Specify column_size only if column is VARCHAR2 . Returned data exceeding column_size is truncated to column_size characters.

Examples

This example shows how the empno , ename , hiredate , sal , and comm columns of the emp table are defined with the DEFINE_COLUMN procedure.

DECLARE
 curid NUMBER;
 v_empno NUMBER(4);
 v_ename VARCHAR2(10);
 v_hiredate DATE;
 v_sal NUMBER(7,2);

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 362

 v_comm NUMBER(7,2);
 v_sql VARCHAR2(50) := 'SELECT empno, ename, hiredate, sal, ' ||
 'comm FROM emp';
 v_status INTEGER;
BEGIN
 curid := DBMS_SQL.OPEN_CURSOR;
 DBMS_SQL.PARSE(curid,v_sql,DBMS_SQL.native);
 DBMS_SQL.DEFINE_COLUMN(curid,1,v_empno);
 DBMS_SQL.DEFINE_COLUMN(curid,2,v_ename,10);
 DBMS_SQL.DEFINE_COLUMN(curid,3,v_hiredate);
 DBMS_SQL.DEFINE_COLUMN(curid,4,v_sal);
 DBMS_SQL.DEFINE_COLUMN(curid,5,v_comm);
 v_status := DBMS_SQL.EXECUTE(curid);
 LOOP
 v_status := DBMS_SQL.FETCH_ROWS(curid);
 EXIT WHEN v_status = 0;
 DBMS_SQL.COLUMN_VALUE(curid,1,v_empno);
 DBMS_SQL.COLUMN_VALUE(curid,2,v_ename);
 DBMS_SQL.COLUMN_VALUE(curid,3,v_hiredate);
 DBMS_SQL.COLUMN_VALUE(curid,4,v_sal);
 DBMS_SQL.COLUMN_VALUE(curid,5,v_comm);
 DBMS_OUTPUT.PUT_LINE(v_empno || ' ' ||v_ename|| ' ' ||
 TO_CHAR(v_hiredate,'yyyy-mm-dd') || ' ' ||
 TO_CHAR(v_sal,'9,999.99') || ' ' ||
 TO_CHAR(NVL(v_comm,0),'9,999.99'));
 END LOOP;
 DBMS_SQL.CLOSE_CURSOR(curid);
END;

The following shows an alternative that produces the same results. The lengths of the data types are irrelevant. The empno , sal , and comm columns still return data equivalent to NUMBER(4) and
NUMBER(7,2) , respectively, even though v_num is defined as NUMBER(1) (assuming the declarations in the COLUMN_VALUE procedure are of the appropriate maximum sizes). The ename

column returns data up to 10 characters in length as defined by the length parameter in the DEFINE_COLUMN call, not by the data type declaration, VARCHAR2(1) declared for v_varchar .
The actual size of the returned data is dictated by the COLUMN_VALUE procedure.

DECLARE
 curid NUMBER;
 v_num NUMBER(1);
 v_varchar VARCHAR2(1);
 v_date DATE;
 v_sql VARCHAR2(50) := 'SELECT empno, ename, hiredate, sal, ' ||
 'comm FROM emp';
 v_status INTEGER;
BEGIN
 curid := DBMS_SQL.OPEN_CURSOR;
 DBMS_SQL.PARSE(curid,v_sql,DBMS_SQL.native);
 DBMS_SQL.DEFINE_COLUMN(curid,1,v_num);
 DBMS_SQL.DEFINE_COLUMN(curid,2,v_varchar,10);
 DBMS_SQL.DEFINE_COLUMN(curid,3,v_date);
 DBMS_SQL.DEFINE_COLUMN(curid,4,v_num);
 DBMS_SQL.DEFINE_COLUMN(curid,5,v_num);
 v_status := DBMS_SQL.EXECUTE(curid);
 LOOP
 v_status := DBMS_SQL.FETCH_ROWS(curid);
 EXIT WHEN v_status = 0;
 DBMS_SQL.COLUMN_VALUE(curid,1,v_empno);
 DBMS_SQL.COLUMN_VALUE(curid,2,v_ename);
 DBMS_SQL.COLUMN_VALUE(curid,3,v_hiredate);
 DBMS_SQL.COLUMN_VALUE(curid,4,v_sal);
 DBMS_SQL.COLUMN_VALUE(curid,5,v_comm);
 DBMS_OUTPUT.PUT_LINE(v_empno || ' ' ||v_ename|| ' ' ||
 TO_CHAR(v_hiredate,'yyyy-mm-dd') || ' ' ||
 TO_CHAR(v_sal,'9,999.99') || ' ' ||
 TO_CHAR(NVL(v_comm,0),'9,999.99'));
 END LOOP;
 DBMS_SQL.CLOSE_CURSOR(curid);
END;

16.2.17.9 DEFINE_COLUMN_CHAR

The DEFINE_COLUMN_CHAR procedure defines a CHAR column or expression in the SELECT list to be returned and retrieved in a cursor.

DEFINE_COLUMN_CHAR(<c> NUMBER, <position> NUMBER, <column>
CHAR, <column_size> NUMBER)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 363

Parameters

c

Cursor id of the cursor associated with the SELECT command.

position

Position of the column or expression in the SELECT list being defined.

column

A CHAR variable.

column_size

The maximum length of the returned data. Returned data exceeding column_size is truncated to column_size characters.

16.2.17.10 DEFINE_COLUMN_RAW

The DEFINE_COLUMN_RAW procedure defines a RAW column or expression in the SELECT list to be returned and retrieved in a cursor.

DEFINE_COLUMN_RAW(<c> NUMBER, <position> NUMBER, <column> RAW,
 <column_size> NUMBER)

Parameters

c

Cursor id of the cursor associated with the SELECT command.

position

Position of the column or expression in the SELECT list being defined.

column

A RAW variable.

column_size

The maximum length of the returned data. Returned data exceeding column_size is truncated to column_size characters.

DEFINE_COLUMN_LONG

The DEFINE_COLUMN_LONG procedure defines a long column for a SELECT cursor.

DEFINE_COLUMN_LONG(<c> NUMBER, <position> NUMBER)

Parameters

c

Cursor id of the cursor for a row defined to be selected.

position

Position of the column in a row being defined.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 364

Examples

This example shows an anonymous block that defines a long column in the SELECT list using DEFINE_COLUMN_LONG procedure. It returns a part of the LONG column value into a variable using
procedure COLUMN_VALUE_LONG .

DECLARE
 curid NUMBER;
 v_ename VARCHAR(20);
 sql_stmt VARCHAR2(50) := 'SELECT ename ' || ' FROM emp WHERE empno
 = 7844';
 v_status INTEGER;
 v_length INTEGER;
BEGIN
 curid := DBMS_SQL.OPEN_CURSOR;
 DBMS_SQL.PARSE(curid, sql_stmt, DBMS_SQL.native);
 DBMS_SQL.DEFINE_COLUMN_LONG(curid, 1);
 v_status := DBMS_SQL.EXECUTE(curid);
 v_status := DBMS_SQL.FETCH_ROWS(curid);
 DBMS_SQL.COLUMN_VALUE_LONG(curid, 1, 7, 0, v_ename, v_length);
 DBMS_OUTPUT.PUT_LINE('ename: ' || v_ename || ' & length: ' || v_length);
 DBMS_SQL.CLOSE_CURSOR(curid);
END;

ename: TURNER & length: 6

16.2.17.11 DESCRIBE_COLUMNS

The DESCRIBE_COLUMNS procedure describes the columns returned by a cursor.

DESCRIBE_COLUMNS(<c> NUMBER, <col_cnt> OUT NUMBER, <desc_t> OUT
 DESC_TAB);

Parameters

c

The cursor ID of the cursor.

col_cnt

The number of columns in the cursor result set.

desc_tab

The table that contains a description of each column returned by the cursor. The descriptions are of type DESC_REC and contain the following values:

Column name Type

col_type INTEGER

col_max_len INTEGER

col_name VARCHAR2(128)

col_name_len INTEGER

col_schema_name VARCHAR2(128)

col_schema_name_len INTEGER

col_precision INTEGER

col_scale INTEGER

col_charsetid INTEGER

col_charsetform INTEGER

col_null_ok BOOLEAN

16.2.17.12 EXECUTE

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 365

The EXECUTE function executes a parsed SQL command or SPL block.

<status> INTEGER EXECUTE(<c> NUMBER)

Parameters

c

Cursor ID of the parsed SQL command or SPL block to execute.

status

Number of rows processed if the SQL command was DELETE , INSERT , or UPDATE . status is meaningless for all other commands.

Examples

The following anonymous block inserts a row into the dept table.

DECLARE
 curid NUMBER;
 v_sql VARCHAR2(50);
 v_status INTEGER;
BEGIN
 curid := DBMS_SQL.OPEN_CURSOR;
 v_sql := 'INSERT INTO dept VALUES (50, ''HR'', ''LOS ANGELES'')';
 DBMS_SQL.PARSE(curid, v_sql, DBMS_SQL.native);
 v_status := DBMS_SQL.EXECUTE(curid);
 DBMS_OUTPUT.PUT_LINE('Number of rows processed: ' || v_status);
 DBMS_SQL.CLOSE_CURSOR(curid);
END;

16.2.17.13 EXECUTE_AND_FETCH

Function EXECUTE_AND_FETCH executes a parsed SELECT command and fetches one row.

<status> INTEGER EXECUTE_AND_FETCH(<c> NUMBER [, <exact> BOOLEAN])

Parameters

c

Cursor id of the cursor for the SELECT command to execute.

exact

If set to TRUE , an exception is thrown if the number of rows in the result set isn't exactly equal to 1. If set to FALSE , no exception is thrown. The default is FALSE . A NO_DATA_FOUND exception is
thrown if exact is TRUE and there are no rows in the result set. A TOO_MANY_ROWS exception is thrown if exact is TRUE and more than one row is in the result set.

status

Returns 1 if a row was successfully fetched, 0 if no rows to fetch. If an exception is thrown, no value is returned.

Examples

This stored procedure uses the EXECUTE_AND_FETCH function to retrieve one employee using the employee’s name. An exception is thrown if the employee isn't found or more than one employee
has the same name.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 366

CREATE OR REPLACE PROCEDURE select_by_name(
 p_ename emp.ename%TYPE
)
IS
 curid NUMBER;
 v_empno emp.empno%TYPE;
 v_hiredate emp.hiredate%TYPE;
 v_sal emp.sal%TYPE;
 v_comm emp.comm%TYPE;
 v_dname dept.dname%TYPE;
 v_disp_date VARCHAR2(10);
 v_sql VARCHAR2(120) := 'SELECT empno, hiredate, sal, ' ||
 'NVL(comm, 0), dname ' ||
 'FROM emp e, dept d ' ||
 'WHERE ename = :p_ename ' ||
 'AND e.deptno = d.deptno';
 v_status INTEGER;
BEGIN
 curid := DBMS_SQL.OPEN_CURSOR;
 DBMS_SQL.PARSE(curid,v_sql,DBMS_SQL.native);
 DBMS_SQL.BIND_VARIABLE(curid,':p_ename',UPPER(p_ename));
 DBMS_SQL.DEFINE_COLUMN(curid,1,v_empno);
 DBMS_SQL.DEFINE_COLUMN(curid,2,v_hiredate);
 DBMS_SQL.DEFINE_COLUMN(curid,3,v_sal);
 DBMS_SQL.DEFINE_COLUMN(curid,4,v_comm);
 DBMS_SQL.DEFINE_COLUMN(curid,5,v_dname,14);
 v_status := DBMS_SQL.EXECUTE_AND_FETCH(curid,TRUE);
 DBMS_SQL.COLUMN_VALUE(curid,1,v_empno);
 DBMS_SQL.COLUMN_VALUE(curid,2,v_hiredate);
 DBMS_SQL.COLUMN_VALUE(curid,3,v_sal);
 DBMS_SQL.COLUMN_VALUE(curid,4,v_comm);
 DBMS_SQL.COLUMN_VALUE(curid,5,v_dname);
 v_disp_date := TO_CHAR(v_hiredate, 'MM/DD/YYYY');
 DBMS_OUTPUT.PUT_LINE('Number : ' || v_empno);
 DBMS_OUTPUT.PUT_LINE('Name : ' || UPPER(p_ename));
 DBMS_OUTPUT.PUT_LINE('Hire Date : ' || v_disp_date);
 DBMS_OUTPUT.PUT_LINE('Salary : ' || v_sal);
 DBMS_OUTPUT.PUT_LINE('Commission: ' || v_comm);
 DBMS_OUTPUT.PUT_LINE('Department: ' || v_dname);
 DBMS_SQL.CLOSE_CURSOR(curid);
EXCEPTION
 WHEN NO_DATA_FOUND THEN
 DBMS_OUTPUT.PUT_LINE('Employee ' || p_ename || ' not found');
 DBMS_SQL.CLOSE_CURSOR(curid);
 WHEN TOO_MANY_ROWS THEN
 DBMS_OUTPUT.PUT_LINE('Too many employees named, ' ||
 p_ename || ', found');
 DBMS_SQL.CLOSE_CURSOR(curid);
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE('The following is SQLERRM:');
 DBMS_OUTPUT.PUT_LINE(SQLERRM);
 DBMS_OUTPUT.PUT_LINE('The following is SQLCODE:');
 DBMS_OUTPUT.PUT_LINE(SQLCODE);
 DBMS_SQL.CLOSE_CURSOR(curid);
END;

EXEC select_by_name('MARTIN')

Number : 7654
Name : MARTIN
Hire Date : 09/28/1981
Salary : 1250
Commission: 1400
Department: SALES

16.2.17.14 FETCH_ROWS

The FETCH_ROWS function retrieves a row from a cursor.

<status> INTEGER FETCH_ROWS(<c> NUMBER)

Parameters

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 367

c

Cursor ID of the cursor from which to fetch a row.

status

Returns 1 if a row was successfully fetched, 0 if no more rows to fetch.

Examples

These examples fetch the rows from the emp table and display the results.

DECLARE
 curid NUMBER;
 v_empno NUMBER(4);
 v_ename VARCHAR2(10);
 v_hiredate DATE;
 v_sal NUMBER(7,2);
 v_comm NUMBER(7,2);
 v_sql VARCHAR2(50) := 'SELECT empno, ename, hiredate, sal, ' ||
 'comm FROM emp';
 v_status INTEGER;
BEGIN
 curid := DBMS_SQL.OPEN_CURSOR;
 DBMS_SQL.PARSE(curid,v_sql,DBMS_SQL.native);
 DBMS_SQL.DEFINE_COLUMN(curid,1,v_empno);
 DBMS_SQL.DEFINE_COLUMN(curid,2,v_ename,10);
 DBMS_SQL.DEFINE_COLUMN(curid,3,v_hiredate);
 DBMS_SQL.DEFINE_COLUMN(curid,4,v_sal);
 DBMS_SQL.DEFINE_COLUMN(curid,5,v_comm);

 v_status := DBMS_SQL.EXECUTE(curid);
 DBMS_OUTPUT.PUT_LINE('EMPNO ENAME HIREDATE SAL COMM');
 DBMS_OUTPUT.PUT_LINE('----- ---------- ---------- -------- ' ||
 '--------');
 LOOP
 v_status := DBMS_SQL.FETCH_ROWS(curid);
 EXIT WHEN v_status = 0;
 DBMS_SQL.COLUMN_VALUE(curid,1,v_empno);
 DBMS_SQL.COLUMN_VALUE(curid,2,v_ename);
 DBMS_SQL.COLUMN_VALUE(curid,3,v_hiredate);
 DBMS_SQL.COLUMN_VALUE(curid,4,v_sal);
 DBMS_SQL.COLUMN_VALUE(curid,4,v_sal);
 DBMS_SQL.COLUMN_VALUE(curid,5,v_comm);
 DBMS_OUTPUT.PUT_LINE(v_empno || ' ' || RPAD(v_ename,10) || ' ' ||
 TO_CHAR(v_hiredate,'yyyy-mm-dd') || ' ' ||
 TO_CHAR(v_sal,'9,999.99') || ' ' ||
 TO_CHAR(NVL(v_comm,0),'9,999.99'));
 END LOOP;
 DBMS_SQL.CLOSE_CURSOR(curid);
END;

EMPNO ENAME HIREDATE SAL COMM
----- ---------- ---------- -------- --------
7369 SMITH 1980-12-17 800.00 .00
7499 ALLEN 1981-02-20 1,600.00 300.00
7521 WARD 1981-02-22 1,250.00 500.00
7566 JONES 1981-04-02 2,975.00 .00
7654 MARTIN 1981-09-28 1,250.00 1,400.00
7698 BLAKE 1981-05-01 2,850.00 .00
7782 CLARK 1981-06-09 2,450.00 .00
7788 SCOTT 1987-04-19 3,000.00 .00
7839 KING 1981-11-17 5,000.00 .00
7844 TURNER 1981-09-08 1,500.00 .00
7876 ADAMS 1987-05-23 1,100.00 .00
7900 JAMES 1981-12-03 950.00 .00
7902 FORD 1981-12-03 3,000.00 .00
7934 MILLER 1982-01-23 1,300.00 .00

16.2.17.15 IS_OPEN

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 368

The IS_OPEN function tests whether the given cursor is open.

<status> BOOLEAN IS_OPEN(<c> NUMBER)

Parameters

c

Cursor ID of the cursor to test.

status

Set to TRUE if the cursor is open, set to FALSE if the cursor isn't open.

16.2.17.16 LAST_ROW_COUNT

The LAST_ROW_COUNT function returns the number of rows that were currently fetched.

<rowcnt> INTEGER LAST_ROW_COUNT

Parameters

rowcnt

Number of row fetched thus far.

Examples

This example uses the LAST_ROW_COUNT function to display the total number of rows fetched in the query.

DECLARE
 curid NUMBER;
 v_empno NUMBER(4);
 v_ename VARCHAR2(10);
 v_hiredate DATE;
 v_sal NUMBER(7,2);
 v_comm NUMBER(7,2);
 v_sql VARCHAR2(50) := 'SELECT empno, ename, hiredate, sal, ' ||
 'comm FROM emp';
 v_status INTEGER;
BEGIN
 curid := DBMS_SQL.OPEN_CURSOR;
 DBMS_SQL.PARSE(curid,v_sql,DBMS_SQL.native);
 DBMS_SQL.DEFINE_COLUMN(curid,1,v_empno);
 DBMS_SQL.DEFINE_COLUMN(curid,2,v_ename,10);
 DBMS_SQL.DEFINE_COLUMN(curid,3,v_hiredate);
 DBMS_SQL.DEFINE_COLUMN(curid,4,v_sal);
 DBMS_SQL.DEFINE_COLUMN(curid,5,v_comm);

 v_status := DBMS_SQL.EXECUTE(curid);
 DBMS_OUTPUT.PUT_LINE('EMPNO ENAME HIREDATE SAL COMM');
 DBMS_OUTPUT.PUT_LINE('----- ---------- ---------- -------- ' ||
 '--------');
 LOOP
 v_status := DBMS_SQL.FETCH_ROWS(curid);
 EXIT WHEN v_status = 0;
 DBMS_SQL.COLUMN_VALUE(curid,1,v_empno);
 DBMS_SQL.COLUMN_VALUE(curid,2,v_ename);
 DBMS_SQL.COLUMN_VALUE(curid,3,v_hiredate);
 DBMS_SQL.COLUMN_VALUE(curid,4,v_sal);
 DBMS_SQL.COLUMN_VALUE(curid,4,v_sal);
 DBMS_SQL.COLUMN_VALUE(curid,5,v_comm);
 DBMS_OUTPUT.PUT_LINE(v_empno || ' ' || RPAD(v_ename,10) || ' ' ||

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 369

 TO_CHAR(v_hiredate,'yyyy-mm-dd') || ' ' ||
 TO_CHAR(v_sal,'9,999.99') || ' ' ||
 TO_CHAR(NVL(v_comm,0),'9,999.99'));
 END LOOP;
 DBMS_OUTPUT.PUT_LINE('Number of rows: ' || DBMS_SQL.LAST_ROW_COUNT);
 DBMS_SQL.CLOSE_CURSOR(curid);
END;

EMPNO ENAME HIREDATE SAL COMM
----- ---------- ---------- -------- --------
7369 SMITH 1980-12-17 800.00 .00
7499 ALLEN 1981-02-20 1,600.00 300.00
7521 WARD 1981-02-22 1,250.00 500.00
7566 JONES 1981-04-02 2,975.00 .00
7654 MARTIN 1981-09-28 1,250.00 1,400.00
7698 BLAKE 1981-05-01 2,850.00 .00
7782 CLARK 1981-06-09 2,450.00 .00
7788 SCOTT 1987-04-19 3,000.00 .00
7839 KING 1981-11-17 5,000.00 .00
7844 TURNER 1981-09-08 1,500.00 .00
7876 ADAMS 1987-05-23 1,100.00 .00
7900 JAMES 1981-12-03 950.00 .00
7902 FORD 1981-12-03 3,000.00 .00
7934 MILLER 1982-01-23 1,300.00 .00
Number of rows: 14

LAST_ERROR_POSITION

The LAST_ERROR_POSITION function returns an integer value indicating the byte offset in the SQL statement text where the error occurred. The error position of the first character in the SQL
statement is at 1 .

LAST_ERROR_POSITION RETURN INTEGER;

Examples

This example shows an anonymous block that returns an error position with the LAST_ERROR_POSITION function.

DECLARE
 curid NUMBER;
 sql_stmt VARCHAR2(50) := 'SELECT empno FROM not_exist_table';
 v_position INTEGER;
BEGIN
 curid := DBMS_SQL.OPEN_CURSOR;
 DBMS_SQL.PARSE(curid, sql_stmt, DBMS_SQL.native);
EXCEPTION WHEN OTHERS THEN
 v_position := DBMS_SQL.LAST_ERROR_POSITION;
 DBMS_OUTPUT.PUT_LINE('error position = ' || v_position);
 DBMS_SQL.CLOSE_CURSOR(curid);
END;

error position = 19

16.2.17.17 OPEN_CURSOR

The OPEN_CURSOR function creates a cursor. A cursor must be used to parse and execute any dynamic SQL statement. Once a cursor is open, you can reuse it with the same or different SQL
statements. You don't have to close the cursor and reopen it to reuse it.

<c> INTEGER OPEN_CURSOR

Parameters

c

Cursor ID number associated with the newly created cursor.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 370

Examples

This example creates a new cursor:

DECLARE
 curid NUMBER;
 v_sql VARCHAR2(150);
 v_status INTEGER;
BEGIN
 v_sql:='INSERT INTO dept VALUES (50,''HR'',''LOS ANGELES'')';
 curid := DBMS_SQL.OPEN_CURSOR;
 DBMS_SQL.PARSE(curid,v_sql,DBMS_SQL.native);
 v_status := DBMS_SQL.EXECUTE(curid);
 DBMS_OUTPUT.PUT_LINE('Number of rows processed: ' || v_status);
 DBMS_SQL.CLOSE_CURSOR(curid);
END;

16.2.17.18 PARSE

The PARSE procedure parses a SQL command or SPL block. If the SQL command is a DDL command, it executes immediately and doesn't require that you run the EXECUTE function.

PARSE(<c> NUMBER, <statement> VARCHAR2, <language_flag> NUMBER)

Parameters

c

Cursor ID of an open cursor.

statement

SQL command or SPL block to parse. A SQL command must not end with the semi-colon terminator. However an SPL block does require the semi-colon terminator.

language_flag

Language flag provided for compatibility with Oracle syntax. Use DBMS_SQL.V6 , DBMS_SQL.V7 or DBMS_SQL.native . This flag is ignored, and all syntax is assumed to be in EDB EDB Postgres
Advanced Server form.

Examples

This anonymous block creates a table named, job . DDL statements are executed immediately by the PARSE procedure and don't require a separate EXECUTE step.

DECLARE
 curid NUMBER;
BEGIN
 curid := DBMS_SQL.OPEN_CURSOR;
 DBMS_SQL.PARSE(curid, 'CREATE TABLE job (jobno NUMBER(3), ' ||
 'jname VARCHAR2(9))',DBMS_SQL.native);
 DBMS_SQL.CLOSE_CURSOR(curid);
END;

The following inserts two rows into the job table.

DECLARE
 curid NUMBER;
 v_sql VARCHAR2(50);
 v_status INTEGER;
BEGIN
 curid := DBMS_SQL.OPEN_CURSOR;
 v_sql := 'INSERT INTO job VALUES (100, ''ANALYST'')';
 DBMS_SQL.PARSE(curid, v_sql, DBMS_SQL.native);
 v_status := DBMS_SQL.EXECUTE(curid);
 DBMS_OUTPUT.PUT_LINE('Number of rows processed: ' || v_status);
 v_sql := 'INSERT INTO job VALUES (200, ''CLERK'')';

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 371

 DBMS_SQL.PARSE(curid, v_sql, DBMS_SQL.native);
 v_status := DBMS_SQL.EXECUTE(curid);
 DBMS_OUTPUT.PUT_LINE('Number of rows processed: ' || v_status);
 DBMS_SQL.CLOSE_CURSOR(curid);
END;

Number of rows processed: 1
Number of rows processed: 1

This anonymous block uses the DBMS_SQL package to execute a block containing two INSERT statements. The end of the block contains a terminating semi-colon. In the prior example, each
INSERT statement doesn't have a terminating semi-colon.

DECLARE
 curid NUMBER;
 v_sql VARCHAR2(100);
 v_status INTEGER;
BEGIN
 curid := DBMS_SQL.OPEN_CURSOR;
 v_sql := 'BEGIN ' ||
 'INSERT INTO job VALUES (300, ''MANAGER''); ' ||
 'INSERT INTO job VALUES (400, ''SALESMAN''); ' ||
 'END;';
 DBMS_SQL.PARSE(curid, v_sql, DBMS_SQL.native);
 v_status := DBMS_SQL.EXECUTE(curid);
 DBMS_SQL.CLOSE_CURSOR(curid);
END;

16.2.18 DBMS_UTILITY

The DBMS_UTILITY package provides support for the following utility programs. EDB Postgres Advanced Server's implementation of DBMS_UTILITY is a partial implementation when compared to
Oracle's version. Only the functions and procedures listed in the table are supported.

Function/procedure Function or
procedure

Return type Description

ANALYZE_DATABASE(method [, estimate_rows [, estimate_percent [, method_opt
]]])

Procedure n/a Analyze database tables.

ANALYZE_PART_OBJECT(schema, object_name [, object_type [, command_type [,
command_opt [, sample_clause]]]])

Procedure n/a Analyze a partitioned table.

ANALYZE_SCHEMA(schema, method [, estimate_rows [, estimate_percent [,
method_opt]]])

Procedure n/a Analyze schema tables.

CANONICALIZE(name, canon_name OUT, canon_len) Procedure n/a Canonicalize a string, e.g., strip off white
space.

COMMA_TO_TABLE(list, tablen OUT, tab OUT) Procedure n/a Convert a comma-delimited list of names to
a table of names.

DB_VERSION(version OUT, compatibility OUT) Procedure n/a Get the database version.

EXEC_DDL_STATEMENT (parse_string) Procedure n/a Execute a DDL statement.

FORMAT_CALL_STACK Function TEXT Format the current call stack.

GET_CPU_TIME Function NUMBER Get the current CPU time.

GET_DEPENDENCY(type, schema, name) Procedure n/a Get objects that depend on the given
object.

GET_HASH_VALUE(name, base, hash_size) Function NUMBER Compute a hash value.

GET_PARAMETER_VALUE(parnam, intval OUT, strval OUT) Procedure
BINARY_IN
TEGER

Get database initialization parameter
settings.

GET_TIME Function NUMBER Get the current time.

NAME_TOKENIZE(name, a OUT, b OUT, c OUT, dblink OUT, nextpos OUT) Procedure n/a Parse the given name into its component
parts.

TABLE_TO_COMMA(tab, tablen OUT, list OUT) Procedure n/a Convert a table of names to a comma-
delimited list.

The following table lists the public variables available in the DBMS_UTILITY package.

Public variables Data type Value Description

inv_error_on_restrictions PLS_INTEGER 1 Used by the INVALIDATE procedure.

lname_array TABLE For lists of long names.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 372

uncl_array TABLE For lists of users and names.

Public variables Data type Value Description

LNAME_ARRAY

The LNAME_ARRAY is for storing lists of long names including fully qualified names.

TYPE lname_array IS TABLE OF VARCHAR2(4000) INDEX BY BINARY_INTEGER;

UNCL_ARRAY

The UNCL_ARRAY is for storing lists of users and names.

TYPE uncl_array IS TABLE OF VARCHAR2(227) INDEX BY BINARY_INTEGER;

ANALYZE_DATABASE, ANALYZE SCHEMA and ANALYZE PART_OBJECT

The ANALYZE_DATABASE(), ANALYZE_SCHEMA() and ANALYZE_PART_OBJECT() procedures gather statistics on tables in the database. When you execute the ANALYZE statement,
Postgres samples the data in a table and records distribution statistics in the pg_statistics system table.

ANALYZE_DATABASE , ANALYZE_SCHEMA , and ANALYZE_PART_OBJECT differ primarily in the number of tables that are processed:

ANALYZE_DATABASE analyzes all tables in all schemas in the current database.
ANALYZE_SCHEMA analyzes all tables in a given schema (in the current database).
ANALYZE_PART_OBJECT analyzes a single table.

The syntax for the ANALYZE commands are:

ANALYZE_DATABASE(<method> VARCHAR2 [, <estimate_rows> NUMBER
 [, <estimate_percent> NUMBER [, <method_opt> VARCHAR2]]])

ANALYZE_SCHEMA(<schema> VARCHAR2, <method> VARCHAR2
 [, <estimate_rows> NUMBER [, <estimate_percent> NUMBER
 [, <method_opt> VARCHAR2]]])

ANALYZE_PART_OBJECT(<schema> VARCHAR2, <object_name> VARCHAR2
 [, <object_type> CHAR [, <command_type> CHAR
 [, <command_opt> VARCHAR2 [, <sample_clause>]]]])

Parameters for ANALYZE_DATABASE and ANALYZE_SCHEMA

method

Determines whether the ANALYZE procedure populates the pg_statistics table or removes entries from the pg_statistics table. If you specify a method of DELETE , the ANALYZE
procedure removes the relevant rows from pg_statistics . If you specify a method of COMPUTE or ESTIMATE , the ANALYZE procedure analyzes a table (or multiple tables) and records the
distribution information in pg_statistics . There's no difference between COMPUTE and ESTIMATE . Both methods execute the Postgres ANALYZE statement. All other parameters are
validated and then ignored.

estimate_rows

Number of rows upon which to base estimated statistics. One of estimate_rows or estimate_percent must be specified if the method is ESTIMATE .

This argument is ignored but is included for compatibility.

estimate_percent

Percentage of rows upon which to base estimated statistics. One of estimate_rows or estimate_percent must be specified if the method is ESTIMATE .

This argument is ignored but is included for compatibility.

method_opt

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 373

Object types to analyze. Any combination of the following:

[FOR TABLE]

[FOR ALL [INDEXED] COLUMNS] [SIZE n]

[FOR ALL INDEXES]

This argument is ignored but is included for compatibility.

Parameters for ANALYZE_PART_OBJECT

schema

Name of the schema whose objects to analyze.

object_name

Name of the partitioned object to analyze.

object_type

Type of object to analyze. Valid values are: T – table, I – index.

This argument is ignored but is included for compatibility.

command_type

Type of analyze functionality to perform. Valid values are:

E — Gather estimated statistics based on a specified number of rows or a percentage of rows in the sample_clause clause.

C — Compute exact statistics.

V — Validate the structure and integrity of the partitions.

This argument is ignored but is included for compatibility.

command_opt

For command_type C or E , can be any combination of:

[FOR TABLE]

[FOR ALL COLUMNS]

[FOR ALL LOCAL INDEXES]

For command_type V , can be CASCADE if object_type is T .

This argument is ignored but is included for compatibility.

sample_clause

If command_type is E , contains the following clause to specify the number of rows or percentage of rows on which to base the estimate.

SAMPLE n { ROWS | PERCENT }

This argument is ignored but is included for compatibility.

CANONICALIZE

The CANONICALIZE procedure performs the following operations on an input string:

If the string isn't double quoted, verifies that it uses the characters of a legal identifier. If not, an exception is thrown. If the string is double quoted, all characters are allowed.
If the string isn't double quoted and doesn't contain periods, uppercases all alphabetic characters and eliminates leading and trailing spaces.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 374

If the string is double quoted and doesn't contain periods, strips off the double quotes.
If the string contains periods and no portion of the string is double quoted, uppercases each portion of the string and encloses each portion in double quotes.
If the string contains periods and portions of the string are double quoted, returns:

The double-quoted portions unchanged, including the double quotes
The non-double-quoted portions uppercased and enclosed in double quotes.

CANONICALIZE(<name> VARCHAR2, <canon_name> OUT VARCHAR2,
 <canon_len> BINARY_INTEGER)

Parameters

name

String to canonicalize.

canon_name

The canonicalized string.

canon_len

Number of bytes in name to canonicalize starting from the first character.

Examples

This procedure applies the CANONICALIZE procedure on its input parameter and displays the results.

CREATE OR REPLACE PROCEDURE canonicalize (
 p_name VARCHAR2,
 p_length BINARY_INTEGER DEFAULT 30
)
IS
 v_canon VARCHAR2(100);
BEGIN
 DBMS_UTILITY.CANONICALIZE(p_name,v_canon,p_length);
 DBMS_OUTPUT.PUT_LINE('Canonicalized name ==>' || v_canon || '<==');
 DBMS_OUTPUT.PUT_LINE('Length: ' || LENGTH(v_canon));
EXCEPTION
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE('SQLERRM: ' || SQLERRM);
 DBMS_OUTPUT.PUT_LINE('SQLCODE: ' || SQLCODE);
END;

EXEC canonicalize('Identifier')
Canonicalized name ==>IDENTIFIER<==
Length: 10

EXEC canonicalize('"Identifier"')
Canonicalized name ==>Identifier<==
Length: 10

EXEC canonicalize('"_+142%"')
Canonicalized name ==>_+142%<==
Length: 6

EXEC canonicalize('abc.def.ghi')
Canonicalized name ==>"ABC"."DEF"."GHI"<==
Length: 17

EXEC canonicalize('"abc.def.ghi"')
Canonicalized name ==>abc.def.ghi<==
Length: 11

EXEC canonicalize('"abc".def."ghi"')
Canonicalized name ==>"abc"."DEF"."ghi"<==
Length: 17

EXEC canonicalize('"abc.def".ghi')
Canonicalized name ==>"abc.def"."GHI"<==
Length: 15

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 375

COMMA_TO_TABLE

The COMMA_TO_TABLE procedure converts a comma-delimited list of names into a table of names. Each entry in the list becomes a table entry. Format the names as valid identifiers.

COMMA_TO_TABLE(<list> VARCHAR2, <tablen> OUT BINARY_INTEGER,
 <tab> OUT { LNAME_ARRAY | UNCL_ARRAY })

Parameters

list

Comma-delimited list of names.

tablen

Number of entries in tab .

tab

Table containing the individual names in list .

LNAME_ARRAY

A DBMS_UTILITY LNAME_ARRAY , as described in LNAME_ARRAY.

UNCL_ARRAY

A DBMS_UTILITY UNCL_ARRAY , as described in UNCL_ARRAY.

Examples

This procedure uses the COMMA_TO_TABLE procedure to convert a list of names to a table. It then displays the table entries.

CREATE OR REPLACE PROCEDURE comma_to_table (
 p_list VARCHAR2
)
IS
 r_lname DBMS_UTILITY.LNAME_ARRAY;
 v_length BINARY_INTEGER;
BEGIN
 DBMS_UTILITY.COMMA_TO_TABLE(p_list,v_length,r_lname);
 FOR i IN 1..v_length LOOP
 DBMS_OUTPUT.PUT_LINE(r_lname(i));
 END LOOP;
END;

EXEC comma_to_table('edb.dept, edb.emp, edb.jobhist')

edb.dept
edb.emp
edb.jobhist

DB_VERSION

The DB_VERSION procedure returns the version number of the database.

DB_VERSION(<version> OUT VARCHAR2, <compatibility> OUT VARCHAR2)

Parameters

version

Database version number.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 376

compatibility

Compatibility setting of the database (to be implementation-defined as to its meaning).

Examples

The following anonymous block displays the database version information.

DECLARE
 v_version VARCHAR2(150);
 v_compat VARCHAR2(150);
BEGIN
 DBMS_UTILITY.DB_VERSION(v_version,v_compat);
 DBMS_OUTPUT.PUT_LINE('Version: ' || v_version);
 DBMS_OUTPUT.PUT_LINE('Compatibility: ' || v_compat);
END;

Version: EnterpriseDB 14.0.0 on i686-pc-linux-gnu, compiled by GCC gcc
(GCC) 4.1.2 20080704 (Red Hat 4.1.2-48), 32-bit
Compatibility: EnterpriseDB 14.0.0 on i686-pc-linux-gnu, compiled by GCC
gcc (GCC) 4.1.220080704 (Red Hat 4.1.2-48), 32-bit

EXEC_DDL_STATEMENT

EXEC_DDL_STATEMENT executes a DDL command.

EXEC_DDL_STATEMENT(<parse_string> VARCHAR2)

Parameters

parse_string

The DDL command to execute.

Examples

The following anonymous block creates the job table.

BEGIN
 DBMS_UTILITY.EXEC_DDL_STATEMENT(
 'CREATE TABLE job (' ||
 'jobno NUMBER(3),' ||
 'jname VARCHAR2(9))'
);
END;

If the parse_string doesn't include a valid DDL statement, EDB Postgres Advanced Server returns an error:

edb=# exec dbms_utility.exec_ddl_statement('select rownum from dual');
ERROR: EDB-20001: 'parse_string' must be a valid DDL statement

In this case, EDB Postgres Advanced Server's behavior differs from Oracle's. Oracle accepts the invalid parse_string without complaint.

FORMAT_CALL_STACK

The FORMAT_CALL_STACK function returns the formatted contents of the current call stack.

DBMS_UTILITY.FORMAT_CALL_STACK
return VARCHAR2

You can use this function in a stored procedure, function, or package to return the current call stack in a readable format. This function is useful for debugging.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 377

GET_CPU_TIME

The GET_CPU_TIME function returns the CPU time in hundredths of a second from some arbitrary point in time.

<cputime> NUMBER GET_CPU_TIME

Parameters

cputime

Number of hundredths of a second of CPU time.

Examples

This SELECT command retrieves the current CPU time, which is 603 hundredths of a second or .0603 seconds.

SELECT DBMS_UTILITY.GET_CPU_TIME FROM DUAL;

get_cpu_time

 603

GET_DEPENDENCY

The GET_DEPENDENCY procedure lists the objects that depend on the specified object. GET_DEPENDENCY doesn't show dependencies for functions or procedures.

GET_DEPENDENCY(<type> VARCHAR2, <schema> VARCHAR2,
 <name> VARCHAR2)

Parameters

type

The object type of name . Valid values are INDEX , PACKAGE , PACKAGE BODY , SEQUENCE , TABLE , TRIGGER , TYPE , and VIEW .

schema

Name of the schema in which name exists.

name

Name of the object for which to obtain dependencies.

Examples

The following anonymous block finds dependencies on the EMP table:

BEGIN
 DBMS_UTILITY.GET_DEPENDENCY('TABLE','public','EMP');
END;

DEPENDENCIES ON public.EMP
--
*TABLE public.EMP()
* CONSTRAINT c public.emp()
* CONSTRAINT f public.emp()
* CONSTRAINT p public.emp()
* TYPE public.emp()
* CONSTRAINT c public.emp()
* CONSTRAINT f public.jobhist()
* VIEW .empname_view()

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 378

GET_HASH_VALUE

The GET_HASH_VALUE function computes a hash value for a given string.

<hash> NUMBER GET_HASH_VALUE(<name> VARCHAR2, <base> NUMBER,
 <hash_size> NUMBER)

Parameters

name

The string for which to compute a hash value.

base

Starting value at which to generate hash values.

hash_size

The number of hash values for the desired hash table.

hash

The generated hash value.

Examples

The following anonymous block creates a table of hash values using the ename column of the emp table and then displays the key along with the hash value. The hash values start at 100 with a
maximum of 1024 distinct values.

DECLARE
 v_hash NUMBER;
 TYPE hash_tab IS TABLE OF NUMBER INDEX BY VARCHAR2(10);
 r_hash HASH_TAB;
 CURSOR emp_cur IS SELECT ename FROM emp;
BEGIN
 FOR r_emp IN emp_cur LOOP
 r_hash(r_emp.ename) :=
 DBMS_UTILITY.GET_HASH_VALUE(r_emp.ename,100,1024);
 END LOOP;
 FOR r_emp IN emp_cur LOOP
 DBMS_OUTPUT.PUT_LINE(RPAD(r_emp.ename,10) || ' ' ||
 r_hash(r_emp.ename));
 END LOOP;
END;

SMITH 377
ALLEN 740
WARD 718
JONES 131
MARTIN 176
BLAKE 568
CLARK 621
SCOTT 1097
KING 235
TURNER 850
ADAMS 156
JAMES 942
FORD 775
MILLER 148

GET_PARAMETER_VALUE

The GET_PARAMETER_VALUE procedure retrieves database initialization parameter settings.

<status> BINARY_INTEGER GET_PARAMETER_VALUE(<parnam> VARCHAR2,
 <intval> OUT INTEGER, <strval> OUT VARCHAR2)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 379

Parameters

parnam

Name of the parameter whose value to return. The parameters are listed in the pg_settings system view.

intval

Value of an integer parameter or the length of strval .

strval

Value of a string parameter.

status

Returns 0 if the parameter value is INTEGER or BOOLEAN . Returns 1 if the parameter value is a string.

Examples

The following anonymous block shows the values of two initialization parameters.

DECLARE
 v_intval INTEGER;
 v_strval VARCHAR2(80);
BEGIN
 DBMS_UTILITY.GET_PARAMETER_VALUE('max_fsm_pages', v_intval, v_strval);
 DBMS_OUTPUT.PUT_LINE('max_fsm_pages' || ': ' || v_intval);
 DBMS_UTILITY.GET_PARAMETER_VALUE('client_encoding', v_intval, v_strval);
 DBMS_OUTPUT.PUT_LINE('client_encoding' || ': ' || v_strval);
END;

max_fsm_pages: 72625
client_encoding: SQL_ASCII

GET_TIME

The GET_TIME function returns the current time in hundredths of a second.

<time> NUMBER GET_TIME

Parameters

time

Number of hundredths of a second from the time when the program started.

Examples

This example shows calls to the GET_TIME function.

SELECT DBMS_UTILITY.GET_TIME FROM DUAL;

 get_time

 1555860

SELECT DBMS_UTILITY.GET_TIME FROM DUAL;

 get_time

 1556037

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 380

NAME_TOKENIZE

The NAME_TOKENIZE procedure parses a name into its component parts. Names without double quotes are uppercased. The double quotes are stripped from names with double quotes.

NAME_TOKENIZE(<name> VARCHAR2, <a> OUT VARCHAR2,
 OUT VARCHAR2, <c> OUT VARCHAR2, <dblink> OUT VARCHAR2,
 <nextpos> OUT BINARY_INTEGER)

Parameters

name

String containing a name in the following format:

a[.b[.c]][@dblink]

a

Returns the leftmost component.

b

Returns the second component, if any.

c

Returns the third component, if any.

dblink

Returns the database link name.

nextpos

Position of the last character parsed in name.

Examples

This stored procedure displays the returned parameter values of the NAME_TOKENIZE procedure for various names.

CREATE OR REPLACE PROCEDURE name_tokenize (
 p_name VARCHAR2
)
IS
 v_a VARCHAR2(30);
 v_b VARCHAR2(30);
 v_c VARCHAR2(30);
 v_dblink VARCHAR2(30);
 v_nextpos BINARY_INTEGER;
BEGIN
 DBMS_UTILITY.NAME_TOKENIZE(p_name,v_a,v_b,v_c,v_dblink,v_nextpos);
 DBMS_OUTPUT.PUT_LINE('name : ' || p_name);
 DBMS_OUTPUT.PUT_LINE('a : ' || v_a);
 DBMS_OUTPUT.PUT_LINE('b : ' || v_b);
 DBMS_OUTPUT.PUT_LINE('c : ' || v_c);
 DBMS_OUTPUT.PUT_LINE('dblink : ' || v_dblink);
 DBMS_OUTPUT.PUT_LINE('nextpos: ' || v_nextpos);
END;

Tokenize the name, emp :

BEGIN
 name_tokenize('emp');
END;

name : emp
a : EMP
b :

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 381

c :
dblink :
nextpos: 3

Tokenize the name, edb.list_emp :

BEGIN
 name_tokenize('edb.list_emp');
END;

name : edb.list_emp
a : EDB
b : LIST_EMP
c :
dblink :
nextpos: 12

Tokenize the name, "edb"."Emp_Admin".update_emp_sal :

BEGIN
 name_tokenize('"edb"."Emp_Admin".update_emp_sal');
END;

name : "edb"."Emp_Admin".update_emp_sal
a : edb
b : Emp_Admin
c : UPDATE_EMP_SAL
dblink :
nextpos: 32

Tokenize the name edb.emp@edb_dblink :

BEGIN
 name_tokenize('edb.emp@edb_dblink');
END;

name : edb.emp@edb_dblink
a : EDB
b : EMP
c :
dblink : EDB_DBLINK
nextpos: 18

TABLE_TO_COMMA

The TABLE_TO_COMMA procedure converts table of names into a comma-delimited list of names. Each table entry becomes a list entry. Format the names as valid identifiers.

TABLE_TO_COMMA(<tab> { LNAME_ARRAY | UNCL_ARRAY },
 <tablen> OUT BINARY_INTEGER, <list> OUT VARCHAR2)

Parameters

tab

Table containing names.

LNAME_ARRAY

A DBMS_UTILITY LNAME_ARRAY , as described in LNAME ARRAY.

UNCL_ARRAY

A DBMS_UTILITY UNCL_ARRAY , as described UNCL_ARRAY.

tablen

Number of entries in list .

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 382

list

Comma-delimited list of names from tab .

Examples

This example first uses the COMMA_TO_TABLE procedure to convert a comma-delimited list to a table. The TABLE_TO_COMMA procedure then converts the table back to a comma-delimited list that
it displays.

CREATE OR REPLACE PROCEDURE table_to_comma (
 p_list VARCHAR2
)
IS
 r_lname DBMS_UTILITY.LNAME_ARRAY;
 v_length BINARY_INTEGER;
 v_listlen BINARY_INTEGER;
 v_list VARCHAR2(80);
BEGIN
 DBMS_UTILITY.COMMA_TO_TABLE(p_list,v_length,r_lname);
 DBMS_OUTPUT.PUT_LINE('Table Entries');
 DBMS_OUTPUT.PUT_LINE('-------------');
 FOR i IN 1..v_length LOOP
 DBMS_OUTPUT.PUT_LINE(r_lname(i));
 END LOOP;
 DBMS_OUTPUT.PUT_LINE('-------------');
 DBMS_UTILITY.TABLE_TO_COMMA(r_lname,v_listlen,v_list);
 DBMS_OUTPUT.PUT_LINE('Comma-Delimited List: ' || v_list);
END;

EXEC table_to_comma('edb.dept, edb.emp, edb.jobhist')

Table Entries

edb.dept
edb.emp
edb.jobhist

Comma-Delimited List: edb.dept, edb.emp, edb.jobhist

16.2.19 UTL_ENCODE

The UTL_ENCODE package provides a way to encode and decode data. EDB Postgres Advanced Server supports the following functions and procedures:

Function/procedure Return
type

Description

BASE64_DECODE(r) RAW Use the BASE64_DECODE function to translate a Base64 encoded string to the original RAW value.

BASE64_ENCODE(r) RAW Use the BASE64_ENCODE function to translate a RAW string to an encoded Base64 value.

BASE64_ENCODE(loid) TEXT Use the BASE64_ENCODE function to translate a TEXT string to an encoded Base64 value.

MIMEHEADER_DECODE(buf) VARCHAR
2

Use the MIMEHEADER_DECODE function to translate an encoded MIMEHEADER formatted string to its original
value.

MIMEHEADER_ENCODE(buf, encode_charset,
encoding)

VARCHAR
2

Use the MIMEHEADER_ENCODE function to convert and encode a string in MIMEHEADER format.

QUOTED_PRINTABLE_DECODE(r) RAW Use the QUOTED_PRINTABLE_DECODE function to translate an encoded string to a RAW value.

QUOTED_PRINTABLE_ENCODE(r) RAW Use the QUOTED_PRINTABLE_ENCODE function to translate an input string to a quoted-printable formatted
RAW value.

TEXT_DECODE(buf, encode_charset, encoding) VARCHAR
2

Use the TEXT_DECODE function to decode a string encoded by TEXT_ENCODE .

TEXT_ENCODE(buf, encode_charset, encoding) VARCHAR
2

Use the TEXT_ENCODE function to translate a string to a user-specified character set, and then encode the
string.

UUDECODE(r) RAW Use the UUDECODE function to translate a uuencode encoded string to a RAW value.

UUENCODE(r, type, filename, permission) RAW Use the UUENCODE function to translate a RAW string to an encoded uuencode value.

16.2.19.1 BASE64_DECODE

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 383

Use the BASE64_DECODE function to translate a Base64 encoded string to the original value originally encoded by BASE64_ENCODE . The signature is:

BASE64_DECODE (<r> IN RAW)

This function returns a RAW value.

Parameters

r

r is the string that contains the Base64 encoded data to translate to RAW form.

Examples

Before executing the following example, invoke the command:

SET bytea_output = escape;

This command instructs the server to escape any non-printable characters and to display BYTEA or RAW values onscreen in readable form. For more information, see the Postgres core documentation.

This example encodes a string that contains the text abc using BASE64_ENCODE and then decodes the string using BASE64_DECODE :

edb=# SELECT UTL_ENCODE.BASE64_ENCODE(CAST ('abc' AS RAW));
 base64_encode

 YWJj
(1 row)

edb=# SELECT UTL_ENCODE.BASE64_DECODE(CAST ('YWJj' AS RAW));
 base64_decode

 abc
(1 row)

16.2.19.2 BASE64_ENCODE

Use the BASE64_ENCODE function to translate and encode a string in Base64 format, as described in RFC 4648. This function can be useful when composing MIME email that you intend to send
using the UTL_SMTP package. The BASE64_ENCODE function has two signatures:

BASE64_ENCODE(<r> IN RAW)

and

BASE64_ENCODE(<loid> IN OID)

This function returns a RAW value or an OID .

Parameters

r

r specifies the RAW string to translate to Base64.

loid

loid specifies the object ID of a large object to translate to Base64.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 384

https://www.postgresql.org/docs/current/static/datatype-binary.html

Examples

Before executing the example, invoke the command:

SET bytea_output = escape;

This command instructs the server to escape any nonprintable characters and to display BYTEA or RAW values onscreen in readable form. For more information, see the Postgres core documentation.

This example first encodes a string that contains the text abc using BASE64_ENCODE and then decodes the string using BASE64_DECODE :

edb=# SELECT UTL_ENCODE.BASE64_ENCODE(CAST ('abc' AS RAW));
 base64_encode

 YWJj
(1 row)

edb=# SELECT UTL_ENCODE.BASE64_DECODE(CAST ('YWJj' AS RAW));
 base64_decode

 abc
(1 row)

16.2.19.3 MIMEHEADER_DECODE

Use the MIMEHEADER_DECODE function to decode values that are encoded by the MIMEHEADER_ENCODE function. The signature is:

MIMEHEADER_DECODE(<buf> IN VARCHAR2)

This function returns a VARCHAR2 value.

Parameters

buf

buf contains the value encoded by MIMEHEADER_ENCODE to decode.

Examples

These examples use the MIMEHEADER_ENCODE and MIMEHEADER_DECODE functions to first encode and then decode a string:

edb=# SELECT UTL_ENCODE.MIMEHEADER_ENCODE('What is the date?') FROM DUAL;
 mimeheader_encode

 =?UTF8?Q?What is the date??=
(1 row)

edb=# SELECT UTL_ENCODE.MIMEHEADER_DECODE('=?UTF8?Q?What is the date??=')
FROM DUAL;
 mimeheader_decode

 What is the date?
(1 row)

16.2.19.4 MIMEHEADER_ENCODE

Use the MIMEHEADER_ENCODE function to convert a string into mime header format and then encode the string. The signature is:

MIMEHEADER_ENCODE(<buf> IN VARCHAR2, <encode_charset> IN VARCHAR2
DEFAULT NULL, <encoding> IN INTEGER DEFAULT NULL)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 385

https://www.postgresql.org/docs/current/static/datatype-binary.html

This function returns a VARCHAR2 value.

Parameters

buf

buf contains the string to format and encode. The string is a VARCHAR2 value.

encode_charset

encode_charset specifies the character set to which to convert the string before formatting and encoding it. The default value is NULL .

encoding

encoding specifies the encoding type used when encoding the string. You can specify:

Q to enable quoted-printable encoding. If you don't specify a value, MIMEHEADER_ENCODE uses quoted-printable encoding.
B to enable base-64 encoding.

Examples

These example use the MIMEHEADER_ENCODE and MIMEHEADER_DECODE functions to first encode and then decode a string:

edb=# SELECT UTL_ENCODE.MIMEHEADER_ENCODE('What is the date?') FROM DUAL;
 mimeheader_encode

 =?UTF8?Q?What is the date??=
(1 row)

edb=# SELECT UTL_ENCODE.MIMEHEADER_DECODE('=?UTF8?Q?What is the date??=')
FROM DUAL;
 mimeheader_decode

 What is the date?
(1 row)

16.2.19.5 QUOTED_PRINTABLE_DECODE

Use the QUOTED_PRINTABLE_DECODE function to translate an encoded quoted-printable string into a decoded RAW string.

The signature is:

QUOTED_PRINTABLE_DECODE(<r> IN RAW)

This function returns a RAW value.

Parameters

r

r contains the encoded string to decode. The string is a RAW value encoded by QUOTED_PRINTABLE_ENCODE .

Examples

Before executing the example, invoke the command:

SET bytea_output = escape;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 386

This command escapes any nonprintable characters and displays BYTEA or RAW values onscreen in readable form. For more information, see the Postgres core documentation.

This example first encodes and then decodes a string:

edb=# SELECT UTL_ENCODE.QUOTED_PRINTABLE_ENCODE('E=mc2') FROM DUAL;
quoted_printable_encode

 E=3Dmc2
(1 row)

edb=# SELECT UTL_ENCODE.QUOTED_PRINTABLE_DECODE('E=3Dmc2') FROM DUAL;
 quoted_printable_decode

 E=mc2
(1 row)

16.2.19.6 QUOTED_PRINTABLE_ENCODE

Use the QUOTED_PRINTABLE_ENCODE function to translate and encode a string in quoted-printable format. The signature is:

QUOTED_PRINTABLE_ENCODE(<r> IN RAW)

This function returns a RAW value.

Parameters

r

r contains the string (a RAW value) to encode in a quoted-printable format.

Examples

Before executing the example, invoke the command:

SET bytea_output = escape;

This command escapes any nonprintable characters and displays BYTEA or RAW values onscreen in readable form. For more information, see the Postgres core documentation.

This example first encodes and then decodes a string:

edb=# SELECT UTL_ENCODE.QUOTED_PRINTABLE_ENCODE('E=mc2') FROM DUAL;
quoted_printable_encode

 E=3Dmc2
(1 row)

edb=# SELECT UTL_ENCODE.QUOTED_PRINTABLE_DECODE('E=3Dmc2') FROM DUAL;
 quoted_printable_decode

 E=mc2
(1 row)

16.2.19.7 TEXT_DECODE

Use the TEXT_DECODE function to translate and decode an encoded string to the VARCHAR2 value that was originally encoded by the TEXT_ENCODE function. The signature is:

TEXT_DECODE(<buf> IN VARCHAR2, <encode_charset> IN VARCHAR2 DEFAULT
NULL, <encoding> IN PLS_INTEGER DEFAULT NULL)

This function returns a VARCHAR2 value.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 387

https://www.postgresql.org/docs/current/static/datatype-binary.html
https://www.postgresql.org/docs/current/static/datatype-binary.html

Parameters

buf

buf contains the encoded string to translate to the original value encoded by TEXT_ENCODE .

encode_charset

encode_charset specifies the character set to which to translate the string before encoding. The default value is NULL .

encoding

encoding specifies the encoding type used by TEXT_DECODE . Specify:

UTL_ENCODE.BASE64 to specify base-64 encoding.
UTL_ENCODE.QUOTED_PRINTABLE to specify quoted printable encoding. This is the default.

Examples

This example uses the TEXT_ENCODE and TEXT_DECODE functions to first encode and then decode a string:

edb=# SELECT UTL_ENCODE.TEXT_ENCODE('What is the date?', 'BIG5',
UTL_ENCODE.BASE64) FROM DUAL;
 text_encode

V2hhdCBpcyB0aGUgZGF0ZT8=
(1 row)

edb=# SELECT UTL_ENCODE.TEXT_DECODE('V2hhdCBpcyB0aGUgZGF0ZT8=', 'BIG5',
UTL_ENCODE.BASE64) FROM DUAL;
 text_decode

What is the date?
(1 row)

16.2.19.8 TEXT_ENCODE

Use the TEXT_ENCODE function to translate a string to a user-specified character set and then encode the string. The signature is:

TEXT_DECODE(<buf> IN VARCHAR2, <encode_charset> IN VARCHAR2 DEFAULT
NULL, <encoding> IN PLS_INTEGER DEFAULT NULL)

This function returns a VARCHAR2 value.

Parameters

buf

buf contains the encoded string to translate to the specified character set and encode with TEXT_ENCODE .

encode_charset

encode_charset specifies the character set to which to translate the value before encoding. The default value is NULL .

encoding

encoding specifies the encoding type used by TEXT_ENCODE . Specify:

UTL_ENCODE.BASE64 to specify base-64 encoding.
UTL_ENCODE.QUOTED_PRINTABLE to specify quoted printable encoding. This is the default.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 388

Examples

This example uses the TEXT_ENCODE and TEXT_DECODE functions to first encode and then decode a string:

edb=# SELECT UTL_ENCODE.TEXT_ENCODE('What is the date?', 'BIG5',
UTL_ENCODE.BASE64) FROM DUAL;
 text_encode

V2hhdCBpcyB0aGUgZGF0ZT8=
(1 row)

edb=# SELECT UTL_ENCODE.TEXT_DECODE('V2hhdCBpcyB0aGUgZGF0ZT8=', 'BIG5',
UTL_ENCODE.BASE64) FROM DUAL;
 text_decode

What is the date?
(1 row)

16.2.19.9 UUDECODE

Use the UUDECODE function to translate and decode a uuencode encoded string to the RAW value that was originally encoded by the UUENCODE function. The signature is:

UUDECODE(<r> IN RAW)

This function returns a RAW value.

If you're using the EDB Postgres Advanced Server UUDECODE function to decode uuencoded data that was created by the Oracle implementation of the UTL_ENCODE.UUENCODE function, then you
must first set the EDB Postgres Advanced Server configuration parameter utl_encode.uudecode_redwood to TRUE before invoking the EDB Postgres Advanced Server UUDECODE function on
the Oracle-created data. For example, this situation might occur if you migrated Oracle tables containing uuencoded data to an EDB Postgres Advanced Server database.

The uuencoded data created by the Oracle version of the UUENCODE function results in a format that differs from the uuencoded data created by the EDB Postgres Advanced Server UUENCODE
function. As a result, attempting to use the EDB Postgres Advanced Server UUDECODE function on the Oracle uuencoded data results in an error unless the configuration parameter
utl_encode.uudecode_redwood is set to TRUE .

However, if you're using the EDB Postgres Advanced Server UUDECODE function on uuencoded data created by the EDB Postgres Advanced Server UUENCODE function, then
utl_encode.uudecode_redwood must be set to FALSE , which is the default setting.

Parameters

r

r contains the uuencoded string to translate to RAW .

Examples

Before executing the example, invoke the command:

SET bytea_output = escape;

This command escapes any nonprintable characters and to displays BYTEA or RAW values onscreen in readable form. For more information, see the Postgres core documentation.

This example uses UUENCODE and UUDECODE to first encode and then decode a string:

edb=# SET bytea_output = escape;
SET
edb=# SELECT UTL_ENCODE.UUENCODE('What is the date?') FROM DUAL;
 uuencode
--
begin 0 uuencode.txt\01215VAA="!I<R!T:&4@9&%T93\\`\012`\012end\012
(1 row)

edb=# SELECT UTL_ENCODE.UUDECODE
edb-# ('begin 0 uuencode.txt\01215VAA="!I<R!T:&4@9&%T93\\`\012`\012end\012')

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 389

https://www.postgresql.org/docs/current/static/datatype-binary.html

edb-# FROM DUAL;
 uudecode

What is the date?
(1 row)

16.2.19.10 UUENCODE

Use the UUENCODE function to translate RAW data into a uuencode formatted encoded string. The signature is:

UUENCODE(<r> IN RAW, <type> IN INTEGER DEFAULT 1, <filename> IN
VARCHAR2 DEFAULT NULL, <permission> IN VARCHAR2 DEFAULT NULL)

This function returns a RAW value.

Parameters

r

r contains the RAW string to translate to uuencode format.

type

type is an INTEGER value or constant that specifies the type of uuencoded string that to return. The default value is 1 . The possible values are:

Value Constant

1 complete

2 header_piece

3 middle_piece

4 end_piece

filename

filename is a VARCHAR2 value that specifies the file name that you want to embed in the encoded form. If you don't specify a file name, UUENCODE includes a file name of uuencode.txt in
the encoded form.

permission

permission is a VARCHAR2 that specifies the permission mode. The default value is NULL .

Examples

Before executing the example, invoke the command:

SET bytea_output = escape;

This command escapes any nonprintable characters and displays BYTEA or RAW values onscreen in readable form. For more information, see the Postgres core documentation.

This example uses UUENCODE and UUDECODE to first encode and then decode a string:

edb=# SET bytea_output = escape;
SET
edb=# SELECT UTL_ENCODE.UUENCODE('What is the date?') FROM DUAL;
 uuencode
--
 begin 0 uuencode.txt\01215VAA="!I<R!T:&4@9&%T93\\`\012`\012end\012
(1 row)

edb=# SELECT UTL_ENCODE.UUDECODE
edb-# ('begin 0 uuencode.txt\01215VAA="!I<R!T:&4@9&%T93\\`\012`\012end\012')

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 390

https://www.postgresql.org/docs/current/static/datatype-binary.html

edb-# FROM DUAL;
 uudecode

 What is the date?
(1 row)

16.2.20 UTL_FILE

The UTL_FILE package reads from and writes to files on the operating system’s file system. A superuser must grant non-superusers EXECUTE privilege on the UTL_FILE package before they can
use any of the functions or procedures in the package. For example, the following command grants the privilege to user mary :

GRANT EXECUTE ON PACKAGE SYS.UTL_FILE TO mary;

Also, the operating system username enterprisedb must have the appropriate read/write permissions on the directories and files that the UTL_FILE functions and procedures access. If the
required file permissions aren't in place, an exception is thrown in the UTL_FILE function or procedure.

A handle to the file to write to or read from is used to reference the file. The file handle is defined by a public variable UTL_FILE.FILE_TYPE in the UTL_FILE package. A variable of type
FILE_TYPE must be declared to receive the file handle returned by calling the FOPEN function. The file handle is then used for all subsequent operations on the file.

References to directories on the file system are done using the directory name or alias that's assigned to the directory using the CREATE DIRECTORY command.

The procedures and functions available in the UTL_FILE package are listed in the following table.

Function/procedure Return
type

Description

FCLOSE(file IN OUT) n/a Closes the specified file identified by file .

FCLOSE_ALL n/a Closes all open files.

FCOPY(location, filename, dest_dir, dest_file [,
start_line [, end_line]])

n/a
Copies filename in the directory identified by location to file dest_file in directory dest_dir ,
from line start_line to line end_line .

FFLUSH(file) n/a Forces data in the buffer to be written to disk in the file identified by file .

FOPEN(location, filename, open_mode [,
max_linesize])

FILE_
TYPE

Opens file filename in the directory identified by location .

FREMOVE(location, filename) n/a Removes the specified file from the file system.

FRENAME(location, filename, dest_dir, dest_file
[, overwrite])

n/a Renames the specified file.

GET_LINE(file, buffer OUT) n/a Reads a line of text into the variable buffer from the file identified by file .

GET_RAW(file, buffer OUT [, len]) BYTEA Reads a RAW string value from a file, keeps those into read buffer, and adjusts the file pointer accordingly by
the number of bytes read, ignoring the end-of-file terminator.

IS_OPEN(file) BOOLE
AN

Determines whether the given file is open.

NEW_LINE(file [, lines]) n/a Writes an end-of-line character sequence into the file.

PUT(file, buffer) n/a Writes buffer to the given file. PUT doesn't write an end-of-line character sequence.

PUT_LINE(file, buffer) n/a Writes buffer to the given file. An end-of-line character sequence is added by the PUT_LINE procedure.

PUTF(file, format [, arg1] [, ...]) n/a
Writes a formatted string to the given file. You can specify up to five substitution parameters,
arg1,...arg5 , for replacement in format .

PUT_RAW(file, buffer [, autoflush]) BOOLE
AN

Accepts a RAW data value as input and writes those values to the output buffer.

EDB Postgres Advanced Server's implementation of UTL_FILE is a partial implementation when compared to Oracle's version. Only the functions and procedures listed in the table are supported.

UTL_FILE exception codes

If a call to a UTL_FILE procedure or function raises an exception, you can use the condition name to catch the exception. The UTL_FILE package reports the following exception codes compatible
with Oracle databases.

Exception code Condition name

-29283 invalid_operation

-29285 write_error

-29284 read_error

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 391

-29282 invalid_filehandle

-29287 invalid_maxlinesize

-29281 invalid_mode

-29280 invalid_path

Exception code Condition name

Setting file permissions with utl_file.umask

When a UTL_FILE function or procedure creates a file, the following are the default file permissions:

-rw------- 1 enterprisedb enterprisedb 21 Jul 24 16:08 utlfile

All permissions are denied on users belonging to the enterprisedb group as well as all other users. Only the enterprisedb user has read and write permissions on the created file.

If you want to have a different set of file permissions on files created by the UTL_FILE functions and procedures, set the utl_file.umask configuration parameter.

The utl_file.umask parameter sets the file mode creation mask (or simply the mask) in a manner similar to the Linux umask command. This parameter is for use only in the EDB Postgres
Advanced Server UTL_FILE package.

Note

The utl_file.umask parameter isn't supported on Windows systems.

The value specified for utl_file.umask is a 3- or 4-character octal string that's valid for the Linux umask command. The setting determines the permissions on files created by the UTL_FILE
functions and procedures. (Refer to any information source regarding Linux or Unix systems for information on file permissions and the use of the umask command.)

Example

This example sets the file permissions with utl_file.umask .

First, set up the directory in the file system for the UTL_FILE package to use. Be sure the applicable operating system account enterprisedb or postgres can read and write in the directory.

mkdir /tmp/utldir
chmod 777 /tmp/utldir

The CREATE DIRECTORY command is issued in psql to create the directory database object using the file system directory you created:

CREATE DIRECTORY utldir AS '/tmp/utldir';

Set the utl_file.umask configuration parameter. The following setting allows the file owner any permission. Group users and other users are permitted any permission except for the execute
permission.

SET utl_file.umask TO '0011';

In the same session during which the utl_file.umask parameter is set to the desired value, run the UTL_FILE functions and procedures.

DECLARE
 v_utlfile UTL_FILE.FILE_TYPE;
 v_directory VARCHAR2(50) := 'utldir';
 v_filename VARCHAR2(20) := 'utlfile';
BEGIN
 v_utlfile := UTL_FILE.FOPEN(v_directory, v_filename, 'w');
 UTL_FILE.PUT_LINE(v_utlfile, 'Simple one-line file');
 DBMS_OUTPUT.PUT_LINE('Created file: ' || v_filename);
 UTL_FILE.FCLOSE(v_utlfile);
END;

The permission settings on the resulting file show that, in addition to the file owner, group users and other users have read and write permissions on the file.

$ pwd
/tmp/utldir
$ ls -l
total 4
-rw-rw-rw- 1 enterprisedb enterprisedb 21 Jul 24 16:04 utlfile

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 392

You can also set this parameter on a per-role basis with the ALTER ROLE command. You can set it for a single database with the ALTER DATABASE command or for the entire database server
instance by setting it in the postgresql.conf file.

FCLOSE

The FCLOSE procedure closes an open file.

FCLOSE(<file> IN OUT FILE_TYPE)

Parameters

file

Variable of type FILE_TYPE containing a file handle of the file to close.

FCLOSE_ALL

The FLCLOSE_ALL procedures closes all open files. The procedure executes successfully even if there are no open files to close.

FCLOSE_ALL

FCOPY

The FCOPY procedure copies text from one file to another.

FCOPY(<location> VARCHAR2, <filename> VARCHAR2, <dest_dir> VARCHAR2, <dest_file> VARCHAR2
 [, <start_line> PLS_INTEGER [, <end_line> PLS_INTEGER]])

Parameters

location

Directory name of the directory containing the file to copy, as stored in pg_catalog.edb_dir.dirname .

filename

Name of the source file to copy.

dest_dir

Directory name of the directory to which to copy the file, as stored in pg_catalog.edb_dir.dirname .

dest_file

Name of the destination file.

start_line

Line number in the source file from which copying begins. The default is 1 .

end_line

Line number of the last line in the source file to copy. If omitted or null, copying goes to the last line of the file.

Examples

This example makes a copy of a file C:\TEMP\EMPDIR\empfile.csv , which contains a comma-delimited list of employees from the emp table. The copy, empcopy.csv , is then listed.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 393

CREATE DIRECTORY empdir AS 'C:/TEMP/EMPDIR';

DECLARE
 v_empfile UTL_FILE.FILE_TYPE;
 v_src_dir VARCHAR2(50) := 'empdir';
 v_src_file VARCHAR2(20) := 'empfile.csv';
 v_dest_dir VARCHAR2(50) := 'empdir';
 v_dest_file VARCHAR2(20) := 'empcopy.csv';
 v_emprec VARCHAR2(120);
 v_count INTEGER := 0;
BEGIN
 UTL_FILE.FCOPY(v_src_dir,v_src_file,v_dest_dir,v_dest_file);
 v_empfile := UTL_FILE.FOPEN(v_dest_dir,v_dest_file,'r');
 DBMS_OUTPUT.PUT_LINE('The following is the destination file, ''' ||
 v_dest_file || '''');
 LOOP
 UTL_FILE.GET_LINE(v_empfile,v_emprec);
 DBMS_OUTPUT.PUT_LINE(v_emprec);
 v_count := v_count + 1;
 END LOOP;
 EXCEPTION
 WHEN NO_DATA_FOUND THEN
 UTL_FILE.FCLOSE(v_empfile);
 DBMS_OUTPUT.PUT_LINE(v_count || ' records retrieved');
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE('SQLERRM: ' || SQLERRM);
 DBMS_OUTPUT.PUT_LINE('SQLCODE: ' || SQLCODE);
END;

The following is the destination file, 'empcopy.csv'
7369,SMITH,CLERK,7902,17-DEC-80,800,,20
7499,ALLEN,SALESMAN,7698,20-FEB-81,1600,300,30
7521,WARD,SALESMAN,7698,22-FEB-81,1250,500,30
7566,JONES,MANAGER,7839,02-APR-81,2975,,20
7654,MARTIN,SALESMAN,7698,28-SEP-81,1250,1400,30
7698,BLAKE,MANAGER,7839,01-MAY-81,2850,,30
7782,CLARK,MANAGER,7839,09-JUN-81,2450,,10
7788,SCOTT,ANALYST,7566,19-APR-87,3000,,20
7839,KING,PRESIDENT,,17-NOV-81,5000,,10
7844,TURNER,SALESMAN,7698,08-SEP-81,1500,0,30
7876,ADAMS,CLERK,7788,23-MAY-87,1100,,20
7900,JAMES,CLERK,7698,03-DEC-81,950,,30
7902,FORD,ANALYST,7566,03-DEC-81,3000,,20
7934,MILLER,CLERK,7782,23-JAN-82,1300,,10
14 records retrieved

FFLUSH

The FFLUSH procedure flushes unwritten data from the write buffer to the file.

FFLUSH(<file> FILE_TYPE)

Parameters

file

Variable of type FILE_TYPE containing a file handle.

Examples

Each line is flushed after the NEW_LINE procedure is called.

DECLARE
 v_empfile UTL_FILE.FILE_TYPE;
 v_directory VARCHAR2(50) := 'empdir';
 v_filename VARCHAR2(20) := 'empfile.csv';
 CURSOR emp_cur IS SELECT * FROM emp ORDER BY empno;
BEGIN
 v_empfile := UTL_FILE.FOPEN(v_directory,v_filename,'w');
 FOR i IN emp_cur LOOP

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 394

 UTL_FILE.PUT(v_empfile,i.empno);
 UTL_FILE.PUT(v_empfile,',');
 UTL_FILE.PUT(v_empfile,i.ename);
 UTL_FILE.PUT(v_empfile,',');
 UTL_FILE.PUT(v_empfile,i.job);
 UTL_FILE.PUT(v_empfile,',');
 UTL_FILE.PUT(v_empfile,i.mgr);
 UTL_FILE.PUT(v_empfile,',');
 UTL_FILE.PUT(v_empfile,i.hiredate);
 UTL_FILE.PUT(v_empfile,',');
 UTL_FILE.PUT(v_empfile,i.sal);
 UTL_FILE.PUT(v_empfile,',');
 UTL_FILE.PUT(v_empfile,i.comm);
 UTL_FILE.PUT(v_empfile,',');
 UTL_FILE.PUT(v_empfile,i.deptno);
 UTL_FILE.NEW_LINE(v_empfile);
 UTL_FILE.FFLUSH(v_empfile);
 END LOOP;
 DBMS_OUTPUT.PUT_LINE('Created file: ' || v_filename);
 UTL_FILE.FCLOSE(v_empfile);
END;

FOPEN

The FOPEN function opens a file for I/O.

<filetype> FILE_TYPE FOPEN(<location> VARCHAR2, <filename> VARCHAR2,<open_mode> VARCHAR2
 [, <max_linesize> BINARY_INTEGER])

Parameters

location

Directory name of the directory containing the file to open, as stored in pg_catalog.edb_dir.dirname .

filename

Name of the file to open.

open_mode

Mode in which to open the file. Modes are:

- `a` — Append to file.
- `r` — Read from file.
- `w` — Write to file.

max_linesize

Maximum size of a line in characters. In read mode, an exception is thrown if you try to read a line exceeding max_linesize . In write and append modes, an exception is thrown if you try to write a
line exceeding max_linesize . The end-of-line characters aren't included in determining if the maximum line size is exceeded. This behavior isn't compatible with Oracle databases. Oracle counts
the end-of-line characters.

filetype

Variable of type FILE_TYPE containing the file handle of the opened file.

FREMOVE

The FREMOVE procedure removes a file from the system.

FREMOVE(<location> VARCHAR2, <filename> VARCHAR2)

An exception is thrown if the file doesn't exist.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 395

Parameters

location

Directory name of the directory containing the file to remove, as stored in pg_catalog.edb_dir.dirname .

filename

Name of the file to remove.

Examples

This example removes the file empfile.csv :

DECLARE
 v_directory VARCHAR2(50) := 'empdir';
 v_filename VARCHAR2(20) := 'empfile.csv';
BEGIN
 UTL_FILE.FREMOVE(v_directory,v_filename);
 DBMS_OUTPUT.PUT_LINE('Removed file: ' || v_filename);
 EXCEPTION
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE('SQLERRM: ' || SQLERRM);
 DBMS_OUTPUT.PUT_LINE('SQLCODE: ' || SQLCODE);
END;

Removed file: empfile.csv

FRENAME

The FRENAME procedure renames a file, effectively moving a file from one location to another.

FRENAME(<location> VARCHAR2, <filename> VARCHAR2, <dest_dir> VARCHAR2, <dest_file> VARCHAR2,
 [<overwrite> BOOLEAN])

Parameters

location

Directory name of the directory containing the file to rename, as stored in pg_catalog.edb_dir.dirname .

filename

Name of the source file to rename.

dest_dir

Directory name of the directory to which to locate the renamed file, as stored in pg_catalog.edb_dir.dirname .

dest_file

New name of the file.

overwrite

Replaces any existing file named dest_file in dest_dir if set to TRUE . An exception is thrown if set to FALSE (the default).

Examples

This example renames a file, C:\TEMP\EMPDIR\empfile.csv , containing a comma-delimited list of employees from the emp table. The renamed file, C:\TEMP\NEWDIR\newemp.csv , is
then listed.

CREATE DIRECTORY "newdir" AS 'C:/TEMP/NEWDIR';

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 396

DECLARE
 v_empfile UTL_FILE.FILE_TYPE;
 v_src_dir VARCHAR2(50) := 'empdir';
 v_src_file VARCHAR2(20) := 'empfile.csv';
 v_dest_dir VARCHAR2(50) := 'newdir';
 v_dest_file VARCHAR2(50) := 'newemp.csv';
 v_replace BOOLEAN := FALSE;
 v_emprec VARCHAR2(120);
 v_count INTEGER := 0;
BEGIN
 UTL_FILE.FRENAME(v_src_dir,v_src_file,v_dest_dir,
 v_dest_file,v_replace);
 v_empfile := UTL_FILE.FOPEN(v_dest_dir,v_dest_file,'r');
 DBMS_OUTPUT.PUT_LINE('The following is the renamed file, ''' ||
 v_dest_file || '''');
 LOOP
 UTL_FILE.GET_LINE(v_empfile,v_emprec);
 DBMS_OUTPUT.PUT_LINE(v_emprec);
 v_count := v_count + 1;
 END LOOP;
 EXCEPTION
 WHEN NO_DATA_FOUND THEN
 UTL_FILE.FCLOSE(v_empfile);
 DBMS_OUTPUT.PUT_LINE(v_count || ' records retrieved');
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE('SQLERRM: ' || SQLERRM);
 DBMS_OUTPUT.PUT_LINE('SQLCODE: ' || SQLCODE);
END;

The following is the renamed file, 'newemp.csv'
7369,SMITH,CLERK,7902,17-DEC-80 00:00:00,800.00,,20
7499,ALLEN,SALESMAN,7698,20-FEB-81 00:00:00,1600.00,300.00,30
7521,WARD,SALESMAN,7698,22-FEB-81 00:00:00,1250.00,500.00,30
7566,JONES,MANAGER,7839,02-APR-81 00:00:00,2975.00,,20
7654,MARTIN,SALESMAN,7698,28-SEP-81 00:00:00,1250.00,1400.00,30
7698,BLAKE,MANAGER,7839,01-MAY-81 00:00:00,2850.00,,30
7782,CLARK,MANAGER,7839,09-JUN-81 00:00:00,2450.00,,10
7788,SCOTT,ANALYST,7566,19-APR-87 00:00:00,3000.00,,20
7839,KING,PRESIDENT,,17-NOV-81 00:00:00,5000.00,,10
7844,TURNER,SALESMAN,7698,08-SEP-81 00:00:00,1500.00,0.00,30
7876,ADAMS,CLERK,7788,23-MAY-87 00:00:00,1100.00,,20
7900,JAMES,CLERK,7698,03-DEC-81 00:00:00,950.00,,30
7902,FORD,ANALYST,7566,03-DEC-81 00:00:00,3000.00,,20
7934,MILLER,CLERK,7782,23-JAN-82 00:00:00,1300.00,,10
14 records retrieved

GET_LINE

The GET_LINE procedure reads a line of text from a given file up to but not including the end-of-line terminator. A NO_DATA_FOUND exception is thrown when there are no more lines to read.

GET_LINE(<file> FILE_TYPE, <buffer> OUT VARCHAR2)

Parameters

file

Variable of type FILE_TYPE containing the file handle of the opened file.

buffer

Variable to receive a line from the file.

Examples

The following anonymous block reads through and displays the records in file empfile.csv .

DECLARE
 v_empfile UTL_FILE.FILE_TYPE;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 397

 v_directory VARCHAR2(50) := 'empdir';
 v_filename VARCHAR2(20) := 'empfile.csv';
 v_emprec VARCHAR2(120);
 v_count INTEGER := 0;
BEGIN
 v_empfile := UTL_FILE.FOPEN(v_directory,v_filename,'r');
 LOOP
 UTL_FILE.GET_LINE(v_empfile,v_emprec);
 DBMS_OUTPUT.PUT_LINE(v_emprec);
 v_count := v_count + 1;
 END LOOP;
 EXCEPTION
 WHEN NO_DATA_FOUND THEN
 UTL_FILE.FCLOSE(v_empfile);
 DBMS_OUTPUT.PUT_LINE('End of file ' || v_filename || ' - ' ||
 v_count || ' records retrieved');
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE('SQLERRM: ' || SQLERRM);
 DBMS_OUTPUT.PUT_LINE('SQLCODE: ' || SQLCODE);
END;

7369,SMITH,CLERK,7902,17-DEC-80 00:00:00,800.00,,20
7499,ALLEN,SALESMAN,7698,20-FEB-81 00:00:00,1600.00,300.00,30
7521,WARD,SALESMAN,7698,22-FEB-81 00:00:00,1250.00,500.00,30
7566,JONES,MANAGER,7839,02-APR-81 00:00:00,2975.00,,20
7654,MARTIN,SALESMAN,7698,28-SEP-81 00:00:00,1250.00,1400.00,30
7698,BLAKE,MANAGER,7839,01-MAY-81 00:00:00,2850.00,,30
7782,CLARK,MANAGER,7839,09-JUN-81 00:00:00,2450.00,,10
7788,SCOTT,ANALYST,7566,19-APR-87 00:00:00,3000.00,,20
7839,KING,PRESIDENT,,17-NOV-81 00:00:00,5000.00,,10
7844,TURNER,SALESMAN,7698,08-SEP-81 00:00:00,1500.00,0.00,30
7876,ADAMS,CLERK,7788,23-MAY-87 00:00:00,1100.00,,20
7900,JAMES,CLERK,7698,03-DEC-81 00:00:00,950.00,,30
7902,FORD,ANALYST,7566,03-DEC-81 00:00:00,3000.00,,20
7934,MILLER,CLERK,7782,23-JAN-82 00:00:00,1300.00,,10
End of file empfile.csv - 14 records retrieved

GET_RAW

The GET_RAW procedure reads a RAW string value from a file, keeps those into read buffer, and adjusts the file pointer accordingly by the number of bytes read. GET_RAW ignores the end-of-file
terminator. INVALID_FILEHANDLE , INVALID_OPERATION , and READ_ERROR exceptions are thrown when there are no more lines to read.

GET_RAW(<file> FILE_TYPE, <buffer> OUT BYTEA [, <len> INTEGER])

Parameters

file

Variable of type FILE_TYPE containing the file handle of the opened file.

buffer

Assign RAW data from the file to the read buffer.

len

The number of bytes read from a file. Default is NULL . If NULL , len tries to read a maximum of 32767 RAW bytes.

Examples

This example attempts to read a RAW string value from the file.

CREATE DIRECTORY empdir AS '/TMP/EMPDIR';

CREATE or REPLACE FUNCTION read_bin_file() RETURN void AS

DECLARE
 v_tempfile UTL_FILE.FILE_TYPE;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 398

 v_filename VARCHAR2(20) := 'sample.png';
 v_temprec BYTEA;
 v_count INTEGER := 0;
BEGIN
 v_tempfile := UTL_FILE.FOPEN('empdir', v_filename, 'rb');
 UTL_FILE.GET_RAW(v_tempfile,v_temprec);
 INSERT INTO emp VALUES (1, v_temprec);
EXCEPTION
 WHEN NO_DATA_FOUND THEN
 RAISE NOTICE 'Finish % ', SQLERRM;
 UTL_FILE.FCLOSE(v_tempfile);
END;

edb=# SELECT read_bin_file();
 read_bin_file

 (1 row)

IS_OPEN

The IS_OPEN function determines whether a file is open.

<status> BOOLEAN IS_OPEN(<file> FILE_TYPE)

Parameters

file

Variable of type FILE_TYPE containing the file handle of the file to test.

status

TRUE if the file is open, FALSE otherwise.

NEW_LINE

The NEW_LINE procedure writes an end-of-line character sequence in the file.

NEW_LINE(<file> FILE_TYPE [, <lines> INTEGER])

Parameters

file

Variable of type FILE_TYPE containing the file handle of the file to which to write end-of-line character sequences.

lines

Number of end-of-line character sequences to write. The default is 1 .

Examples

This example writes a file containing a double-spaced list of employee records.

DECLARE
 v_empfile UTL_FILE.FILE_TYPE;
 v_directory VARCHAR2(50) := 'empdir';
 v_filename VARCHAR2(20) := 'empfile.csv';
 CURSOR emp_cur IS SELECT * FROM emp ORDER BY empno;
BEGIN
 v_empfile := UTL_FILE.FOPEN(v_directory,v_filename,'w');
 FOR i IN emp_cur LOOP

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 399

 UTL_FILE.PUT(v_empfile,i.empno);
 UTL_FILE.PUT(v_empfile,',');
 UTL_FILE.PUT(v_empfile,i.ename);
 UTL_FILE.PUT(v_empfile,',');
 UTL_FILE.PUT(v_empfile,i.job);
 UTL_FILE.PUT(v_empfile,',');
 UTL_FILE.PUT(v_empfile,i.mgr);
 UTL_FILE.PUT(v_empfile,',');
 UTL_FILE.PUT(v_empfile,i.hiredate);
 UTL_FILE.PUT(v_empfile,',');
 UTL_FILE.PUT(v_empfile,i.sal);
 UTL_FILE.PUT(v_empfile,',');
 UTL_FILE.PUT(v_empfile,i.comm);
 UTL_FILE.PUT(v_empfile,',');
 UTL_FILE.PUT(v_empfile,i.deptno);
 UTL_FILE.NEW_LINE(v_empfile,2);
 END LOOP;
 DBMS_OUTPUT.PUT_LINE('Created file: ' || v_filename);
 UTL_FILE.FCLOSE(v_empfile);
END;

Created file: empfile.csv

This file is then displayed:

C:\TEMP\EMPDIR>TYPE empfile.csv

7369,SMITH,CLERK,7902,17-DEC-80 00:00:00,800.00,,20

7499,ALLEN,SALESMAN,7698,20-FEB-81 00:00:00,1600.00,300.00,30

7521,WARD,SALESMAN,7698,22-FEB-81 00:00:00,1250.00,500.00,30

7566,JONES,MANAGER,7839,02-APR-81 00:00:00,2975.00,,20

7654,MARTIN,SALESMAN,7698,28-SEP-81 00:00:00,1250.00,1400.00,30

7698,BLAKE,MANAGER,7839,01-MAY-81 00:00:00,2850.00,,30

7782,CLARK,MANAGER,7839,09-JUN-81 00:00:00,2450.00,,10

7788,SCOTT,ANALYST,7566,19-APR-87 00:00:00,3000.00,,20

7839,KING,PRESIDENT,,17-NOV-81 00:00:00,5000.00,,10

7844,TURNER,SALESMAN,7698,08-SEP-81 00:00:00,1500.00,0.00,30

7876,ADAMS,CLERK,7788,23-MAY-87 00:00:00,1100.00,,20

7900,JAMES,CLERK,7698,03-DEC-81 00:00:00,950.00,,30

7902,FORD,ANALYST,7566,03-DEC-81 00:00:00,3000.00,,20

7934,MILLER,CLERK,7782,23-JAN-82 00:00:00,1300.00,,10

PUT

The PUT procedure writes a string to the given file. No end-of-line character sequence is written at the end of the string. Use the NEW_LINE procedure to add an end-of-line character sequence.

PUT(<file> FILE_TYPE, <buffer> { DATE | NUMBER | TIMESTAMP | VARCHAR2 })

Parameters

file

Variable of type FILE_TYPE containing the file handle of the file to which to write the given string.

buffer

Text to write to the specified file.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 400

Examples

This example uses the PUT procedure to create a comma-delimited file of employees from the emp table.

DECLARE
 v_empfile UTL_FILE.FILE_TYPE;
 v_directory VARCHAR2(50) := 'empdir';
 v_filename VARCHAR2(20) := 'empfile.csv';
 CURSOR emp_cur IS SELECT * FROM emp ORDER BY empno;
BEGIN
 v_empfile := UTL_FILE.FOPEN(v_directory,v_filename,'w');
 FOR i IN emp_cur LOOP
 UTL_FILE.PUT(v_empfile,i.empno);
 UTL_FILE.PUT(v_empfile,',');
 UTL_FILE.PUT(v_empfile,i.ename);
 UTL_FILE.PUT(v_empfile,',');
 UTL_FILE.PUT(v_empfile,i.job);
 UTL_FILE.PUT(v_empfile,',');
 UTL_FILE.PUT(v_empfile,i.mgr);
 UTL_FILE.PUT(v_empfile,',');
 UTL_FILE.PUT(v_empfile,i.hiredate);
 UTL_FILE.PUT(v_empfile,',');
 UTL_FILE.PUT(v_empfile,i.sal);
 UTL_FILE.PUT(v_empfile,',');
 UTL_FILE.PUT(v_empfile,i.comm);
 UTL_FILE.PUT(v_empfile,',');
 UTL_FILE.PUT(v_empfile,i.deptno);
 UTL_FILE.NEW_LINE(v_empfile);
 END LOOP;
 DBMS_OUTPUT.PUT_LINE('Created file: ' || v_filename);
 UTL_FILE.FCLOSE(v_empfile);
END;

Created file: empfile.csv

The following are the contents of empfile.csv :

C:\TEMP\EMPDIR>TYPE empfile.csv

7369,SMITH,CLERK,7902,17-DEC-80 00:00:00,800.00,,20
7499,ALLEN,SALESMAN,7698,20-FEB-81 00:00:00,1600.00,300.00,30
7521,WARD,SALESMAN,7698,22-FEB-81 00:00:00,1250.00,500.00,30
7566,JONES,MANAGER,7839,02-APR-81 00:00:00,2975.00,,20
7654,MARTIN,SALESMAN,7698,28-SEP-81 00:00:00,1250.00,1400.00,30
7698,BLAKE,MANAGER,7839,01-MAY-81 00:00:00,2850.00,,30
7782,CLARK,MANAGER,7839,09-JUN-81 00:00:00,2450.00,,10
7788,SCOTT,ANALYST,7566,19-APR-87 00:00:00,3000.00,,20
7839,KING,PRESIDENT,,17-NOV-81 00:00:00,5000.00,,10
7844,TURNER,SALESMAN,7698,08-SEP-81 00:00:00,1500.00,0.00,30
7876,ADAMS,CLERK,7788,23-MAY-87 00:00:00,1100.00,,20
7900,JAMES,CLERK,7698,03-DEC-81 00:00:00,950.00,,30
7902,FORD,ANALYST,7566,03-DEC-81 00:00:00,3000.00,,20
7934,MILLER,CLERK,7782,23-JAN-82 00:00:00,1300.00,,10

PUT_LINE

The PUT_LINE procedure writes a single line to a file, including an end-of-line character sequence.

PUT_LINE(<file> FILE_TYPE, <buffer> { DATE | NUMBER | TIMESTAMP | VARCHAR2 })

Parameters

file

Variable of type FILE_TYPE containing the file handle of the file to which to write the line.

buffer

Text to write to the file.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 401

Examples

This example uses the PUT_LINE procedure to create a comma-delimited file of employees from the emp table.

DECLARE
 v_empfile UTL_FILE.FILE_TYPE;
 v_directory VARCHAR2(50) := 'empdir';
 v_filename VARCHAR2(20) := 'empfile.csv';
 v_emprec VARCHAR2(120);
 CURSOR emp_cur IS SELECT * FROM emp ORDER BY empno;
BEGIN
 v_empfile := UTL_FILE.FOPEN(v_directory,v_filename,'w');
 FOR i IN emp_cur LOOP
 v_emprec := i.empno || ',' || i.ename || ',' || i.job || ',' ||
 NVL(LTRIM(TO_CHAR(i.mgr,'9999')),'') || ',' || i.hiredate ||
 ',' || i.sal || ',' ||
 NVL(LTRIM(TO_CHAR(i.comm,'9990.99')),'') || ',' || i.deptno;
 UTL_FILE.PUT_LINE(v_empfile,v_emprec);
 END LOOP;
 DBMS_OUTPUT.PUT_LINE('Created file: ' || v_filename);
 UTL_FILE.FCLOSE(v_empfile);
END;

The following are the contents of empfile.csv :

C:\TEMP\EMPDIR>TYPE empfile.csv

7369,SMITH,CLERK,7902,17-DEC-80 00:00:00,800.00,,20
7499,ALLEN,SALESMAN,7698,20-FEB-81 00:00:00,1600.00,300.00,30
7521,WARD,SALESMAN,7698,22-FEB-81 00:00:00,1250.00,500.00,30
7566,JONES,MANAGER,7839,02-APR-81 00:00:00,2975.00,,20
7654,MARTIN,SALESMAN,7698,28-SEP-81 00:00:00,1250.00,1400.00,30
7698,BLAKE,MANAGER,7839,01-MAY-81 00:00:00,2850.00,,30
7782,CLARK,MANAGER,7839,09-JUN-81 00:00:00,2450.00,,10
7788,SCOTT,ANALYST,7566,19-APR-87 00:00:00,3000.00,,20
7839,KING,PRESIDENT,,17-NOV-81 00:00:00,5000.00,,10
7844,TURNER,SALESMAN,7698,08-SEP-81 00:00:00,1500.00,0.00,30
7876,ADAMS,CLERK,7788,23-MAY-87 00:00:00,1100.00,,20
7900,JAMES,CLERK,7698,03-DEC-81 00:00:00,950.00,,30
7902,FORD,ANALYST,7566,03-DEC-81 00:00:00,3000.00,,20
7934,MILLER,CLERK,7782,23-JAN-82 00:00:00,1300.00,,10

PUTF

The PUTF procedure writes a formatted string to a file.

PUTF(<file> FILE_TYPE, <format> VARCHAR2 [, <arg1> VARCHAR2] [, ...])

Parameters

file

Variable of type FILE_TYPE containing the file handle of the file to which to write the formatted line.

format

String to format the text written to the file. The special character sequence %s is substituted by the value of arg . The special character sequence \n indicates a new line. In EDB Postgres Advanced
Server, specify a new line character with two consecutive backslashes instead of one: \\n . This characteristic isn't compatible with Oracle databases.

arg1

Up to five arguments, arg1 ,... arg5 , to substitute in the format string for each occurrence of %s . The first arg is substituted for the first occurrence of %s , the second arg is substituted for the
second occurrence of %s , and so on.

Examples

The following anonymous block produces formatted output containing data from the emp table.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 402

Note

The E literal syntax and double backslashes for the new-line character sequence in the format string aren't compatible with Oracle databases.

DECLARE
 v_empfile UTL_FILE.FILE_TYPE;
 v_directory VARCHAR2(50) := 'empdir';
 v_filename VARCHAR2(20) := 'empfile.csv';
 v_format VARCHAR2(200);
 CURSOR emp_cur IS SELECT * FROM emp ORDER BY empno;
BEGIN
 v_format := E'%s %s, %s\\nSalary: $%s Commission: $%s\\n\\n';
 v_empfile := UTL_FILE.FOPEN(v_directory,v_filename,'w');
 FOR i IN emp_cur LOOP
 UTL_FILE.PUTF(v_empfile,v_format,i.empno,i.ename,i.job,i.sal,
 NVL(i.comm,0));
 END LOOP;
 DBMS_OUTPUT.PUT_LINE('Created file: ' || v_filename);
 UTL_FILE.FCLOSE(v_empfile);
EXCEPTION
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE('SQLERRM: ' || SQLERRM);
 DBMS_OUTPUT.PUT_LINE('SQLCODE: ' || SQLCODE);
END;

Created file: empfile.csv

The following are the contents of empfile.csv :

C:\TEMP\EMPDIR>TYPE empfile.csv
7369 SMITH, CLERK
Salary: $800.00 Commission: $0
7499 ALLEN, SALESMAN
Salary: $1600.00 Commission: $300.00
7521 WARD, SALESMAN
Salary: $1250.00 Commission: $500.00
7566 JONES, MANAGER
Salary: $2975.00 Commission: $0
7654 MARTIN, SALESMAN
Salary: $1250.00 Commission: $1400.00
7698 BLAKE, MANAGER
Salary: $2850.00 Commission: $0
7782 CLARK, MANAGER
Salary: $2450.00 Commission: $0
7788 SCOTT, ANALYST
Salary: $3000.00 Commission: $0
7839 KING, PRESIDENT
Salary: $5000.00 Commission: $0
7844 TURNER, SALESMAN
Salary: $1500.00 Commission: $0.00
7876 ADAMS, CLERK
Salary: $1100.00 Commission: $0
7900 JAMES, CLERK
Salary: $950.00 Commission: $0
7902 FORD, ANALYST
Salary: $3000.00 Commission: $0
7934 MILLER, CLERK
Salary: $1300.00 Commission: $0

PUT_RAW

The PUT_RAW procedure accepts a RAW data value and writes those values to the output buffer. INVALID_FILEHANDLE , INVALID_OPERATION , WRITE_ERROR , and VALUE_ERROR
exceptions are thrown when there are no more lines to read.

PUT_RAW(<file> FILE_TYPE, <buffer> BYTEA [, <autoflush> BOOLEAN])

Parameters

file

Variable of type FILE_TYPE containing the file handle of the file to which to write the line.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 403

buffer

Variable to write RAW data to the output buffer.

autoflush

If TRUE , performs a flush after writing the value to the output buffer. By default, autoflush is FALSE .

Examples

This example writes the RAW data value from the emp table.

CREATE or REPLACE FUNCTION write_bin_file() RETURN void AS

DECLARE
 v_tempfile UTL_FILE.FILE_TYPE;
 v_filename VARCHAR2(20) := 'sample.png';
 v_temprec BYTEA;
BEGIN
SELECT imagerawdata INTO v_temprec from emp;
 v_tempfile := UTL_FILE.FOPEN('empdir', v_filename, 'wb');
 UTL_FILE.PUT_RAW(v_tempfile,v_temprec, TRUE);
 UTL_FILE.FCLOSE(v_tempfile);
END;

edb=# SELECT write_bin_file();
 write_bin_file

(1 row)

16.2.21 UTL_HTTP

The UTL_HTTP package provides a way to use the HTTP or HTTPS protocol to retrieve information found at a URL. EDB Postgres Advanced Server supports the following functions and procedures.

Function/procedure Return type Description

BEGIN_REQUEST(url, method, http_version) UTL_HTTP.REQ Initiates a new HTTP request.

END_REQUEST(r IN OUT) n/a Ends an HTTP request before allowing it to complete.

END_RESPONSE(r IN OUT) n/a Ends the HTTP response.

END_OF_BODY(r IN OUT) n/a Ends package body.

GET_BODY_CHARSET VARCHAR2 Returns the default character set of the body of future HTTP requests.

GET_BODY_CHARSET(charset OUT) n/a Returns the default character set of the body of future HTTP requests.

GET_FOLLOW_REDIRECT(max_redirects OUT) n/a Current setting for the maximum number of redirections allowed.

GET_HEADER(r IN OUT, n, name OUT, value OUT) n/a Returns the nth header of the HTTP response.

GET_HEADER_BY_NAME(r IN OUT, name, value OUT,
n)

n/a Returns the HTTP response header for the specified name.

GET_HEADER_COUNT(r IN OUT) INTEGER Returns the number of HTTP response headers.

GET_RESPONSE(r IN OUT) UTL_HTTP.RESP Returns the HTTP response.

GET_RESPONSE_ERROR_CHECK(enable OUT) n/a Returns whether or not response error check is set.

GET_TRANSFER_TIMEOUT(timeout OUT) n/a Returns the transfer timeout setting for HTTP requests.

READ_LINE(r IN OUT, data OUT, remove_crlf) n/a Returns the HTTP response body in text form until the end of line.

READ_RAW(r IN OUT, data OUT, len) n/a Returns the HTTP response body in binary form for a specified number of bytes.

READ_TEXT(r IN OUT, data OUT, len) n/a Returns the HTTP response body in text form for a specified number of characters.

REQUEST(url) VARCHAR2 Returns the content of a web page.

REQUEST_PIECES(url, max_pieces) UTL_HTTP.
HTML_PIECES

Returns a table of 2000-byte segments retrieved from an URL.

SET_BODY_CHARSET(charset) n/a Sets the default character set of the body of future HTTP requests.

SET_FOLLOW_REDIRECT(max_redirects) n/a Sets the maximum number of times to follow the redirect instruction.

SET_FOLLOW_REDIRECT(r IN OUT, max_redirects) n/a Sets the maximum number of times to follow the redirect instruction for an individual
request.

SET_HEADER(r IN OUT, name, value) n/a Sets the HTTP request header.

SET_RESPONSE_ERROR_CHECK(enable) n/a Determines whether to treat HTTP 4xx and 5xx status codes as errors.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 404

SET_TRANSFER_TIMEOUT(timeout) n/a Sets the default transfer timeout value for HTTP requests.

SET_TRANSFER_TIMEOUT(r IN OUT, timeout) n/a Sets the transfer timeout value for an individual HTTP request.

WRITE_LINE(r IN OUT, data) n/a Writes CRLF-terminated data to the HTTP request body in TEXT form.

WRITE_RAW(r IN OUT, data) n/a Writes data to the HTTP request body in BINARY form.

WRITE_TEXT(r IN OUT, data) n/a Writes data to the HTTP request body in TEXT form.

Function/procedure Return type Description

EDB Postgres Advanced Server's implementation of UTL_HTTP is a partial implementation when compared to Oracle's version. Only the functions and procedures listed in the table are supported.

Note

In EDB Postgres Advanced Server, an HTTP 4xx or HTTP 5xx response produces a database error. In Oracle, you can configure this option. It is FALSE by default.

In EDB Postgres Advanced Server, the UTL_HTTP text interfaces expect the downloaded data to be in the database encoding. All interfaces that are currently available are text interfaces. In Oracle,
the encoding is detected from HTTP headers. Without the header, the default is configurable and defaults to ISO-8859-1 .

EDB Postgres Advanced Server ignores all cookies it receives.

The UTL_HTTP exceptions that can be raised in Oracle aren't recognized by EDB Postgres Advanced Server. In addition, the error codes returned by EDB Postgres Advanced Server aren't the same as
those returned by Oracle.

UTL_HTTP exception codes

If a call to a UTL_HTTP procedure or function raises an exception, you can use the condition name to catch the exception. The UTL_HTTP package reports the following exception codes compatible
with Oracle databases.

Exception code Condition name Description Raised where

-29266 END_OF_BODY The end of HTTP response body is reached READ_LINE, READ_RAW , and READ_TEXT
functions

To use the UTL_HTTP.END_OF_BODY exception, first you need to run the utl_http_public.sql file from the contrib/utl_http directory of your installation directory.

Various public constants are available with UTL_HTTP . These are listed in the following tables.

The following table contains UTL_HTTP public constants defining HTTP versions and port assignments.

HTTP versions

HTTP_VERSION_1_0 CONSTANT VARCHAR2(64) :=
'HTTP/1.0';

HTTP_VERSION_1_1 CONSTANT VARCHAR2(64) :=
'HTTP/1.1';

Standard port assignments

DEFAULT_HTTP_PORT CONSTANT INTEGER := 80;

DEFAULT_HTTPS_PORT CONSTANT INTEGER := 443;

The following table contains UTL_HTTP public status code constants.

1XX Informational

HTTP_CONTINUE CONSTANT INTEGER := 100;

HTTP_SWITCHING_PROTOCOLS CONSTANT INTEGER := 101;

HTTP_PROCESSING CONSTANT INTEGER := 102;

2XX success

HTTP_OK CONSTANT INTEGER := 200;

HTTP_CREATED CONSTANT INTEGER := 201;

HTTP_ACCEPTED CONSTANT INTEGER := 202;

HTTP_NON_AUTHORITATIVE_INFO CONSTANT INTEGER := 203;

HTTP_NO_CONTENT CONSTANT INTEGER := 204;

HTTP_RESET_CONTENT CONSTANT INTEGER := 205;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 405

HTTP_PARTIAL_CONTENT CONSTANT INTEGER := 206;

HTTP_MULTI_STATUS CONSTANT INTEGER := 207;

HTTP_ALREADY_REPORTED CONSTANT INTEGER := 208;

HTTP_IM_USED CONSTANT INTEGER := 226;

3XX redirection

HTTP_MULTIPLE_CHOICES CONSTANT INTEGER := 300;

HTTP_MOVED_PERMANENTLY CONSTANT INTEGER := 301;

HTTP_FOUND CONSTANT INTEGER := 302;

HTTP_SEE_OTHER CONSTANT INTEGER := 303;

HTTP_NOT_MODIFIED CONSTANT INTEGER := 304;

HTTP_USE_PROXY CONSTANT INTEGER := 305;

HTTP_SWITCH_PROXY CONSTANT INTEGER := 306;

HTTP_TEMPORARY_REDIRECT CONSTANT INTEGER := 307;

HTTP_PERMANENT_REDIRECT CONSTANT INTEGER := 308;

1XX Informational

4XX client error

HTTP_BAD_REQUEST CONSTANT INTEGER := 400;

HTTP_UNAUTHORIZED CONSTANT INTEGER := 401;

HTTP_PAYMENT_REQUIRED CONSTANT INTEGER := 402;

HTTP_FORBIDDEN CONSTANT INTEGER := 403;

HTTP_NOT_FOUND CONSTANT INTEGER := 404;

HTTP_METHOD_NOT_ALLOWED CONSTANT INTEGER := 405;

HTTP_NOT_ACCEPTABLE CONSTANT INTEGER := 406;

HTTP_PROXY_AUTH_REQUIRED CONSTANT INTEGER := 407;

HTTP_REQUEST_TIME_OUT CONSTANT INTEGER := 408;

HTTP_CONFLICT CONSTANT INTEGER := 409;

HTTP_GONE CONSTANT INTEGER := 410;

HTTP_LENGTH_REQUIRED CONSTANT INTEGER := 411;

HTTP_PRECONDITION_FAILED
CONSTANT INTEGER := 412;

HTTP_REQUEST_ENTITY_TOO_LARGE CONSTANT INTEGER := 413;

HTTP_REQUEST_URI_TOO_LARGE CONSTANT INTEGER := 414;

HTTP_UNSUPPORTED_MEDIA_TYPE CONSTANT INTEGER := 415;

HTTP_REQ_RANGE_NOT_SATISFIABLE CONSTANT INTEGER := 416;

HTTP_EXPECTATION_FAILED CONSTANT INTEGER := 417;

HTTP_I_AM_A_TEAPOT CONSTANT INTEGER := 418;

HTTP_AUTHENTICATION_TIME_OUT CONSTANT INTEGER := 419;

HTTP_ENHANCE_YOUR_CALM CONSTANT INTEGER := 420;

HTTP_UNPROCESSABLE_ENTITY CONSTANT INTEGER := 422;

HTTP_LOCKED CONSTANT INTEGER := 423;

HTTP_FAILED_DEPENDENCY CONSTANT INTEGER := 424;

HTTP_UNORDERED_COLLECTION CONSTANT INTEGER := 425;

HTTP_UPGRADE_REQUIRED CONSTANT INTEGER := 426;

HTTP_PRECONDITION_REQUIRED CONSTANT INTEGER := 428;

HTTP_TOO_MANY_REQUESTS CONSTANT INTEGER := 429;

HTTP_REQUEST_HEADER_FIELDS_TOO_LARGE CONSTANT INTEGER := 431;

HTTP_NO_RESPONSE CONSTANT INTEGER := 444;

HTTP_RETRY_WITH CONSTANT INTEGER := 449;

HTTP_BLOCKED_BY_WINDOWS_PARENTAL_CONTROLS CONSTANT INTEGER := 450;

HTTP_REDIRECT CONSTANT INTEGER := 451;

HTTP_REQUEST_HEADER_TOO_LARGE CONSTANT INTEGER := 494;

HTTP_CERT_ERROR CONSTANT INTEGER := 495;

HTTP_NO_CERT CONSTANT INTEGER := 496;

HTTP_HTTP_TO_HTTPS CONSTANT INTEGER := 497;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 406

HTTP_CLIENT_CLOSED_REQUEST CONSTANT INTEGER := 499;

4XX client error

5XX server error

HTTP_INTERNAL_SERVER_ERROR CONSTANT INTEGER := 500;

HTTP_NOT_IMPLEMENTED CONSTANT INTEGER := 501;

HTTP_BAD_GATEWAY CONSTANT INTEGER := 502;

HTTP_SERVICE_UNAVAILABLE CONSTANT INTEGER := 503;

HTTP_GATEWAY_TIME_OUT CONSTANT INTEGER := 504;

HTTP_VERSION_NOT_SUPPORTED CONSTANT INTEGER := 505;

HTTP_VARIANT_ALSO_NEGOTIATES CONSTANT INTEGER := 506;

HTTP_INSUFFICIENT_STORAGE CONSTANT INTEGER := 507;

HTTP_LOOP_DETECTED CONSTANT INTEGER := 508;

HTTP_BANDWIDTH_LIMIT_EXCEEDED CONSTANT INTEGER := 509;

HTTP_NOT_EXTENDED CONSTANT INTEGER := 510;

HTTP_NETWORK_AUTHENTICATION_REQUIRED CONSTANT INTEGER := 511;

HTTP_NETWORK_READ_TIME_OUT_ERROR CONSTANT INTEGER := 598;

HTTP_NETWORK_CONNECT_TIME_OUT_ERROR CONSTANT INTEGER := 599;

HTML_PIECES

The UTL_HTTP package declares a type named HTML_PIECES , which is a table of type VARCHAR2 (2000) indexed by BINARY INTEGER . A value of this type is returned by the
REQUEST_PIECES function.

TYPE html_pieces IS TABLE OF VARCHAR2(2000) INDEX BY BINARY_INTEGER;

REQ

The REQ record type holds information about each HTTP request.

TYPE req IS RECORD (
 url VARCHAR2(32767), -- URL to be accessed
 method VARCHAR2(64), -- HTTP method
 http_version VARCHAR2(64), -- HTTP version
 private_hndl INTEGER -- Holds handle for this request
);

RESP

The RESP record type holds information about the response from each HTTP request.

TYPE resp IS RECORD (
 status_code INTEGER, -- HTTP status code
 reason_phrase VARCHAR2(256), -- HTTP response reason phrase
 http_version VARCHAR2(64), -- HTTP version
 private_hndl INTEGER -- Holds handle for this response
);

BEGIN_REQUEST

The BEGIN_REQUEST function initiates a new HTTP request. A network connection is established to the web server with the specified URL. The signature is:

BEGIN_REQUEST(<url> IN VARCHAR2, <method> IN VARCHAR2 DEFAULT
'GET ', <http_version> IN VARCHAR2 DEFAULT NULL) RETURN
UTL_HTTP.REQ

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 407

The BEGIN_REQUEST function returns a record of type UTL_HTTP.REQ .

Parameters

url

url is the Uniform Resource Locator from which UTL_HTTP returns content.

method

method is the HTTP method to use. The default is GET .

http_version

http_version is the HTTP protocol version sending the request. Specify either HTTP/1.0 or HTTP/1.1 . The default is null. In that case, the latest HTTP protocol version supported by the
UTL_HTTP package is used, which is 1.1.

END_REQUEST

The END_REQUEST procedure terminates an HTTP request. Use the END_REQUEST procedure to terminate an HTTP request without completing it and waiting for the response. The normal process
is to begin the request, get the response, and then close the response. The signature is:

END_REQUEST(<r> IN OUT UTL_HTTP.REQ)

Parameters

r

r is the HTTP request record.

END_RESPONSE

The END_RESPONSE procedure terminates the HTTP response. The END_RESPONSE procedure completes the HTTP request and response. This is the normal method to end the request and response
process. The signature is:

END_RESPONSE(<r> IN OUT UTL_HTTP.RESP)

Parameters

r

r is the HTTP response record.

GET_BODY_CHARSET

The GET_BODY_CHARSET program is available in the form of both a procedure and a function. A call to GET_BODY_CHARSET returns the default character set of the body of future HTTP requests.

The procedure signature is:

GET_BODY_CHARSET(<charset> OUT VARCHAR2)

The function signature is:

GET_BODY_CHARSET() RETURN VARCHAR2

This function returns a VARCHAR2 value.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 408

Parameters

charset

charset is the character set of the body.

Examples

This example shows the use of the GET_BODY_CHARSET function.

edb=# SELECT UTL_HTTP.GET_BODY_CHARSET() FROM DUAL;
 get_body_charset

 ISO-8859-1
(1 row)

GET_FOLLOW_REDIRECT

The GET_FOLLOW_REDIRECT procedure returns the current setting for the maximum number of redirections allowed. The signature is:

GET_FOLLOW_REDIRECT(<max_redirects> OUT INTEGER)

Parameters

max_redirects

max_redirects is the maximum number of redirections allowed.

GET_HEADER

The GET_HEADER procedure returns the nth header of the HTTP response. The signature is:

GET_HEADER(<r> IN OUT UTL_HTTP.RESP, <n> INTEGER, <name> OUT
VARCHAR2, <value> OUT VARCHAR2)

Parameters

r

r is the HTTP response record.

n

n is the nth header of the HTTP response record to retrieve.

name

name is the name of the response header.

value

value is the value of the response header.

Examples

This example retrieves the header count and then the headers.

DECLARE

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 409

 v_req UTL_HTTP.REQ;
 v_resp UTL_HTTP.RESP;
 v_name VARCHAR2(30);
 v_value VARCHAR2(200);
 v_header_cnt INTEGER;
BEGIN
 -- Initiate request and get response
 v_req := UTL_HTTP.BEGIN_REQUEST('www.enterprisedb.com');
 v_resp := UTL_HTTP.GET_RESPONSE(v_req);

 -- Get header count
 v_header_cnt := UTL_HTTP.GET_HEADER_COUNT(v_resp);
 DBMS_OUTPUT.PUT_LINE('Header Count: ' || v_header_cnt);

 -- Get all headers
 FOR i IN 1 .. v_header_cnt LOOP
 UTL_HTTP.GET_HEADER(v_resp, i, v_name, v_value);
 DBMS_OUTPUT.PUT_LINE(v_name || ': ' || v_value);
 END LOOP;

 -- Terminate request
 UTL_HTTP.END_RESPONSE(v_resp);
END;

The following is the output from the example.

Header Count: 23
Age: 570
Cache-Control: must-revalidate
Content-Type: text/html; charset=utf-8
Date: Wed, 30 Apr 2015 14:57:52 GMT
ETag: "aab02f2bd2d696eed817ca89ef411dda"
Expires: Sun, 19 Nov 1978 05:00:00 GMT
Last-Modified: Wed, 30 Apr 2015 14:15:49 GMT
RTSS: 1-1307-3
Server: Apache/2.2.3 (Red Hat)
Set-Cookie:
SESS2771d0952de2a1a84d322a262e0c173c=jn1u1j1etmdi5gg4lh8hakvs01;
expires=Fri, 23-May-2015 18:21:43 GMT; path=/; domain=.enterprisedb.com
Vary: Accept-Encoding
Via: 1.1 varnish
X-EDB-Backend: ec
X-EDB-Cache: HIT
X-EDB-Cache-Address: 10.31.162.212
X-EDB-Cache-Server: ip-10-31-162-212
X-EDB-Cache-TTL: 600.000
X-EDB-Cacheable: MAYBE: The user has a cookie of some sort. Maybe it's
double choc-chip!
X-EDB-Do-GZIP: false
X-Powered-By: PHP/5.2.17
X-Varnish: 484508634 484506789
transfer-encoding: chunked
Connection: keep-alive

GET_HEADER_BY_NAME

The GET_HEADER_BY_NAME procedure returns the header of the HTTP response according to the specified name. The signature is:

GET_HEADER_BY_NAME(<r> IN OUT UTL_HTTP.RESP, <name> VARCHAR2,
<value> OUT VARCHAR2, <n> INTEGER DEFAULT 1)

Parameters

r

r is the HTTP response record.

name

name is the name of the response header to retrieve.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 410

value

value is the value of the response header.

n

n is the nth header of the HTTP response record to retrieve according to the values specified by name . The default is 1 .

Examples

The following example retrieves the header for Content-Type.

DECLARE
 v_req UTL_HTTP.REQ;
 v_resp UTL_HTTP.RESP;
 v_name VARCHAR2(30) := 'Content-Type';
 v_value VARCHAR2(200);
BEGIN
 v_req := UTL_HTTP.BEGIN_REQUEST('www.enterprisedb.com');
 v_resp := UTL_HTTP.GET_RESPONSE(v_req);
 UTL_HTTP.GET_HEADER_BY_NAME(v_resp, v_name, v_value);
 DBMS_OUTPUT.PUT_LINE(v_name || ': ' || v_value);
 UTL_HTTP.END_RESPONSE(v_resp);
END;

Content-Type: text/html; charset=utf-8

GET_HEADER_COUNT

The GET_HEADER_COUNT function returns the number of HTTP response headers. The signature is:

GET_HEADER_COUNT(<r> IN OUT UTL_HTTP.RESP) RETURN INTEGER

This function returns an INTEGER value.

Parameters

r

r is the HTTP response record.

GET_RESPONSE

The GET_RESPONSE function sends the network request and returns any HTTP response. The signature is:

GET_RESPONSE(<r> IN OUT UTL_HTTP.REQ) RETURN UTL_HTTP.RESP

This function returns a UTL_HTTP.RESP record.

Parameters

r

r is the HTTP request record.

GET_RESPONSE_ERROR_CHECK

The GET_RESPONSE_ERROR_CHECK procedure returns whether response error check is set. The signature is:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 411

GET_RESPONSE_ERROR_CHECK(<enable> OUT BOOLEAN)

Parameters

enable

enable returns TRUE if response error check is set. Otherwise it returns FALSE .

GET_TRANSFER_TIMEOUT

The GET_TRANSFER_TIMEOUT procedure returns the current default transfer timeout setting for HTTP requests. The signature is:

GET_TRANSFER_TIMEOUT(<timeout> OUT INTEGER)

Parameters

timeout

timeout is the transfer timeout setting in seconds.

READ_LINE

The READ_LINE procedure returns the data from the HTTP response body in text form until the end of line is reached. A CR character, a LF character, a CR LF sequence, or the end of the
response body constitutes the end of line. The signature is:

READ_LINE(<r> IN OUT UTL_HTTP.RESP, <data> OUT VARCHAR2,
<remove_crlf> BOOLEAN DEFAULT FALSE)

Parameters

r

r is the HTTP response record.

data

data is the response body in text form.

remove_crlf

Set remove_crlf to TRUE to remove new line characters. The default is FALSE .

Examples

This example retrieves and displays the body of the specified website.

DECLARE
 v_req UTL_HTTP.REQ;
 v_resp UTL_HTTP.RESP;
 v_value VARCHAR2(1024);
BEGIN
 v_req := UTL_HTTP.BEGIN_REQUEST('http://www.enterprisedb.com');
 v_resp := UTL_HTTP.GET_RESPONSE(v_req);
 LOOP
 UTL_HTTP.READ_LINE(v_resp, v_value, TRUE);
 DBMS_OUTPUT.PUT_LINE(v_value);
 END LOOP;
 EXCEPTION
 WHEN OTHERS THEN

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 412

 UTL_HTTP.END_RESPONSE(v_resp);
END;

The following is the output.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en" dir="ltr">

 <!-- ___________________________ HEAD ___________________________ -->

 <head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />

 <title>EnterpriseDB | The Postgres Database Company</title>

 <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<meta name="keywords" content="postgres, postgresql, postgresql installer,
mysql migration, open source database, training, replication" />
<meta name="description" content="The leader in open source database
products, services, support, training and expertise based on PostgreSQL.
Free downloads, documentation, and tutorials." />
<meta name="abstract" content="The Enterprise PostgreSQL Company" />
<link rel="EditURI" type="application/rsd+xml" title="RSD" href="http://
www.enterprisedb.com/blogapi/rsd" />
<link rel="alternate" type="application/rss+xml" title="EnterpriseDB RSS"
href="http://www.enterprisedb.com/rss.xml" />
<link rel="shortcut icon" href="/sites/all/themes/edb_pixelcrayons/
favicon.ico" type="image/x-icon" />
 <link type="text/css" rel="stylesheet" media="all" href="/sites/default/
 files/css/css_db11adabae0aed6b79a2c3c52def4754.css" />
<!--[if IE 6]>
<link type="text/css" rel="stylesheet" media="all" href="/sites/all/themes/
oho_basic/css/ie6.css?g" />
<![endif]-->
<!--[if IE 7]>
<link type="text/css" rel="stylesheet" media="all" href="/sites/all/themes/
oho_basic/css/ie7.css?g" />
<![endif]-->
 <script type="text/javascript" src="/sites/default/files/js/
 js_74d97b1176812e2fd6e43d62503a5204.js"></script>
<script type="text/javascript">
<!--//--><![CDATA[//><!--

READ_RAW

The READ_RAW procedure returns the data from the HTTP response body in binary form. The number of bytes returned is specified by the len parameter. The signature is:

READ_RAW(<r> IN OUT UTL_HTTP.RESP, <data> OUT RAW, <len> INTEGER)

Parameters

r

r is the HTTP response record.

data

data is the response body in binary form.

len

Set len to the number of bytes of data to return.

Examples

This example retrieves and displays the first 150 bytes in binary form.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 413

DECLARE
 v_req UTL_HTTP.REQ;
 v_resp UTL_HTTP.RESP;
 v_data RAW;
BEGIN
 v_req := UTL_HTTP.BEGIN_REQUEST('http://www.enterprisedb.com');
 v_resp := UTL_HTTP.GET_RESPONSE(v_req);
 UTL_HTTP.READ_RAW(v_resp, v_data, 150);
 DBMS_OUTPUT.PUT_LINE(v_data);
 UTL_HTTP.END_RESPONSE(v_resp);
END;

The following is the output from the example.

\x3c21444f43545950452068746d6c205055424c494320222d2f2f5733432f2f4454442058485
44d4c20312e30205374726963742f2f454e220d0a202022687474703a2f2f7777772e77332e6f
72672f54522f7868746d6c312f4454442f7868746d6c312d7374726963742e647464223e0d0a3
c68746d6c20786d6c6e733d22687474703a2f2f7777772e77332e6f72672f313939392f

READ_TEXT

The READ_TEXT procedure returns the data from the HTTP response body in text form. The maximum number of characters returned is specified by the len parameter. The signature is:

READ_TEXT(<r> IN OUT UTL_HTTP.RESP, <data> OUT VARCHAR2, <len> INTEGER)

Parameters

r

r is the HTTP response record.

data

data is the response body in text form.

len

Set len to the maximum number of characters to return.

Examples

This example retrieves the first 150 characters:

DECLARE
 v_req UTL_HTTP.REQ;
 v_resp UTL_HTTP.RESP;
 v_data VARCHAR2(150);
BEGIN
 v_req := UTL_HTTP.BEGIN_REQUEST('http://www.enterprisedb.com');
 v_resp := UTL_HTTP.GET_RESPONSE(v_req);
 UTL_HTTP.READ_TEXT(v_resp, v_data, 150);
 DBMS_OUTPUT.PUT_LINE(v_data);
 UTL_HTTP.END_RESPONSE(v_resp);
END;

The following is the output:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/

REQUEST

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 414

The REQUEST function returns the first 2000 bytes retrieved from a URL. The signature is:

REQUEST(<url> IN VARCHAR2) RETURN VARCHAR2

If the data found at the URL is longer than 2000 bytes, the remainder is discarded. If the data found at the given URL is shorter than 2000 bytes, the result is shorter than 2000 bytes.

Parameters

url

url is the Uniform Resource Locator from which UTL_HTTP returns content.

Example

This command returns the first 2000 bytes retrieved from the EDB website:

SELECT UTL_HTTP.REQUEST('http://www.enterprisedb.com/') FROM DUAL;

REQUEST_PIECES

The REQUEST_PIECES function returns a table of 2000-byte segments retrieved from a URL. The signature is:

REQUEST_PIECES(<url> IN VARCHAR2, <max_pieces> NUMBER IN
DEFAULT 32767) RETURN UTL_HTTP.HTML_PIECES

Parameters

url

url is the Uniform Resource Locator from which UTL_HTTP returns content.

max_pieces

max_pieces specifies the maximum number of 2000-byte segments that the REQUEST_PIECES function returns. If max_pieces specifies more units than are available at the specified URL, the
final unit contains fewer bytes.

Example

This example returns the first four 2000-byte segments retrieved from the EDB website:

DECLARE
 result UTL_HTTP.HTML_PIECES;
BEGIN
result := UTL_HTTP.REQUEST_PIECES('http://www.enterprisedb.com/', 4);
END;

SET_BODY_CHARSET

The SET_BODY_CHARSET procedure sets the default character set of the body of future HTTP requests. The signature is:

SET_BODY_CHARSET(<charset> VARCHAR2 DEFAULT NULL)

Parameters

charset

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 415

charset is the character set of the body of future requests. The default is null, meaning the database character set is assumed.

SET_FOLLOW_REDIRECT

The SET_FOLLOW_REDIRECT procedure sets the maximum number of times to follow the HTTP redirect instruction in the response to this request or future requests. This procedures has two
signatures:

SET_FOLLOW_REDIRECT(<max_redirects> IN INTEGER DEFAULT 3)

and

SET_FOLLOW_REDIRECT(<r> IN OUT UTL_HTTP.REQ, <max_redirects>
IN INTEGER DEFAULT 3)

Use the second form to change the maximum number of redirections for an individual request that a request inherits from the session default settings.

Parameters

r

r is the HTTP request record.

max_redirects

max_redirects is the maximum number of redirections allowed. Set to 0 to disable redirections. The default is 3 .

SET_HEADER

The SET_HEADER procedure sets the HTTP request header. The signature is:

SET_HEADER(<r> IN OUT UTL_HTTP.REQ, <name> IN VARCHAR2, <value>
IN VARCHAR2 DEFAULT NULL)

Parameters

r

r is the HTTP request record.

name

name is the name of the request header.

value

value is the value of the request header. The default is null.

SET_RESPONSE_ERROR_CHECK

The SET_RESPONSE_ERROR_CHECK procedure determines whether to interpret HTTP 4xx and 5xx status codes returned by the GET_RESPONSE function as errors. The signature is:

SET_RESPONSE_ERROR_CHECK(<enable> IN BOOLEAN DEFAULT FALSE)

Parameters

enable

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 416

Set enable to TRUE if you want to treat HTTP 4xx and 5xx status codes as errors. The default is FALSE .

SET_TRANSFER_TIMEOUT

The SET_TRANSFER_TIMEOUT procedure sets the default transfer timeout setting for waiting for a response from an HTTP request. This procedure has two signatures:

SET_TRANSFER_TIMEOUT(<timeout> IN INTEGER DEFAULT 60)

and

SET_TRANSFER_TIMEOUT(<r> IN OUT UTL_HTTP.REQ, <timeout> IN
INTEGER DEFAULT 60)

Use the second form to change the transfer timeout setting for an individual request that a request inherits from the session default settings.

Parameters

r

r is the HTTP request record.

timeout

timeout is the transfer timeout setting in seconds for HTTP requests. The default is 60 seconds.

WRITE_LINE

The WRITE_LINE procedure writes data to the HTTP request body in text form. The text is terminated with a CRLF character pair. The signature is:

WRITE_LINE(<r> IN OUT UTL_HTTP.REQ, <data> IN VARCHAR2)

Parameters

r

r is the HTTP request record.

data

data is the request body in TEXT form.

Example

This example writes data (Account balance $500.00) in text form to the request body to send using the HTTP POST method. The data is sent to a web application that accepts and processes
data (post.php).

DECLARE
 v_req UTL_HTTP.REQ;
 v_resp UTL_HTTP.RESP;
BEGIN
 v_req := UTL_HTTP.BEGIN_REQUEST('http://www.example.com/post.php',
 'POST');
 UTL_HTTP.SET_HEADER(v_req, 'Content-Length', '23');
 UTL_HTTP.WRITE_LINE(v_req, 'Account balance $500.00');
 v_resp := UTL_HTTP.GET_RESPONSE(v_req);
 DBMS_OUTPUT.PUT_LINE('Status Code: ' || v_resp.status_code);
 DBMS_OUTPUT.PUT_LINE('Reason Phrase: ' || v_resp.reason_phrase);
 UTL_HTTP.END_RESPONSE(v_resp);
END;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 417

Assuming the web application successfully processed the POST method, the following output is displayed:

Status Code: 200
Reason Phrase: OK

WRITE_RAW

The WRITE_RAW procedure writes data to the HTTP request body in binary form. The signature is:

WRITE_RAW(<r> IN OUT UTL_HTTP.REQ, <data> IN RAW)

Parameters

r

r is the HTTP request record.

data

data is the request body in binary form.

Example

This example writes data in binary form to the request body to send using the HTTP POST method to a web application that accepts and processes such data.

DECLARE
 v_req UTL_HTTP.REQ;
 v_resp UTL_HTTP.RESP;
BEGIN
 v_req := UTL_HTTP.BEGIN_REQUEST('http://www.example.com/post.php',
 'POST');
 UTL_HTTP.SET_HEADER(v_req, 'Content-Length', '23');
 UTL_HTTP.WRITE_RAW(v_req, HEXTORAW
('54657374696e6720504f5354206d6574686f6420696e20485454502072657175657374'));
 v_resp := UTL_HTTP.GET_RESPONSE(v_req);
 DBMS_OUTPUT.PUT_LINE('Status Code: ' || v_resp.status_code);
 DBMS_OUTPUT.PUT_LINE('Reason Phrase: ' || v_resp.reason_phrase);
 UTL_HTTP.END_RESPONSE(v_resp);
END;

The text string shown in the HEXTORAW function is the hexadecimal translation of the text Testing POST method in HTTP request .

When the web application successfully processes the POST method, the following output is displayed:

Status Code: 200
Reason Phrase: OK

WRITE_TEXT

The WRITE_TEXT procedure writes data to the HTTP request body in text form. The signature is:

WRITE_TEXT(<r> IN OUT UTL_HTTP.REQ, <data> IN VARCHAR2)

Parameters

r

r is the HTTP request record.

data

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 418

data is the request body in text form.

Example

This example writes data (Account balance $500.00) in text form to the request body to send using the HTTP POST method. The data is sent to a web application that accepts and processes
data (post.php).

DECLARE
 v_req UTL_HTTP.REQ;
 v_resp UTL_HTTP.RESP;
BEGIN
 v_req := UTL_HTTP.BEGIN_REQUEST('http://www.example.com/post.php',
 'POST');
 UTL_HTTP.SET_HEADER(v_req, 'Content-Length', '23');
 UTL_HTTP.WRITE_TEXT(v_req, 'Account balance $500.00');
 v_resp := UTL_HTTP.GET_RESPONSE(v_req);
 DBMS_OUTPUT.PUT_LINE('Status Code: ' || v_resp.status_code);
 DBMS_OUTPUT.PUT_LINE('Reason Phrase: ' || v_resp.reason_phrase);
 UTL_HTTP.END_RESPONSE(v_resp);
END;

When the web application successfully processes the POST method, the following output is displayed:

Status Code: 200
Reason Phrase: OK

END_OF_BODY

The END_OF_BODY exception is raised when it reaches the end of the HTTP response body.

Example

This example handles the exception and writes Exception caught in text form to the request body to send using the HTTP POST method. The data is sent to a web application that accepts and
processes data (post.php).

DECLARE
 req UTL_HTTP.REQ;
 resp UTL_HTTP.RESP;
 value VARCHAR2(32768);
BEGIN
 req := UTL_HTTP.BEGIN_REQUEST('https://www.google.com/');
 resp := UTL_HTTP.GET_RESPONSE(req);
LOOP
 UTL_HTTP.READ_LINE(resp, value, TRUE);
END LOOP;
 UTL_HTTP.END_RESPONSE(resp);
EXCEPTION
 WHEN UTL_HTTP.END_OF_BODY THEN
 DBMS_OUTPUT.PUT_LINE('Exception caught');
 UTL_HTTP.END_RESPONSE(resp);
END;

When the web application successfully processes the POST method, the following output is displayed:

Output is:
Exception caught

16.2.22 UTL_MAIL

The UTL_MAIL package manages email. EDB Postgres Advanced Server supports the following procedures.

Function/procedure Return
Type

Description

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 419

SEND(sender, recipients, cc, bcc, subject, message [, mime_type [, priority]]) n/a
Packages and sends an email to an SMTP
server.

SEND_ATTACH_RAW(sender, recipients, cc, bcc, subject, message, mime_type, priority, attachment
[, att_inline [, att_mime_type [, att_filename]]])

n/a
Same as the SEND procedure but with
BYTEA or large object attachments.

SEND_ATTACH_VARCHAR2(sender, recipients, cc, bcc, subject, message, mime_type, priority,
attachment [, att_inline [, att_mime_type [, att_filename]]])

n/a
Same as the SEND procedure but with
VARCHAR2 attachments.

Function/procedure Return
Type

Description

Note

An administrator must grant execute privileges to each user or group before they can use this package.

SEND

The SEND procedure sends an email to an SMTP server.

SEND(<sender> VARCHAR2, <recipients> VARCHAR2, <cc> VARCHAR2,
 <bcc> VARCHAR2, <subject> VARCHAR2, <message> VARCHAR2
 [, <mime_type> VARCHAR2 [, <priority> PLS_INTEGER]])

Parameters

sender

Email address of the sender.

recipients

Comma-separated email addresses of the recipients.

cc

Comma-separated email addresses of copy recipients.

bcc

Comma-separated email addresses of blind copy recipients.

subject

Subject line of the email.

message

Body of the email.

mime_type

Mime type of the message. The default is text/plain; charset=us-ascii .

priority

Priority of the email The default is 3 .

Examples

The following anonymous block sends a simple email message.

DECLARE
 v_sender VARCHAR2(30);
 v_recipients VARCHAR2(60);
 v_subj VARCHAR2(20);

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 420

 v_msg VARCHAR2(200);
BEGIN
 v_sender := 'jsmith@enterprisedb.com';
 v_recipients := 'ajones@enterprisedb.com,rrogers@enterprisedb.com';
 v_subj := 'Holiday Party';
 v_msg := 'This year''s party is scheduled for Friday, Dec. 21 at ' ||
 '6:00 PM. Please RSVP by Dec. 15th.';
 UTL_MAIL.SEND(v_sender,v_recipients,NULL,NULL,v_subj,v_msg);
END;

SEND_ATTACH_RAW

The SEND_ATTACH_RAW procedure sends an email to an SMTP server with an attachment containing either BYTEA data or a large object (identified by the large object's OID). You can write the call
to SEND_ATTACH_RAW in two ways:

SEND_ATTACH_RAW(<sender> VARCHAR2, <recipients> VARCHAR2,
 <cc> VARCHAR2, <bcc> VARCHAR2, <subject> VARCHAR2, <message> VARCHAR2,
 <mime_type> VARCHAR2, <priority> PLS_INTEGER,
 <attachment> BYTEA[, <att_inline> BOOLEAN
 [, <att_mime_type> VARCHAR2[, <att_filename> VARCHAR2]]])

or

SEND_ATTACH_RAW(<sender> VARCHAR2, <recipients> VARCHAR2,
 <cc> VARCHAR2, <bcc> VARCHAR2, <subject> VARCHAR2, <message> VARCHAR2,
 <mime_type> VARCHAR2, <priority> PLS_INTEGER, <attachment> OID
 [, <att_inline> BOOLEAN [, <att_mime_type> VARCHAR2
 [, <att_filename> VARCHAR2]]])

Parameters

sender

Email address of the sender.

recipients

Comma-separated email addresses of the recipients.

cc

Comma-separated email addresses of copy recipients.

bcc

Comma-separated email addresses of blind copy recipients.

subject

Subject line of the email.

message

Body of the email.

mime_type

Mime type of the message. The default is text/plain; charset=us-ascii .

priority

Priority of the email. The default is 3 .

attachment

The attachment.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 421

att_inline

If set to TRUE , then the attachment is viewable inline. The default is TRUE .

att_mime_type

Mime type of the attachment. The default is application/octet .

att_filename

The file name containing the attachment. The default is NULL .

SEND_ATTACH_VARCHAR2

The SEND_ATTACH_VARCHAR2 procedure sends an email to an SMTP server with a text attachment.

SEND_ATTACH_VARCHAR2(<sender> VARCHAR2, <recipients> VARCHAR2, <cc>
VARCHAR2, <bcc> VARCHAR2, <subject> VARCHAR2, <message> VARCHAR2,
<mime_type> VARCHAR2, <priority> PLS_INTEGER, <attachment> VARCHAR2 [,
<att_inline> BOOLEAN [, <att_mime_type> VARCHAR2 [, <att_filename> VARCHAR2
]]])

Parameters

sender

Email address of the sender.

recipients

Comma-separated email addresses of the recipients.

cc

Comma-separated email addresses of copy recipients.

bcc

Comma-separated email addresses of blind copy recipients.

subject

Subject line of the email.

message

Body of the email.

mime_type

Mime type of the message. The default is text/plain; charset=us-ascii .

priority

Priority of the email The default is 3.

attachment

The VARCHAR2 attachment.

att_inline

If set to TRUE , then the attachment is viewable inline. The default is TRUE .

att_mime_type

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 422

Mime type of the attachment. The default is text/plain; charset=us-ascii .

att_filename

The file name containing the attachment. The default is NULL .

16.2.23 UTL_RAW

The UTL_RAW package allows you to manipulate or retrieve the length of raw data types.

Note

An administrator must grant execute privileges to each user or group before they can use this package.

Function/procedure Function or
procedure

Return
type

Description

CAST_TO_RAW(c IN VARCHAR2) Function RAW Converts a VARCHAR2 string to a RAW value.

CAST_TO_VARCHAR2(r IN RAW) Function
VARCHA
R2

Converts a RAW value to a VARCHAR2 string.

CONCAT(r1 IN RAW, r2 IN RAW, r3 IN RAW,…) Function RAW Concatenates multiple RAW values into a single RAW value.

CONVERT(r IN RAW, to_charset IN VARCHAR2, from_charset
IN VARCHAR2)

Function RAW Converts encoded data from one encoding to another and returns the result
as a RAW value.

LENGTH(r IN RAW) Function NUMBER Returns the length of a RAW value.

SUBSTR(r IN RAW, pos IN INTEGER, len IN INTEGER) Function RAW Returns a portion of a RAW value.

EDB Postgres Advanced Server's implementation of UTL_RAW is a partial implementation when compared to Oracle's version. Only the functions and procedures listed in the table are supported.

CAST_TO_RAW

The CAST_TO_RAW function converts a VARCHAR2 string to a RAW value. The signature is:

CAST_TO_RAW(<c> VARCHAR2)

The function returns a RAW value if you pass a non- NULL value. If you pass a NULL value, the function returns NULL .

Parameters

c

The VARCHAR2 value to convert to RAW .

Example

This example uses the CAST_TO_RAW function to convert a VARCHAR2 string to a RAW value:

DECLARE
 v VARCHAR2;
 r RAW;
BEGIN
 v := 'Accounts';
 dbms_output.put_line(v);
 r := UTL_RAW.CAST_TO_RAW(v);
 dbms_output.put_line(r);
END;

The result set includes the content of the original string and the converted RAW value:

Accounts
\x4163636f756e7473

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 423

CAST_TO_VARCHAR2

The CAST_TO_VARCHAR2 function converts RAW data to VARCHAR2 data. The signature is:

CAST_TO_VARCHAR2(<r> RAW)

The function returns a VARCHAR2 value if you pass a non- NULL value. If you pass a NULL value, the function returns NULL .

Parameters

r

The RAW value to convert to a VARCHAR2 value.

Example

This example uses the CAST_TO_VARCHAR2 function to convert a RAW value to a VARCHAR2 string:

DECLARE
 r RAW;
 v VARCHAR2;
BEGIN
 r := '\x4163636f756e7473'
 dbms_output.put_line(v);
 v := UTL_RAW.CAST_TO_VARCHAR2(r);
 dbms_output.put_line(r);
END;

The result set includes the content of the original string and the converted RAW value:

\x4163636f756e7473
Accounts

CONCAT

The CONCAT function concatenates multiple RAW values into a single RAW value. The signature is:

CONCAT(<r1> RAW, <r2> RAW, <r3> RAW,…)

The function returns a RAW value. Unlike the Oracle implementation, the EDB Postgres Advanced Server implementation is a variadic function and doesn't place a restriction on the number of values
that can be concatenated.

Parameters

r1, r2, r3,…

The RAW values for CONCAT to concatenate.

Example

This example uses the CONCAT function to concatenate multiple RAW values into a single RAW value:

SELECT UTL_RAW.CAST_TO_VARCHAR2(UTL_RAW.CONCAT('\x61', '\x62', '\x63')) FROM
DUAL;
 concat

 abc
(1 row)

The result (the concatenated values) is then converted to VARCHAR2 format by the CAST_TO_VARCHAR2 function.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 424

CONVERT

The CONVERT function converts a string from one encoding to another encoding and returns the result as a RAW value. The signature is:

CONVERT(<r> RAW, <to_charset> VARCHAR2, <from_charset> VARCHAR2)

The function returns a RAW value.

Parameters

r

The RAW value to convert.

to_charset

The name of the encoding to which r is converted.

from_charset

The name of the encoding from which r is converted.

Example

This example uses the UTL_RAW.CAST_TO_RAW function to convert a VARCHAR2 string (Accounts) to a raw value. It then converts the value from UTF8 to LATIN7 and then from LATIN7 to
UTF8 :

DECLARE
 r RAW;
 v VARCHAR2;
BEGIN
 v:= 'Accounts';
 dbms_output.put_line(v);
 r:= UTL_RAW.CAST_TO_RAW(v);
 dbms_output.put_line(r);
 r:= UTL_RAW.CONVERT(r, 'UTF8', 'LATIN7');
 dbms_output.put_line(r);
 r:= UTL_RAW.CONVERT(r, 'LATIN7', 'UTF8');
 dbms_output.put_line(r);

The example returns the VARCHAR2 value, the RAW value, and the converted values:

Accounts
\x4163636f756e7473
\x4163636f756e7473
\x4163636f756e7473

LENGTH

The LENGTH function returns the length of a RAW value. The signature is:

LENGTH(<r> RAW)

The function returns a RAW value.

Parameters

r

The RAW value for LENGTH to evaluate.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 425

Example

This example uses the LENGTH function to return the length of a RAW value:

SELECT UTL_RAW.LENGTH(UTL_RAW.CAST_TO_RAW('Accounts')) FROM DUAL;
 length

 8
(1 row)

This example uses the LENGTH function to return the length of a RAW value that includes multi-byte characters:

SELECT UTL_RAW.LENGTH(UTL_RAW.CAST_TO_RAW('����'));
 length

 12
(1 row)

SUBSTR

The SUBSTR function returns a substring of a RAW value. The signature is:

SUBSTR (<r> RAW, <pos> INTEGER, <len> INTEGER)

This function returns a RAW value.

Parameters

r

The RAW value from which the substring is returned.

pos

The position of the first byte of the returned substring in the RAW value .

If pos is 0 or 1 , the substring begins at the first byte of the RAW value.
If pos is greater than one, the substring begins at the first byte specified by pos . For example, if pos is 3 , the substring begins at the third byte of the value.
If pos is negative, the substring begins at pos bytes from the end of the source value. For example, if pos is -3 , the substring begins at the third byte from the end of the value.

len

The maximum number of bytes to return.

Example

This example uses the SUBSTR function to select a substring that begins 3 bytes from the start of a RAW value:

SELECT UTL_RAW.SUBSTR(UTL_RAW.CAST_TO_RAW('Accounts'), 3, 5) FROM DUAL;
 substr

 count
(1 row)

This example uses the SUBSTR function to select a substring that starts 5 bytes from the end of a RAW value:

SELECT UTL_RAW.SUBSTR(UTL_RAW.CAST_TO_RAW('Accounts'), -5 , 3) FROM DUAL;
 substr

 oun
(1 row)

16.2.24 UTL_SMTP

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 426

The UTL_SMTP package sends emails over the Simple Mail Transfer Protocol (SMTP).

Note

An administrator must grant execute privileges to each user or group before they can use this package.

Function/procedure Function or
procedure

Return type Description

CLOSE_DATA(c IN OUT) Procedure n/a End an email message.

COMMAND(c IN OUT, cmd [, arg]) Both REPLY Execute an SMTP command.

COMMAND_REPLIES(c IN OUT, cmd [, arg]) Function REPLIES Execute an SMTP command where multiple reply lines are expected.

DATA(c IN OUT, body VARCHAR2) Procedure n/a Specify the body of an email message.

EHLO(c IN OUT, domain) Procedure n/a Perform initial handshaking with an SMTP server and return extended
information.

HELO(c IN OUT, domain) Procedure n/a Perform initial handshaking with an SMTP server

HELP(c IN OUT [, command]) Function REPLIES Send the HELP command.

MAIL(c IN OUT, sender [, parameters]) Procedure n/a Start a mail transaction.

NOOP(c IN OUT) Both REPLY Send the null command.

OPEN_CONNECTION(host [, port [, tx_timeout
]])

Function CONNECTION Open a connection.

OPEN_DATA(c IN OUT) Both REPLY Send the DATA command.

QUIT(c IN OUT) Procedure n/a Terminate the SMTP session and disconnect.

RCPT(c IN OUT, recipient [, parameters]) Procedure n/a Specify the recipient of an email message.

RSET(c IN OUT) Procedure n/a Terminate the current mail transaction.

VRFY(c IN OUT, recipient) Function REPLY Validate an email address.

WRITE_DATA(c IN OUT, data) Procedure n/a Write a portion of the email message.

EDB Postgres Advanced Server's implementation of UTL_SMTP is a partial implementation when compared to Oracle's version. Only the functions and procedures listed in the table are supported.

The following table lists the public variables available in the UTL_SMTP package.

Public variables Data type Value Description

connection RECORD Description of an SMTP connection.

reply RECORD SMTP reply line.

CONNECTION

The CONNECTION record type provides a description of an SMTP connection.

TYPE connection IS RECORD (
 host VARCHAR2(255),
 port PLS_INTEGER,
 tx_timeout PLS_INTEGER
);

REPLY/REPLIES

The REPLY record type provides a description of an SMTP reply line. REPLIES is a table of multiple SMTP reply lines.

TYPE reply IS RECORD (
 code INTEGER,
 text VARCHAR2(508)
);
TYPE replies IS TABLE OF reply INDEX BY BINARY_INTEGER;

CLOSE_DATA

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 427

The CLOSE_DATA procedure terminates an email message by sending the following sequence:

<CR><LF>.<CR><LF>

This is a single period at the beginning of a line.

CLOSE_DATA(<c> IN OUT CONNECTION)

Parameters

c

The SMTP connection to close.

COMMAND

The COMMAND procedure executes an SMTP command. If you're expecting multiple reply lines, use COMMAND_REPLIES .

<reply> REPLY COMMAND(<c> IN OUT CONNECTION, <cmd> VARCHAR2
 [, <arg> VARCHAR2])

COMMAND(<c> IN OUT CONNECTION, <cmd> VARCHAR2 [, <arg> VARCHAR2])

Parameters

c

The SMTP connection to which to send the command.

cmd

The SMTP command to process.

arg

An argument to the SMTP command. The default is null.

reply

SMTP reply to the command. If SMTP returns multiple replies, only the last one is returned in reply .

See Reply/Replies for a description of REPLY and REPLIES .

COMMAND_REPLIES

The COMMAND_REPLIES function processes an SMTP command that returns multiple reply lines. Use COMMAND if you expect only a single reply line.

<replies> REPLIES COMMAND(<c> IN OUT CONNECTION, <cmd> VARCHAR2
 [, <arg> VARCHAR2])

Parameters

c

The SMTP connection to which to send the command.

cmd

The SMTP command to process.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 428

arg

An argument to the SMTP command. The default is null.

replies

SMTP reply lines to the command. See Reply/Replies for a description of REPLY and REPLIES .

DATA

The DATA procedure specifies the body of the email message. The message is terminated with a <CR><LF>.<CR><LF> sequence.

DATA(<c> IN OUT CONNECTION, <body> VARCHAR2)

Parameters

c

The SMTP connection to which to send the command.

body

Body of the email message to send.

EHLO

The EHLO procedure performs initial handshaking with the SMTP server after establishing the connection. The EHLO procedure allows the client to identify itself to the SMTP server according to RFC
821. RFC 1869 specifies the format of the information returned in the server’s reply. The HELO procedure performs the equivalent functionality but returns less information about the server.

EHLO(<c> IN OUT CONNECTION, <domain> VARCHAR2)

Parameters

c

The connection to the SMTP server over which to perform handshaking.

domain

Domain name of the sending host.

HELO

The HELO procedure performs initial handshaking with the SMTP server after establishing the connection. The HELO procedure allows the client to identify itself to the SMTP server according to RFC
821. The EHLO procedure performs the equivalent functionality but returns more information about the server.

HELO(<c> IN OUT, <domain> VARCHAR2)

Parameters

c

The connection to the SMTP server over which to perform handshaking.

domain

Domain name of the sending host.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 429

HELP

The HELP function sends the HELP command to the SMTP server.

<replies> REPLIES HELP(<c> IN OUT CONNECTION [, <command> VARCHAR2])

Parameters

c

The SMTP connection to which to send the command.

command

Command for which you want help.

replies

SMTP reply lines to the command. See Reply/Replies for a description of REPLY and REPLIES .

MAIL

The MAIL procedure initiates a mail transaction.

MAIL(<c> IN OUT CONNECTION, <sender> VARCHAR2 [, <parameters> VARCHAR2])

Parameters

c

Connection to SMTP server on which to start a mail transaction.

sender

The sender’s email address.

parameters

Mail command parameters in the format key=value as defined in RFC 1869.

NOOP

The NOOP function/procedure sends the null command to the SMTP server. The NOOP has no effect on the server except to obtain a successful response.

<reply> REPLY NOOP(<c> IN OUT CONNECTION)

NOOP(<c> IN OUT CONNECTION)

Parameters

c

The SMTP connection on which to send the command.

reply

SMTP reply to the command. If SMTP returns multiple replies, only the last one is returned in reply . See Reply/Replies for a description of REPLY and REPLIES .

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 430

OPEN_CONNECTION

The OPEN_CONNECTION functions open a connection to an SMTP server.

<c> CONNECTION OPEN_CONNECTION(<host> VARCHAR2 [, <port>
PLS_INTEGER [, <tx_timeout> PLS_INTEGER DEFAULT NULL]])

Parameters

host

Name of the SMTP server.

port

Port number on which the SMTP server is listening. The default is 25 .

tx_timeout

Timeout value in seconds. Specify 0 to indicate not to wait. Set this value to null to wait indefinitely. The default is null.

c

Connection handle returned by the SMTP server.

OPEN_DATA

The OPEN_DATA procedure sends the DATA command to the SMTP server.

OPEN_DATA(<c> IN OUT CONNECTION)

Parameters

c

SMTP connection on which to send the command.

QUIT

The QUIT procedure closes the session with an SMTP server.

QUIT(<c> IN OUT CONNECTION)

Parameters

c

SMTP connection to terminate.

RCPT

The RCPT procedure provides the email address of the recipient. To schedule multiple recipients, invoke RCPT multiple times.

RCPT(<c> IN OUT CONNECTION, <recipient> VARCHAR2 [, <parameters> VARCHAR2])

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 431

Parameters

c

Connection to SMTP server on which to add a recipient.

recipient

The recipient’s email address.

parameters

Mail command parameters in the format key=value as defined in RFC 1869.

RSET

The RSET procedure terminates the current mail transaction.

RSET(<c> IN OUT CONNECTION)

Parameters

c

SMTP connection on which to cancel the mail transaction.

VRFY

The VRFY function validates and verifies the recipient’s email address. If valid, the recipient’s full name and fully qualified mailbox are returned.

<reply> REPLY VRFY(<c> IN OUT CONNECTION, <recipient> VARCHAR2)

Parameters

c

The SMTP connection on which to verify the email address.

recipient

The recipient’s email address to verify.

reply

SMTP reply to the command. If SMTP returns multiple replies, only the last one is returned in reply . See Reply/Replies for a description of REPLY and REPLIES .

WRITE_DATA

The WRITE_DATA procedure adds VARCHAR2 data to an email message. You can call the WRITE_DATA procedure repeatedly to add data.

WRITE_DATA(<c> IN OUT CONNECTION, <data> VARCHAR2)

Parameters

c

The SMTP connection on which to add data.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 432

data

Data to add to the email message. The data must conform to the RFC 822 specification.

Comprehensive example

This procedure constructs and sends a text email message using the UTL_SMTP package.

CREATE OR REPLACE PROCEDURE send_mail (
 p_sender VARCHAR2,
 p_recipient VARCHAR2,
 p_subj VARCHAR2,
 p_msg VARCHAR2,
 p_mailhost VARCHAR2
)
IS
 v_conn UTL_SMTP.CONNECTION;
 v_crlf CONSTANT VARCHAR2(2) := CHR(13) || CHR(10);
 v_port CONSTANT PLS_INTEGER := 25;
BEGIN
 v_conn := UTL_SMTP.OPEN_CONNECTION(p_mailhost,v_port);
 UTL_SMTP.HELO(v_conn,p_mailhost);
 UTL_SMTP.MAIL(v_conn,p_sender);
 UTL_SMTP.RCPT(v_conn,p_recipient);
 UTL_SMTP.DATA(v_conn, SUBSTR(
 'Date: ' || TO_CHAR(SYSDATE,
 'Dy, DD Mon YYYY HH24:MI:SS') || v_crlf
 || 'From: ' || p_sender || v_crlf
 || 'To: ' || p_recipient || v_crlf
 || 'Subject: ' || p_subj || v_crlf
 || p_msg
 , 1, 32767));
 UTL_SMTP.QUIT(v_conn);
END;

EXEC send_mail('asmith@enterprisedb.com','pjones@enterprisedb.com','Holiday
Party','Are you planning to attend?','smtp.enterprisedb.com');

This example uses the OPEN_DATA , WRITE_DATA , and CLOSE_DATA procedures instead of the DATA procedure.

CREATE OR REPLACE PROCEDURE send_mail_2 (
 p_sender VARCHAR2,
 p_recipient VARCHAR2,
 p_subj VARCHAR2,
 p_msg VARCHAR2,
 p_mailhost VARCHAR2
)
IS
 v_conn UTL_SMTP.CONNECTION;
 v_crlf CONSTANT VARCHAR2(2) := CHR(13) || CHR(10);
 v_port CONSTANT PLS_INTEGER := 25;
BEGIN
 v_conn := UTL_SMTP.OPEN_CONNECTION(p_mailhost,v_port);
 UTL_SMTP.HELO(v_conn,p_mailhost);
 UTL_SMTP.MAIL(v_conn,p_sender);
 UTL_SMTP.RCPT(v_conn,p_recipient);
 UTL_SMTP.OPEN_DATA(v_conn);
 UTL_SMTP.WRITE_DATA(v_conn,'From: ' || p_sender || v_crlf);
 UTL_SMTP.WRITE_DATA(v_conn,'To: ' || p_recipient || v_crlf);
 UTL_SMTP.WRITE_DATA(v_conn,'Subject: ' || p_subj || v_crlf);
 UTL_SMTP.WRITE_DATA(v_conn,v_crlf || p_msg);
 UTL_SMTP.CLOSE_DATA(v_conn);
 UTL_SMTP.QUIT(v_conn);
END;

EXEC send_mail_2('asmith@enterprisedb.com','pjones@enterprisedb.com','Holiday
Party','Are you planning to attend?','smtp.enterprisedb.com');

16.2.25 UTL_URL

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 433

The UTL_URL package provides a way to escape illegal and reserved characters in a URL.

Function/procedure Return type Description

ESCAPE(url, escape_reserved_chars, url_charset) VARCHAR2 Use the ESCAPE function to escape any illegal and reserved characters in a
URL.

UNESCAPE(url, url_charset) VARCHAR2 Use the UNESCAPE function to convert a URL to its original form.

The UTL_URL package returns the BAD_URL exception if the call to a function includes a URL formed incorrectly.

ESCAPE

Use the ESCAPE function to escape illegal and reserved characters in a URL. The signature is:

ESCAPE(<url> VARCHAR2, <escape_reserved_chars> BOOLEAN,
<url_charset> VARCHAR2)

Reserved characters are replaced with a percent sign followed by the two-digit hex code of the ASCII value for the escaped character.

Parameters

url

url specifies the Uniform Resource Locator that UTL_URL escapes.

escape_reserved_chars

escape_reserved_chars is a Boolean value that instructs the ESCAPE function to escape reserved characters as well as illegal characters:

If escaped_reserved_chars is FALSE , ESCAPE escapes only the illegal characters in the specified URL.

If escape_reserved_chars is TRUE , ESCAPE escapes both the illegal characters and the reserved characters in the specified URL.

By default, escape_reserved_chars is FALSE .

In a URL, legal characters are:

Uppercase A through Z Lowercase a through z 0 through 9

asterisk (*) exclamation point (!) hyphen (-)

left parenthesis (() period (.) right parenthesis ())

single-quote (') tilde (~) underscore (_)

Some characters are legal in some parts of a URL while illegal in others. To review comprehensive rules about illegal characters, refer to RFC 2396. Some examples of characters that are
considered illegal in any part of a URL are:

Illegal character Escape sequence

a blank space () %20

curly braces ({ or }) %7b and %7d

hash mark (#) %23

The ESCAPE function treats the following characters as reserved and escapes them if escape_reserved_chars is set to TRUE :

Reserved character Escape sequence

ampersand (&) %5C

at sign (@) %25

colon (:) %3a

comma (,) %2c

dollar sign ($) %24

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 434

equal sign (=) %3d

plus sign (+) %2b

question mark (?) %3f

semi-colon (;) %3b

slash (/) %2f

Reserved character Escape sequence

url_charset

url_charset specifies a character set to which to convert a given character before escaping it. If url_charset is NULL , the character isn't converted. The default value of url_charset is
ISO-8859-1 .

Examples

This anonymous block uses the ESCAPE function to escape the blank spaces in the URL:

DECLARE
 result varchar2(400);
BEGIN
 result := UTL_URL.ESCAPE('http://www.example.com/Using the ESCAPE
function.html');
 DBMS_OUTPUT.PUT_LINE(result);
END;

The resulting escaped URL is:

http://www.example.com/Using%20the%20ESCAPE%20function.html

Suppose you include a value of TRUE for the escape_reserved_chars parameter when invoking the function:

DECLARE
 result varchar2(400);
BEGIN
 result := UTL_URL.ESCAPE('http://www.example.com/Using the ESCAPE
function.html', TRUE);
 DBMS_OUTPUT.PUT_LINE(result);
END;

The ESCAPE function escapes the reserved characters as well as the illegal characters in the URL:

http%3A%2F%2Fwww.example.com%2FUsing%20the%20ESCAPE%20function.html

UNESCAPE

The UNESCAPE function removes escape characters added to an URL by the ESCAPE function, converting the URL to its original form.

The signature is:

UNESCAPE(<url> VARCHAR2, <url_charset> VARCHAR2)

Parameters

url

url specifies the Uniform Resource Locator that UTL_URL unescapes.

url_charset

After unescaping a character, the character is assumed to be in url_charset encoding and is converted from that encoding to database encoding before being returned. If url_charset is
NULL , the character isn't converted. The default value of url_charset is ISO-8859-1 .

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 435

Examples

This anonymous block uses the ESCAPE function to escape the blank spaces in the URL:

DECLARE
 result varchar2(400);
BEGIN
 result :=
UTL_URL.UNESCAPE('http://www.example.com/Using%20the%20UNESCAPE%20function.html');
 DBMS_OUTPUT.PUT_LINE(result);
END;

The resulting (unescaped) URL is:

http://www.example.com/Using the UNESCAPE function.html

17 Database Compatibility for Oracle Developers: Tools and Utilities

These tools and utilities allow a developer that works with Oracle utilities to work with EDB Postgres Advanced Server in a familiar environment.

These compatible tools and utilities that are supported by EDB Postgres Advanced Server:

EDB*Loader
EDB*Wrap
Dynamic Runtime Instrumentation

The EDB*Plus command line client provides a user interface to EDB Postgres Advanced Server that supports SQL*Plus commands; EDB*Plus allows you to:

Query database objects
Execute stored procedures
Format output from SQL commands
Execute batch scripts
Execute OS commands
Record output

See EDB*Plus for detailed installation and usage information about EDB*Plus.

17.1 EDB*Loader

EDB*Loader is a high-performance bulk data loader that provides an interface compatible with Oracle databases for EDB Postgres Advanced Server. The EDB*Loader command line utility loads data
from an input source, typically a file, into one or more tables using a subset of the parameters offered by Oracle SQL*Loader.

EDB*Loader features include:

Support for the Oracle SQL*Loader data loading methods (conventional path load, direct path load, and parallel direct path load)
Syntax for control file directives compatible with Oracle SQL*Loader
Input data with delimiter-separated or fixed-width fields
Bad file for collecting rejected records
Loading of multiple target tables
Discard file for collecting records that don't meet the selection criteria of any target table
Log file for recording the EDB*Loader session and any error messages
Data loading from standard input and remote loading, particularly useful for large data sources on remote hosts

Note

The following are important version compatibility restrictions between the EDB*Loader client and the database server.

When you invoke the EDB*Loader program (called edbldr), you pass in parameters and directive information to the database server. We strongly recommend that you use the version
14 EDB*Loader client (the edbldr program supplied with EDB Postgres Advanced Server 14) to load data only into version 14 of the database server. In general, use the same version for
the EDB*Loader client and database server.

Using EDB*Loader with connection poolers such as PgPool-II and PgBouncer isn't supported. EDB*Loader must connect directly to EDB Postgres Advanced Server version 14.
Alternatively, the following are some of the commands you can use for loading data through connection poolers:

psql \copy
jdbc copyIn
psycopg2 copy_from

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 436

https://www.enterprisedb.com/docs/edb_plus/latest/

Data loading methods

As with Oracle SQL*Loader, EDB*Loader supports three data loading methods:

Conventional path load
Direct path load
Parallel direct path load

Conventional path load is the default method used by EDB*Loader. Use basic insert processing to add rows to the table.

The advantage of a conventional path load is that table constraints and database objects defined on the table are enforced during a conventional path load. Table constraints and database objects
include primary keys, not null constraints, check constraints, unique indexes, foreign key constraints, triggers, and so on.

One exception is that the EDB Postgres Advanced Server rules defined on the table aren't enforced. EDB*Loader can load tables on which rules are defined. However, the rules aren't executed. As a
consequence, you can't load partitioned tables implemented using rules with EDB*Loader.

Note

Create EDB Postgres Advanced Server rules using the CREATE RULE command. EDB Postgres Advanced Server rules aren't the same database objects as rules and rule sets used in Oracle.

EDB*Loader also supports direct path loads. A direct path load is faster than a conventional path load but requires removing most types of constraints and triggers from the table. For more information,
see Direct path load.

EDB*Loader supports parallel direct path loads. A parallel direct path load provides even greater performance improvement by permitting multiple EDB*Loader sessions to run simultaneously to load a
single table. For more information, see Parallel direct path load.

General usage

EDB*Loader can load data files with either delimiter-separated or fixed-width fields in single-byte or multibyte character sets. The delimiter can be a string consisting of one or more single-byte or
multibyte characters. Data file encoding and the database encoding can differ. Character set conversion of the data file to the database encoding is supported.

Each EDB*Loader session runs as a single, independent transaction. If an error occurs during the EDB*Loader session that aborts the transaction, all changes made during the session are rolled back.

Generally, formatting errors in the data file don't result in an aborted transaction. Instead, the badly formatted records are written to a text file called the bad file. The reason for the error is recorded in
the log file.

Records causing database integrity errors result in an aborted transaction and rollback. As with formatting errors, the record causing the error is written to the bad file and the reason is recorded in the
log file.

Note

EDB*Loader differs from Oracle SQL*Loader in that a database integrity error results in a rollback in EDB*Loader. In Oracle SQL*Loader, only the record causing the error is rejected. Records
that were previously inserted into the table are retained, and loading continues after the rejected record.

The following are examples of types of formatting errors that don't abort the transaction:

Attempt to load non-numeric value into a numeric column
Numeric value too large for a numeric column
Character value too long for the maximum length of a character column
Attempt to load improperly formatted date value into a date column

The following are examples of types of database errors that abort the transaction and result in the rollback of all changes made in the EDB*Loader session:

Violating a unique constraint such as a primary key or unique index
Violating a referential integrity constraint
Violating a check constraint
Error thrown by a trigger fired as a result of inserting rows

Building the EDB*Loader control file

When you invoke EDB*Loader, the list of arguments provided must include the name of a control file. The control file includes the instructions that EDB*Loader uses to load the tables from the input
data file. The control file includes information such as:

The name of the input data file containing the data to load
The name of the tables to load from the data file
Names of the columns in the tables and their corresponding field placement in the data file
Specification of whether the data file uses a delimiter string to separate the fields or if the fields occupy fixed column positions
Optional selection criteria to choose the records from the data file to load into a given table
The name of the file that collects illegally formatted records
The name of the discard file that collects records that don't meet the selection criteria of any table

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 437

The syntax for the EDB*Loader control file is:

[OPTIONS (<param=value> [, <param=value>] ...)]
LOAD DATA
 [CHARACTERSET <charset>]
 [INFILE '{ <data_file> | <stdin> }']
 [BADFILE '<bad_file>']
 [DISCARDFILE '<discard_file>']
 [{ DISCARDMAX | DISCARDS } <max_discard_recs>]
[INSERT | APPEND | REPLACE | TRUNCATE]
[PRESERVE BLANKS]
{ INTO TABLE <target_table>
 [WHEN <field_condition> [AND <field_condition>] ...]
 [FIELDS TERMINATED BY '<termstring>'
 [OPTIONALLY ENCLOSED BY '<enclstring>']]
 [RECORDS DELIMITED BY '<delimstring>']
 [TRAILING NULLCOLS]
 (<field_def> [, <field_def>] ...)
} ...

Where field_def defines a field in the specified data_file . The field describes the location, data format, or value of the data to insert into column_name of target_table . The syntax of
field_def is:

<column_name> {
 CONSTANT <val> |
 FILLER [POSITION (<start:end>)] [<fieldtype>] |
 BOUNDFILLER [POSITION (<start:end>)] [<fieldtype>] |
 [POSITION (<start:end>)] [<fieldtype>]
 [NULLIF <field_condition> [AND <field_condition>] ...]
 [PRESERVE BLANKS] ["<expr>"]
}

Where fieldtype is one of:

CHAR [(<length>)] | DATE [(<length>)] | TIMESTAMP [(<length>)] ["<datemask>"] |
INTEGER EXTERNAL [(<length>)] |
FLOAT EXTERNAL [(<length>)] | DECIMAL EXTERNAL [(<length>)] |
ZONED EXTERNAL [(<length>)] | ZONED [(<precision> [,<scale>])]

Description

The specification of data_file , bad_file , and discard_file can include the full directory path or a relative directory path to the file name. If the file name is specified alone or with a
relative directory path, the file is then assumed to exist, in the case of data_file , relative to the current working directory from which you invoke edbldr. In the case of
bad_file or discard_file`, it's created.

You can include references to environment variables in the EDB*Loader control file when referring to a directory path or file name. Environment variable references are formatted differently on
Windows systems than on Linux systems:

On Linux, the format is $ENV_VARIABLE or ${ENV_VARIABLE} .
On Windows, the format is %ENV_VARIABLE% .

Where ENV_VARIABLE is the environment variable that's set to the directory path or file name.

Set the EDBLDR_ENV_STYLE environment variable to interpret environment variable references as Windows-styled references or Linux-styled references regardless of the operating system on which
EDB*Loader resides. You can use this environment variable to create portable control files for EDB*Loader.

On a Windows system, set EDBLDR_ENV_STYLE to linux or unix to recognize Linux-style references in the control file.
On a Linux system, set EDBLDR_ENV_STYLE to windows to recognize Windows-style references in the control file.

The operating system account enterprisedb must have read permission on the directory and file specified by data_file .

The operating system account enterprisedb must have write permission on the directories where bad_file and discard_file are written.

Note

The file names for data_file , bad_file , and discard_file must have extensions .dat , .bad , and .dsc , respectively. If the provided file name doesn't have an extension,
EDB*Loader assumes the actual file name includes the appropriate extension.

Suppose an EDB*Loader session results in data format errors, the BADFILE clause isn't specified, and the BAD parameter isn't given on the command line when edbldr is invoked. In this case, a
bad file is created with the name control_file_base.bad in the directory from which edbldr is invoked. control_file_base is the base name of the control file used in the edbldr
session.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 438

If all of the following conditions are true, the discard file isn't created even if the EDB*Loader session results in discarded records:

The DISCARDFILE clause for specifying the discard file isn't included in the control file.
The DISCARD parameter for specifying the discard file isn't included on the command line.
The DISCARDMAX clause for specifying the maximum number of discarded records isn't included in the control file.
The DISCARDS clause for specifying the maximum number of discarded records isn't included in the control file.
The DISCARDMAX parameter for specifying the maximum number of discarded records isn't included on the command line.

Suppose you don't specify the DISCARDFILE clause and the DISCARD parameter for explicitly specifying the discard file name, but you do specify DISCARDMAX or DISCARDS . In this case, the
EDB*Loader session creates a discard file using the data file name with an extension of .dsc .

Note

The keywords DISCARD and DISCARDS differ. DISCARD is an EDB*Loader command line parameter used to specify the discard file name (see General usage). DISCARDS is a clause of
the LOAD DATA directive that can appear only in the control file. Keywords DISCARDS and DISCARDMAX provide the same functionality of specifying the maximum number of discarded
records allowed before terminating the EDB*Loader session. Records loaded into the database before terminating the EDB*Loader session due to exceeding the DISCARDS or
DISCARDMAX settings are kept in the database. They aren't rolled back.

Specifying one of INSERT , APPEND , REPLACE , or TRUNCATE establishes the default action for adding rows to target tables. The default action is INSERT .

If you specify the FIELDS TERMINATED BY clause, then you can't specify the POSITION (start:end) clause for any field_def . Alternatively, if you don't specify the FIELDS
TERMINATED BY clause, then every field_def must contain the POSITION (start:end) clause, the fieldtype(length) clause, or the CONSTANT clause.

Parameters

OPTIONS param=value

Use the OPTIONS clause to specify param=value pairs that represent an EDB*Loader directive. If you specify a parameter in the OPTIONS clause and on the command line when edbldr is
invoked, the command line setting takes effect.

Specify one or more of the following parameter/value pairs:

DIRECT= { FALSE | TRUE }

With DIRECT set to TRUE , EDB*Loader performs a direct path load instead of a conventional path load. The default value of DIRECT is FALSE .

Don't set DIRECT=true when loading the data into a replicated table. If you're using EDB*Loader to load data into a replicated table and set DIRECT=true , indexes might omit rows that are
in a table or can potentially contain references to rows that were deleted. Direct inserts to load data into replicated tables aren't supported.

For information on direct path loads see, Direct path load.

ERRORS=error_count

error_count specifies the number of errors permitted before aborting the EDB*Loader session. The default is 50 .

FREEZE= { FALSE | TRUE }

Set FREEZE to TRUE to copy the data with the rows frozen . A tuple guaranteed to be visible to all current and future transactions is marked as frozen to prevent transaction ID wraparound.
For more information about frozen tuples, see the [PostgreSQL core documentation](<https://www.postgresql.org/docs/current/static/routine-vacuuming.html).

You must specify a data-loading type of TRUNCATE in the control file when using the FREEZE option. FREEZE isn't supported for direct loading.

By default, FREEZE is FALSE .

PARALLEL= { FALSE | TRUE }

Set PARALLEL to TRUE to indicate that this EDB*Loader session is one of a number of concurrent EDB*Loader sessions participating in a parallel direct path load. The default value of
PARALLEL is FALSE .

When PARALLEL is TRUE , you must also set the DIRECT parameter to TRUE . For more information about parallel direct path loads, see Parallel direct path load.

ROWS=n

n specifies the number of rows that EDB*Loader commits before loading the next set of n rows.

If EDB*Loader encounters an invalid row during a load in which the ROWS parameter is specified, those rows committed prior to encountering the error remain in the destination table.

SKIP=skip_count

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 439

https://www.postgresql.org/docs/current/static/routine-vacuuming.html

skip_count specifies the number of records at the beginning of the input data file to skip before loading begins. The default is 0 .

SKIP_INDEX_MAINTENANCE={ FALSE | TRUE }

If SKIP_INDEX_MAINTENANCE is TRUE , index maintenance isn't performed as part of a direct path load, and indexes on the loaded table are marked as invalid. The default value of
SKIP_INDEX_MAINTENANCE is FALSE .

Note

During a parallel direct path load, target table indexes aren't updated. They are marked as invalid after the load is complete.

You can use the REINDEX command to rebuild an index. For more information about the REINDEX command, see the PostgreSQL core documentation.

charset

Use the CHARACTERSET clause to identify the character set encoding of data_file , where charset is the character set name. This clause is required if the data file encoding differs from the
control file encoding. The control file encoding must always be in the encoding of the client where edbldr is invoked.

Examples of charset settings are UTF8 , SQL_ASCII , and SJIS .

For more information about client-to-database character-set conversion, see the PostgreSQL core documentation.

data_file

File containing the data to load into target_table . Each record in the data file corresponds to a row to insert into target_table .

If you don't include an extension in the file name, EDB*Loader assumes the file has an extension of .dat , for example, mydatafile.dat .

!!! Note If you specify the DATA parameter on the command line when invoking edbldr , the file given by the command line DATA parameter is used instead.

If you omit the INFILE clause and the command line DATA parameter, then the data file name is assumed to be the same as the control file name but with the extension .dat .

stdin

Specify stdin (all lowercase letters) if you want to use standard input to pipe the data to load directly to EDB*Loader. This technique is useful for data sources generating a large number of records to
load.

bad_file

A file that receives data_file records that can't load due to errors. The bad file is generated for collecting rejected or bad records.

For EDB Postgres Advanced Server version 12 and later, a bad file is generated only if there are any bad or rejected records. However, if an existing bad file has the same name and location, and no bad
records are generated after invoking a new version of edbldr , the existing bad file remains intact.

If you don't include an extension in the file name, EDB*Loader assumes the file has an extension of .bad , for example, mybadfile.bad .

!!! Note If you specify the BAD parameter on the command line when invoking edbldr , the file given with the command line BAD parameter is used instead.

discard_file

File that receives input data records that aren't loaded into any table. This input data records are discarded because none of the selection criteria are met for tables with the WHEN clause and there are
no tables without a WHEN clause. All records meet the selection criteria of a table without a WHEN clause.

If you don't include an extension with the file name, EDB*Loader assumes the file has an extension of .dsc , for example, mydiscardfile.dsc .

!!! Note If you specify the DISCARD parameter on the command line when invoking edbldr , the file given with the command line DISCARD parameter is used instead.

{ DISCARDMAX | DISCARDS } max_discard_recs

Maximum number of discarded records that the input data records can encounter before terminating the EDB*Loader session. You can use either keyword DISCARDMAX or DISCARDS preceding the
integer value specified by max_discard_recs .

For example, if max_discard_recs is 0 , then the EDB*Loader session is terminated when a first discarded record is encountered. If max_discard_recs is 1 , then the EDB*Loader session is
terminated when a second discarded record is encountered.

When the EDB*Loader session is terminated due to exceeding max_discard_recs , prior input data records that were loaded into the database are retained. They aren't rolled back.

INSERT | APPEND | REPLACE | TRUNCATE

Specifies how to load data into the target tables. Specifying one of INSERT , APPEND , REPLACE , or TRUNCATE establishes the default action for all tables, overriding the default of INSERT .

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 440

https://www.postgresql.org/docs/current/static/sql-reindex.html
https://www.postgresql.org/docs/current/static/multibyte.html

INSERT

Data is loaded into an empty table. EDB*Loader throws an exception and doesn't load any data if the table isn't initially empty.

Note

If the table contains rows, you must use the TRUNCATE command to empty the table before invoking EDB*Loader. EDB*Loader throws an exception if you use the DELETE command
to empty the table instead of the TRUNCATE command. Oracle SQL*Loader allows you to empty the table by using either the DELETE or TRUNCATE command.

APPEND

Data is added to any existing rows in the table. The table also can be empty initially.

REPLACE

The REPLACE keyword and TRUNCATE keywords are functionally identical. The table is truncated by EDB*Loader before loading the new data.

Note

Delete triggers on the table aren't fired as a result of the REPLACE operation.

TRUNCATE

The table is truncated by EDB*Loader before loading the new data. Delete triggers on the table aren't fired as a result of the TRUNCATE operation.

PRESERVE BLANKS

The PRESERVE BLANKS option works only with the OPTIONALLY ENCLOSED BY clause. It retains leading and trailing whitespaces for both delimited and predetermined size fields.

In case of NO PRESERVE BLANKS , if the fields are delimited, then only leading whitespaces are omitted. If any trailing whitespaces are present, they are left intact. In the case of predetermined-
sized fields with NO PRESERVE BLANKS , the trailing whitespaces are omitted. Any leading whitespaces are left intact.

!!! Note If you don't explicitly provide PRESERVE BLANKS or NO PRESERVE BLANKS , then the behavior defaults to NO PRESERVE BLANKS . This option doesn't work for ideographic
whitespaces.

target_table

Name of the table into which to load data. The table name can be schema-qualified (for example, enterprisedb.emp). The specified target can't be a view.

field_condition

Conditional clause taking the following form:

[(] { (start:end) | column_name } { = | != | <> } 'val' [)]

This conditional clause is used for the WHEN clause, which is part of the INTO TABLE target_table clause. It's also used for the NULLIF clause, which is part of the field definition denoted as
field_def in the syntax diagram.

start and end are positive integers specifying the column positions in data_file that mark the beginning and end of a field to compare with the constant val . The first character in each
record begins with a start value of 1 .

column_name specifies the name assigned to a field definition of the data file as defined by field_def in the syntax diagram.

Using (start : end) or column_name defines the portion of the record in data_file to compare with the value specified by val to evaluate as either true or false.

All characters used in the field_condition text (particularly in the val string) must be valid in the database encoding. For performing data conversion, EDB*Loader first converts the characters
in val string to the database encoding and then to the data file encoding.

In the WHEN field_condition [AND field_condition] clause, if all such conditions evaluate to TRUE for a given record, then EDB*Loader attempts to insert that record into
target_table . If the insert operation fails, the record is written to bad_file .

Suppose, for a given record, that none of the WHEN clauses evaluate to TRUE for all INTO TABLE clauses. The record is written to discard_file if a discard file was specified for the
EDB*Loader session.

See the description of the NULLIF clause in this parameters list for the effect of field_condition on this clause.

termstring

String of one or more characters that separates each field in data_file . The characters can be single byte or multibyte. However, they must be valid in the database encoding. Two consecutive
appearances of termstring with no intervening character results in the corresponding column being set to null.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 441

enclstring

String of one or more characters used to enclose a field value in data_file . The characters can be single byte or multibyte, However, they must be valid in the database encoding. Use
enclstring on fields where termstring appears as part of the data.

delimstring

String of one or more characters that separates each record in data_file . The characters can be single byte or multibyte. However, they must be valid in the database encoding. Two consecutive
appearances of delimstring with no intervening character results in no corresponding row being loaded into the table. You must also terminate the last record (that is, the end of the data file) with
the delimstring characters. Otherwise, the final record isn't loaded into the table.

!!! Note The RECORDS DELIMITED BY 'delimstring' clause isn't compatible with Oracle databases.

TRAILING NULLCOLS

If you specify TRAILING NULLCOLS , then the columns in the column list for which there's no data in data_file for a given record are set to null when the row is inserted. This option applies only
to one or more consecutive columns at the end of the column list.

If fields are omitted at the end of a record and you don't specify TRAILING NULLCOLS , EDB*Loader assumes the record contains formatting errors and writes it to the bad file.

column_name

Name of a column in target_table into which to insert a field value defined by field_def . If the field definition includes the FILLER or BOUNDFILLER clause, then column_name isn't
required as the name of a column in the table. It can be any identifier name since the FILLER and BOUNDFILLER clauses prevent loading the field data into a table column.

CONSTANT val

Specifies a constant that's type-compatible with the column data type to which it's assigned in a field definition. You can use single or double quotes around val . If val contains white space, then
you must use quotation marks around it.

The use of the CONSTANT clause determines the value to assign to a column in each inserted row. No other clause can appear in the same field definition.

If you use the TERMINATED BY clause to delimit the fields in data_file , there must be no delimited field in data_file corresponding to any field definition with a CONSTANT clause. In
other words, EDB*Loader assumes there's no field in data_file for any field definition with a CONSTANT clause.

FILLER

Specifies not to load the data in the field defined by the field definition into the associated column if the identifier of the field definition is an actual column name in the table. In this case, the column is
set to null. Use of the FILLER or BOUNDFILLER clause is the only circumstance in which you don't have to identify the field definition with an actual column name.

Unlike the BOUNDFILLER clause, you can't reference an identifier defined with the FILLER clause in a SQL expression. See the discussion of the expr parameter.

BOUNDFILLER

Specifies not to load the data in the field defined by the field definition into the associated column if the identifier of the field definition is an actual column name in the table. In this case, the column is
set to null. Use of the FILLER or BOUNDFILLER clause is the only circumstance in which you don't have to identify the field definition with an actual column name.

Unlike the FILLER clause, a SQL expression can reference an identifier defined with the BOUNDFILLER clause. See the discussion of the expr parameter.

POSITION (start:end)

Defines the location of the field in a record in a fixed-width field data file. start and end are positive integers. The first character in the record has a start value of 1 .

CHAR [(<length>)] | DATE [(<length>)] | TIMESTAMP [(<length>)] ["<datemask>"] |
INTEGER EXTERNAL [(<length>)] |
FLOAT EXTERNAL [(<length>)] | DECIMAL EXTERNAL [(<length>)] |
ZONED EXTERNAL [(<length>)] | ZONED [(<precision>[,<scale>])]

Field type that describes the format of the data field in data_file .

!!! Note Specifying a field type is optional for descriptive purposes and has no effect on whether EDB*Loader successfully inserts the data in the field into the table column. Successful loading depends
on the compatibility of the column data type and the field value. For example, a column with data type NUMBER(7,2) successfully accepts a field containing 2600 . However, if the field contains a
value such as 26XX , the insertion fails, and the record is written to bad_file .

ZONED data is not human readable. ZONED data is stored in an internal format where each digit is encoded in a separate nibble/nybble/4-bit field. In each ZONED value, the last byte contains a
single digit in the high-order 4 bits and the sign in the low-order 4 bits.

length

Specifies the length of the value to load into the associated column.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 442

If you specify the POSITION (start : end) clause with a fieldtype(length) clause, then the ending position of the field is overridden by the specified length value. That is, the length of
the value to load into the column is determined by the length value beginning at the start position and not by the end position of the POSITION (start : end) clause. Thus, the value to
load into the column might be shorter than the field defined by POSITION (start : end). Or, it might go beyond the end position, depending on the specified length size.

If you specify the FIELDS TERMINATED BY 'termstring' clause as part of the INTO TABLE clause, and a field definition contains the fieldtype(length) clause, then a record is
accepted. However, the specified length values must be greater than or equal to the field lengths as determined by the termstring characters enclosing all such fields of the record. If the
specified length value is less than a field length as determined by the enclosing termstring characters for any such field, then the record is rejected.

If you don't specify the FIELDS TERMINATED BY 'termstring' clause, and you don't include the POSITION (start : end) clause with a field containing the fieldtype(length)
clause, then the starting position of this field begins with the next character following the ending position of the preceding field. The ending position of the preceding field is either:

The end of its length value if the preceding field contains the fieldtype(length) clause
Its end parameter if the field contains the POSITION (start : end) clause without the fieldtype(length) clause

precision

Use precision to specify the length of the ZONED value.

If the precision value specified for ZONED conflicts with the length calculated by the server based on information provided with the POSITION clause, EDB*Loader uses the value specified for
precision .

scale

Specifies the number of digits to the right of the decimal point in a ZONED value.

datemask

Specifies the ordering and abbreviation of the day, month, and year components of a date field.

!!! Note If you specify the DATE or TIMESTAMP field type with a SQL expression for the column, then you must specify datemask after DATE or TIMESTAMP and before the SQL expression. See
the discussion of the expr parameter.

When using the TIMESTAMP field datatype, if you specify time_stamp timestamp "yyyymmddhh24miss" , the datemask is converted to the SQL expression. However, in the case of
time_stamp timestamp "select to_timestamp(:time_stamp, 'yyyymmddhh24miss')" , EDB*Loader can't differentiate between datemask and the SQL expression. It treats the

third field (SQL expression in the example) as datemask and prepares the SQL expression, which isn't valid. Where:

first field specifies the column name.
second field specifies the datatype.
third field specifies the datemask.

If you want to provide an SQL expression, then a workaround is to specify the datemask and SQL expression using the TO_CHAR function as:

time_stamp timestamp "yyyymmddhh24miss" "to_char(to_timestamp(:time_stamp, 'yyyymmddhh24miss'), 'yyyymmddhh24miss')"

NULLIF field_condition [AND field_condition] ...

See the description of field_condition in this parameter list for the syntax of field_condition .

If all field conditions evaluate to TRUE , then the column identified by column_name in the field definition is set to null. If any field condition evaluates to FALSE , then the column is set to the
appropriate value as normally occurs according to the field definition.

PRESERVE BLANKS

The PRESERVE BLANKS option works only with the OPTIONALLY ENCLOSED BY clause and retains leading and trailing whitespaces for both delimited and predetermined size fields.

In case of NO PRESERVE BLANKS , if the fields are delimited, then only leading whitespaces are omitted. If any trailing whitespaces are present, they are left intact. In the case of predetermined-
sized fields with NO PRESERVE BLANKS , the trailing whitespaces are omitted, and any leading whitespaces are left intact.

!!! Note If you don't provide PRESERVE BLANKS or NO PRESERVE BLANKS , then the behavior defaults to NO PRESERVE BLANKS . This option doesn't work for ideographic whitespaces.

expr

A SQL expression returning a scalar value that's type-compatible with the column data type to which it's assigned in a field definition. Use double quotes around expr . expr can contain a reference
to any column in the field list except for fields with the FILLER clause. Prefix the column name using a colon (:).

expr can also consist of a SQL SELECT statement. If you use a SELECT statement:

Enclose the SELECT statement in parentheses, that is, (SELECT ...) .

The select list must consist of one expression following the SELECT keyword.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 443

The result set must not return more than one row. If no rows are returned, then the returned value of the resulting expression is null.

The following is the syntax for a SELECT statement:

"(SELECT <expr> [FROM <table_list> [WHERE <condition>]])"

Note

Omitting the FROM table_list clause isn't compatible with Oracle databases. If you don't need to specify any tables, using the FROM DUAL clause is compatible with Oracle
databases.

EDB*Loader control file examples

The following are some examples of control files and their corresponding data files.

Delimiter-separated field data file

This control file uses a delimiter-separated data file that appends rows to the emp table. The APPEND clause is used to allow inserting additional rows into the emp table.

LOAD DATA
 INFILE 'emp.dat'
 BADFILE 'emp.bad'
 APPEND
 INTO TABLE emp
 FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"'
 TRAILING NULLCOLS
 (
 empno,
 ename,
 job,
 mgr,
 hiredate,
 sal,
 deptno,
 comm
)

The following is the corresponding delimiter-separated data file:

9101,ROGERS,CLERK,7902,17-DEC-10,1980.00,20
9102,PETERSON,SALESMAN,7698,20-DEC-10,2600.00,30,2300.00
9103,WARREN,SALESMAN,7698,22-DEC-10,5250.00,30,2500.00
9104,"JONES, JR.",MANAGER,7839,02-APR-09,7975.00,20

The use of the TRAILING NULLCOLS clause allows you to omit the last field supplying the comm column from the first and last records. The comm column is set to null for the rows inserted from
these records.

Double quotation marks surround the value JONES, JR. in the last record since the comma delimiter character is part of the field value.

This query displays the rows added to the table after the EDB*Loader session:

SELECT * FROM emp WHERE empno > 9100;

 empno| ename | job | mgr| hiredate | sal | comm |deptno
------+-----------+---------+----+-------------------+-------+--------+------
 9101| ROGERS | CLERK |7902| 17-DEC-10 00:00:00|1980.00| | 20
 9102| PETERSON | SALESMAN|7698| 20-DEC-10 00:00:00|2600.00| 2300.00| 30
 9103| WARREN | SALESMAN|7698| 22-DEC-10 00:00:00|5250.00| 2500.00| 30
 9104| JONES, JR.| MANAGER |7839| 02-APR-09 00:00:00|7975.00| | 20
(4 rows)

Fixed-width field data file

This control file loads the same rows into the emp table. It uses a data file containing fixed-width fields. The FIELDS TERMINATED BY and OPTIONALLY ENCLOSED BY clauses are absent.
Instead, each field includes the POSITION clause.

LOAD DATA
 INFILE 'emp_fixed.dat'

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 444

 BADFILE 'emp_fixed.bad'
 APPEND
 INTO TABLE emp
 TRAILING NULLCOLS
 (
 empno POSITION (1:4),
 ename POSITION (5:14),
 job POSITION (15:23),
 mgr POSITION (24:27),
 hiredate POSITION (28:38),
 sal POSITION (39:46),
 deptno POSITION (47:48),
 comm POSITION (49:56)
)

The following is the corresponding data file containing fixed-width fields:

9101ROGERS CLERK 790217-DEC-10 1980.0020
9102PETERSON SALESMAN 769820-DEC-10 2600.0030 2300.00
9103WARREN SALESMAN 769822-DEC-10 5250.0030 2500.00
9104JONES, JR.MANAGER 783902-APR-09 7975.0020

Single physical record data file – RECORDS DELIMITED BY clause

This control file loads the same rows into the emp table but uses a data file with one physical record. Terminate each record loaded as a row in the table using a semicolon (;). The RECORDS
DELIMITED BY clause specifies this value.

LOAD DATA
 INFILE 'emp_recdelim.dat'
 BADFILE 'emp_recdelim.bad'
 APPEND
 INTO TABLE emp
 FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"'
 RECORDS DELIMITED BY ';'
 TRAILING NULLCOLS
 (
 empno,
 ename,
 job,
 mgr,
 hiredate,
 sal,
 deptno,
 comm
)

The following is the corresponding data file. The content is a single physical record in the data file. The record delimiter character is included following the last record, that is, at the end of the file.

9101,ROGERS,CLERK,7902,17-DEC-10,1980.00,20,;9102,PETERSON,SALESMAN,7698,20-DEC-10,
2600.00,30,2300.00;9103,WARREN,SALESMAN,7698,22-DEC-10,5250.00,30,2500.00;9104,"JONES,
JR.",MANAGER,7839,02-APR-09,7975.00,20,;

FILLER clause

This control file uses the FILLER clause in the data fields for the sal and comm columns. EDB*Loader ignores the values in these fields and sets the corresponding columns to null.

LOAD DATA
 INFILE 'emp_fixed.dat'
 BADFILE 'emp_fixed.bad'
 APPEND
 INTO TABLE emp
 TRAILING NULLCOLS
 (
 empno POSITION (1:4),
 ename POSITION (5:14),
 job POSITION (15:23),
 mgr POSITION (24:27),
 hiredate POSITION (28:38),
 sal FILLER POSITION (39:46),
 deptno POSITION (47:48),
 comm FILLER POSITION (49:56)
)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 445

Using the same fixed-width data file as in the prior fixed-width field example, the resulting rows in the table appear as follows:

SELECT * FROM emp WHERE empno > 9100;

 empno| ename | job | mgr| hiredate | sal | comm |deptno
------+-----------+---------+----+-------------------+-------+--------+------
 9101| ROGERS | CLERK |7902| 17-DEC-10 00:00:00| | | 20
 9102| PETERSON | SALESMAN|7698| 20-DEC-10 00:00:00| | | 30
 9103| WARREN | SALESMAN|7698| 22-DEC-10 00:00:00| | | 30
 9104| JONES, JR.| MANAGER |7839| 02-APR-09 00:00:00| | | 20
(4 rows)

BOUNDFILLER clause

This control file uses the BOUNDFILLER clause in the data fields for the job and mgr columns. EDB*Loader ignores the values in these fields and sets the corresponding columns to null in the
same manner as the FILLER clause. However, unlike columns with the FILLER clause, you can use columns with the BOUNDFILLER clause in an expression, as shown for column jobdesc .

LOAD DATA
 INFILE 'emp.dat'
 BADFILE 'emp.bad'
 APPEND
 INTO TABLE empjob
 FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"'
 TRAILING NULLCOLS
 (
 empno,
 ename,
 job BOUNDFILLER,
 mgr BOUNDFILLER,
 hiredate FILLER,
 sal FILLER,
 deptno FILLER,
 comm FILLER,
 jobdesc ":job || ' for manager ' || :mgr"
)

The following is the delimiter-separated data file used in this example:

9101,ROGERS,CLERK,7902,17-DEC-10,1980.00,20
9102,PETERSON,SALESMAN,7698,20-DEC-10,2600.00,30,2300.00
9103,WARREN,SALESMAN,7698,22-DEC-10,5250.00,30,2500.00
9104,"JONES, JR.",MANAGER,7839,02-APR-09,7975.00,20

The following table is loaded using the preceding control file and data file:

CREATE TABLE empjob (
 empno NUMBER(4) NOT NULL CONSTRAINT empjob_pk PRIMARY KEY,
 ename VARCHAR2(10),
 job VARCHAR2(9),
 mgr NUMBER(4),
 jobdesc VARCHAR2(25)
);

The resulting rows in the table appear as follows:

SELECT * FROM empjob;

 empno | ename | job | mgr | jobdesc
-------+------------+-----+-----+---------------------------
 9101 | ROGERS | | | CLERK for manager 7902
 9102 | PETERSON | | | SALESMAN for manager 7698
 9103 | WARREN | | | SALESMAN for manager 7698
 9104 | JONES, JR. | | | MANAGER for manager 7839
(4 rows)

Field types with length specification

This control file contains the field type clauses with the length specification:

LOAD DATA
 INFILE 'emp_fixed.dat'

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 446

 BADFILE 'emp_fixed.bad'
 APPEND
 INTO TABLE emp
 TRAILING NULLCOLS
 (
 empno CHAR(4),
 ename CHAR(10),
 job POSITION (15:23) CHAR(9),
 mgr INTEGER EXTERNAL(4),
 hiredate DATE(11) "DD-MON-YY",
 sal DECIMAL EXTERNAL(8),
 deptno POSITION (47:48),
 comm POSITION (49:56) DECIMAL EXTERNAL(8)
)

Note

You can use the POSITION clause and the fieldtype(length) clause individually or in combination as long as each field definition contains at least one of the two clauses.

The following is the corresponding data file containing fixed-width fields:

9101ROGERS CLERK 790217-DEC-10 1980.0020
9102PETERSON SALESMAN 769820-DEC-10 2600.0030 2300.00
9103WARREN SALESMAN 769822-DEC-10 5250.0030 2500.00
9104JONES, JR. MANAGER 783902-APR-09 7975.0020

The resulting rows in the table appear as follows:

SELECT * FROM emp WHERE empno > 9100;

 empno| ename | job | mgr| hiredate | sal | comm |deptno
------+-----------+---------+----+-------------------+-------+--------+------
 9101| ROGERS | CLERK |7902| 17-DEC-10 00:00:00|1980.00| | 20
 9102| PETERSON | SALESMAN|7698| 20-DEC-10 00:00:00|2600.00| 2300.00| 30
 9103| WARREN | SALESMAN|7698| 22-DEC-10 00:00:00|5250.00| 2500.00| 30
 9104| JONES, JR.| MANAGER |7839| 02-APR-09 00:00:00|7975.00| | 20
(4 rows)

NULLIF clause

This example uses the NULLIF clause on the sal column to set it to null for employees of job MANAGER . It also uses the clause on the comm column to set it to null if the employee isn't a
SALESMAN and isn't in department 30 . In other words, a comm value is accepted if the employee is a SALESMAN or is a member of department 30 .

The following is the control file:

LOAD DATA
 INFILE 'emp_fixed_2.dat'
 BADFILE 'emp_fixed_2.bad'
 APPEND
 INTO TABLE emp
 TRAILING NULLCOLS
 (
 empno POSITION (1:4),
 ename POSITION (5:14),
 job POSITION (15:23),
 mgr POSITION (24:27),
 hiredate POSITION (28:38),
 sal POSITION (39:46) NULLIF job = 'MANAGER',
 deptno POSITION (47:48),
 comm POSITION (49:56) NULLIF job <> 'SALESMAN' AND deptno <> '30'
)

The following is the corresponding data file:

9101ROGERS CLERK 790217-DEC-10 1980.0020
9102PETERSON SALESMAN 769820-DEC-10 2600.0030 2300.00
9103WARREN SALESMAN 769822-DEC-10 5250.0030 2500.00
9104JONES, JR. MANAGER 783902-APR-09 7975.0020
9105ARNOLDS CLERK 778213-SEP-10 3750.0030 800.00
9106JACKSON ANALYST 756603-JAN-11 4500.0040 2000.00
9107MAXWELL SALESMAN 769820-DEC-10 2600.0010 1600.00

The resulting rows in the table appear as follows:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 447

SELECT empno, ename, job, NVL(TO_CHAR(sal),'--null--') "sal",
 NVL(TO_CHAR(comm),'--null--') "comm", deptno FROM emp WHERE empno > 9100;

 empno | ename | job | sal | comm | deptno
-------+------------+----------+----------+----------+-------
 9101 | ROGERS | CLERK | 1980.00 | --null-- | 20
 9102 | PETERSON | SALESMAN | 2600.00 | 2300.00 | 30
 9103 | WARREN | SALESMAN | 5250.00 | 2500.00 | 30
 9104 | JONES, JR. | MANAGER | --null-- | --null-- | 20
 9105 | ARNOLDS | CLERK | 3750.00 | 800.00 | 30
 9106 | JACKSON | ANALYST | 4500.00 | --null-- | 40
 9107 | MAXWELL | SALESMAN | 2600.00 | 1600.00 | 10
(7 rows)

Note

The sal column for employee JONES, JR. is null since the job is MANAGER .

The comm values from the data file for employees PETERSON , WARREN , ARNOLDS , and MAXWELL are all loaded into the comm column of the emp table since these employees are either
SALESMAN or members of department 30 .

The comm value of 2000.00 in the data file for employee JACKSON is ignored, and the comm column of the emp table is set to null. This employee isn't a SALESMAN or a member of department
30 .

SELECT statement in a field expression

This example uses a SELECT statement in the expression of the field definition to return the value to load into the column:

LOAD DATA
 INFILE 'emp_fixed.dat'
 BADFILE 'emp_fixed.bad'
 APPEND
 INTO TABLE emp
 TRAILING NULLCOLS
 (
 empno POSITION (1:4),
 ename POSITION (5:14),
 job POSITION (15:23) "(SELECT dname FROM dept WHERE deptno = :deptno)",
 mgr POSITION (24:27),
 hiredate POSITION (28:38),
 sal POSITION (39:46),
 deptno POSITION (47:48),
 comm POSITION (49:56)
)

The following is the content of the dept table used in the SELECT statement:

SELECT * FROM dept;

 deptno | dname | loc
---------+------------+---------
 10 | ACCOUNTING | NEW YORK
 20 | RESEARCH | DALLAS
 30 | SALES | CHICAGO
 40 | OPERATIONS | BOSTON
(4 rows)

The following is the corresponding data file:

9101ROGERS CLERK 790217-DEC-10 1980.0020
9102PETERSON SALESMAN 769820-DEC-10 2600.0030 2300.00
9103WARREN SALESMAN 769822-DEC-10 5250.0030 2500.00
9104JONES, JR. MANAGER 783902-APR-09 7975.0020

The resulting rows in the table appear as follows:

SELECT * FROM emp WHERE empno > 9100;

 empno| ename | job | mgr| hiredate | sal | comm |deptno
------+-----------+---------+----+-------------------+-------+--------+------
 9101| ROGERS | RESEARCH|7902| 17-DEC-10 00:00:00|1980.00| | 20
 9102| PETERSON | SALES |7698| 20-DEC-10 00:00:00|2600.00| 2300.00| 30

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 448

 9103| WARREN | SALES |7698| 22-DEC-10 00:00:00|5250.00| 2500.00| 30
 9104| JONES, JR.| RESEARCH|7839| 02-APR-09 00:00:00|7975.00| | 20
(4 rows)

Note

The job column contains the value from the dname column of the dept table returned by the SELECT statement instead of the job name from the data file.

Multiple INTO TABLE clauses

This example uses multiple INTO TABLE clauses. For this example, two empty tables are created with the same data definition as the emp table. The following CREATE TABLE commands create
these two empty tables, without inserting rows from the original emp table:

CREATE TABLE emp_research AS SELECT * FROM emp WHERE deptno = 99;
CREATE TABLE emp_sales AS SELECT * FROM emp WHERE deptno = 99;

This control file contains two INTO TABLE clauses. Without an APPEND clause, it uses the default operation of INSERT . For this operation, the tables emp_research and emp_sales must
be empty.

LOAD DATA
 INFILE 'emp_multitbl.dat'
 BADFILE 'emp_multitbl.bad'
 DISCARDFILE 'emp_multitbl.dsc'
 INTO TABLE emp_research
 WHEN (47:48) = '20'
 TRAILING NULLCOLS
 (
 empno POSITION (1:4),
 ename POSITION (5:14),
 job POSITION (15:23),
 mgr POSITION (24:27),
 hiredate POSITION (28:38),
 sal POSITION (39:46),
 deptno CONSTANT '20',
 comm POSITION (49:56)
)
 INTO TABLE emp_sales
 WHEN (47:48) = '30'
 TRAILING NULLCOLS
 (
 empno POSITION (1:4),
 ename POSITION (5:14),
 job POSITION (15:23),
 mgr POSITION (24:27),
 hiredate POSITION (28:38),
 sal POSITION (39:46),
 deptno CONSTANT '30',
 comm POSITION (49:56) "ROUND(:comm + (:sal * .25), 0)"
)

The WHEN clauses specify that when the field designated by columns 47 through 48 contains 20 , the record is inserted into the emp_research table. When that same field contains 30 , the
record is inserted into the emp_sales table. If neither condition is true, the record is written to the discard file emp_multitbl.dsc .

The CONSTANT clause is given for column deptno , so the specified constant value is inserted into deptno for each record. When the CONSTANT clause is used, it must be the only clause in the
field definition other than the column name to which the constant value is assigned.

Column comm of the emp_sales table is assigned a SQL expression. Expressions can reference column names by prefixing the column name with a colon character (:).

The following is the corresponding data file:

9101ROGERS CLERK 790217-DEC-10 1980.0020
9102PETERSON SALESMAN 769820-DEC-10 2600.0030 2300.00
9103WARREN SALESMAN 769822-DEC-10 5250.0030 2500.00
9104JONES, JR. MANAGER 783902-APR-09 7975.0020
9105ARNOLDS CLERK 778213-SEP-10 3750.0010
9106JACKSON ANALYST 756603-JAN-11 4500.0040

The records for employees ARNOLDS and JACKSON contain 10 and 40 in columns 47 through 48, which don't satisfy any of the WHEN clauses. EDB*Loader writes these two records to the discard
file, emp_multitbl.dsc , with the following content:

9105ARNOLDS CLERK 778213-SEP-10 3750.0010
9106JACKSON ANALYST 756603-JAN-11 4500.0040

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 449

The following are the rows loaded into the emp_research and emp_sales tables:

SELECT * FROM emp_research;

empno | ename | job | mgr | hiredate | sal | comm | deptno
-------+------------+---------+------+--------------------+---------+------+-------
 9101 | ROGERS | CLERK | 7902 | 17-DEC-10 00:00:00 | 1980.00 | | 20.00
 9104 | JONES, JR. | MANAGER | 7839 | 02-APR-09 00:00:00 | 7975.00 | | 20.00
(2 rows)

SELECT * FROM emp_sales;

empno | ename | job | mgr | hiredate | sal | comm | deptno
-------+----------+----------+------+--------------------+---------+---------+--------
 9102 | PETERSON | SALESMAN | 7698 | 20-DEC-10 00:00:00 | 2600.00 | 2950.00 | 30.00
 9103 | WARREN | SALESMAN | 7698 | 22-DEC-10 00:00:00 | 5250.00 | 3813.00 | 30.00
(2 rows)

Invoking EDB*Loader

You must have superuser privileges to run EDB*Loader. Use the following command to invoke EDB*Loader from the command line:

edbldr [-d <dbname>] [-p <port>] [-h <host>]
[USERID={ <username/password> | <username>/ | <username> | / }]
[{ -c | connstr= } <CONNECTION_STRING>]
 CONTROL=<control_file>
[DATA=<data_file>]
[BAD=<bad_file>]
[DISCARD=<discard_file>]
[DISCARDMAX=<max_discard_recs>]
[HANDLE_CONFLICTS={ FALSE | TRUE }]
[LOG=<log_file>]
[PARFILE=<param_file>]
[DIRECT={ FALSE | TRUE }]
[FREEZE={ FALSE | TRUE }]
[ERRORS=<error_count>]
[PARALLEL={ FALSE | TRUE }]
[ROWS=<n>]
[SKIP=<skip_count>]
[SKIP_INDEX_MAINTENANCE={ FALSE | TRUE }]
[edb_resource_group=<group_name>]

Description

If you omit the -d option, the -p option, or the -h option, the defaults for the database, port, and host are determined by the same rules as other EDB Postgres Advanced Server utility programs,
such as edb-psql .

You can specify parameters listed in the syntax diagram in a parameter file. Exeptions include the -d option, -p option, -h option, and the PARFILE parameter. Specify the parameter file on the
command line when you invoke edbldr using PARFILE=param_file . You can specify some parameters in the OPTIONS clause in the control file. For more information on the control file, see
Building the EDB*Loader control file.

You can include the full directory path or a relative directory path to the file name when specifying control_file , data_file , bad_file , discard_file , log_file , and
param_file . If you specify the file name alone or with a relative directory path, the file is assumed to exist in the case of control_file , data_file , or param_file relative to the current

working directory from which edbldr is invoked. In the case of bad_file , discard_file , or log_file , the file is created.

Note

The control file must exist in the character set encoding of the client where edbldr is invoked. If the client is in an encoding different from the database encoding, then you must set the
PGCLIENTENCODING environment variable on the client to the client’s encoding prior to invoking edbldr . This technique ensures character set conversion between the client and the

database server is done correctly.

The operating system account used to invoke edbldr must have read permission on the directories and files specified by control_file , data_file , and param_file .

The operating system account enterprisedb must have write permission on the directories where bad_file , discard_file , and log_file are written.

Note

The file names for control_file , data_file , bad_file , discard_file , and log_file must include the extensions .ctl , .dat , .bad , .dsc , and .log ,
respectively. If the provided file name doesn't contain an extension, EDB*Loader assumes the actual file name includes the appropriate extension.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 450

Parameters

dbname

Name of the database containing the tables to load.

port

Port number on which the database server is accepting connections.

host

IP address of the host on which the database server is running.

USERID={ username/password | username/ | username | / }

EDB*Loader connects to the database with username . username must be a superuser. password is the password for username .

If you omit the USERID parameter, EDB*Loader prompts for username and password . If you specify USERID=username/ , then EDB*Loader either:

Uses the password file specified by environment variable PGPASSFILE if PGPASSFILE is set

Uses the .pgpass password file (pgpass.conf on Windows systems) if PGPASSFILE isn't set

If you specify USERID=username , then EDB*Loader prompts for password . If you specify USERID=/ , the connection is attempted using the operating system account as the user name.

Note

EDB*Loader ignores the EDB Postgres Advanced Server connection environment variables PGUSER and PGPASSWORD . See the PostgreSQL core documentation for information on
the PGPASSFILE environment variable and the password file.

-c CONNECTION_STRING

connstr=CONNECTION_STRING

The -c or connstr= option allows you to specify all the connection parameters supported by libpq. With this option, you can also specify SSL connection parameters or other connection parameters
supported by libpq. If you provide connection options such as -d , -h , -p or userid=dbuser/dbpass separately, they might override the values provided by the -c or connstr= option.

CONTROL=control_file

control_file specifies the name of the control file containing EDB*Loader directives. If you don't specify a file extension, an extension of .ctl is assumed.

For more information on the control file, see Building the EDB*Loader control file.

DATA=data_file

data_file specifies the name of the file containing the data to load into the target table. If you don't specify a file extension, an extension of .dat is assumed. Specifying a data_file on the
command line overrides the INFILE clause specified in the control file.

For more information about data_file , see Building the EDB*Loader control file.

BAD=bad_file

bad_file specifies the name of a file that receives input data records that can't be loaded due to errors. Specifying a bad_file on the command line overrides any BADFILE clause specified in
the control file.

For more information about bad_file , see Building the EDB*Loader control file.

DISCARD=discard_file

discard_file is the name of the file that receives input data records that don't meet any table’s selection criteria. Specifying a discard_file on the command line overrides the
DISCARDFILE clause in the control file.

For more information about discard_file , see Building the EDB*Loader control file.

DISCARDMAX=max_discard_recs

max_discard_recs is the maximum number of discarded records that can be encountered from the input data records before terminating the EDB*Loader session. Specifying
max_discard_recs on the command line overrides the DISCARDMAX or DISCARDS clause in the control file.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 451

https://www.postgresql.org/docs/current/libpq-pgpass.html

For more information about max_discard_recs , see Building the EDB*Loader control file.

HANDLE_CONFLICTS={ FALSE | TRUE }

If any record insertion fails due to a unique constraint violation, EDB*Loader aborts the entire operation. You can instruct EDB*Loader to instead move the duplicate record to the BAD file and continue
processing by setting HANDLE_CONFLICTS to TRUE . This behavior applies only if indexes are present. By default, HANDLE_CONFLICTS is set to FALSE .

Setting HANDLE_CONFLICTS to TRUE isn't supported with direct path loading. If you set this parameter to TRUE when direct path loading, EDB*Loader throws an error.

LOG=log_file

log_file specifies the name of the file in which EDB*Loader records the results of the EDB*Loader session.

If you omit the LOG parameter, EDB*Loader creates a log file with the name control_file_base.log in the directory from which edbldr is invoked. control_file_base is the base
name of the control file used in the EDB*Loader session. The operating system account enterprisedb must have write permission on the directory where the log file is written.

PARFILE=param_file

param_file specifies the name of the file that contains command line parameters for the EDB*Loader session. You can specify command line parameters listed in this section in param_file
instead of on the command line. Exceptions are the -d , -p , and -h options, and the PARFILE parameter.

Any parameter given in param_file overrides the same parameter supplied on the command line before the PARFILE option. Any parameter given on the command line that appears after the
PARFILE option overrides the same parameter given in param_file .

!!! Note Unlike other EDB*Loader files, there's no default file name or extension assumed for param_file . However, by Oracle SQL*Loader convention, .par is typically used as an extension. It
isn't required.

DIRECT= { FALSE | TRUE }

If DIRECT is set to TRUE EDB*Loader performs a direct path load instead of a conventional path load. The default value of DIRECT is FALSE .

Don't set DIRECT=true when loading the data into a replicated table. If you're using EDB*Loader to load data into a replicated table and set DIRECT=true , indexes might omit rows that are in a
table or might contain references to rows that were deleted. EnterpriseDB doesn't support direct inserts to load data into replicated tables.

For information about direct path loads, see Direct path load.

FREEZE= { FALSE | TRUE }

Set FREEZE to TRUE to copy the data with the rows frozen . A tuple guaranteed to be visible to all current and future transactions is marked as frozen to prevent transaction ID wraparound. For
more information about frozen tuples, see the PostgreSQL core documentation.

You must specify a data-loading type of TRUNCATE in the control file when using the FREEZE option. FREEZE isn't supported for direct loading.

By default, FREEZE is FALSE .

ERRORS=error_count

error_count specifies the number of errors permitted before aborting the EDB*Loader session. The default is 50 .

PARALLEL= { FALSE | TRUE }

Set PARALLEL to TRUE to indicate that this EDB*Loader session is one of a number of concurrent EDB*Loader sessions participating in a parallel direct path load. The default value of PARALLEL
is FALSE .

When PARALLEL is TRUE , the DIRECT parameter must also be set to TRUE .

For more information about parallel direct path loads, see Parallel direct path load.

ROWS=n

n specifies the number of rows that EDB*Loader commits before loading the next set of n rows.

SKIP=skip_count

Number of records at the beginning of the input data file to skip before loading begins. The default is 0 .

SKIP_INDEX_MAINTENANCE= { FALSE | TRUE }

If set to TRUE , index maintenance isn't performed as part of a direct path load, and indexes on the loaded table are marked as invalid. The default value of SKIP_INDEX_MAINTENANCE is FALSE .

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 452

https://www.postgresql.org/docs/current/static/routine-vacuuming.html

During a parallel direct path load, target table indexes aren't updated. They are marked as invalid after the load is complete.

You can use the REINDEX command to rebuild an index. For more information about the REINDEX command, see the PostgreSQL core documentation.

edb_resource_group=group_name

group_name specifies the name of an EDB Resource Manager resource group to which to assign the EDB*Loader session.

Any default resource group that was assigned to the session is overridden by the resource group given by the edb_resource_group parameter specified on the edbldr command line. An
example of such a group is a database user running the EDB*Loader session who was assigned a default resource group with the ALTER ROLE ... SET edb_resource_group command.

Examples

This example invokes EDB*Loader using a control file named emp.ctl to load a table in database edb . The file is located in the current working directory.

$ /usr/edb/as14/bin/edbldr -d edb USERID=enterprisedb/password
CONTROL=emp.ctl
EDB*Loader: Copyright (c) 2007-2021, EnterpriseDB Corporation.

Successfully loaded (4) records

In this example, EDB*Loader prompts for the user name and password since they are omitted from the command line. In addition, the files for the bad file and log file are specified with the BAD and
LOG command line parameters.

$ /usr/edb/as14/bin/edbldr -d edb CONTROL=emp.ctl BAD=/tmp/emp.bad
LOG=/tmp/emp.log
Enter the user name : enterprisedb
Enter the password :
EDB*Loader: Copyright (c) 2007-2021, EnterpriseDB Corporation.

Successfully loaded (4) records

This example runs EDB*Loader using a parameter file located in the current working directory. The SKIP and ERRORS parameter default values are specified in the parameter file in addition the
CONTROL , BAD , and LOG files. The parameter file, emp.par , contains the following:

CONTROL=emp.ctl
BAD=/tmp/emp.bad
LOG=/tmp/emp.log
SKIP=1
ERRORS=10

Invoke EDB*Loader with the parameter file:

$ /usrew/edb/as14/bin/edbldr -d edb PARFILE=emp.par
Enter the user name : enterprisedb
Enter the password :
EDB*Loader: Copyright (c) 2007-2021, EnterpriseDB Corporation.

Successfully loaded (3) records

This example invokes EDB*Loader using a connstr= option that uses the emp.ctl control file located in the current working directory to load a table in a database named edb :

$ /usr/edb/as14/bin/edbldr connstr=\"sslmode=verify-ca sslcompression=0
host=127.0.0.1 dbname=edb port=5444 user=enterprisedb\" CONTROL=emp.ctl
EDB*Loader: Copyright (c) 2007-2021, EnterpriseDB Corporation.

Successfully loaded (4) records

Exit codes

When EDB*Loader exits, it returns one of the following codes:

Exit code Description

0 Indicates that all rows loaded successfully.

1 Indicates that EDB*Loader encountered command line or syntax errors or aborted the load operation due to an unrecoverable error.

2 Indicates that the load completed, but some (or all) rows were rejected or discarded.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 453

https://www.postgresql.org/docs/current/static/sql-reindex.htm

3 Indicates that EDB*Loader encountered fatal errors (such as OS errors). This class of errors is equivalent to the FATAL or PANIC severity levels of PostgreSQL errors.

Exit code Description

Direct path load

During a direct path load, EDB*Loader writes the data directly to the database pages, which is then synchronized to disk. The insert processing associated with a conventional path load is bypassed,
resulting in a performance improvement.

Bypassing insert processing reduces the types of constraints on the target table. The following types of constraints are permitted on the target table of a direct path load:

Primary key
Not null constraints
Indexes (unique or non-unique)

The following are restrictions on the target table of a direct path load:

Triggers aren't permitted.
Check constraints aren't permitted.
Foreign key constraints on the target table referencing another table aren't permitted.
Foreign key constraints on other tables referencing the target table aren't permitted.
You must not partition the table.
Rules can exist on the target table, but they aren't executed.

Note

Currently, a direct path load in EDB*Loader is more restrictive than in Oracle SQL*Loader. The preceding restrictions don't apply to Oracle SQL*Loader in most cases. The following restrictions
apply to a control file used in a direct path load:

Multiple table loads aren't supported. You can specify only one INTO TABLE clause in the control file.
You can't use SQL expressions in the data field definitions of the INTO TABLE clause.
The FREEZE option isn't supported for direct path loading.

To run a direct path load, add the DIRECT=TRUE option:

$ /usr/edb/as14/bin/edbldr -d edb USERID=enterprisedb/password
CONTROL=emp.ctl DIRECT=TRUE
EDB*Loader: Copyright (c) 2007-2021, EnterpriseDB Corporation.

Successfully loaded (4) records

Parallel direct path load

You can further improve the performance of a direct path load by distributing the loading process over two or more sessions running concurrently. Each session runs a direct path load into the same
table.

Since the same table is loaded from multiple sessions, the input records to load into the table must be divided among several data files. This way, each EDB*Loader session uses its own data file, and the
same record isn't loaded into the table more than once.

The target table of a parallel direct path load is under the same restrictions as a direct path load run in a single session.

The following are the restrictions on the target table of a direct path load:

Triggers aren't permitted.
Check constraints aren't permitted.
Foreign key constraints on the target table referencing another table aren't permitted.
Foreign key constraints on other tables referencing the target table aren't permitted.
You must not partition the table.
Rules can exist on the target table, but they aren't executed.

In addition, you must specify the APPEND clause in the control file used by each EDB*Loader session.

To run a parallel direct path load, run EDB*Loader in a separate session for each participant of the parallel direct path load. You must include the DIRECT=TRUE and PARALLEL=TRUE parameters
when invoking each such EDB*Loader session.

Each EDB*Loader session runs as an independent transaction. Aborting and rolling back changes of one of the parallel sessions doesn't affect the loading done by the other parallel sessions.

Note

In a parallel direct path load, each EDB*Loader session reserves a fixed number of blocks in the target table using turns. Some of the blocks in the last allocated chunk might not be used, and

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 454

those blocks remain uninitialized. A later use of the VACUUM command on the target table might show warnings about these uninitialized blocks, such as the following:

WARNING: relation "emp" page 98264 is uninitialized --- fixing

WARNING: relation "emp" page 98265 is uninitialized --- fixing

WARNING: relation "emp" page 98266 is uninitialized --- fixing

This behavior is expected and doesn't indicate data corruption.

Indexes on the target table aren't updated during a parallel direct path load. They are therefore marked as invalid after the load is complete. You must use the REINDEX command to rebuild the
indexes.

This example shows the use of a parallel direct path load on the emp table.

Note

If you attempt a parallel direct path load on the sample emp table provided with EDB Postgres Advanced Server, you must first remove the triggers and constraints referencing the emp
table. In addition, the primary key column, empno , was expanded from NUMBER(4) to NUMBER in this example to allow for inserting more rows.

This is the control file used in the first session:

LOAD DATA
 INFILE '/home/user/loader/emp_parallel_1.dat'
 APPEND
 INTO TABLE emp
 FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"'
 TRAILING NULLCOLS
 (
 empno,
 ename,
 job,
 mgr,
 hiredate,
 sal,
 deptno,
 comm
)

You must specify the APPEND clause in the control file for a parallel direct path load.

This example invokes EDB*Loader in the first session. You must specify the DIRECT=TRUE and PARALLEL=TRUE parameters.

$ /usr/edb/as14/bin/edbldr -d edb USERID=enterprisedb/password
CONTROL=emp_parallel_1.ctl DIRECT=TRUE PARALLEL=TRUE
WARNING: index maintenance will be skipped with PARALLEL load
EDB*Loader: Copyright (c) 2007-2021, EnterpriseDB Corporation.

The control file used for the second session appears as follows. It's the same as the one used in the first session, but it uses a different data file.

LOAD DATA
 INFILE '/home/user/loader/emp_parallel_2.dat'
 APPEND
 INTO TABLE emp
 FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"'
 TRAILING NULLCOLS
 (
 empno,
 ename,
 job,
 mgr,
 hiredate,
 sal,
 deptno,
 comm
)

This control file is used in a second session:

$ /usr/edb/as14/bin/edbldr -d edb USERID=enterprisedb/password
CONTROL=emp_parallel_2.ctl DIRECT=TRUE PARALLEL=TRUE
WARNING: index maintenance will be skipped with PARALLEL load
EDB*Loader: Copyright (c) 2007-2021, EnterpriseDB Corporation.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 455

EDB*Loader displays the following message in each session when the load operation completes:

Successfully loaded (10000) records

This query shows that the index on the emp table was marked INVALID :

SELECT index_name, status FROM user_indexes WHERE table_name = 'EMP';

 index_name | status
-------------+---------
 EMP_PK | INVALID
 (1 row)

Note

user_indexes is the view of indexes compatible with Oracle databases owned by the current user.

Queries on the emp table don't use the index unless you rebuild it using the REINDEX command:

REINDEX INDEX emp_pk;

A later query on user_indexes shows that the index is now marked as VALID :

SELECT index_name, status FROM user_indexes WHERE table_name = 'EMP';

 index_name | status
-------------+--------
 EMP_PK | VALID
 (1 row)

Remote loading

EDB*Loader supports a feature called remote loading. In remote loading, the database containing the table to load is running on a database server on a host different from the one where EDB*Loader is
invoked with the input data source.

This feature is useful if you have a large amount of data to load, and you don't want to create a large data file on the host running the database server.

In addition, you can use the standard input feature to pipe the data from the data source, such as another program or script, directly to EDB*Loader. EDB*Loader then loads the table in the remote
database. This feature bypasses having to create a data file on disk for EDB*Loader.

Performing remote loading along with using standard input requires the following:

The edbldr program must be installed on the client host on which to invoke it with the data source for the EDB*Loader session.
The control file must contain the clause INFILE 'stdin' so you can pipe the data directly into EDB*Loader’s standard input. For information on the INFILE clause and the EDB*Loader
control file, see Building the EDB*Loader control file.
All files used by EDB*Loader, such as the control file, bad file, discard file, and log file, must reside on or be created on the client host on which edbldr is invoked.
When invoking EDB*Loader, use the -h option to specify the IP address of the remote database server. For more information, see Invoking EDB*Loader.
Use the operating system pipe operator (|) or input redirection operator (<) to supply the input data to EDB*Loader.

This example loads a database running on a database server at 192.168.1.14 using data piped from a source named datasource :

datasource | ./edbldr -d edb -h 192.168.1.14 USERID=enterprisedb/password
CONTROL=remote.ctl

This example also shows how you can use standard input:

./edbldr -d edb -h 192.168.1.14 USERID=enterprisedb/password
CONTROL=remote.ctl < datasource

Updating a table with a conventional path load

You can use EDB*Loader with a conventional path load to update the rows in a table, merging new data with the existing data. When you invoke EDB*Loader to perform an update, the server searches
the table for an existing row with a matching primary key:

If the server locates a row with a matching key, it replaces the existing row with the new row.
If the server doesn't locate a row with a matching key, it adds the new row to the table.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 456

To use EDB*Loader to update a table, the table must have a primary key. You can't use EDB*Loader to update a partitioned table.

To perform UPDATE , use the same steps as when performing a conventional path load:

1. Create a data file that contains the rows you want to update or insert.
2. Define a control file that uses the INFILE keyword to specify the name of the data file. For information about building the EDB*Loader control file, see Building the EDB*Loader control file.
3. Invoke EDB*Loader, specifying the database name, connection information, and the name of the control file. For information about invoking EDB*Loader, see Invoking EDB*Loader.

This example uses the emp table that's distributed with the EDB Postgres Advanced Server sample data. By default, the table contains:

edb=# select * from emp;
empno|ename | job | mgr | hiredate | sal | comm | deptno
-----+------+---------+------+--------------------+--------- +-------+--------
7369 |SMITH |CLERK | 7902 | 17-DEC-80 00:00:00 | 800.00 | | 20
7499 |ALLEN |SALESMAN | 7698 | 20-FEB-81 00:00:00 | 1600.00 |300.00 | 30
7521 |WARD |SALESMAN | 7698 | 22-FEB-81 00:00:00 | 1250.00 |500.00 | 30
7566 |JONES |MANAGER | 7839 | 02-APR-81 00:00:00 | 2975.00 | | 20
7654 |MARTIN|SALESMAN | 7698 | 28-SEP-81 00:00:00 | 1250.00 |1400.00| 30
7698 |BLAKE |MANAGER | 7839 | 01-MAY-81 00:00:00 | 2850.00 | | 30
7782 |CLARK |MANAGER | 7839 | 09-JUN-81 00:00:00 | 2450.00 | | 10
7788 |SCOTT |ANALYST | 7566 | 19-APR-87 00:00:00 | 3000.00 | | 20
7839 |KING |PRESIDENT| | 17-NOV-81 00:00:00 | 5000.00 | | 10
7844 |TURNER|SALESMAN | 7698 | 08-SEP-81 00:00:00 | 1500.00 | 0.00 | 30
7876 |ADAMS |CLERK | 7788 | 23-MAY-87 00:00:00 | 1100.00 | | 20
7900 |JAMES |CLERK | 7698 | 03-DEC-81 00:00:00 | 950.00 | | 30
7902 |FORD |ANALYST | 7566 | 03-DEC-81 00:00:00 | 3000.00 | | 20
7934 |MILLER|CLERK | 7782 | 23-JAN-82 00:00:00 | 1300.00 | | 10
(14 rows)

This control file (emp_update.ctl) specifies the fields in the table in a comma-delimited list. The control file performs an UPDATE on the emp table.

LOAD DATA
 INFILE 'emp_update.dat'
 BADFILE 'emp_update.bad'
 DISCARDFILE 'emp_update.dsc'
UPDATE INTO TABLE emp
FIELDS TERMINATED BY ","
(empno, ename, job, mgr, hiredate, sal, comm, deptno)

The data that's being updated or inserted is saved in the emp_update.dat file. emp_update.dat contains:

7521,WARD,MANAGER,7839,22-FEB-81 00:00:00,3000.00,0.00,30
7566,JONES,MANAGER,7839,02-APR-81 00:00:00,3500.00,0.00,20
7903,BAKER,SALESMAN,7521,10-JUN-13 00:00:00,1800.00,500.00,20
7904,MILLS,SALESMAN,7839,13-JUN-13 00:00:00,1800.00,500.00,20
7654,MARTIN,SALESMAN,7698,28-SEP-81 00:00:00,1500.00,400.00,30

Invoke EDB*Loader, specifying the name of the database (edb), the name of a database superuser and their associated password, and the name of the control file (emp_update.ctl):

edbldr -d edb userid=user_name/password control=emp_update.ctl

After performing the update, the emp table contains:

edb=# select * from emp;
empno|ename | job | mgr | hiredate | sal | comm | deptno
-----+------+---------+------+--------------------+---------+--------+--------
7369 |SMITH |CLERK | 7902 | 17-DEC-80 00:00:00 | 800.00 | | 20
7499 |ALLEN |SALESMAN | 7698 | 20-FEB-81 00:00:00 | 1600.00 | 300.00 | 30
7521 |WARD |MANAGER | 7839 | 22-FEB-81 00:00:00 | 3000.00 | 0.00 | 30
7566 |JONES |MANAGER | 7839 | 02-APR-81 00:00:00 | 3500.00 | 0.00 | 20
7654 |MARTIN|SALESMAN | 7698 | 28-SEP-81 00:00:00 | 1500.00 | 400.00 | 30
7698 |BLAKE |MANAGER | 7839 | 01-MAY-81 00:00:00 | 2850.00 | | 30
7782 |CLARK |MANAGER | 7839 | 09-JUN-81 00:00:00 | 2450.00 | | 10
7788 |SCOTT |ANALYST | 7566 | 19-APR-87 00:00:00 | 3000.00 | | 20
7839 |KING |PRESIDENT| | 17-NOV-81 00:00:00 | 5000.00 | | 10
7844 |TURNER|SALESMAN | 7698 | 08-SEP-81 00:00:00 | 1500.00 | 0.00 | 30
7876 |ADAMS |CLERK | 7788 | 23-MAY-87 00:00:00 | 1100.00 | | 20
7900 |JAMES |CLERK | 7698 | 03-DEC-81 00:00:00 | 950.00 | | 30
7902 |FORD |ANALYST | 7566 | 03-DEC-81 00:00:00 | 3000.00 | | 20
7903 |BAKER |SALESMAN | 7521 | 10-JUN-13 00:00:00 | 1800.00 | 500.00 | 20
7904 |MILLS |SALESMAN | 7839 | 13-JUN-13 00:00:00 | 1800.00 | 500.00 | 20
7934 |MILLER|CLERK | 7782 | 23-JAN-82 00:00:00 | 1300.00 | | 10
(16 rows)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 457

The rows containing information for the three employees that are currently in the emp table are updated, while rows are added for the new employees (BAKER and MILLS).

17.2 EDB*Wrap

The EDB*Wrap utility protects proprietary source code and programs like functions, stored procedures, triggers, and packages from unauthorized scrutiny. The EDB*Wrap program translates a plaintext
file that contains SPL or PL/pgSQL source code into a file that contains the same code in a form that's nearly impossible to read. Once you have the obfuscated form of the code, you can send that code
to the PostgreSQL server, and the server stores those programs in obfuscated form. While EDB*Wrap does obscure code, table definitions are still exposed.

Everything you wrap is stored in obfuscated form. If you wrap an entire package, the package body source, as well as the prototypes contained in the package header and the functions and procedures
contained in the package body, are stored in obfuscated form.

If you wrap a CREATE PACKAGE statement, you hide the package API from other developers. You might want to wrap the package body but not the package header so users can see the package
prototypes and other public variables that are defined in the package body. To allow users to see the prototypes the package contains, use EDBWrap to obfuscate only the CREATE PACKAGE BODY
statement in the edbwrap input file, omitting the CREATE PACKAGE statement. The package header source is stored as plaintext, while the package body source and package functions
and procedures are obfuscated.

You can't unwrap or debug wrapped source code and programs. Reverse engineering is possible but very difficult.

The entire source file is wrapped into one unit. Any psql meta-commands included in the wrapped file aren't recognized when the file is executed. Executing an obfuscated file that contains a psql
meta-command causes a syntax error. edbwrap doesn't validate SQL source code. If the plaintext form contains a syntax error, edbwrap doesn't report it. Instead, the server reports an error and
aborts the entire file when you try to execute the obfuscated form.

Using EDB*Wrap to obfuscate source code

EDB*Wrap is a command line utility that accepts a single input source file, obfuscates the contents, and returns a single output file. When you invoke the edbwrap utility, you must provide the name
of the file that contains the source code to obfuscate. You can also specify the name of the file where edbwrap writes the obfuscated form of the code.

edbwrap offers three different command-line styles. The first style is compatible with Oracle's wrap utility:

edbwrap iname=<input_file> [oname=<output_file>]

The iname=input_file argument specifies the name of the input file. If input_file doesn't contain an extension, edbwrap searches for a file named input_file.sql .

The optional oname=output_file argument specifies the name of the output file. If output_file doesn't contain an extension, edbwrap appends .plb to the name.

If you don't specify an output file name, edbwrap writes to a file whose name is derived from the input file name. edbwrap strips the suffix (typically .sql) from the input file name and adds
.plb .

edbwrap offers two other command-line styles:

edbwrap --iname <input_file> [--oname <output_file>]
edbwrap -i <input_file> [-o <output_file>]

You can mix command-line styles. The rules for deriving input and output file names are the same regardless of the style you use.

Once edbwrap produces a file that contains obfuscated code, you typically feed that file into the PostgreSQL server using a client application such as edb-psql . The server executes the obfuscated
code line by line and stores the source code for SPL and PL/pgSQL programs in wrapped form.

In summary, to obfuscate code with EDB*Wrap, you:

1. Create the source code file.
2. Invoke EDB*Wrap to obfuscate the code.
3. Import the file as if it were in plaintext form.

The following sequence shows how to use edbwrap .

Create the source code for the list_emp procedure in plaintext form:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 458

[bash] cat listemp.sql
CREATE OR REPLACE PROCEDURE list_emp
IS
 v_empno NUMBER(4);
 v_ename VARCHAR2(10);
 CURSOR emp_cur IS
 SELECT empno, ename FROM emp ORDER BY empno;
BEGIN
 OPEN emp_cur;
 DBMS_OUTPUT.PUT_LINE('EMPNO ENAME');
 DBMS_OUTPUT.PUT_LINE('----- -------');
 LOOP
 FETCH emp_cur INTO v_empno, v_ename;
 EXIT WHEN emp_cur%NOTFOUND;
 DBMS_OUTPUT.PUT_LINE(v_empno || ' ' || v_ename);
 END LOOP;
 CLOSE emp_cur;
END;
/

Import the list_emp procedure with a client application such as edb-psql :

[bash] edb-psql edb
Welcome to edb-psql 8.4.3.2, the EnterpriseDB interactive terminal.
Type: \copyright for distribution terms
 \h for help with SQL commands
 \? for help with edb-psql commands
 \g or terminate with semicolon to execute query
 \q to quit

edb=# \i listemp.sql
CREATE PROCEDURE

View the plaintext source code stored in the server by examining the pg_proc system table:

edb=# SELECT prosrc FROM pg_proc WHERE proname = 'list_emp';
 prosrc
--

 v_empno NUMBER(4);
 v_ename VARCHAR2(10);
 CURSOR emp_cur IS
 SELECT empno, ename FROM emp ORDER BY empno;
 BEGIN
 OPEN emp_cur;
 DBMS_OUTPUT.PUT_LINE('EMPNO ENAME');
 DBMS_OUTPUT.PUT_LINE('----- -------');
 LOOP
 FETCH emp_cur INTO v_empno, v_ename;
 EXIT WHEN emp_cur%NOTFOUND;
 DBMS_OUTPUT.PUT_LINE(v_empno || ' ' || v_ename);
 END LOOP;
 CLOSE emp_cur;
 END
(1 row)

edb=# quit

Ofuscate the plaintext file with EDB*Wrap:

[bash] edbwrap -i listemp.sql
EDB*Wrap Utility: Release 8.4.3.2

Copyright (c) 2004-2021 EnterpriseDB Corporation. All Rights Reserved.

Using encoding UTF8 for input
Processing listemp.sql to listemp.plb

Examining the contents of the output file (listemp.plb) file reveals
that the code is obfuscated:

[bash] cat listemp.plb
$__EDBwrapped__$
UTF8
d+6DL30RVaGjYMIzkuoSzAQgtBw7MhYFuAFkBsfYfhdJ0rjwBv+bHr1FCyH6j9SgH
movU+bYI+jR+hR2jbzq3sovHKEyZIp9y3/GckbQgualRhIlGpyWfE0dltDUpkYRLN

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 459

/OUXmk0/P4H6EI98sAHevGDhOWI+58DjJ44qhZ+l5NNEVxbWDztpb/s5sdx4660qQ
Ozx3/gh8VkqS2JbcxYMpjmrwVr6fAXfb68Ml9mW2Hl7fNtxcb5kjSzXvfWR2XYzJf
KFNrEhbL1DTVlSEC5wE6lGlwhYvXOf22m1R2IFns0MtF9fwcnBWAs1YqjR00j6+fc
er/f/efAFh4=
$__EDBwrapped__$

The second line of the wrapped file contains an encoding name. In this case, the encoding is UTF8. When you obfuscate a file, edbwrap infers the encoding of the input file by examining the locale. For
example, if you're running edbwrap while your locale is set to en_US.utf8 , edbwrap assumes that the input file is encoded in UTF8. Be sure to examine the output file after running edbwrap .
If the locale contained in the wrapped file doesn't match the encoding of the input file, change your locale and rewrap the input file.

You can import the obfuscated code to the PostgreSQL server using the same tools that work with plaintext code:

[bash] edb-psql edb
Welcome to edb-psql 8.4.3.2, the EnterpriseDB interactive terminal.
Type: \copyright for distribution terms
 \h for help with SQL commands
 \? for help with edb-psql commands
 \g or terminate with semicolon to execute query
 \q to quit

edb=# \i listemp.plb
CREATE PROCEDURE

The pg_proc system table contains the obfuscated code:

edb=# SELECT prosrc FROM pg_proc WHERE proname = 'list_emp';
 prosrc
--
 $__EDBwrapped__$
 UTF8
 dw4B9Tz69J3WOsy0GgYJQa+G2sLZ3IOyxS8pDyuOTFuiYe/EXiEatwwG3h3tdJk
 ea+AIp35dS/4idbN8wpegM3s994dQ3R97NgNHfvTQnO2vtd4wQtsQ/Zc4v4Lhfj
 nlV+A4UpHI5oQEnXeAch2LcRD87hkU0uo1ESeQV8IrXaj9BsZr+ueROnwhGs/Ec
 pva/tRV4m9RusFn0wyr38u4Z8w4dfnPW184Y3o6It4b3aH07WxTkWrMLmOZW1jJ
 Nu6u4o+ezO64G9QKPazgehslv4JB9NQnuocActfDSPMY7R7anmgw
 $__EDBwrapped__$
(1 row)

Invoke the obfuscated code in the same way that you invoke the plaintext form:

edb=# exec list_emp;

EMPNO ENAME
----- -------
7369 SMITH
7499 ALLEN
7521 WARD
7566 JONES
7654 MARTIN
7698 BLAKE
7782 CLARK
7788 SCOTT
7839 KING
7844 TURNER
7876 ADAMS
7900 JAMES
7902 FORD
7934 MILLER

EDB-SPL Procedure successfully completed
edb=# quit

When you use pg_dump to back up a database, wrapped programs remain obfuscated in the archive file.

Be aware that audit logs produced by the Postgres server show wrapped programs in plaintext form. Source code is also displayed in plaintext in SQL error messages generated when the program
executes.

Note

The bodies of the objects created by the following statements aren't stored in obfuscated form:

CREATE [OR REPLACE] TYPE type_name AS OBJECT
CREATE [OR REPLACE] TYPE type_name UNDER type_name
CREATE [OR REPLACE] TYPE BODY type_name

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 460

17.3 Dynamic runtime instrumentation tools architecture (DRITA)

The Dynamic Runtime Instrumentation Tools Architecture (DRITA) allows a DBA to query catalog views to determine the wait events that affect the performance of individual sessions or the whole
system. DRITA records the number of times each event occurs as well as the time spent waiting. You can use this information to diagnose performance problems. DRITA consumes minimal system
resources.

DRITA compares snapshots to evaluate the performance of a system. A snapshot is a saved set of system performance data at a given point in time. A unique ID number identifies each snapshot. You can
use snapshot ID numbers with DRITA reporting functions to return system performance statistics.

Configuring and using DRITA

EDB Postgres Advanced Server's postgresql.conf file includes a configuration parameter named timed_statistics that controls collecting timing data. The valid parameter values are
TRUE or FALSE . The default value is FALSE .

timed_statistics is a dynamic parameter that you can modify in the postgresql.conf file or while a session is in progress. To enable DRITA, you must either:

Modify the postgresql.conf file, setting the timed_statistics parameter to TRUE .

Connect to the server with the EDB-PSQL client and invoke the command:

SET timed_statistics = TRUE

After modifying the timed_statistics parameter, take a starting snapshot. A snapshot captures the current state of each timer and event counter. The server compares the starting snapshot to a
later snapshot to gauge system performance.

Use the edbsnap() function to take the beginning snapshot:

edb=# SELECT * FROM edbsnap();
 edbsnap

 Statement processed.
(1 row)

Then, run the workload that you want to evaluate. When the workload is complete or at a strategic point during the workload, take another snapshot:

edb=# SELECT * FROM edbsnap();
 edbsnap

 Statement processed.
(1 row)

You can capture multiple snapshots during a session. Then, use the DRITA functions and reports to manage and compare the snapshots to evaluate performance information.

DRITA functions

You can use DRITA functions to gather wait information and manage snapshots. DRITA functions are fully supported by EDB Postgres Advanced Server 14 whether your installation is made compatible
with Oracle databases or is in PostgreSQL-compatible mode.

get_snaps()

The get_snaps() function returns a list of the current snapshots. The signature is:

get_snaps()

This example uses the get_snaps() function to display a list of snapshots:

SELECT * FROM get_snaps();
 get_snaps

 1 25-JUL-18 09:49:04.224597
 2 25-JUL-18 09:49:09.310395
 3 25-JUL-18 09:49:14.378728
 4 25-JUL-18 09:49:19.448875

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 461

 5 25-JUL-18 09:49:24.52103
 6 25-JUL-18 09:49:29.586889
 7 25-JUL-18 09:49:34.65529
 8 25-JUL-18 09:49:39.723095
 9 25-JUL-18 09:49:44.788392
 10 25-JUL-18 09:49:49.855821
 11 25-JUL-18 09:49:54.919954
 12 25-JUL-18 09:49:59.987707
(12 rows)

The first column in the result list displays the snapshot identifier. The second column displays the date and time that the snapshot was captured.

sys_rpt()

The sys_rpt() function returns system wait information. The signature is:

sys_rpt(<beginning_id>, <ending_id>, <top_n>)

Parameters

beginning_id

An integer value that represents the beginning session identifier.

ending_id

An integer value that represents the ending session identifier.

top_n

The number of rows to return.

This example shows a call to the sys_rpt() function:

SELECT * FROM sys_rpt(9, 10, 10);
 sys_rpt

WAIT NAME COUNT WAIT TIME % WAIT

wal flush 8359 1.357593 30.62
wal write 8358 1.349153 30.43
wal file sync 8358 1.286437 29.02
query plan 33439 0.439324 9.91
db file extend 54 0.000585 0.01
db file read 31 0.000307 0.01
other lwlock acquire 0 0.000000 0.00
ProcArrayLock 0 0.000000 0.00
CLogControlLock 0 0.000000 0.00
(11 rows)

The information displayed in the result set includes:

Column name Description

WAIT NAME The name of the wait

COUNT The number of times that the wait event occurred

WAIT TIME The time of the wait event in seconds

% WAIT The percentage of the total wait time used by this wait for this session

sess_rpt()

The sess_rpt() function returns session wait information. The signature is:

sess_rpt(<beginning_id>, <ending_id>, <top_n>)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 462

Parameters

beginning_id

An integer value that represents the beginning session identifier.

ending_id

An integer value that represents the ending session identifier.

top_n

The number of rows to return.

This example shows a call to the sess_rpt() function:

SELECT * FROM sess_rpt(8, 9, 10);

 sess_rpt

ID USER WAIT NAME COUNT TIME % WAIT SES % WAIT ALL

3501 enterprise wal flush 8354 1.354958 30.61 30.61
3501 enterprise wal write 8354 1.348192 30.46 30.46
3501 enterprise wal file sync 8354 1.285607 29.04 29.04
3501 enterprise query plan 33413 0.436901 9.87 9.87
3501 enterprise db file extend 54 0.000578 0.01 0.01
3501 enterprise db file read 56 0.000541 0.01 0.01
3501 enterprise ProcArrayLock 0 0.000000 0.00 0.00
3501 enterprise CLogControlLock 0 0.000000 0.00 0.00
(10 rows)

The information displayed in the result set includes:

Column name Description

ID The processID of the session

USER The name of the user incurring the wait

WAIT NAME The name of the wait event

COUNT The number of times that the wait event occurred

TIME The length of the wait event in seconds

% WAIT
SES

The percentage of the total wait time used by this wait for this session

% WAIT
ALL

The percentage of the total wait time used by this wait for all sessions

sessid_rpt()

The sessid_rpt() function returns session ID information for a specified backend. The signature is:

sessid_rpt(<beginning_id>, <ending_id>, <backend_id>)

Parameters

beginning_id

An integer value that represents the beginning session identifier.

ending_id

An integer value that represents the ending session identifier.

backend_id

An integer value that represents the backend identifier.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 463

This example shows a call to sessid_rpt() :

SELECT * FROM sessid_rpt(8, 9, 3501);

 sessid_rpt

ID USER WAIT NAME COUNT TIME % WAIT SES % WAIT ALL

3501 enterprise CLogControlLock 0 0.000000 0.00 0.00
3501 enterprise ProcArrayLock 0 0.000000 0.00 0.00
3501 enterprise db file read 56 0.000541 0.01 0.01
3501 enterprise db file extend 54 0.000578 0.01 0.01
3501 enterprise query plan 33413 0.436901 9.87 9.87
3501 enterprise wal file sync 8354 1.285607 29.04 29.04
3501 enterprise wal write 8354 1.348192 30.46 30.46
3501 enterprise wal flush 8354 1.354958 30.61 30.61
(10 rows)

The information displayed in the result set includes:

Column name Description

ID The process ID of the wait

USER The name of the user that owns the session

WAIT NAME The name of the wait event

COUNT The number of times that the wait event occurred

TIME The length of the wait in seconds

% WAIT
SES

The percentage of the total wait time used by this wait for this session

% WAIT
ALL The percentage of the total wait time used by this wait for all sessions

sesshist_rpt()

The sesshist_rpt() function returns session wait information for a specified backend. The signature is:

sesshist_rpt(<snapshot_id>, <session_id>)

Parameters

snapshot_id

An integer value that identifies the snapshot.

session_id

An integer value that represents the session.

This example shows a call to the sesshist_rpt() function:

Note

The example was shortened. Over 1300 rows are actually generated.

SELECT * FROM sesshist_rpt (9, 3501);
 sesshist_rpt

 ID USER SEQ WAIT NAME ELAPSED File Name #
 of Blk Sum of Blks

 3501 enterprise 1 query plan 13 0 N/A
0 0
 3501 enterprise 1 query plan 13 0 edb_password_history
0 0
 3501 enterprise 1 query plan 13 0 edb_password_history

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 464

0 0
 3501 enterprise 1 query plan 13 0 edb_password_history
0 0
 3501 enterprise 1 query plan 13 0 edb_profile
0 0
 3501 enterprise 1 query plan 13 0 edb_profile_name_ind
0 0
 3501 enterprise 1 query plan 13 0 edb_profile_oid_inde
0 0
 3501 enterprise 1 query plan 13 0 edb_profile_password
0 0
 3501 enterprise 1 query plan 13 0 edb_resource_group
0 0
 3501 enterprise 1 query plan 13 0 edb_resource_group_n
0 0
 3501 enterprise 1 query plan 13 0 edb_resource_group_o
0 0
 3501 enterprise 1 query plan 13 0 pg_attribute
0 0
 3501 enterprise 1 query plan 13 0 pg_attribute_relid_a
0 0
 3501 enterprise 1 query plan 13 0 pg_attribute_relid_a
0 0
 3501 enterprise 1 query plan 13 0 pg_auth_members
0 0
 3501 enterprise 1 query plan 13 0 pg_auth_members_memb
0 0
 3501 enterprise 1 query plan 13 0 pg_auth_members_role
0 0
 .
 .
 .
 3501 enterprise 2 wal flush 149 0 N/A
0 0
 3501 enterprise 2 wal flush 149 0 edb_password_history
0 0
 3501 enterprise 2 wal flush 149 0 edb_password_history
0 0
 3501 enterprise 2 wal flush 149 0 edb_password_history
0 0
 3501 enterprise 2 wal flush 149 0 edb_profile
0 0
 3501 enterprise 2 wal flush 149 0 edb_profile_name_ind
0 0
 3501 enterprise 2 wal flush 149 0 edb_profile_oid_inde
0 0
 3501 enterprise 2 wal flush 149 0 edb_profile_password
0 0
 3501 enterprise 2 wal flush 149 0 edb_resource_group
0 0
 3501 enterprise 2 wal flush 149 0 edb_resource_group_n
0 0
 3501 enterprise 2 wal flush 149 0 edb_resource_group_o
0 0
 3501 enterprise 2 wal flush 149 0 pg_attribute
0 0
 3501 enterprise 2 wal flush 149 0 pg_attribute_relid_a
0 0
 3501 enterprise 2 wal flush 149 0 pg_attribute_relid_a
0 0
 3501 enterprise 2 wal flush 149 0 pg_auth_members
0 0
 3501 enterprise 2 wal flush 149 0 pg_auth_members_memb
0 0
 3501 enterprise 2 wal flush 149 0 pg_auth_members_role
0 0
 .
 .
 .
 3501 enterprise 3 wal write 148 0 N/A
0 0
 3501 enterprise 3 wal write 148 0 edb_password_history
0 0
 3501 enterprise 3 wal write 148 0 edb_password_history
0 0
 3501 enterprise 3 wal write 148 0 edb_password_history
0 0
 3501 enterprise 3 wal write 148 0 edb_profile
0 0

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 465

 3501 enterprise 3 wal write 148 0 edb_profile_name_ind
0 0
 3501 enterprise 3 wal write 148 0 edb_profile_oid_inde
0 0
 3501 enterprise 3 wal write 148 0 edb_profile_password
0 0
 3501 enterprise 3 wal write 148 0 edb_resource_group
0 0
 3501 enterprise 3 wal write 148 0 edb_resource_group_n
0 0
 3501 enterprise 3 wal write 148 0 edb_resource_group_o
0 0
 3501 enterprise 3 wal write 148 0 pg_attribute
0 0
 3501 enterprise 3 wal write 148 0 pg_attribute_relid_a
0 0
 3501 enterprise 3 wal write 148 0 pg_attribute_relid_a
0 0
 3501 enterprise 3 wal write 148 0 pg_auth_members
0 0
 3501 enterprise 3 wal write 148 0 pg_auth_members_memb
0 0
 3501 enterprise 3 wal write 148 0 pg_auth_members_role
0 0
 .
 .
 .
 3501 enterprise 24 wal write 130 0 pg_toast_1255
0 0
 3501 enterprise 24 wal write 130 0 pg_toast_1255_index
0 0
 3501 enterprise 24 wal write 130 0 pg_toast_2396
0 0
 3501 enterprise 24 wal write 130 0 pg_toast_2396_index
0 0
 3501 enterprise 24 wal write 130 0 pg_toast_2964
0 0
 3501 enterprise 24 wal write 130 0 pg_toast_2964_index
0 0
 3501 enterprise 24 wal write 130 0 pg_toast_3592
0 0
 3501 enterprise 24 wal write 130 0 pg_toast_3592_index
0 0
 3501 enterprise 24 wal write 130 0 pg_type
0 0
 3501 enterprise 24 wal write 130 0 pg_type_oid_index
0 0
 3501 enterprise 24 wal write 130 0 pg_type_typname_nsp_
0 0
(1304 rows)

The information displayed in the result set includes:

Column name Description

ID The system-assigned identifier of the wait

USER The name of the user that incurred the wait

SEQ The sequence number of the wait event

WAIT NAME The name of the wait event

ELAPSED The length of the wait event in microseconds

File The relfilenode number of the file

Name If available, the name of the file name related to the wait event

of Blk The block number read or written for a specific instance of the event

Sum of Blks The number of blocks read

purgesnap()

The purgesnap() function purges a range of snapshots from the snapshot tables. The signature is:

purgesnap(<beginning_id>, <ending_id>)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 466

Parameters

beginning_id

An integer value that represents the beginning session identifier.

ending_id

An integer value that represents the ending session identifier.

purgesnap() removes all snapshots between beginning_id and ending_id , inclusive:

SELECT * FROM purgesnap(6, 9);

 purgesnap

 Snapshots in range 6 to 9 deleted.
(1 row)

A call to the get_snaps() function after executing the example shows that snapshots 6 through 9 were purged from the snapshot tables:

SELECT * FROM get_snaps();
 get_snaps

 1 25-JUL-18 09:49:04.224597
 2 25-JUL-18 09:49:09.310395
 3 25-JUL-18 09:49:14.378728
 4 25-JUL-18 09:49:19.448875
 5 25-JUL-18 09:49:24.52103
 10 25-JUL-18 09:49:49.855821
 11 25-JUL-18 09:49:54.919954
 12 25-JUL-18 09:49:59.987707
(8 rows)

truncsnap()

Use the truncsnap() function to delete all records from the snapshot table. The signature is:

truncsnap()

For example:

SELECT * FROM truncsnap();

 truncsnap

 Snapshots truncated.
(1 row)

A call to the get_snaps() function after calling the truncsnap() function shows that all records were removed from the snapshot tables:

SELECT * FROM get_snaps();
 get_snaps

(0 rows)

Simulating Statspack AWR reports

These functions return information comparable to the information contained in an Oracle Statspack/Automatic Workload Repository (AWR) report. When taking a snapshot, performance data from
system catalog tables is saved into history tables. These reporting functions report on the differences between two given snapshots:

stat_db_rpt()
stat_tables_rpt()
statio_tables_rpt()
stat_indexes_rpt()
statio_indexes_rpt()

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 467

You can execute the reporting functions individually or you can execute all five functions by calling the edbreport() function.

edbreport()

The edbreport() function includes data from the other reporting functions, plus system information. The signature is:

edbreport(<beginning_id>, <ending_id>)

Parameters

beginning_id

An integer value that represents the beginning session identifier.

ending_id

An integer value that represents the ending session identifier.

The call to the edbreport() function returns a composite report that contains system information and the reports returned by the other statspack functions:

SELECT * FROM edbreport(9, 10);
 edbreport
--
 EnterpriseDB Report for database acctg 25-JUL-18
 Version: PostgreSQL 14.0 (EnterpriseDB EDB Postgres Advanced Server 14.0.0)on x86_64-pc-linux-gnu,
compiled by gcc (GCC) 4.4.7 20120313 (Red Hat 4.4.7-18), 64-bit

 Begin snapshot: 9 at 25-JUL-18 09:49:44.788392

 End snapshot: 10 at 25-JUL-18 09:49:49.855821

Size of database acctg is 173 MB
 Tablespace: pg_default Size: 231 MB Owner: enterprisedb
 Tablespace: pg_global Size: 719 kB Owner: enterprisedb

Schema: pg_toast_temp_1 Size: 0 bytes Owner: enterprisedb
Schema: public Size: 158 MB Owner: enterprisedb

The information displayed in the report introduction includes the database name and version, the current date, the beginning and ending snapshot date and times, database and tablespace details, and
schema information.

 Top 10 Relations by pages

TABLE RELPAGES

pgbench_accounts 16394
pgbench_history 391
pg_proc 145
pg_attribute 92
pg_depend 81
pg_collation 60
edb$stat_all_indexes 46
edb$statio_all_indexes 46
pg_description 44
edb$stat_all_tables 29

The information displayed in the Top 10 Relations by pages section includes:

Column name Description

TABLE The name of the table

RELPAGES The number of pages in the table

 Top 10 Indexes by pages

INDEX RELPAGES

pgbench_accounts_pkey 2745
pg_depend_reference_index 68

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 468

pg_depend_depender_index 63
pg_proc_proname_args_nsp_index 53
pg_attribute_relid_attnam_index 25
pg_description_o_c_o_index 24
pg_attribute_relid_attnum_index 17
pg_proc_oid_index 14
pg_collation_name_enc_nsp_index 12
edb$stat_idx_pk 10

The information displayed in the Top 10 Indexes by pages section includes:

Column name Description

INDEX The name of the index

RELPAGES The number of pages in the index

 Top 10 Relations by DML

SCHEMA RELATION UPDATES DELETES INSERTS
--
public pgbench_accounts 117209 0 1000000
public pgbench_tellers 117209 0 100
public pgbench_branches 117209 0 10
public pgbench_history 0 0 117209

The information displayed in the Top 10 Relations by DML section includes:

Column name Description

SCHEMA The name of the schema in which the table resides

RELATION The name of the table

UPDATES The number of UPDATES performed on the table

DELETES The number of DELETES performed on the table

INSERTS The number of INSERTS performed on the table

 DATA from pg_stat_database

DATABASE NUMBACKENDS XACT COMMIT XACT ROLLBACK BLKS READ BLKS HIT HIT RATIO

acctg 0 8261 0 117 127985 99.91

The information displayed in the DATA from pg_stat_database section of the report includes:

Column name Description

DATABASE The name of the database.

NUMBACKENDS Number of backends currently connected to this database. This is the only column in this view that returns a value reflecting current state. All other columns return the
accumulated values since the last reset.

XACT
COMMIT

Number of transactions in this database that were committed.

XACT
ROLLBACK

Number of transactions in this database that were rolled back.

BLKS READ Number of disk blocks read in this database.

BLKS HIT Number of times disk blocks were found already in the buffer cache when a read wasn't necessary.

HIT RATIO The percentage of times that a block was found in the shared buffer cache.

 DATA from pg_buffercache

RELATION BUFFERS

pgbench_accounts 16665
pgbench_accounts_pkey 2745
pgbench_history 751
edb$statio_all_indexes 94
edb$stat_all_indexes 94
edb$stat_all_tables 60
edb$statio_all_tables 56

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 469

edb$session_wait_history 34
edb$statio_idx_pk 17
pg_depend 17

The information displayed in the DATA from pg_buffercache section of the report includes:

Column name Description

RELATION The name of the table

BUFFERS The number of shared buffers used by the relation

Note

To obtain the report for DATA from pg_buffercache , the pg_buffercache module must be installed in the database. Perform the installation using the CREATE EXTENSION
command.

For more information on the CREATE EXTENSION command, see the PostgreSQL core documentation.

 DATA from pg_stat_all_tables ordered by seq scan

 SCHEMA RELATION SEQ SCAN REL TUP READ IDX SCAN
IDX TUP READ INS UPD DEL

 public pgbench_branches 8258 82580 0
0 0 8258 0
 public pgbench_tellers 8258 825800 0
0 0 8258 0
 pg_catalog pg_class 7 3969 92
80 0 0 0
 pg_catalog pg_index 5 950 31
38 0 0 0
 pg_catalog pg_namespace 4 144 5
4 0 0 0
 pg_catalog pg_database 2 12 7
7 0 0 0
 pg_catalog pg_am 1 1 0
0 0 0 0
 pg_catalog pg_authid 1 10 2
2 0 0 0
 sys callback_queue_table 0 0 0
0 0 0 0
 sys edb$session_wait_history 0 0 0
0 125 0 0

The information displayed in the DATA from pg_stat_all_tables ordered by seq scan section includes:

Column name Description

SCHEMA The name of the schema in which the table resides

RELATION The name of the table

SEQ SCAN The number of sequential scans initiated on this table

REL TUP
READ

The number of tuples read in the table

IDX SCAN The number of index scans initiated on the table

IDX TUP
READ

The number of index tuples read

INS The number of rows inserted

UPD The number of rows updated

DEL The number of rows deleted

 DATA from pg_stat_all_tables ordered by rel tup read

 SCHEMA RELATION SEQ SCAN REL TUP READ IDX SCAN
IDX TUP READ INS UPD DEL

--
 public pgbench_tellers 8258 825800 0
0 0 8258 0
 public pgbench_branches 8258 82580 0

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 470

https://www.postgresql.org/docs/current/static/sql-createextension.html

0 0 8258 0
 pg_catalog pg_class 7 3969 92
80 0 0 0
 pg_catalog pg_index 5 950 31
38 0 0 0
 pg_catalog pg_namespace 4 144 5
4 0 0 0
 pg_catalog pg_database 2 12 7
7 0 0 0
 pg_catalog pg_authid 1 10 2
2 0 0 0
 pg_catalog pg_am 1 1 0
0 0 0 0
 sys callback_queue_table 0 0 0
0 0 0 0
 sys edb$session_wait_history 0 0 0
0 125 0 0

The information displayed in the DATA from pg_stat_all_tables ordered by rel tup read section includes:

Column name Description

SCHEMA The name of the schema in which the table resides

RELATION The name of the table

SEQ SCAN The number of sequential scans performed on the table

REL TUP
READ

The number of tuples read from the table

IDX SCAN The number of index scans performed on the table

IDX TUP
READ

The number of index tuples read

INS The number of rows inserted

UPD The number of rows updated

DEL The number of rows deleted

 DATA from pg_statio_all_tables

 SCHEMA RELATION HEAP HEAP IDX IDX
TOAST TOAST TIDX TIDX
 READ HIT READ HIT
READ HIT READ HIT

 public pgbench_accounts 32 25016 0 49913
0 0 0 0
 public pgbench_tellers 0 24774 0 0
0 0 0 0
 public pgbench_branches 0 16516 0 0
0 0 0 0
 public pgbench_history 53 8364 0 0
0 0 0 0
 pg_catalog pg_class 0 199 0 187
0 0 0 0
 pg_catalog pg_attribute 0 198 0 395
0 0 0 0
 pg_catalog pg_proc 0 75 0 153
0 0 0 0
 pg_catalog pg_index 0 56 0 33
0 0 0 0
 pg_catalog pg_amop 0 48 0 56
0 0 0 0
 pg_catalog pg_namespace 0 28 0 7
0 0 0 0

The information displayed in the DATA from pg_statio_all_tables section includes:

Column name Description

SCHEMA The name of the schema in which the table resides

RELATION The name of the table

HEAP READ The number of heap blocks read

HEAP HIT The number of heap blocks hit

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 471

IDX READ The number of index blocks read

IDX HIT The number of index blocks hit

TOAST READ The number of toast blocks read

TOAST HIT The number of toast blocks hit

TIDX READ The number of toast index blocks read

TIDX HIT The number of toast index blocks hit

Column name Description

 DATA from pg_stat_all_indexes

 SCHEMA RELATION INDEX
IDX SCAN IDX TUP READ IDX TUP FETCH
--

 public pgbench_accounts pgbench_accounts_pkey
16516 16679 16516
 pg_catalog pg_attribute
pg_attribute_relid_attnum_index 196 402 402
 pg_catalog pg_proc pg_proc_oid_index
70 70 70
 pg_catalog pg_class pg_class_oid_index
61 61 61
 pg_catalog pg_class pg_class_relname_nsp_index
31 19 19
 pg_catalog pg_type pg_type_oid_index
22 22 22
 pg_catalog edb_policy edb_policy_object_name_index
21 0 0
 pg_catalog pg_amop pg_amop_fam_strat_index
16 16 16
 pg_catalog pg_index pg_index_indexrelid_index
16 16 16
 pg_catalog pg_index pg_index_indrelid_index
15 22 22

The information displayed in the DATA from pg_stat_all_indexes section includes:

Column name Description

SCHEMA The name of the schema in which the index resides

RELATION The name of the table on which the index is defined

INDEX The name of the index

IDX SCAN The number of indexes scans initiated on this index

IDX TUP READ Number of index entries returned by scans on this index

IDX TUP
FETCH

Number of live table rows fetched by simple index scans using this index

 DATA from pg_statio_all_indexes

 SCHEMA RELATION INDEX
IDX BLKS READ IDX BLKS HIT
--
--
 public pgbench_accounts pgbench_accounts_pkey
0 49913
 pg_catalog pg_attribute
pg_attribute_relid_attnum_index 0 395
 sys edb$stat_all_indexes edb$stat_idx_pk
1 382
 sys edb$statio_all_indexes edb$statio_idx_pk
1 382
 sys edb$statio_all_tables edb$statio_tab_pk
2 262
 sys edb$stat_all_tables edb$stat_tab_pk
0 259
 sys edb$session_wait_history session_waits_hist_pk
0 251
 pg_catalog pg_proc pg_proc_oid_index
0 142
 pg_catalog pg_class pg_class_oid_index
0 123

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 472

 pg_catalog pg_class pg_class_relname_nsp_index
0 63

The information displayed in the DATA from pg_statio_all_indexes section includes:

Column name Description

SCHEMA The name of the schema in which the index resides

RELATION The name of the table on which the index is
defined

INDEX The name of the index

IDX BLKS READ The number of index blocks read

IDX BLKS HIT The number of index blocks hit

 System Wait Information

WAIT NAME COUNT WAIT TIME % WAIT

wal flush 8359 1.357593 30.62
wal write 8358 1.349153 30.43
wal file sync 8358 1.286437 29.02
query plan 33439 0.439324 9.91
db file extend 54 0.000585 0.01
db file read 31 0.000307 0.01
other lwlock acquire 0 0.000000 0.00
ProcArrayLock 0 0.000000 0.00
CLogControlLock 0 0.000000 0.00

The information displayed in the System Wait Information section includes:

Column name Description

WAIT NAME The name of the wait

COUNT The number of times that the wait event occurred

WAIT TIME The length of the wait time in seconds

% WAIT The percentage of the total wait time used by this wait for this session

 Database Parameters from postgresql.conf

 PARAMETER SETTING
CONTEXT MINVAL MAXVAL
--

 allow_system_table_mods off
postmaster
 application_name psql.bin
user
 archive_command (disabled)
sighup
 archive_mode off
postmaster
 archive_timeout 0
sighup 0 1073741823
 array_nulls on
user
 authentication_timeout 60
sighup 1 600
 autovacuum on
sighup
 autovacuum_analyze_scale_factor 0.1
sighup 0 100
 autovacuum_analyze_threshold 50
sighup 0 2147483647
 autovacuum_freeze_max_age 200000000
postmaster 100000 2000000000
 autovacuum_max_workers 3
postmaster 1 262143
 autovacuum_multixact_freeze_max_age 400000000
postmaster 10000 2000000000
 autovacuum_naptime 60
sighup 1 2147483

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 473

 autovacuum_vacuum_cost_delay 20
sighup -1 100
 .
 .
 .

The information displayed in the Database Parameters from postgresql.conf section includes:

Column name Description

PARAMETER The name of the parameter

SETTING The current value assigned to the parameter

CONTEXT The context required to set the parameter value

MINVAL The minimum value allowed for the parameter

MAXVAL The maximum value allowed for the parameter

stat_db_rpt()

The signature is:

stat_db_rpt(<beginning_id>, <ending_id>)

Parameters

beginning_id

An integer value that represents the beginning session identifier.

ending_id

An integer value that represents the ending session identifier.

This example shows the stat_db_rpt() function:

SELECT * FROM stat_db_rpt(9, 10);

 stat_db_rpt

 DATA from pg_stat_database

DATABASE NUMBACKENDS XACT COMMIT XACT ROLLBACK BLKS READ BLKS HIT HIT RATIO

acctg 0 8261 0 117 127985 99.91
(5 rows)

The information displayed in the DATA from pg_stat_database section of the report includes:

Column name Description

DATABASE The name of the database.

NUMBACKENDS Number of backends currently connected to this database. This is the only column in this view that returns a value reflecting current state. All other columns return the
accumulated values since the last reset.

XACT
COMMIT

The number of transactions in this database that were committed.

XACT
ROLLBACK

The number of transactions in this database that were rolled back.

BLKS READ The number of blocks read.

BLKS HIT The number of blocks hit.

HIT RATIO The percentage of times that a block was found in the shared buffer cache.

stat_tables_rpt()

The signature is:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 474

function_name(<beginning_id>, <ending_id>, <top_n>, <scope>)

Parameters

beginning_id

An integer value that represents the beginning session identifier.

ending_id

An integer value that represents the ending session identifier.

top_n

The number of rows to return.

scope

Determines the tables the function returns statistics about. Specify SYS , USER , or ALL :

Use SYS to return information about system-defined tables. A table is considered a system table if it's stored in the pg_catalog , information_schema , or sys schema.
Use USER to return information about user-defined tables.
Use ALL to return information about all tables.

The stat_tables_rpt() function returns a two-part report. The first portion of the report contains:

SELECT * FROM stat_tables_rpt(8, 9, 10, 'ALL');

 stat_tables_rpt
--
 DATA from pg_stat_all_tables ordered by seq scan

 SCHEMA RELATION SEQ SCAN REL TUP READ IDX SCAN
IDX TUP READ INS UPD DEL

 public pgbench_branches 8249 82490 0
0 0 8249 0
 public pgbench_tellers 8249 824900 0
0 0 8249 0
 pg_catalog pg_class 7 3969 92
80 0 0 0
 pg_catalog pg_index 5 950 31
38 0 0 0
 pg_catalog pg_namespace 4 144 5
4 0 0 0
 pg_catalog pg_am 1 1 0
0 0 0 0
 pg_catalog pg_authid 1 10 2
2 0 0 0
 pg_catalog pg_database 1 6 3
3 0 0 0
 sys callback_queue_table 0 0 0
0 0 0 0
 sys edb$session_wait_history 0 0 0
0 125 0 0

The information displayed in the DATA from pg_stat_all_tables ordered by seq scan section includes:

Column name Description

SCHEMA The name of the schema in which the table resides

RELATION The name of the table

SEQ SCAN The number of sequential scans on the table

REL TUP
READ

The number of tuples read from the table

IDX SCAN The number of index scans performed on the table

IDX TUP
READ

The number of index tuples read from the table

INS The number of rows inserted

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 475

UPD The number of rows updated

DEL The number of rows deleted

Column name Description

The second portion of the report contains:

 DATA from pg_stat_all_tables ordered by rel tup read

 SCHEMA RELATION SEQ SCAN REL TUP READ IDX SCAN
IDX TUP READ INS UPD DEL

 public pgbench_tellers 8249 824900 0
0 0 8249 0
 public pgbench_branches 8249 82490 0
0 0 8249 0
 pg_catalog pg_class 7 3969 92
80 0 0 0
 pg_catalog pg_index 5 950 31
38 0 0 0
 pg_catalog pg_namespace 4 144 5
4 0 0 0
 pg_catalog pg_authid 1 10 2
2 0 0 0
 pg_catalog pg_database 1 6 3
3 0 0 0
 pg_catalog pg_am 1 1 0
0 0 0 0
 sys callback_queue_table 0 0 0
0 0 0 0
 sys edb$session_wait_history 0 0 0
0 125 0 0
(29 rows)

The information displayed in the DATA from pg_stat_all_tables ordered by rel tup read section includes:

Column name Description

SCHEMA The name of the schema in which the table resides

RELATION The name of the table

SEQ SCAN The number of sequential scans performed on the table

REL TUP
READ

The number of tuples read from the table

IDX SCAN The number of index scans performed on the table

IDX TUP
READ

The number of live rows fetched by index scans

INS The number of rows inserted

UPD The number of rows updated

DEL The number of rows deleted

statio_tables_rpt()

The signature is:

statio_tables_rpt(<beginning_id>, <ending_id>, <top_n>, <scope>)

Parameters

beginning_id

An integer value that represents the beginning session identifier.

ending_id

An integer value that represents the ending session identifier.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 476

top_n

The number of rows to return.

scope

Determines the tables the function returns statistics about. Specify SYS , USER or ALL :

Use SYS to return information about system-defined tables. A table is considered a system table if it's stored the pg_catalog , information_schema , or sys schema.
Use USER to return information about user-defined tables.
Use ALL to return information about all tables.

The statio_tables_rpt() function returns a report that contains:

SELECT * FROM statio_tables_rpt(9, 10, 10, 'SYS');

 statio_tables_rpt
--

 DATA from pg_statio_all_tables

 SCHEMA RELATION HEAP HEAP IDX IDX TOAST
TOAST TIDX TIDX
 READ HIT READ HIT READ

HIT READ HIT

 sys edb$stat_all_indexes 8 18 1 382 0
0 0 0
 sys edb$statio_all_index 8 18 1 382 0
0 0 0
 sys edb$statio_all_table 5 12 2 262 0
0 0 0
 sys edb$stat_all_tables 4 10 0 259 0
0 0 0
 sys edb$session_wait_his 2 6 0 251 0
0 0 0
 sys edb$session_waits 1 4 0 12 0
0 0 0
 sys callback_queue_table 0 0 0 0 0
0 0 0
 sys dual 0 0 0 0 0
0 0 0
 sys edb$snap 0 1 0 2 0
0 0 0
 sys edb$stat_database 0 2 0 7 0
0 0 0
(15 rows)

The information displayed in the DATA from pg_statio_all_tables section includes:

Column name Description

SCHEMA The name of the schema in which the relation resides

RELATION The name of the relation

HEAP READ The number of heap blocks read

HEAP HIT The number of heap blocks hit

IDX READ The number of index blocks read

IDX HIT The number of index blocks hit

TOAST READ The number of toast blocks read

TOAST HIT The number of toast blocks hit

TIDX READ The number of toast index blocks read

TIDX HIT The number of toast index blocks hit

stat_indexes_rpt()

The signature is:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 477

stat_indexes_rpt(<beginning_id>, <ending_id>, <top_n>, <scope>)

Parameters

beginning_id

An integer value that represents the beginning session identifier.

ending_id

An integer value that represents the ending session identifier.

top_n

The number of rows to return.

scope

Determines the tables the function returns statistics about. Specify SYS , USER or ALL :

Use SYS to return information about system-defined tables. A table is considered a system table if it's stored in the pg_catalog , information_schema , or sys schema.
Use USER to return information about user-defined tables.
Use ALL to return information about all tables.

The stat_indexes_rpt() function returns a report that contains:

edb=# SELECT * FROM stat_indexes_rpt(9, 10, 10, 'ALL');

 stat_indexes_rpt

 DATA from pg_stat_all_indexes

 SCHEMA RELATION INDEX
IDX SCAN IDX TUP READ IDX TUP FETCH

--
 public pgbench_accounts pgbench_accounts_pkey
16516 16679 16516
 pg_catalog pg_attribute
pg_attribute_relid_attnum_index 196 402 402
 pg_catalog pg_proc pg_proc_oid_index
70 70 70
 pg_catalog pg_class pg_class_oid_index
61 61 61
 pg_catalog pg_class pg_class_relname_nsp_index
31 19 19
 pg_catalog pg_type pg_type_oid_index
22 22 22
 pg_catalog edb_policy edb_policy_object_name_index
21 0 0
 pg_catalog pg_amop pg_amop_fam_strat_index
16 16 16
 pg_catalog pg_index pg_index_indexrelid_index
16 16 16
 pg_catalog pg_index pg_index_indrelid_index
15 22 22
(14 rows)

The information displayed in the DATA from pg_stat_all_indexes section includes:

Column name Description

SCHEMA The name of the schema in which the relation resides

RELATION The name of the relation

INDEX The name of the index

IDX SCAN The number of indexes scanned

IDX TUP READ The number of index tuples read

IDX TUP
FETCH

The number of index tuples fetched

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 478

statio_indexes_rpt()

The signature is:

statio_indexes_rpt(<beginning_id>, <ending_id>, <top_n>, <scope>)

Parameters

beginning_id

An integer value that represents the beginning session identifier.

ending_id

An integer value that represents the ending session identifier.

top_n

The number of rows to return.

scope

Determines the tables the function returns statistics about. Specify SYS , USER or ALL :

Use SYS to return information about system-defined tables. A table is considered a system table if it's stored in the pg_catalog , information_schema , or sys schema.
Use USER to return information about user-defined tables.
Use ALL to return information about all tables.

The statio_indexes_rpt() function returns a report that contains:

edb=# SELECT * FROM statio_indexes_rpt(9, 10, 10, 'SYS');

 statio_indexes_rpt
--

 DATA from pg_statio_all_indexes

 SCHEMA RELATION INDEX
IDX BLKS READ IDX BLKS HIT
--

 pg_catalog pg_attribute
pg_attribute_relid_attnum_index 0 395
 sys edb$stat_all_indexes edb$stat_idx_pk
1 382
 sys edb$statio_all_indexes edb$statio_idx_pk
1 382
 sys edb$statio_all_tables edb$statio_tab_pk
2 262
 sys edb$stat_all_tables edb$stat_tab_pk
0 259
 sys edb$session_wait_history session_waits_hist_pk
0 251
 pg_catalog pg_proc pg_proc_oid_index
0 142
 pg_catalog pg_class pg_class_oid_index
0 123
 pg_catalog pg_class pg_class_relname_nsp_index
0 63
 pg_catalog pg_type pg_type_oid_index
0 45
(14 rows)

The information displayed in the DATA from pg_statio_all_indexes report includes:

Column name Description

SCHEMA The name of the schema in which the relation resides

RELATION The name of the table on which the index is defined

INDEX The name of the index

IDX BLKS READ The number of index blocks read

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 479

IDX BLKS HIT The number of index blocks hit

Column name Description

Performance tuning recommendations

To use DRITA reports for performance tuning, review the top five events in a report. Look for any event that takes an especially large percentage of resources. In a streamlined system, user I/O generally
makes up the largest number of waits. Evaluate waits in the context of CPU usage and total time. An event might not be significant if it takes two minutes out of a total measurement interval of two
hours and the rest of the time is consumed by CPU time. Evaluate the component of response time (CPU "work" time or other "wait" time) that consumes the highest percentage of overall time.

When evaluating events, watch for:

Event type Description

Checkpoint waits
Checkpoint waits might indicate that checkpoint parameters need to be adjusted (checkpoint_segments and
checkpoint_timeout).

WAL-related waits WAL-related waits might indicate wal_buffers are undersized.

SQL Parse waits If the number of waits is high, try to use prepared statements.

db file random reads If high, check for appropriate indexes and statistics.

db file random writes If high, might need to decrease bgwriter_delay .

btree random lock acquires Might indicate indexes are being rebuilt. Schedule index builds during less active time.

Also look at the hardware, the operating system, the network, and the application SQL statements in performance reviews.

Event descriptions

The following table lists the basic wait events that are displayed by DRITA.

Event name Description

add in shmem lock
acquire

Obsolete/unused.

bgwriter communication
lock acquire

The bgwriter (background writer) process has waited for the short-term lock that synchronizes messages between the bgwriter and a backend process.

btree vacuum lock
acquire

The server has waited for the short-term lock that synchronizes access to the next available vacuum cycle ID.

buffer free list lock
acquire

The server has waited for the short-term lock that synchronizes access to the list of free buffers (in shared memory).

checkpoint lock acquire A server process has waited for the short-term lock that prevents simultaneous checkpoints.

checkpoint start lock
acquire

The server has waited for the short-term lock that synchronizes access to the bgwriter checkpoint schedule.

clog control lock
acquire

The server has waited for the short-term lock that synchronizes access to the commit log.

control file lock
acquire

The server has waited for the short-term lock that synchronizes write access to the control file. This is usually a low number.

db file extend A server process has waited for the operating system while adding a new page to the end of a file. e

db file read A server process has waited for a read from disk to complete.

db file write A server process has waited for a write to disk to complete.

db file sync A server process has waited for the operating system to flush all changes to disk.

first buf mapping lock
acquire

The server has waited for a short-term lock that synchronizes access to the shared-buffer mapping table.

freespace lock acquire The server has waited for the short-term lock that synchronizes access to the freespace map.

lwlock acquire The server has waited for a short-term lock that isn't described elsewhere in this table.

multi xact gen lock
acquire The server has waited for the short-term lock that synchronizes access to the next available multi-transaction ID (when a SELECT...FOR SHARE statement

executes).

multi xact member lock
acquire

The server has waited for the short-term lock that synchronizes access to the multi-transaction member file (when a SELECT...FOR SHARE statement
executes).

multi xact offset lock
acquire

The server has waited for the short-term lock that synchronizes access to the multi-transaction offset file (when a SELECT...FOR SHARE statement
executes).

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 480

oid gen lock acquire The server has waited for the short-term lock that synchronizes access to the next available OID (object ID).

query plan The server has computed the execution plan for a SQL statement.

rel cache init lock
acquire

The server has waited for the short-term lock that prevents simultaneous relation-cache loads/unloads.

shmem index lock
acquire

The server has waited for the short-term lock that synchronizes access to the shared-memory map.

sinval lock acquire The server has waited for the short-term lock that synchronizes access to the cache invalidation state.

sql parse The server has parsed a SQL statement.

subtrans control lock
acquire

The server has waited for the short-term lock that synchronizes access to the subtransaction log.

tablespace create lock
acquire

The server has waited for the short-term lock that prevents simultaneous CREATE TABLESPACE or DROP TABLESPACE commands.

two phase state lock
acquire

The server has waited for the short-term lock that synchronizes access to the list of prepared transactions.

wal insert lock acquire The server has waited for the short-term lock that synchronizes write access to the write-ahead log. A high number can indicate that WAL buffers are sized
too small.

wal write lock acquire The server has waited for the short-term lock that synchronizes write-ahead log flushes.

wal file sync The server has waited for the write-ahead log to sync to disk. This is related to the wal_sync_method parameter which, by default, is 'fsync'. You can
gain better performance by changing this parameter to open_sync .

wal flush The server has waited for the write-ahead log to flush to disk.

wal write The server has waited for a write to the write-ahead log buffer. Expect this value to be high.

xid gen lock acquire The server has waited for the short-term lock that synchronizes access to the next available transaction ID.

Event name Description

When wait events occur for lightweight locks, DRITA displays them as well. It uses a lightweight lock to protect a particular data structure in shared memory.

Certain wait events can be due to the server process waiting for one of a group of related lightweight locks, which is referred to as a lightweight lock tranche. DRITA doesn't display individual lightweight
lock tranches, but it displays their summation with a single event named other lwlock acquire .

For a list and description of lightweight locks displayed by DRITA, see the PostgreSQL core documentation. Under Viewing Statistics, see the Wait Event Type table for more details.

This example displays lightweight locks ProcArrayLock , CLogControlLock , WALBufMappingLock , and XidGenLock .

postgres=# select * from sys_rpt(40,70,20);
 sys_rpt
--
 WAIT NAME COUNT WAIT TIME % WAIT
--
 wal flush 56107 44.456494 47.65
 db file read 66123 19.543968 20.95
 wal write 32886 12.780866 13.70
 wal file sync 32933 11.792972 12.64
 query plan 223576 4.539186 4.87
 db file extend 2339 0.087038 0.09
 other lwlock acquire 402 0.066591 0.07
 ProcArrayLock 135 0.012942 0.01
 CLogControlLock 212 0.010333 0.01
 WALBufMappingLock 47 0.006068 0.01
 XidGenLock 53 0.005296 0.01
(13 rows)

DRITA also displays wait events that are related to certain EDB Postgres Advanced Server product features. These events and the other lwlock acquire event are listed in the following table.

Event name Description

BulkLoadLock The server has waited for access related to EDB*Loader.

EDBResoureManagerLock The server has waited for access related to EDB Resource Manager.

other lwlock acquire Summation of waits for lightweight lock tranches.

18 Database compatibility for Oracle developers: catalog views

Catalog views provide information about database objects. There are two catagories of catalog views:

Oracle catalog views provide information about database objects in a manner compatible with the Oracle data dictionary views.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 481

https://www.postgresql.org/docs/current/monitoring-stats.html#MONITORING-STATS-SETUP
https://www.postgresql.org/docs/current/monitoring-stats.html#MONITORING-STATS-VIEWS

System catalog views are present in PostgreSQL and may have extra information when accessed in EDB Postgres Advanced Server.

18.1 Oracle catalog views

Oracle catalog views provide information about database objects in a manner compatible with Oracle data dictionary views.

18.1.1 ALL_ALL_TABLES

The ALL_ALL_TABLES view provides information about the tables the current user can access.

Name Type Description

owner TEXT User name of the table’s owner.

schema_name TEXT Name of the schema in which the table belongs.

table_name TEXT Name of the table.

tablespace_name TEXT Name of the tablespace in which the table resides. If the tablespace name isn't specified, then default tablespace PG_DEFAULT .

degree CHARACTER
VARYING(10)

Number of threads per instance to scan a table, or DEFAULT .

status CHARACTER VARYING
(5)

Included only for compatibility. Always set to VALID .

temporary TEXT Y if the table is temporary, N if the table is permanent.

18.1.2 ALL_CONS_COLUMNS

The ALL_CONS_COLUMNS view provides information about the columns specified in constraints placed on tables accessible by the current user.

Name Type Description

owner TEXT User name of the constraint’s owner.

schema_name TEXT Name of the schema in which the constraint belongs.

constraint_name TEXT Name of the constraint.

table_name TEXT Name of the table to which the constraint belongs.

column_name TEXT Name of the column referenced in the constraint.

position SMALLINT Position of the column in the object definition.

constraint_def TEXT Definition of the constraint.

18.1.3 ALL_CONSTRAINTS

The ALL_CONSTRAINTS view provides information about the constraints placed on tables accessible by the current user.

Name Type Description

owner TEXT User name of the constraint’s owner.

schema_name TEXT Name of the schema in which the constraint belongs.

constraint_
name

TEXT Name of the constraint.

constraint_
type

TEXT The constraint type. Possible values are: C – check constraint; F – foreign key constraint; P – primary key constraint; U – unique key constraint; R – referential
integrity constraint; V – constraint on a view; O – with read-only, on a view

table_name TEXT Name of the table to which the constraint belongs.

search_cond
ition

TEXT Search condition that applies to a check constraint.

r_owner TEXT Owner of a table referenced by a referential constraint.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 482

r_constrain
t_name

TEXT Name of the constraint definition for a referenced table.

delete_rule TEXT Delete rule for a referential constraint. Possible values are: C – cascade; R – restrict; N – no action

deferrable BOOL
EAN

Specified if the constraint is deferrable (T or F).

deferred BOOL
EAN

Specified if the constraint was deferred (T or F).

index_owner TEXT User name of the index owner.

index_name TEXT Name of the index.

constraint_
def

TEXT Definition of the constraint.

Name Type Description

18.1.4 ALL_COL_PRIVS

The ALL_COL_PRIVS view provides the following types of privileges:

Column object privileges for which a current user is either an object owner, grantor, or grantee.
Column object privileges for which PUBLIC is the grantee.

Name Type Description

grantor CHARACTER
VARYING(128)

Name of the user who granted the privilege.

grantee CHARACTER
VARYING(128)

Name of the user with the privilege.

table_s
chema

CHARACTER
VARYING(128)

Name of the user who owns the object.

schema_
name

CHARACTER
VARYING(128)

Name of the schema in which the object resides.

table_n
ame

CHARACTER
VARYING(128)

Object name.

column_
name

CHARACTER
VARYING(128)

Column name.

privile
ge

CHARACTER
VARYING(40)

Privilege on the column.

grantab
le

CHARACTER
VARYING(3)

Indicates whether the privilege was granted with the grant option YES or NO . YES indicates that the GRANTEE (recipient of the privilege) can grant the
privilege to others. The value can be YES if the grantee has administrator privileges.

common CHARACTER
VARYING(3)

Included for compatibility only. Always NO .

inherit
ed

CHARACTER
VARYING(3)

Included for compatibility only. Always NO .

18.1.5 ALL_DB_LINKS

The ALL_DB_LINKS view provides information about the database links accessible by the current user.

Name Type Description

owner TEXT User name of the database link’s owner.

db_link TEXT Name of the database link.

type CHARACTER VARYING Type of remote server. Value is REDWOOD or
EDB .

username TEXT User name of the user logging in.

host TEXT Name or IP address of the remote server.

18.1.6 ALL_DEPENDENCIES

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 483

The ALL_DEPENDENCIES view provides information about the dependencies between database objects that the current user can access, except for synonyms.

Name Type Description

owner CHARACTER VARYING(128) Owner of dependent object.

schema_name CHARACTER VARYING(128) Name of the schema in which the dependent object resides.

name CHARACTER VARYING(128) Name of the dependent object.

type CHARACTER VARYING(18) Type of the dependent object.

referenced_owner CHARACTER VARYING(128) Owner of the referenced object.

referenced_schema_name CHARACTER VARYING(128) Name of the schema in which the referenced object resides.

referenced_name CHARACTER VARYING(128) Name of the referenced object.

referenced_type CHARACTER VARYING(18) Type of the referenced object.

referenced_link_name CHARACTER VARYING(128) Included for compatibility only. Always NULL .

dependency_type CHARACTER VARYING(4) Included for compatibility only. Always set to HARD .

18.1.7 ALL_DIRECTORIES

The ALL_DIRECTORIES view provides information about all directories created with the CREATE DIRECTORY command.

Name Type Description

owner CHARACTER VARYING(30) User name of the directory owner.

directory_name CHARACTER VARYING(30) Alias name assigned to the directory.

directory_path CHARACTER VARYING(4000) Path to the directory.

18.1.8 ALL_IND_COLUMNS

The ALL_IND_COLUMNS view provides information about columns included in indexes on the tables accessible by the current user.

Name Type Description

index_owner TEXT User name of the index owner.

schema_name TEXT Name of the schema in which the index belongs.

index_name TEXT Name of the index.

table_owner TEXT User name of the table owner.

table_name TEXT Name of the table to which the index belongs.

column_name TEXT Name of the column.

column_position SMALLINT Position of the column in the index.

column_length SMALLINT Length of the column in bytes.

char_length NUMERIC Length of the column in characters.

descend CHARACTER(1) Always set to Y (descending). Included only for
compatibility.

18.1.9 ALL_INDEXES

The ALL_INDEXES view provides information about the indexes on tables that the current user can access.

Name Type Description

owner TEXT User name of the index owner.

schema_name TEXT Name of the schema in which the index belongs.

index_name TEXT Name of the index.

index_type TEXT The index type is always BTREE . Included for compatibility only.

table_owner TEXT User name of the owner of the indexed table.

table_name TEXT Name of the indexed table.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 484

table_type TEXT Included for compatibility only. Always set to TABLE .

uniqueness TEXT Indicates if the index is UNIQUE or NONUNIQUE .

compression CHARACTER(1) Always set to N (not compressed). Included only for compatibility.

tablespace_name TEXT Name of the tablespace in which the table resides if not the default tablespace.

degree CHARACTER
VARYING(10)

Number of threads per instance to scan the index.

logging TEXT Included only for compatibility. Always set to LOGGING .

status TEXT Included only for compatibility. Always set to VALID .

partitioned CHARACTER(3) Indicates that the index is partitioned. Always set to NO .

temporary CHARACTER(1) Indicates that an index is on a temporary table. Included only for compatibility. Always set to
N .

secondary CHARACTER(1) Included only for compatibility. Always set to N .

join_index CHARACTER(3) Included only for compatibility. Always set to NO .

dropped CHARACTER(3) Included only for compatibility. Always set to NO .

Name Type Description

18.1.10 ALL_JOBS

The ALL_JOBS view provides information about all jobs that reside in the database.

Name Type Description

job INTEGER The identifier of the job (Job ID).

log_user TEXT Name of the user that submitted the job.

priv_user TEXT Same as log_user . Included only for compatibility.

schema_user TEXT Name of the schema used to parse the job.

last_date TIMESTAMP WITH TIME ZONE Last date that this job executed successfully.

last_sec TEXT Same as last_date .

this_date TIMESTAMP WITH TIME ZONE Date that the job began executing.

this_sec TEXT Same as this_date .

next_date TIMESTAMP WITH TIME ZONE Next date for this job to execute.

next_sec TEXT Same as next_date .

total_time INTERVAL Execution time of this job, in seconds.

broken TEXT If Y , no attempt is be made to run this job. If N , this job attempts to run.

interval TEXT Determines how often the job repeats.

failures BIGINT Number of times that the job failed to complete since its last successful
execution.

what TEXT Job definition (PL/SQL code block) that runs when the job executes.

nls_env CHARACTER VARYING(4000) Always NULL . Provided only for compatibility.

misc_env BYTEA Always NULL . Provided only for compatibility.

instance NUMERIC Always 0 . Provided only for compatibility.

18.1.11 ALL_OBJECTS

The ALL_OBJECTS view provides information about all objects that reside in the database.

Name Type Description

owner TEXT User name of the object’s owner.

schema_name TEXT Name of the schema in which the object belongs.

object_name TEXT Name of the object.

object_type TEXT Type of the object. Possible values are: INDEX , FUNCTION , PACKAGE , PACKAGE BODY , PROCEDURE , SEQUENCE , SYNONYM , TABLE ,
TRIGGER , and VIEW

created DATE Timestamp for when the object was created.

last_ddl_ti
me

DATE Timestamp for the last modification of an object resulting from a DDL statement, including grants and revokes.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 485

status CHARACTER
VARYING

Whether or not the state of the object is valid. Included only for compatibility. Always set to VALID .

temporary TEXT Y if a temporary object, N if this is a permanent object.

Name Type Description

18.1.12 ALL_PART_KEY_COLUMNS

The ALL_PART_KEY_COLUMNS view provides information about the key columns of the partitioned tables that reside in the database.

Name Type Description

owner TEXT Owner of the table.

schema_name TEXT Name of the schema in which the table resides.

name TEXT Name of the table in which the column resides.

object_type CHARACTER(5) For compatibility only. Always TABLE .

column_name TEXT Name of the column on which the key is defined.

column_position INTEGER 1 for the first column, 2 for the second column, and so on.

18.1.13 ALL_PART_TABLES

The ALL_PART_TABLES view provides information about all of the partitioned tables that reside in the database.

Name Type Description

owner TEXT Owner of the partitioned table.

schema_name TEXT Name of the schema in which the table resides.

table_name TEXT Name of the table.

partitioning_type TEXT Partitioning type used to define table partitions.

subpartitioning_type TEXT Subpartitioning type used to define table subpartitions.

partition_count BIGINT Number of partitions in the table.

def_subpartition_count INTEGER Number of subpartitions in the table.

partitioning_key_count INTEGER Number of partitioning keys specified.

subpartitioning_key_count INTEGER Number of subpartitioning keys specified.

status CHARACTER VARYING(8) Provided only for compatibility. Always VALID .

def_tablespace_name CHARACTER VARYING(30) Provided only for compatibility. Always NULL .

def_pct_free NUMERIC Provided only for compatibility. Always NULL .

def_pct_used NUMERIC Provided only for compatibility. Always NULL .

def_ini_trans NUMERIC Provided only for compatibility. Always NULL .

def_max_trans NUMERIC Provided only for compatibility. Always NULL .

def_initial_extent CHARACTER VARYING(40) Provided only for compatibility. Always NULL .

def_next_extent CHARACTER VARYING(40) Provided only for compatibility. Always NULL .

def_min_extents CHARACTER VARYING(40) Provided only for compatibility. Always NULL .

def_max_extents CHARACTER VARYING(40) Provided only for compatibility. Always NULL .

def_pct_increase CHARACTER VARYING(40) Provided only for compatibility. Always NULL .

def_freelists NUMERIC Provided only for compatibility. Always NULL .

def_freelist_groups NUMERIC Provided only for compatibility. Always NULL .

def_logging CHARACTER VARYING(7) Provided only for compatibility. Always YES .

def_compression CHARACTER VARYING(8) Provided only for compatibility. Always NONE .

def_buffer_pool CHARACTER VARYING(7) Provided only for compatibility. Always DEFAULT .

ref_ptn_constraint_name CHARACTER VARYING(30) Provided only for compatibility. Always NULL .

interval CHARACTER VARYING(1000) Provided only for compatibility. Always NULL .

18.1.14 ALL_POLICIES

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 486

The ALL_POLICIES view provides information on all policies in the database. This view is accessible only to superusers.

Name Type Description

object_owner TEXT Name of the owner of the object.

schema_name TEXT Name of the schema in which the object belongs.

object_name TEXT Name of the object on which the policy applies.

policy_group TEXT Included only for compatibility. Always set to an empty string.

policy_name TEXT Name of the policy.

pf_owner TEXT Name of the schema containing the policy function or the schema containing the package that contains the policy
function.

package TEXT Name of the package containing the policy function if the function belongs to a package.

function TEXT Name of the policy function.

sel TEXT Whether or not the policy applies to SELECT commands. Possible values are YES or NO .

ins TEXT Whether or not the policy applies to INSERT commands. Possible values are YES or NO .

upd TEXT Whether or not the policy applies to UPDATE commands. Possible values are YES or NO .

del TEXT Whether or not the policy applies to DELETE commands. Possible values are YES or NO .

idx TEXT Whether or not the policy applies to index maintenance. Possible values are YES or NO .

chk_option TEXT Whether or not the check option is in force for INSERT and UPDATE commands. Possible values are YES or NO .

enable TEXT Whether or not the policy is enabled on the object. Possible values are YES or NO .

static_policy TEXT Included only for compatibility. Always set to NO .

policy_type TEXT Included only for compatibility. Always set to UNKNOWN .

long_predicate TEXT Included for compatibility only. Always set to YES .

18.1.15 ALL_QUEUES

The ALL_QUEUES view provides information about any currently defined queues.

Name Type Description

owner TEXT User name of the queue owner.

name TEXT Name of the queue.

queue_table TEXT Name of the queue table in which the queue resides.

qid OID The system-assigned object ID of the queue.

queue_type CHARACTER VARYING The queue type. Can be EXCEPTION_QUEUE , NON_PERSISTENT_QUEUE , or NORMAL_QUEUE .

max_retries NUMERIC The maximum number of dequeue attempts.

retrydelay NUMERIC The maximum time allowed between retries.

enqueue_enabled CHARACTER VARYING YES if the queue allows enqueuing, NO if the queue does not.

dequeue_enabled CHARACTER VARYING YES if the queue allows dequeuing, NO if the queue does not.

retention CHARACTER VARYING The number of seconds that a processed message is retained in the queue.

user_comment CHARACTER VARYING User-specified comment.

network_name CHARACTER VARYING Name of the network on which the queue resides.

sharded CHARACTER VARYING YES if the queue resides on a sharded network, NO if the queue does not.

18.1.16 ALL_QUEUE_TABLES

The ALL_QUEUE_TABLES view provides information about all of the queue tables in the database.

Name Type Description

owner TEXT Role name of the owner of the queue table.

queue_table TEXT User-specified name of the queue table.

type CHARACTER VARYING Type of data stored in the queue table.

object_type TEXT User-defined payload type.

sort_order CHARACTER VARYING Order in which the queue table is sorted.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 487

recipients CHARACTER VARYING Always SINGLE .

message_grouping CHARACTER VARYING Always NONE .

compatible CHARACTER VARYING Release number of the EDB Postgres Advanced Server release with which this queue table is
compatible.

primary_instance NUMERIC Always 0 .

secondary_instance NUMERIC Always 0 .

owner_instance NUMERIC Instance number of the instance that owns the queue table.

user_comment CHARACTER VARYING User comment provided when the table was created.

secure CHARACTER VARYING YES indicates that the queue table is secure. NO indicates that it isn't.

Name Type Description

18.1.17 ALL_SEQUENCES

The ALL_SEQUENCES view provides information about all user-defined sequences on which the user has SELECT or UPDATE privileges.

Name Type Description

sequence_owner TEXT User name of the sequence owner.

schema_name TEXT Name of the schema in which the sequence resides.

sequence_name TEXT Name of the sequence.

min_value NUMERIC Lowest value that the server assigns to the sequence.

max_value NUMERIC Highest value that the server assigns to the sequence.

increment_by NUMERIC Value added to the current sequence number to create the next sequent number.

cycle_flag CHARACTER VARYING Specifies whether the sequence wraps when it reaches min_value or max_value .

order_flag CHARACTER VARYING Always returns Y .

cache_size NUMERIC Number of preallocated sequence numbers stored in memory.

last_number NUMERIC Value of the last sequence number saved to disk.

18.1.18 ALL_SOURCE

The ALL_SOURCE view provides a source code listing of the following program types: functions, procedures, triggers, package specifications, and package bodies.

Name Type Description

owner TEXT User name of the program owner.

schema_name TEXT Name of the schema in which the program belongs.

name TEXT Name of the program.

type TEXT Type of program. Possible values are: FUNCTION , PACKAGE , PACKAGE BODY , PROCEDURE , and TRIGGER

line INTEGER Source code line number relative to a given program.

text TEXT Line of source code text.

18.1.19 ALL_SUBPART_KEY_COLUMNS

The ALL_SUBPART_KEY_COLUMNS view provides information about the key columns of those partitioned tables that are subpartitioned that reside in the database.

Name Type Description

owner TEXT Owner of the table.

schema_name TEXT Name of the schema in which the table resides.

name TEXT Name of the table in which the column resides.

object_type CHARACTER(5) Only for compatibility. Always TABLE .

column_name TEXT Name of the column on which the key is defined.

column_position INTEGER 1 for the first column, 2 for the second column, and so on.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 488

18.1.20 ALL_SYNONYMS

The ALL_SYNONYMS view provides information on all synonyms that the current user can reference.

Name Type Description

owner TEXT User name of the synonym owner.

schema_name TEXT Name of the schema in which the synonym resides.

synonym_name TEXT Name of the synonym.

table_owner TEXT User name of the object owner.

table_schema_name TEXT Name of the schema in which the table resides.

table_name TEXT Name of the object that the synonym refers to.

db_link TEXT Name of any associated database link.

18.1.21 ALL_TAB_COLUMNS

The ALL_TAB_COLUMNS view provides information on all columns in all user-defined tables and views.

Name Type Description

owner CHARACTER VARYING User name of the owner of the table or view in which the column resides.

schema_name CHARACTER VARYING Name of the schema in which the table or view resides.

table_name CHARACTER VARYING Name of the table or view.

column_name CHARACTER VARYING Name of the column.

data_type CHARACTER VARYING Data type of the column.

data_length NUMERIC Length of text columns.

data_precision NUMERIC Precision (number of digits) for NUMBER columns.

data_scale NUMERIC Scale of NUMBER columns.

nullable CHARACTER(1) Whether or not the column is nullable. Possible values are: Y – column is nullable; N – column does not allow null.

column_id NUMERIC Relative position of the column in the table or view.

data_default CHARACTER VARYING Default value assigned to the column.

18.1.22 ALL_TAB_PARTITIONS

The ALL_TAB_PARTITIONS view provides information about all of the partitions that reside in the database.

Name Type Description

table_owner TEXT Owner of the table in which the partition resides.

schema_name TEXT Name of the schema in which the table resides.

table_name TEXT Name of the table.

composite TEXT YES if the table is subpartitioned, NO if the table isn't subpartitioned.

partition_name TEXT Name of the partition.

subpartition_coun
t

BIGINT Number of subpartitions in the partition.

high_value TEXT High-partitioning value specified in the CREATE TABLE statement.

high_value_length INTEGER Length of high-partitioning value.

partition_positio
n

INTEGER Ordinal position of this partition.

tablespace_name TEXT Name of the tablespace in which the partition resides. If the tablespace name isn't specified, the default tablespace is
PG_DEFAULT .

pct_free NUMERIC Included only for compatibility. Always 0 .

pct_used NUMERIC Included only for compatibility. Always 0 .

ini_trans NUMERIC Included only for compatibility. Always 0 .

max_trans NUMERIC Included only for compatibility. Always 0 .

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 489

initial_extent NUMERIC Included only for compatibility. Always NULL .

next_extent NUMERIC Included only for compatibility. Always NULL .

min_extent NUMERIC Included only for compatibility. Always 0 .

max_extent NUMERIC Included only for compatibility. Always 0 .

pct_increase NUMERIC Included only for compatibility. Always 0 .

freelists NUMERIC Included only for compatibility. Always NULL .

freelist_groups NUMERIC Included only for compatibility. Always NULL .

logging CHARACTER VARYING(7) Included only for compatibility. Always YES .

compression CHARACTER VARYING(8) Included only for compatibility. Always NONE .

num_rows NUMERIC Same as pg_class.reltuples .

blocks INTEGER Same as pg_class.relpages .

empty_blocks NUMERIC Included only for compatibility. Always NULL .

avg_space NUMERIC Included only for compatibility. Always NULL .

chain_cnt NUMERIC Included only for compatibility. Always NULL .

avg_row_len NUMERIC Included only for compatibility. Always NULL .

sample_size NUMERIC Included only for compatibility. Always NULL .

last_analyzed TIMESTAMP WITHOUT TIME
ZONE

Included only for compatibility. Always NULL .

buffer_pool CHARACTER VARYING(7) Included only for compatibility. Always NULL .

global_stats CHARACTER VARYING(3) Included only for compatibility. Always YES .

user_stats CHARACTER VARYING(3) Included only for compatibility. Always NO .

backing_table REGCLASS Name of the partition backing table.

Name Type Description

18.1.23 ALL_TAB_SUBPARTITIONS

The ALL_TAB_SUBPARTITIONS view provides information about all of the subpartitions that reside in the database.

Name Type Description

table_owner TEXT Owner of the table in which the subpartition resides.

schema_name TEXT Name of the schema in which the table resides.

table_name TEXT Name of the table.

partition_name TEXT Name of the partition.

subpartition_name TEXT Name of the subpartition.

high_value TEXT High-subpartitioning value specified in the CREATE TABLE statement.

high_value_length INTEGER Length of high-partitioning value.

subpartition_positi
on

INTEGER Ordinal position of this subpartition.

tablespace_name TEXT Name of the tablespace in which the subpartition resides. If the tablespace name is not specified, then default tablespace
PG_DEFAULT .

pct_free NUMERIC Included only for compatibility. Always 0 .

pct_used NUMERIC Included only for compatibility. Always 0 .

ini_trans NUMERIC Included only for compatibility. Always 0 .

max_trans NUMERIC Included only for compatibility. Always 0 .

initial_extent NUMERIC Included only for compatibility. Always NULL .

next_extent NUMERIC Included only for compatibility. Always NULL .

min_extent NUMERIC Included only for compatibility. Always 0 .

max_extent NUMERIC Included only for compatibility. Always 0 .

pct_increase NUMERIC Included only for compatibility. Always 0 .

freelists NUMERIC Included only for compatibility. Always NULL .

freelist_groups NUMERIC Included only for compatibility. Always NULL .

logging CHARACTER VARYING(7) Included only for compatibility. Always YES .

compression CHARACTER VARYING(8) Included only for compatibility. Always NONE .

num_rows NUMERIC Same as pg_class.reltuples .

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 490

blocks INTEGER Same as pg_class.relpages .

empty_blocks NUMERIC Included only for compatibility. Always NULL .

avg_space NUMERIC Included only for compatibility. Always NULL .

chain_cnt NUMERIC Included only for compatibility. Always NULL .

avg_row_len NUMERIC Included only for compatibility. Always NULL .

sample_size NUMERIC Included only for compatibility. Always NULL .

last_analyzed TIMESTAMP WITHOUT TIME
ZONE

Included only for compatibility. Always NULL .

buffer_pool CHARACTER VARYING(7) Included only for compatibility. Always NULL .

global_stats CHARACTER VARYING(3) Included only for compatibility. Always YES .

user_stats CHARACTER VARYING(3) Included only for compatibility. Always NO .

backing_table REGCLASS Name of the subpartition backing table.

Name Type Description

18.1.24 ALL_TAB_PRIVS

The ALL_TAB_PRIVS view provides the following types of privileges:

Object privileges for which a current user is either an object owner, grantor, or grantee.
Object privileges for which the PUBLIC is the grantee.

Name Type Description

granto
r

CHARACTER
VARYING(128)

Name of the user who granted the privilege.

grante
e

CHARACTER
VARYING(128)

Name of the user with the privilege.

table_s
chema

CHARACTER
VARYING(128)

Name of the user who owns the object.

schema_
name

CHARACTER
VARYING(128)

Name of the schema in which the object resides.

table_n
ame

CHARACTER
VARYING(128)

Object name.

privile
ge

CHARACTER
VARYING(40)

Privilege name.

grantab
le

CHARACTER
VARYING(3)

Indicates whether the privilege was granted with the grant option YES or NO . YES indicates that the GRANTEE (recipient of the privilege) can in turn grant
the privilege to others. The value can be YES if the grantee has administrator privileges.

hierarc
hy

CHARACTER
VARYING(3)

The value can be YES or NO . The value can be YES if the privilege is SELECT .

common CHARACTER
VARYING(3)

Included only for compatibility. Always NO .

type CHARACTER
VARYING(24)

Type of object.

inherit
ed

CHARACTER
VARYING(3)

Included only for compatibility. Always NO .

18.1.25 ALL_TABLES

The ALL_TABLES view provides information on all user-defined tables.

Name Type Description

owner TEXT User name of the table’s owner.

schema_name TEXT Name of the schema in which the table belongs.

table_name TEXT Name of the table.

tablespace_name TEXT Name of the tablespace in which the table resides. If the tablespace name isn't specified, the default tablespace PG_DEFAULT .

degree
CHARACTER
VARYING(10) Number of threads per instance to scan a table, or DEFAULT .

status CHARACTER VARYING(5) Whether or not the state of the table is valid. Included only for compatibility. Always set to VALID .

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 491

temporary CHARACTER(1) Y if this is a temporary table, N if this isn't a temporary table.

Name Type Description

18.1.26 ALL_TRIGGERS

The ALL_TRIGGERS view provides information about the triggers on tables that the current user can accessed.

Name Type Description

owner TEXT User name of the trigger owner.

schema_name TEXT Name of the schema in which the trigger resides.

trigger_name TEXT Name of the trigger.

trigger_type TEXT The type of the trigger. Possible values are: BEFORE ROW , BEFORE STATEMENT , AFTER ROW , AFTER
STATEMENT .

triggering_event TEXT The event that fires the trigger.

table_owner TEXT The user name of the owner of the table on which the trigger is defined.

base_object_type TEXT Included only for compatibility. Value is always TABLE .

table_name TEXT Name of the table on which the trigger is defined.

referencing_name TEXT Included only for compatibility. Value is always REFERENCING NEW AS NEW OLD AS OLD .

status TEXT Status indicates if the trigger is enabled (VALID) or disabled (NOTVALID) .

description TEXT Included only for compatibility.

trigger_body TEXT The body of the trigger.

action_statement TEXT The SQL command that executes when the trigger fires.

18.1.27 ALL_TYPES

The ALL_TYPES view provides information about the object types available to the current user.

Name Type Description

owner TEXT Owner of the object type.

schema_name TEXT Name of the schema in which the type is defined.

type_name TEXT Name of the type.

type_oid OID Object identifier (OID) of the type.

typecode TEXT Typecode of the type. Possible values are: OBJECT , COLLECTION , OTHER

attributes INTEGER Number of attributes in the type.

18.1.28 ALL_USERS

The ALL_USERS view provides information on all user names.

Name Type Description

username TEXT Name of the user.

user_id OID Numeric user id assigned to the user.

created DATE Timestamp for when an object was created.

last_ddl_time DATE Timestamp for the last modification of an object resulting from a DDL statement, including grants and revokes.

18.1.29 ALL_VIEW_COLUMNS

The ALL_VIEW_COLUMNS view provides information on all columns in all user-defined views.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 492

Name Type Description

owner CHARACTER VARYING User name of the view’s owner.

schema_name CHARACTER VARYING Name of the schema in which the view belongs.

view_name CHARACTER VARYING Name of the view.

column_name CHARACTER VARYING Name of the column.

data_type CHARACTER VARYING Data type of the column.

data_length NUMERIC Length of text columns.

data_precision NUMERIC Precision (number of digits) for NUMBER columns.

data_scale NUMERIC Scale of NUMBER columns.

nullable CHARACTER(1) Whether or not the column is nullable. Possible values are: Y – column is nullable; N – column does not allow null.

column_id NUMERIC Relative position of the column in the view.

data_default CHARACTER VARYING Default value assigned to the column.

18.1.30 ALL_VIEWS

The ALL_VIEWS view provides information about all user-defined views.

Name Type Description

owner TEXT User name of the view’s owner.

schema_name TEXT Name of the schema in which the view belongs.

view_name TEXT Name of the view.

text TEXT The SELECT statement that defines the view.

18.1.31 DBA_ALL_TABLES

The DBA_ALL_TABLES view provides information about all tables in the database.

Name Type Description

owner TEXT User name of the table owner.

schema_name TEXT Name of the schema in which the table belongs.

table_name TEXT Name of the table.

tablespace_name TEXT Name of the tablespace in which the table resides. If the tablespace name isn't specified, the default tablespace is PG_DEFAULT .

degree CHARACTER
VARYING(10)

Number of threads per instance to scan a table, or DEFAULT .

status CHARACTER VARYING(5) Included only for compatibility. Always set to VALID .

temporary TEXT Y if the table is temporary, N if the table is permanent.

18.1.32 DBA_CONS_COLUMNS

The DBA_CONS_COLUMNS view provides information about all columns that are included in constraints that are specified on all tables in the database.

Name Type Description

owner TEXT User name of the constraint’s owner.

schema_name TEXT Name of the schema in which the constraint belongs.

constraint_name TEXT Name of the constraint.

table_name TEXT Name of the table to which the constraint belongs.

column_name TEXT Name of the column referenced in the constraint.

position SMALLINT Position of the column in the object definition.

constraint_def TEXT Definition of the constraint.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 493

18.1.33 DBA_CONSTRAINTS

The DBA_CONSTRAINTS view provides information about all constraints on tables in the database.

Name Type Description

owner TEXT User name of the constraint’s owner.

schema_name TEXT Name of the schema in which the constraint belongs.

constraint_
name

TEXT Name of the constraint.

constraint_
type

TEXT The constraint type. Possible values are: C – check constraint; F – foreign key constraint; P – primary key constraint; U – unique key constraint; R – referential
integrity constraint; V – constraint on a view; O – with read-only, on a view.

table_name TEXT Name of the table to which the constraint belongs.

search_cond
ition

TEXT Search condition that applies to a check constraint.

r_owner TEXT Owner of a table referenced by a referential constraint.

r_constrain
t_name

TEXT Name of the constraint definition for a referenced table.

delete_rule TEXT The delete rule for a referential constraint. Possible values are: C – cascade; R - restrict; N – no action.

deferrable BOOL
EAN

Specified if the constraint is deferrable (T or F).

deferred BOOL
EAN

Specifies if the constraint has been deferred (T or F).

index_owner TEXT User name of the index owner.

index_name TEXT Name of the index.

constraint_
def

TEXT The definition of the constraint.

18.1.34 DBA_COL_PRIVS

The DBA_COL_PRIVS view provides a listing of the object privileges granted on columns for all the database users.

Name Type Description

grante
e

CHARACTER
VARYING(128)

Name of the user with the privilege.

owner CHARACTER
VARYING(128)

Object owner.

schema
_name

CHARACTER
VARYING(128)

Name of the schema in which the object resides.

table_
name

CHARACTER
VARYING(128)

Object name.

column
_name

CHARACTER
VARYING(128)

Column name.

granto
r

CHARACTER
VARYING(128)

Name of the user who granted the privilege.

privil
ege

CHARACTER
VARYING(40)

Privilege on the column.

granta
ble

CHARACTER
VARYING(3)

Indicates whether the privilege was granted with the grant option YES or NO . YES indicates that the GRANTEE (recipient of the privilege) can grant the
privilege to others. The value can be YES if the grantee has administrator privileges.

common CHARACTER
VARYING(3)

Included only for compatibility. Always NO .

inheri
ted

CHARACTER
VARYING(3)

Included only for compatibility. Always NO .

18.1.35 DBA_DB_LINKS

The DBA_DB_LINKS view provides information about all database links in the database.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 494

Name Type Description

owner TEXT User name of the database link’s owner.

db_link TEXT Name of the database link.

type CHARACTER VARYING Type of remote server. Value is REDWOOD or
EDB .

username TEXT User name of the user logging in.

host TEXT Name or IP address of the remote server.

18.1.36 DBA_DIRECTORIES

The DBA_DIRECTORIES view provides information about all directories created with the CREATE DIRECTORY command.

Name Type Description

owner CHARACTER VARYING(30) User name of the directory’s owner.

directory_name CHARACTER VARYING(30) Alias name assigned to the directory.

directory_path CHARACTER VARYING(4000) Path to the directory.

18.1.37 DBA_DEPENDENCIES

The DBA_DEPENDENCIES view provides information about the dependencies between all objects in the database except for synonyms.

Name Type Description

owner CHARACTER VARYING(128) Owner of the dependent object.

schema_name CHARACTER VARYING(128) Name of the schema in which the dependent object resides.

name CHARACTER VARYING(128) Name of the dependent object.

type CHARACTER VARYING(18) Type of the dependent object.

referenced_owner CHARACTER VARYING(128) Owner of the referenced object.

referenced_schema_name CHARACTER VARYING(128) Name of the schema in which the referenced object resides.

referenced_name CHARACTER VARYING(128) Name of the referenced object.

referenced_type CHARACTER VARYING(18) Type of the referenced object.

referenced_link_name CHARACTER VARYING(128) Included only for compatibility. Always NULL .

dependency_type CHARACTER VARYING(4) Included only for compatibility. Always set to HARD .

18.1.38 DBA_IND_COLUMNS

The DBA_IND_COLUMNS view provides information about all columns included in indexes on all tables in the database.

Name Type Description

index_owner TEXT User name of the index owner.

schema_name TEXT Name of the schema in which the index belongs.

index_name TEXT Name of the index.

table_owner TEXT User name of the table owner.

table_name TEXT Name of the table in which the index belongs.

column_name TEXT Name of column or attribute of object column.

column_position SMALLINT Position of the column in the index.

column_length SMALLINT Length of the column in bytes.

char_length NUMERIC Length of the column in characters.

descend CHARACTER(1) Included only for compatibility. Always set to Y (descending).

18.1.39 DBA_INDEXES

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 495

The DBA_INDEXES view provides information about all indexes in the database.

Name Type Description

owner TEXT User name of the index owner.

schema_name TEXT Name of the schema in which the index resides.

index_name TEXT Name of the index.

index_type TEXT The index type is always BTREE . Included only for compatibility.

table_owner TEXT User name of the owner of the indexed table.

table_name TEXT Name of the indexed table.

table_type TEXT Included only for compatibility. Always set to TABLE .

uniqueness TEXT Indicates if the index is UNIQUE or NONUNIQUE .

compression CHARACTER(1) Included only for compatibility. Always set to N (not compressed).

tablespace_name TEXT Name of the tablespace in which the table resides if other than the default tablespace.

degree CHARACTER
VARYING(10)

Number of threads per instance to scan the index.

logging TEXT Included only for compatibility. Always set to LOGGING .

status TEXT Whether or not the state of the object is valid (VALID or INVALID).

partitioned CHARACTER(3) Indicates that the index is partitioned. Always set to NO .

temporary CHARACTER(1) Indicates that an index is on a temporary table. Always set to N .

secondary CHARACTER(1) Included only for compatibility. Always set to N .

join_index CHARACTER(3) Included only for compatibility. Always set to NO .

dropped CHARACTER(3) Included only for compatibility. Always set to NO .

18.1.40 DBA_JOBS

The DBA_JOBS view provides information about all jobs in the database.

Name Type Description

job INTEGER The identifier of the job (Job ID).

log_user TEXT Name of the user that submitted the job.

priv_user TEXT Same as log_user . Included only for compatibility.

schema_user TEXT Name of the schema used to parse the job.

last_date TIMESTAMP WITH TIME ZONE Last date that this job executed successfully.

last_sec TEXT Same as last_date .

this_date TIMESTAMP WITH TIME ZONE Date that the job began executing.

this_sec TEXT Same as this_date .

next_date TIMESTAMP WITH TIME ZONE Next date that for the job to execute.

next_sec TEXT Same as next_date .

total_time INTERVAL The execution time of this job in seconds.

broken TEXT If Y , no attempt is made to run this job. If N , this job attempts to execute.

interval TEXT Determines how often the job repeats.

failures BIGINT Number of times that the job failed to complete since its last successful
execution.

what TEXT The job definition (PL/SQL code block) that runs when the job executes.

nls_env CHARACTER VARYING(4000) Always NULL . Provided only for compatibility.

misc_env BYTEA Always NULL . Provided only for compatibility.

instance NUMERIC Always 0 . Provided only for compatibility.

18.1.41 DBA_OBJECTS

The DBA_OBJECTS view provides information about all objects in the database.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 496

Name Type Description

owner TEXT User name of the object’s owner.

schema_name TEXT Name of the schema in which the object belongs.

object_name TEXT Name of the object.

object_type TEXT Type of the object. Possible values are: INDEX , FUNCTION , PACKAGE , PACKAGE BODY , PROCEDURE , SEQUENCE , SYNONYM , TABLE ,
TRIGGER , and VIEW .

created DATE Timestamp for when the object was created.

last_ddl_ti
me

DATE Timestamp for the last modification of an object resulting from a DDL statement including grants and revokes.

status CHARACTER
VARYING

Included only for compatibility. Always set to VALID .

temporary TEXT Y if the table is temporary, N if the table is permanent.

18.1.42 DBA_PART_KEY_COLUMNS

The DBA_PART_KEY_COLUMNS view provides information about the key columns of the partitioned tables that reside in the database.

Name Type Description

owner TEXT Owner of the table.

schema_name TEXT Name of the schema in which the table resides.

name TEXT Name of the table in which the column resides.

object_type CHARACTER(5) Only for compatibility. Always TABLE .

column_name TEXT Name of the column on which the key is defined.

column_position INTEGER 1 for the first column, 2 for the second column, and so on.

18.1.43 DBA_PART_TABLES

The DBA_PART_TABLES view provides information about all of the partitioned tables in the database.

Name Type Description

owner TEXT Owner of the partitioned table.

schema_name TEXT Schema in which the table resides.

table_name TEXT Name of the table.

partitioning_type TEXT Type used to define table partitions.

subpartitioning_type TEXT Subpartitioning type used to define table subpartitions.

partition_count BIGINT Number of partitions in the table.

def_subpartition_count INTEGER Number of subpartitions in the table.

partitioning_key_count INTEGER Number of partitioning keys specified.

subpartitioning_key_count INTEGER Number of subpartitioning keys specified.

status CHARACTER VARYING(8) Provided only for compatibility. Always VALID .

def_tablespace_name CHARACTER VARYING(30) Provided only for compatibility. Always NULL .

def_pct_free NUMERIC Provided only for compatibility. Always NULL .

def_pct_used NUMERIC Provided only for compatibility. Always NULL .

def_ini_trans NUMERIC Provided only for compatibility. Always NULL .

def_max_trans NUMERIC Provided only for compatibility. Always NULL .

def_initial_extent CHARACTER VARYING(40) Provided only for compatibility. Always NULL .

def_next_extent CHARACTER VARYING(40) Provided only for compatibility. Always NULL .

def_min_extents CHARACTER VARYING(40) Provided only for compatibility. Always NULL .

def_max_extents CHARACTER VARYING(40) Provided only for compatibility. Always NULL .

def_pct_increase CHARACTER VARYING(40) Provided only for compatibility. Always NULL .

def_freelists NUMERIC Provided only for compatibility. Always NULL .

def_freelist_groups NUMERIC Provided only for compatibility. Always NULL .

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 497

def_logging CHARACTER VARYING(7) Provided only for compatibility. Always YES .

def_compression CHARACTER VARYING(8) Provided only for compatibility. Always NONE .

def_buffer_pool CHARACTER VARYING(7) Provided only for compatibility. Always DEFAULT .

ref_ptn_constraint_name CHARACTER VARYING(30) Provided only for compatibility. Always NULL .

interval CHARACTER VARYING(1000) Provided only for compatibility. Always NULL .

Name Type Description

18.1.44 DBA_POLICIES

The DBA_POLICIES view provides information on all policies in the database. This view is accessible only to superusers.

Name Type Description

object_owner TEXT Name of the owner of the object.

schema_name TEXT Name of the schema in which the object resides.

object_name TEXT Name of the object to which the policy applies.

policy_group TEXT Name of the policy group. Included only for compatibility. Always set to an empty string.

policy_name TEXT Name of the policy.

pf_owner TEXT Name of the schema containing the policy function or the schema containing the package that contains the policy
function.

package TEXT Name of the package containing the policy function if the function belongs to a package.

function TEXT Name of the policy function.

sel TEXT Whether or not the policy applies to SELECT commands. Possible values are YES or NO .

ins TEXT Whether or not the policy applies to INSERT commands. Possible values are YES or NO .

upd TEXT Whether or not the policy applies to UPDATE commands. Possible values are YES or NO .

del TEXT Whether or not the policy applies to DELETE commands. Possible values are YES or NO .

idx TEXT Whether or not the policy applies to index maintenance. Possible values are YES or NO .

chk_option TEXT Whether or not the check option is in force for INSERT and UPDATE commands. Possible values are YES or NO .

enable TEXT Whether or not the policy is enabled on the object. Possible values are YES or NO .

static_policy TEXT Included only for compatibility. Always set to NO .

policy_type TEXT Included only for compatibility. Always set to UNKNOWN .

long_predicate TEXT Included only for compatibility. Always set to YES .

18.1.45 DBA_PROFILES

The DBA_PROFILES view provides information about existing profiles. The table includes a row for each profile/resource combination.

Name Type Description

profile CHARACTER VARYING(128) Name of the profile.

resource_name CHARACTER VARYING(32) Name of the resource associated with the profile.

resource_type CHARACTER VARYING(8) Type of resource governed by the profile. PASSWORD for all supported
resources.

limit CHARACTER VARYING(128) The limit values of the resource.

common CHARACTER VARYING(3) YES for a user-created profile, NO for a system-defined profile.

18.1.46 DBA_QUEUES

The DBA_QUEUES view provides information about any currently defined queues.

Name Type Description

owner TEXT User name of the queue owner.

name TEXT Name of the queue.

queue_table TEXT Name of the queue table in which the queue resides.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 498

qid OID System-assigned object ID of the queue.

queue_type CHARACTER VARYING Queue type. Possible values are EXCEPTION_QUEUE , NON_PERSISTENT_QUEUE , or NORMAL_QUEUE .

max_retries NUMERIC Maximum number of dequeue attempts.

retrydelay NUMERIC Maximum time allowed between retries.

enqueue_enabled CHARACTER VARYING YES if the queue allows enqueuing, NO if the queue does not.

dequeue_enabled CHARACTER VARYING YES if the queue allows dequeuing, NO if the queue does not.

retention CHARACTER VARYING Number of seconds that a processed message is retained in the queue.

user_comment CHARACTER VARYING User-specified comment.

network_name CHARACTER VARYING Name of the network on which the queue resides.

sharded CHARACTER VARYING YES if the queue resides on a sharded network, NO if the queue does not.

Name Type Description

18.1.47 DBA_QUEUE_TABLES

The DBA_QUEUE_TABLES view provides information about all of the queue tables in the database.

Name Type Description

owner TEXT Role name of the owner of the queue table.

queue_table TEXT User-specified name of the queue table.

type CHARACTER VARYING Type of data stored in the queue table.

object_type TEXT User-defined payload type.

sort_order CHARACTER VARYING Order in which the queue table is sorted.

recipients CHARACTER VARYING Always SINGLE .

message_grouping CHARACTER VARYING Always NONE .

compatible CHARACTER VARYING Release number of the EDB Postgres Advanced Server release with which this queue table is
compatible.

primary_instance NUMERIC Always 0 .

secondary_instance NUMERIC Always 0 .

owner_instance NUMERIC Instance number of the instance that owns the queue table.

user_comment CHARACTER VARYING User comment provided when the table was created.

secure CHARACTER VARYING YES indicates that the queue table is secure. NO indicates that it isn't.

18.1.48 DBA_ROLE_PRIVS

The DBA_ROLE_PRIVS view provides information on all roles that were granted to users. A row is created for each role to which a user was granted.

Name Type Description

grantee TEXT User name to whom the role was granted.

granted_role TEXT Name of the role granted to the grantee.

admin_option TEXT YES if the role was granted with the admin option. NO otherwise.

default_role TEXT YES if the role is enabled when the grantee creates a session.

18.1.49 DBA_ROLES

The DBA_ROLES view provides information on all roles with the NOLOGIN attribute (groups).

Name Type Description

role TEXT Name of a role having the NOLOGIN attribute, that is, a group.

password_required TEXT Included only for compatibility. Always N .

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 499

18.1.50 DBA_SEQUENCES

The DBA_SEQUENCES view provides information about all user-defined sequences.

Name Type Description

sequence_owner TEXT User name of the sequence's owner.

schema_name TEXT Name of the schema in which the sequence resides.

sequence_name TEXT Name of the sequence.

min_value NUMERIC Lowest value that the server assigns to the sequence.

max_value NUMERIC Highest value that the server assigns to the sequence.

increment_by NUMERIC Value added to the current sequence number to create the next sequent number.

cycle_flag CHARACTER VARYING Specifies whether the sequence wraps when it reaches min_value or max_value .

order_flag CHARACTER VARYING Always returns Y .

cache_size NUMERIC The number of preallocated sequence numbers stored in memory.

last_number NUMERIC The value of the last sequence number saved to disk.

18.1.51 DBA_SOURCE

The DBA_SOURCE view provides the source code listing of all objects in the database.

Name Type Description

owner TEXT User name of the program owner.

schema_name TEXT Name of the schema in which the program belongs.

name TEXT Name of the program.

type TEXT Type of program. Possible values are: FUNCTION , PACKAGE , PACKAGE BODY , PROCEDURE , and TRIGGER .

line INTEGER Source code line number relative to a given program.

text TEXT Line of source code text.

18.1.52 DBA_SUBPART_KEY_COLUMNS

The DBA_SUBPART_KEY_COLUMNS view provides information about the key columns of those partitioned tables that are subpartitioned that reside in the database.

Name Type Description

owner TEXT Owner of the table.

schema_name TEXT Name of the schema in which the table resides.

name TEXT Name of the table in which the column resides.

object_type CHARACTER(5) Only for compatibility. Always TABLE .

column_name TEXT Name of the column on which the key is defined.

column_position INTEGER 1 for the first column, 2 for the second column, and so on.

18.1.53 DBA_SYNONYMS

The DBA_SYNONYM view provides information about all synonyms in the database.

Name Type Description

owner TEXT User name of the synonym owner.

schema_name TEXT Name of the schema in which the synonym belongs.

synonym_name TEXT Name of the synonym.

table_owner TEXT User name of the owner of the table on which the synonym is defined.

table_schema_name TEXT Name of the schema in which the table resides.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 500

table_name TEXT Name of the table on which the synonym is defined.

db_link TEXT Name of any associated database link.

Name Type Description

18.1.54 DBA_TAB_COLUMNS

The DBA_TAB_COLUMNS view provides information about all columns in the database.

Name Type Description

owner CHARACTER VARYING User name of the owner of the table or view in which the column resides.

schema_name CHARACTER VARYING Name of the schema in which the table or view resides.

table_name CHARACTER VARYING Name of the table or view in which the column resides.

column_name CHARACTER VARYING Name of the column.

data_type CHARACTER VARYING Data type of the column.

data_length NUMERIC Length of text columns.

data_precision NUMERIC Precision (number of digits) for NUMBER columns.

data_scale NUMERIC Scale of NUMBER columns.

nullable CHARACTER(1) Whether or not the column is nullable. Possible values are: Y – column is nullable; N – column does not allow null.

column_id NUMERIC Relative position of the column in the table or view.

data_default CHARACTER VARYING Default value assigned to the column.

18.1.55 DBA_TAB_PARTITIONS

The DBA_TAB_PARTITIONS view provides information about all of the partitions that reside in the database.

Name Type Description

table_owner TEXT Owner of the table in which the partition resides.

schema_name TEXT Name of the schema in which the table resides.

table_name TEXT Name of the table.

composite TEXT YES if the table is subpartitioned, NO if the table isn't subpartitioned.

partition_name TEXT Name of the partition.

subpartition_coun
t

BIGINT Number of subpartitions in the partition.

high_value TEXT High-partitioning value specified in the CREATE TABLE statement.

high_value_length INTEGER Length of high-partitioning value.

partition_positio
n

INTEGER Ordinal position of this partition.

tablespace_name TEXT Name of the tablespace in which the partition resides. If the tablespace name isn't specified, the default tablespace is
PG_DEFAULT .

pct_free NUMERIC Included only for compatibility. Always 0 .

pct_used NUMERIC Included only for compatibility. Always 0 .

ini_trans NUMERIC Included only for compatibility. Always 0 .

max_trans NUMERIC Included only for compatibility. Always 0 .

initial_extent NUMERIC Included only for compatibility. Always NULL .

next_extent NUMERIC Included only for compatibility. Always NULL .

min_extent NUMERIC Included only for compatibility. Always 0 .

max_extent NUMERIC Included only for compatibility. Always 0 .

pct_increase NUMERIC Included only for compatibility. Always 0 .

freelists NUMERIC Included only for compatibility. Always NULL

freelist_groups NUMERIC Included only for compatibility. Always NULL .

logging CHARACTER VARYING(7) Included only for compatibility. Always YES .

compression CHARACTER VARYING(8) Included only for compatibility. Always NONE .

num_rows NUMERIC Same as pg_class.reltuples .

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 501

blocks INTEGER Same as pg_class.relpages .

empty_blocks NUMERIC Included only for compatibility. Always NULL .

avg_space NUMERIC Included only for compatibility. Always NULL .

chain_cnt NUMERIC Included only for compatibility. Always NULL .

avg_row_len NUMERIC Included only for compatibility. Always NULL .

sample_size NUMERIC Included only for compatibility. Always NULL .

last_analyzed TIMESTAMP WITHOUT TIME
ZONE

Included only for compatibility. Always NULL .

buffer_pool CHARACTER VARYING(7) Included only for compatibility. Always NULL .

global_stats CHARACTER VARYING(3) Included only for compatibility. Always YES .

user_stats CHARACTER VARYING(3) Included only for compatibility. Always NO .

backing_table REGCLASS Name of the partition backing table.

Name Type Description

18.1.56 DBA_TAB_SUBPARTITIONS

The DBA_TAB_SUBPARTITIONS view provides information about all of the subpartitions that reside in the database.

Name Type Description

table_owner TEXT Owner of the table in which the subpartition resides.

schema_name TEXT Name of the schema in which the table resides.

table_name TEXT Name of the table.

partition_name TEXT Name of the partition.

subpartition_name TEXT Name of the subpartition.

high_value TEXT High-subpartitioning value specified in the CREATE TABLE statement.

high_value_length INTEGER Length of high-partitioning value.

subpartition_positi
on

INTEGER Ordinal position of this subpartition.

tablespace_name TEXT Name of the tablespace in which the subpartition resides. If the tablespace name isn't specified, the default tablespace ia
PG_DEFAULT .

pct_free NUMERIC Included only for compatibility. Always 0 .

pct_used NUMERIC Included only for compatibility. Always 0 .

ini_trans NUMERIC Included only for compatibility. Always 0 .

max_trans NUMERIC Included only for compatibility. Always 0 .

initial_extent NUMERIC Included only for compatibility. Always NULL .

next_extent NUMERIC Included only for compatibility. Always NULL .

min_extent NUMERIC Included only for compatibility. Always 0 .

max_extent NUMERIC Included only for compatibility. Always 0 .

pct_increase NUMERIC Included only for compatibility. Always 0 .

freelists NUMERIC Included only for compatibility. Always NULL .

freelist_groups NUMERIC Included only for compatibility. Always NULL .

logging CHARACTER VARYING(7) Included only for compatibility. Always YES .

compression CHARACTER VARYING(8) Included only for compatibility. Always NONE .

num_rows NUMERIC Same as pg_class.reltuples .

blocks INTEGER Same as pg_class.relpages .

empty_blocks NUMERIC Included only for compatibility. Always NULL .

avg_space NUMERIC Included only for compatibility. Always NULL .

chain_cnt NUMERIC Included only for compatibility. Always NULL .

avg_row_len NUMERIC Included only for compatibility. Always NULL .

sample_size NUMERIC Included only for compatibility. Always NULL .

last_analyzed TIMESTAMP WITHOUT TIME
ZONE

Included only for compatibility. Always NULL .

buffer_pool CHARACTER VARYING(7) Included only for compatibility. Always NULL .

global_stats CHARACTER VARYING(3) Included only for compatibility. Always YES .

user_stats CHARACTER VARYING(3) Included only for compatibility. Always NO .

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 502

backing_table REGCLASS Name of the subpartition backing table.

Name Type Description

18.1.57 DBA_TAB_PRIVS

The DBA_TAB_PRIVS view provides a listing of the access privileges granted to database users and to PUBLIC .

Name Type Description

grante
e

CHARACTER
VARYING(128)

Name of the user with the privilege.

owner CHARACTER
VARYING(128)

Object owner.

schema
_name

CHARACTER
VARYING(128)

Name of the schema in which the object resides.

table_
name

CHARACTER
VARYING(128)

Object name.

granto
r

CHARACTER
VARYING(128)

Name of the user who granted the privilege.

privil
ege

CHARACTER
VARYING(40)

Privilege name.

granta
ble

CHARACTER
VARYING(3)

Indicates whether the privilege was granted with the grant option YES or NO . YES indicates that the GRANTEE (recipient of the privilege) can grant the
privilege to others. The value can be YES if the grantee has administrator privileges.

hierar
chy

CHARACTER
VARYING(3)

The value can be YES or NO . The value can be YES if the privilege is SELECT .

common CHARACTER
VARYING(3)

Included only for compatibility. Always NO .

type CHARACTER
VARYING(24)

Type of object.

inheri
ted

CHARACTER
VARYING(3)

Included only for compatibility. Aalways NO .

18.1.58 DBA_TABLES

The DBA_TABLES view provides information about all tables in the database.

Name Type Description

owner TEXT User name of the table owner.

schema_name TEXT Name of the schema in which the table belongs.

table_name TEXT Name of the table.

tablespace_name TEXT Name of the tablespace in which the table resides. If the tablespace name isn't specified, the default tablespace is PG_DEFAULT .

degree CHARACTER
VARYING(10)

Number of threads per instance to scan a table, or DEFAULT .

status CHARACTER VARYING(5) Included only for compatibility. Always set to VALID .

temporary CHARACTER(1) Y if the table is temporary. N if the table is permanent.

18.1.59 DBA_TRIGGERS

The DBA_TRIGGERS view provides information about all triggers in the database.

Name Type Description

owner TEXT User name of the trigger owner.

schema_name TEXT Name of the schema in which the trigger resides.

trigger_name TEXT Name of the trigger.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 503

trigger_type TEXT Type of the trigger. Possible values are: BEFORE ROW , BEFORE STATEMENT , AFTER ROW , AFTER
STATEMENT .

triggering_event TEXT Event that fires the trigger.

table_owner TEXT User name of the owner of the table on which the trigger is defined.

base_object_type TEXT Included only for compatibility. Value is always TABLE .

table_name TEXT Name of the table on which the trigger is defined.

referencing_names TEXT Included only for compatibility. Value is always REFERENCING NEW AS NEW OLD AS OLD .

status TEXT Status indicates if the trigger is enabled (VALID) or disabled (NOTVALID) .

description TEXT Included onky for compatibility.

trigger_body TEXT The body of the trigger.

action_statement TEXT The SQL command that executes when the trigger fires.

Name Type Description

18.1.60 DBA_TYPES

The DBA_TYPES view provides information about all object types in the database.

Name Type Description

owner TEXT Owner of the object type.

schema_name TEXT Name of the schema in which the type is defined.

type_name TEXT Name of the type.

type_oid OID Oject identifier (OID) of the type.

typecode TEXT Typecode of the type. Possible values are: OBJECT , COLLECTION , OTHER .

attributes INTEGER Number of attributes in the type.

18.1.61 DBA_USERS

The DBA_USERS view provides information about all users of the database.

Name Type Description

username TEXT User name of the user.

user_id OID ID number of the user.

password
CHARACTER
VARYING(30
)

Encrypted password of the user.

account_st
atus

CHARACTER
VARYING(32
)

Current status of the account. Possible values are: OPEN , EXPIRED , EXPIRED(GRACE) , EXPIRED & LOCKED , EXPIRED & LOCKED(TIMED) ,
EXPIRED(GRACE) & LOCKED , EXPIRED(GRACE) & LOCKED(TIMED) , LOCKED , LOCKED(TIMED) . Use the
edb_get_role_status(role_id) function to get the current status of the account.

lock_date
TIMESTAMP
WITHOUT
TIME ZONE

If the account status is LOCKED , lock_date displays the date and time the account was locked.

expiry_dat
e

TIMESTAMP
WITHOUT
TIME ZONE

The expiration date of the password. Use the edb_get_password_expiry_date(role_id) function to get the current password expiration date.

default_ta
blespace

TEXT Default tablespace associated with the account.

temporary_
tablespace

CHARACTER
VARYING(30
)

Included only for compatibility. The value is always '' (an empty string).

created DATE Timestamp for when the object was created.

last_ddl_t
ime

DATE Timestamp for the last modification of an object resulting from a DDL statement including grants and revokes.

profile
CHARACTER
VARYING(30
)

The profile associated with the user.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 504

initial_rs
rc_consume
r_group

CHARACTER
VARYING(30
)

Included only for compatibility. The value is always NULL .

external_n
ame

CHARACTER
VARYING(40
00)

Included only for compatibility. The value is always NULL .

Name Type Description

18.1.62 DBA_VIEW_COLUMNS

The DBA_VIEW_COLUMNS view provides information on all columns in the database.

Name Type Description

owner CHARACTER VARYING User name of the view owner.

schema_name CHARACTER VARYING Name of the schema in which the view belongs.

view_name CHARACTER VARYING Name of the view.

column_name CHARACTER VARYING Name of the column.

data_type CHARACTER VARYING Data type of the column.

data_length NUMERIC Length of text columns.

data_precision NUMERIC Precision (number of digits) for NUMBER columns.

data_scale NUMERIC Scale of NUMBER columns.

nullable CHARACTER(1) Whether or not the column is nullable. Possible values are: Y – column is nullable; N – column does not allow null.

column_id NUMERIC Relative position of the column in the view.

data_default CHARACTER VARYING Default value assigned to the column.

18.1.63 DBA_VIEWS

The DBA_VIEWS view provides information about all views in the database.

Name Type Description

owner TEXT User name of the view owner.

schema_name TEXT Name of the schema in which the view belongs.

view_name TEXT Name of the view.

text TEXT Text of the SELECT statement that defines the view.

18.1.64 USER_ALL_TABLES

The USER_ALL_TABLES view provides information about all tables owned by the current user.

Name Type Description

schema_name TEXT Name of the schema in which the table belongs.

table_name TEXT Name of the table.

tablespace_name TEXT Name of the tablespace in which the table resides. If the tablespace name isn't specified, the default tablespace is PG_DEFAULT .

degree CHARACTER
VARYING(10)

Number of threads per instance to scan a table, or DEFAULT .

status CHARACTER VARYING(5) Included only for compatibility. Always set to VALID .

temporary TEXT Y if the table is temporary; N if the table is permanent.

18.1.65 USER_CONS_COLUMNS

The USER_CONS_COLUMNS view provides information about all columns that are included in constraints in tables that are owned by the current user.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 505

Name Type Description

owner TEXT User name of the constraint owner.

schema_name TEXT Name of the schema in which the constraint belongs.

constraint_name TEXT Name of the constraint.

table_name TEXT Name of the table to which the constraint belongs.

column_name TEXT Name of the column referenced in the constraint.

position SMALLINT Position of the column in the object definition.

constraint_def TEXT Definition of the constraint.

18.1.66 USER_CONSTRAINTS

The USER_CONSTRAINTS view provides information about all constraints placed on tables that are owned by the current user.

Name Type Description

owner TEXT Name of the owner of the constraint.

schema_name TEXT Name of the schema in which the constraint belongs.

constraint_
name

TEXT Name of the constraint.

constraint_
type

TEXT The constraint type. Possible values are: C – check constraint; F – foreign key constraint; P – primary key constraint; U – unique key constraint; R – referential
integrity constraint; V – constraint on a view; O – with read-only, on a view.

table_name TEXT Name of the table to which the constraint belongs.

search_cond
ition

TEXT Search condition that applies to a check constraint.

r_owner TEXT Owner of a table referenced by a referential constraint.

r_constrain
t_name

TEXT Name of the constraint definition for a referenced table.

delete_rule TEXT The delete rule for a referential constraint. Possible values are: C – cascade; R - restrict; N – no action.

deferrable BOOL
EAN

Specified if the constraint is deferrable (T or F).

deferred BOOL
EAN

Specifies if the constraint was deferred (T or F).

index_owner TEXT User name of the index owner.

index_name TEXT Name of the index.

constraint_
def

TEXT Definition of the constraint.

18.1.67 USER_COL_PRIVS

The USER_COL_PRIVS view provides a listing of the object privileges granted on a column for which a current user is either an object owner, grantor, or grantee.

Name Type Description

grante
e

CHARACTER
VARYING(128)

Name of the user with the privilege.

owner CHARACTER
VARYING(128)

Object owner.

schema
_name

CHARACTER
VARYING(128)

Name of the schema in which the object resides.

table_
name

CHARACTER
VARYING(128)

Object name.

column
_name

CHARACTER
VARYING(128) Column name.

granto
r

CHARACTER
VARYING(128)

Name of the user who granted the privilege.

privil
ege

CHARACTER
VARYING(40)

Privilege on the column.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 506

granta
ble

CHARACTER
VARYING(3)

Indicates whether the privilege was granted with the grant option YES or NO . YES indicates that the GRANTEE (recipient of the privilege) can grant the
privilege to others. The value can be YES if the grantee has the administrator privileges.

common CHARACTER
VARYING(3)

Included only for compatibility. Always NO .

inheri
ted

CHARACTER
VARYING(3)

Included only for compatibility. Always NO .

Name Type Description

18.1.68 USER_DB_LINKS

The USER_DB_LINKS view provides information about all database links that are owned by the current user.

Name Type Description

db_link TEXT Name of the database link.

type CHARACTER VARYING Type of remote server. Value is either REDWOOD or
EDB .

username TEXT User name of the user logging in.

password TEXT Password used to authenticate on the remote server.

host TEXT Name or IP address of the remote server.

18.1.69 USER_DEPENDENCIES

The USER_DEPENDENCIES view provides information about dependencies between objects owned by a current user, with the exception of synonyms.

Name Type Description

schema_name CHARACTER VARYING(128) Name of the schema in which the dependent object resides.

name CHARACTER VARYING(128) Name of the dependent object.

type CHARACTER VARYING(18) Type of the dependent object.

referenced_owner CHARACTER VARYING(128) Owner of the referenced object.

referenced_schema_name CHARACTER VARYING(128) Name of the schema in which the referenced object resides.

referenced_name CHARACTER VARYING(128) Name of the referenced object.

referenced_type CHARACTER VARYING(18) Type of the referenced object.

referenced_link_name CHARACTER VARYING(128) Included only for compatibility. Always NULL .

schemaid NUMERIC ID of the current schema.

dependency_type CHARACTER VARYING(4) Included only for compatibility. Always set to HARD .

18.1.70 USER_INDEXES

The USER_INDEXES view provides information about all indexes on tables that are owned by the current user.

Name Type Description

schema_name TEXT Name of the schema in which the index belongs.

index_name TEXT Name of the index.

index_type TEXT Included only for compatibility. The index type is always BTREE .

table_owner TEXT User name of the owner of the indexed table.

table_name TEXT Name of the indexed table.

table_type TEXT Included only for compatibility. Always set to TABLE .

uniqueness TEXT Indicates if the index is UNIQUE or NONUNIQUE .

compression CHARACTER(1) Included only for compatibility. Always set to N (not compressed).

tablespace_name TEXT Name of the tablespace in which the table resides if other than the default tablespace.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 507

degree
CHARACTER
VARYING(10) Number of threads per instance to scan the index.

logging TEXT Included only for compatibility. Always set to LOGGING .

status TEXT Whether or not the state of the object is valid. (VALID or INVALID).

partitioned CHARACTER(3) Included only for compatibility. Always set to NO .

temporary CHARACTER(1) Included only for compatibility. Always set to N .

secondary CHARACTER(1) Included only for compatibility. Always set to N .

join_index CHARACTER(3) Included only for compatibility. Always set to NO .

dropped CHARACTER(3) Included only for compatibility. Always set to NO .

Name Type Description

18.1.71 USER_JOBS

The USER_JOBS view provides information about all jobs owned by the current user.

Name Type Description

job INTEGER Identifier of the job (Job ID).

log_user TEXT Name of the user that submitted the job.

priv_user TEXT Same as log_user . Included only for compatibility.

schema_user TEXT Name of the schema used to parse the job.

last_date TIMESTAMP WITH TIME ZONE Last date that this job executed successfully.

last_sec TEXT Same as last_date .

this_date TIMESTAMP WITH TIME ZONE Date that the job began executing.

this_sec TEXT Same as this_date .

next_date TIMESTAMP WITH TIME ZONE Next date that this job will execute.

next_sec TEXT Same as next_date .

total_time INTERVAL Execution time of this job (in seconds).

broken TEXT If Y , no attempt is made to run this job. If N , this job attempts to execute.

interval TEXT Determines how often the job repeats.

failures BIGINT Number of times that the job has failed to complete since it’s last successful
execution.

what TEXT Job definition (PL/SQL code block) that runs when the job executes.

nls_env CHARACTER VARYING(4000) Always NULL . Provided only for compatibility.

misc_env BYTEA Always NULL . Provided only for compatibility.

instance NUMERIC Always 0 . Provided only for compatibility.

18.1.72 USER_OBJECTS

The USER_OBJECTS view provides information about all objects that are owned by the current user.

Name Type Description

schema_name TEXT Name of the schema in which the object belongs.

object_name TEXT Name of the object.

object_type TEXT Type of the object. Possible values are: INDEX , FUNCTION , PACKAGE , PACKAGE BODY , PROCEDURE , SEQUENCE , SYNONYM , TABLE ,
TRIGGER , and VIEW .

created DATE Timestamp for the creation of an object.

last_ddl_ti
me

DATE Timestamp for the last modification of an object resulting from a DDL statement including grants and revokes.

status CHARACTER
VARYING

Included only for compatibility. Always set to VALID .

temporary TEXT Y if the object is temporary; N if the object isn't temporary.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 508

18.1.73 USER_PART_TABLES

The USER_PART_TABLES view provides information about all of the partitioned tables in the database that are owned by the current user.

Name Type Description

schema_name TEXT Name of the schema in which the table resides.

table_name TEXT Name of the table.

partitioning_type TEXT Partitioning type used to define table partitions.

subpartitioning_type TEXT Subpartitioning type used to define table subpartitions.

partition_count BIGINT Number of partitions in the table.

def_subpartition_count INTEGER Number of subpartitions in the table.

partitioning_key_count INTEGER Number of partitioning keys specified.

subpartitioning_key_count INTEGER Number of subpartitioning keys specified.

status CHARACTER VARYING(8) Provided only for compatibility. Always VALID .

def_tablespace_name CHARACTER VARYING(30) Provided only for compatibility. Always NULL .

def_pct_free NUMERIC Provided only for compatibility. Always NULL .

def_pct_used NUMERIC Provided only for compatibility. Always NULL .

def_ini_trans NUMERIC Provided only for compatibility. Always NULL .

def_max_trans NUMERIC Provided only for compatibility. Always NULL .

def_initial_extent CHARACTER VARYING(40) Provided only for compatibility. Always NULL .

def_min_extents CHARACTER VARYING(40) Provided only for compatibility. Always NULL .

def_max_extents CHARACTER VARYING(40) Provided only for compatibility. Always NULL .

def_pct_increase CHARACTER VARYING(40) Provided only for compatibility. Always NULL .

def_freelists NUMERIC Provided only for compatibility. Always NULL .

def_freelist_groups NUMERIC Provided only for compatibility. Always NULL .

def_logging CHARACTER VARYING(7) Provided only for compatibility. Always YES .

def_compression CHARACTER VARYING(8) Provided only for compatibility. Always NONE .

def_buffer_pool CHARACTER VARYING(7) Provided only for compatibility. Always DEFAULT .

ref_ptn_constraint_name CHARACTER VARYING(30) Provided only for compatibility. Always NULL .

interval CHARACTER VARYING(1000) Provided only for compatibility. Always NULL .

18.1.74 USER_POLICIES

The USER_POLICIES view provides information on policies where the schema containing the object on which the policy applies has the same name as the current session user. This view is accessible
only to superusers.

Name Type Description

schema_name TEXT Name of the schema in which the object resides.

object_name TEXT Name of the object on which the policy applies.

policy_group TEXT Name of the policy group. Included only for compatibility. Always set to an empty string.

policy_name TEXT Name of the policy.

pf_owner TEXT Name of the schema containing the policy function or the schema containing the package that contains the policy
function.

package TEXT Name of the package containing the policy function if the function belongs to a package.

function TEXT Name of the policy function.

sel TEXT Whether or not the policy applies to SELECT commands. Possible values are YES or NO .

ins TEXT Whether or not the policy applies to INSERT commands. Possible values are YES or NO .

upd TEXT Whether or not the policy applies to UPDATE commands. Possible values are YES or NO .

del TEXT Whether or not the policy applies to DELETE commands. Possible values are YES or NO .

idx TEXT Whether or not the policy applies to index maintenance. Possible values are YES or NO .

chk_option TEXT Whether or not the check option is in force for INSERT and UPDATE commands. Possible values are YES or NO .

enable TEXT Whether or not the policy is enabled on the object. Possible values are YES or NO .

static_policy TEXT Whether or not the policy is static. Included only for compatibility. Always set to NO .

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 509

policy_type TEXT Policy type. Included only for compatibility. Always set to UNKNOWN .

long_predicate TEXT Included only for compatibility. Always set to YES .

Name Type Description

18.1.75 USER_QUEUES

The USER_QUEUES view provides information about any queue on which the current user has usage privileges.

Name Type Description

name TEXT Name of the queue.

queue_table TEXT Name of the queue table in which the queue resides.

qid OID The system-assigned object ID of the queue.

queue_type CHARACTER VARYING The queue type. Can be EXCEPTION_QUEUE , NON_PERSISTENT_QUEUE , or NORMAL_QUEUE .

max_retries NUMERIC The maximum number of dequeue attempts.

retrydelay NUMERIC The maximum time allowed between retries.

enqueue_enabled CHARACTER VARYING YES if the queue allows enqueuing, NO if the queue does not.

dequeue_enabled CHARACTER VARYING YES if the queue allows dequeuing, NO if the queue does not.

retention CHARACTER VARYING Number of seconds that a processed message is retained in the queue.

user_comment CHARACTER VARYING A user-specified comment.

network_name CHARACTER VARYING Name of the network on which the queue resides.

sharded CHARACTER VARYING YES if the queue resides on a sharded network, NO if the queue does not.

18.1.76 USER_QUEUE_TABLES

The USER_QUEUE_TABLES view provides information about all of the queue tables the current user can access.

Name Type Description

queue_table TEXT User-specified name of the queue table.

type CHARACTER VARYING Type of data stored in the queue table.

object_type TEXT User-defined payload type.

sort_order CHARACTER VARYING Order in which the queue table is sorted.

recipients CHARACTER VARYING Always SINGLE .

message_grouping CHARACTER VARYING Always NONE .

compatible CHARACTER VARYING Release number of the EDB Postgres Advanced Server release with which this queue table is
compatible.

primary_instance NUMERIC Always 0 .

secondary_instance NUMERIC Always 0 .

owner_instance NUMERIC Instance number of the instance that owns the queue table.

user_comment CHARACTER VARYING User comment provided when the table was created.

secure CHARACTER VARYING YES indicates that the queue table is secure. NO indicates that it is not.

18.1.77 USER_ROLE_PRIVS

The USER_ROLE_PRIVS view provides information about the privileges that were granted to the current user. A row is created for each role to which a user has been granted.

Name Type Description

username TEXT Name of the user to which the role was granted.

granted_role TEXT Name of the role granted to the grantee.

admin_option TEXT YES if the role was granted with the admin option, NO otherwise.

default_role TEXT YES if the role is enabled when the grantee creates a session.

os_granted CHARACTER VARYING(3) Included only for compatibility. Always NO .

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 510

18.1.78 USER_SEQUENCES

The USER_SEQUENCES view provides information about all user-defined sequences that belong to the current user.

Name Type Description

schema_name TEXT Name of the schema in which the sequence resides.

sequence_name TEXT Name of the sequence.

min_value NUMERIC Lowest value for the server to assign to the sequence.

max_value NUMERIC Highest value for the server to assign to the sequence.

increment_by NUMERIC Value added to the current sequence number to create the next sequent number.

cycle_flag CHARACTER VARYING Specifies whether the sequence wraps when it reaches min_value or max_value .

order_flag CHARACTER VARYING Included only for compatibility. Always Y .

cache_size NUMERIC Number of preallocated sequence numbers in memory.

last_number NUMERIC The value of the last sequence number saved to disk.

18.1.79 USER_SOURCE

The USER_SOURCE view provides information about all programs owned by the current user.

Name Type Description

schema_name TEXT Name of the schema in which the program belongs.

name TEXT Name of the program.

type TEXT Type of program. Possible values are: FUNCTION , PACKAGE , PACKAGE BODY , PROCEDURE , and TRIGGER .

line INTEGER Source code line number relative to a given program.

text TEXT Line of source code text.

18.1.80 USER_SUBPART_KEY_COLUMNS

The USER_SUBPART_KEY_COLUMNS view provides information about the key columns of partitioned tables that are subpartitioned that belong to the current user.

Name Type Description

schema_name TEXT Name of the schema in which the table resides.

name TEXT Name of the table in which the column resides.

object_type CHARACTER(5) For compatibility only. Always TABLE .

column_name TEXT Name of the column on which the key is defined.

column_position INTEGER 1 for the first column, 2 for the second column, and so on.

18.1.81 USER_SYNONYMS

The USER_SYNONYMS view provides information about all synonyms owned by the current user.

Name Type Description

schema_name TEXT Name of the schema in which the synonym resides.

synonym_name TEXT Name of the synonym.

table_owner TEXT User name of the owner of the table on which the synonym is defined.

table_schema_name TEXT Name of the schema in which the table resides.

table_name TEXT Name of the table on which the synonym is defined.

db_link TEXT Name of any associated database link.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 511

18.1.82 USER_TAB_COLUMNS

The USER_TAB_COLUMNS view displays information about all columns in tables and views owned by the current user.

Name Type Description

schema_name CHARACTER VARYING Name of the schema in which the table or view resides.

table_name CHARACTER VARYING Name of the table or view in which the column resides.

column_name CHARACTER VARYING Name of the column.

data_type CHARACTER VARYING Data type of the column.

data_length NUMERIC Length of text columns.

data_precision NUMERIC Precision (number of digits) for NUMBER columns.

data_scale NUMERIC Scale of NUMBER columns.

nullable CHARACTER(1) Whether or not the column is nullable. Possible values are: Y – column is nullable; N – column does not allow null.

column_id NUMERIC Relative position of the column in the table.

data_default CHARACTER VARYING Default value assigned to the column.

18.1.83 USER_TAB_PARTITIONS

The USER_TAB_PARTITIONS view provides information about all of the partitions that are owned by the current user.

Name Type Description

schema_name TEXT Name of the schema in which the table resides.

table_name TEXT Name of the table.

composite TEXT YES if the table is subpartitioned, NO if the table isn't subpartitioned.

partition_name TEXT Name of the partition.

subpartition_coun
t

BIGINT Number of subpartitions in the partition.

high_value TEXT High-partitioning value specified in the CREATE TABLE statement.

high_value_length INTEGER Length of high-partitioning value.

partition_positio
n

INTEGER The ordinal position of this partition.

tablespace_name TEXT Name of the tablespace in which the partition resides. If the tablespace name isn't specified, then default tablespace is
PG_DEFAULT .

pct_free NUMERIC Included only for compatibility. Always 0 .

pct_used NUMERIC Included only for compatibility. Always 0 .

ini_trans NUMERIC Included only for compatibility. Always 0 .

max_trans NUMERIC Included only for compatibility. Always 0 .

initial_extent NUMERIC Included only for compatibility. Always NULL .

next_extent NUMERIC Included only for compatibility. Always NULL .

min_extent NUMERIC Included only for compatibility. Always 0 .

max_extent NUMERIC Included only for compatibility. Always 0 .

pct_increase NUMERIC Included only for compatibility. Always 0 .

freelists NUMERIC Included only for compatibility. Always NULL .

freelist_groups NUMERIC Included only for compatibility. Always NULL .

logging CHARACTER VARYING(7) Included only for compatibility. Always YES .

compression CHARACTER VARYING(8) Included only for compatibility. Always NONE .

num_rows NUMERIC Same as pg_class.reltuples .

blocks INTEGER Same as pg_class.relpages .

empty_blocks NUMERIC Included only for compatibility. Always NULL .

avg_space NUMERIC Included only for compatibility. Always NULL .

chain_cnt NUMERIC Included only for compatibility. Always NULL .

avg_row_len NUMERIC Included only for compatibility. Always NULL .

sample_size NUMERIC Included only for compatibility. Always NULL .

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 512

last_analyzed TIMESTAMP WITHOUT TIME
ZONE

Included only for compatibility. Always NULL .

buffer_pool CHARACTER VARYING(7) Included only for compatibility. Always NULL .

global_stats CHARACTER VARYING(3) Included only for compatibility. Always YES .

user_stats CHARACTER VARYING(3) Included only for compatibility. Always NO .

backing_table REGCLASS Name of the partition backing table.

Name Type Description

18.1.84 USER_TAB_SUBPARTITIONS

The USER_TAB_SUBPARTITIONS view provides information about all of the subpartitions owned by the current user.

Name Type Description

schema_name TEXT Name of the schema in which the table resides.

table_name TEXT Name of the table.

partition_name TEXT Name of the partition.

subpartition_name TEXT Name of the subpartition.

high_value TEXT High-subpartitioning value specified in the CREATE TABLE statement.

high_value_length INTEGER Length of high-partitioning value.

subpartition_positi
on

INTEGER Ordinal position of this subpartition.

tablespace_name TEXT Name of the tablespace in which the subpartition resides. If the tablespace name is not specified, then default tablespace
PG_DEFAULT .

pct_free NUMERIC Included only for compatibility. Always 0 .

pct_used NUMERIC Included only for compatibility. Always 0 .

ini_trans NUMERIC Included only for compatibility. Always 0 .

max_trans NUMERIC Included only for compatibility. Always 0 .

initial_extent NUMERIC Included only for compatibility. Always NULL .

next_extent NUMERIC Included only for compatibility. Always NULL .

min_extent NUMERIC Included only for compatibility. Always 0 .

max_extent NUMERIC Included only for compatibility. Always 0 .

pct_increase NUMERIC Included only for compatibility. Always 0 .

freelists NUMERIC Included only for compatibility. Always NULL .

freelist_groups NUMERIC Included only for compatibility. Always NULL .

logging CHARACTER VARYING(7) Included only for compatibility. Always YES .

compression CHARACTER VARYING(8) Included only for compatibility. Always NONE .

num_rows NUMERIC Same as pg_class.reltuples .

blocks INTEGER Same as pg_class.relpages .

empty_blocks NUMERIC Included only for compatibility. Always NULL .

avg_space NUMERIC Included only for compatibility. Always NULL .

chain_cnt NUMERIC Included only for compatibility. Always NULL .

avg_row_len NUMERIC Included only for compatibility. Always NULL .

sample_size NUMERIC Included only for compatibility. Always NULL .

last_analyzed TIMESTAMP WITHOUT TIME
ZONE

Included only for compatibility. Always NULL .

buffer_pool CHARACTER VARYING(7) Included only for compatibility. Always NULL .

global_stats CHARACTER VARYING(3) Included only for compatibility. Always YES .

user_stats CHARACTER VARYING(3) Included only for compatibility. Always NO .

backing_table REGCLASS Name of the partition backing table.

18.1.85 USER_TAB_PRIVS

The USER_TAB_PRIVS view provides a listing of the object privileges for which a current user is either an object owner, grantor, or grantee.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 513

Name Type Description

grante
e

CHARACTER
VARYING(128)

Name of the user with the privilege.

owner CHARACTER
VARYING(128)

Object owner.

schema
_name

CHARACTER
VARYING(128)

Name of the schema in which the object resides.

table_
name

CHARACTER
VARYING(128)

Object name.

granto
r

CHARACTER
VARYING(128)

Name of the user who granted the privilege.

privil
ege

CHARACTER
VARYING(40)

Privilege name.

granta
ble

CHARACTER
VARYING(3)

Indicates whether the privilege was granted with the grant option YES or NO . YES indicates that the grantee (recipient of the privilege) can grant the
privilege to others. The value can be YES if the grantee has administrator privileges.

hierar
chy

CHARACTER
VARYING(3)

The value can be YES or NO . The value can be YES if the privilege is SELECT . Otherwise the value is NO .

common CHARACTER
VARYING(3)

Included only for compatibility. Always NO .

type CHARACTER
VARYING(24)

Type of object.

inheri
ted

CHARACTER
VARYING(3)

Included only for compatibility. Always NO .

18.1.86 USER_TABLES

The USER_TABLES view displays information about all tables owned by the current user.

Name Type Description

schema_name TEXT Name of the schema in which the table belongs.

table_name TEXT Name of the table.

tablespace_name TEXT Name of the tablespace in which the table resides. If the tablespace name isn't specified, the default tablespace is PG_DEFAULT .

degree CHARACTER
VARYING(10)

Number of threads per instance to scan a table, or DEFAULT .

status CHARACTER VARYING(5) Included only for compatibility. Always set to VALID .

temporary CHARACTER(1) Y if the table is temporary, N if the table isn't temporary.

18.1.87 USER_TRIGGERS

The USER_TRIGGERS view displays information about all triggers on tables owned by the current user.

Name Type Description

schema_name TEXT Name of the schema in which the trigger resides.

trigger_name TEXT Name of the trigger.

trigger_type TEXT The type of the trigger. Possible values are: BEFORE ROW , BEFORE STATEMENT , AFTER ROW , AFTER
STATEMENT .

triggering_event TEXT The event that fires the trigger.

table_owner TEXT The user name of the owner of the table on which the trigger is defined.

base_object_type TEXT Included only for compatibility. Value is always TABLE .

table_name TEXT Name of the table on which the trigger is defined.

referencing_names TEXT Included only for compatibility. Value is always REFERENCING NEW AS NEW OLD AS OLD .

status TEXT Status indicates if the trigger is enabled (VALID) or disabled (NOTVALID).

description TEXT Included only for compatibility.

trigger_body TEXT The body of the trigger.

action_statement TEXT The SQL command that executes when the trigger fires.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 514

18.1.88 USER_TYPES

The USER_TYPES view provides information about all object types owned by the current user.

Name Type Description

schema_name TEXT Name of the schema in which the type is defined.

type_name TEXT Name of the type.

type_oid OID The object identifier (OID) of the type.

typecode TEXT The typecode of the type. Possible values are: OBJECT , COLLECTION , OTHER .

attributes INTEGER Number of attributes in the type.

18.1.89 USER_USERS

The USER_USERS view provides information about the current user.

Name Type Description

username TEXT User name of the user.

user_id OID ID number of the user.

account_st
atus

CHARACTER
VARYING(32
)

The current status of the account. Possible values are: OPEN , EXPIRED , EXPIRED(GRACE) , EXPIRED & LOCKED , EXPIRED & LOCKED(TIMED) ,
EXPIRED(GRACE) & LOCKED , EXPIRED(GRACE) & LOCKED(TIMED) , LOCKED , LOCKED(TIMED) . Use the
edb_get_role_status(role_id) function to get the current status of the account.

lock_date
TIMESTAMP
WITHOUT
TIME ZONE

If the account status is LOCKED , lock_date displays the date and time the account was locked.

expiry_dat
e

TIMESTAMP
WITHOUT
TIME ZONE

The expiration date of the account.

default_ta
blespace

TEXT The default tablespace associated with the account.

temporary_
tablespace

CHARACTER
VARYING(30
)

Included only for compatibility. The value is always '' (an empty string).

created DATE Timestamp for the creation of an object.

last_ddl_t
ime

DATE Timestamp for the last modification of an object resulting from a DDL statement including grants and revokes.

initial_rs
rc_consume
r_group

CHARACTER
VARYING(30
)

Included only for compatibility. The value is always NULL .

external_n
ame

CHARACTER
VARYING(40
00)

Included only for compatibility. Always set to NULL .

18.1.90 USER_VIEW_COLUMNS

The USER_VIEW_COLUMNS view provides information about all columns in views owned by the current user.

Name Type Description

schema_name CHARACTER VARYING Name of the schema in which the view belongs.

view_name CHARACTER VARYING Name of the view.

column_name CHARACTER VARYING Name of the column.

data_type CHARACTER VARYING Data type of the column.

data_length NUMERIC Length of text columns.

data_precision NUMERIC Precision (number of digits) for NUMBER columns.

data_scale NUMERIC Scale of NUMBER columns.

nullable CHARACTER(1) Whether or not the column is nullable. Possible values are: Y – column is nullable; N – column does not allow null.

column_id NUMERIC Relative position of the column in the view.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 515

data_default CHARACTER VARYING Default value assigned to the column.

Name Type Description

18.1.91 USER_VIEWS

The USER_VIEWS view provides information about all views owned by the current user.

Name Type Description

schema_name TEXT Name of the schema in which the view resides.

view_name TEXT Name of the view.

text TEXT The SELECT statement that defines the view.

18.1.92 V$VERSION

The V$VERSION view provides information about product compatibility.

Name Type Description

banner TEXT Displays product compatibility information.

18.1.93 PRODUCT_COMPONENT_VERSION

The PRODUCT_COMPONENT_VERSION view provides version information about product version compatibility.

Name Type Description

product CHARACTER
VARYING(74)

Name of the product.

version CHARACTER
VARYING(74)

Version number of the product.

status CHARACTER
VARYING(74)

Included for compatibility. Always Available .

18.2 System catalog views

System catalog views are present in PostgreSQL. They may have extra information when accessed in EDB Postgres Advanced Server. The PG_USER view is an example of a system catalog view that
provides additional information specific to EDB Postgres Advanced Server.

For the complete list of the System Catalogs see PostgreSQL System Catalogs.

18.2.1 PG_USER

The PG_USER view provides information about the database users. It provides information specific to EDB Postgres Advanced Server in addition to the information provided in the PostgreSQL pg_user
view.

Name Type Description

uselockdate date The time when the account was last locked; null if the account was never locked before.

useaccountstatus integer Bit mask identifying user account status.

usepasswordexpire date The time after which a password change will be forced at the next login.

19 Database Compatibility: Stored Procedural Language

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 516

https://www.postgresql.org/docs/current/catalogs.html
https://www.postgresql.org/docs/current/view-pg-user.html

EDB Postgres Advanced Server's stored procedural language (SPL) is a highly productive, procedural programming language for writing custom procedures, functions, triggers, and packages for EDB
Postgres Advanced Server. It provides:

Full procedural programming functionality to complement the SQL language
A single, common language to create stored procedures, functions, triggers, and packages for the EDB Postgres Advanced Server database
A seamless development and testing environment
The use of reusable code
Ease of use

19.1 Basic SPL elements

The basic programming elements of an SPL program include aspects such as as case sensitivity and the available character set.

19.1.1 Case sensitivity

Keywords and user-defined identifiers that are used in an SPL program are case insensitive. For example, the statement DBMS_OUTPUT.PUT_LINE('Hello World'); is interpreted the as
dbms_output.put_line('Hello World'); or Dbms_Output.Put_Line('Hello World'); or DBMS_output.Put_line('Hello World'); .

Character and string constants, however, are case sensitive. Data retrieved from the EDB Postgres Advanced Server database or from other external sources is also case sensitive.

The statement DBMS_OUTPUT.PUT_LINE('Hello World!'); produces the following output:

Hello World!

The statement DBMS_OUTPUT.PUT_LINE('HELLO WORLD!'); produces this output:

HELLO WORLD!

19.1.2 Identifiers

Identifiers are user-defined names that identify elements of an SPL program including variables, cursors, labels, programs, and parameters. The syntax rules for valid identifiers are the same as for
identifiers in the SQL language.

An identifier can't be the same as an SPL keyword or a keyword of the SQL language. The following are some examples of valid identifiers:

x
last___name
a_$_Sign
Many$$$$$$$$signs_____
THIS_IS_AN_EXTREMELY_LONG_NAME
A1

19.1.3 Qualifiers

A qualifier is a name that specifies the owner or context of an entity that's the object of the qualifier. Specify a qualified object using these elements, in order:

1. The qualifier name
2. A dot with no intervening white space
3. The name of the object being qualified with no intervening white space

This syntax is called dot notation.

The following is the syntax of a qualified object.

<qualifier>. [<qualifier>.]... <object>

qualifier is the name of the owner of the object. object is the name of the entity belonging to qualifier . You can have a chain of qualifications in which the preceding qualifier owns the
entity identified by the subsequent qualifiers and object.

You can qualify almost any identifier. How you qualify an identifier depends on what the identifier represents and its context.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 517

Some examples of qualification follow:

Procedure and function names qualified by the schema to which they belong, e.g., schema_name.procedure_name(...)
Trigger names qualified by the schema to which they belong, e.g., schema_name.trigger_name
Column names qualified by the table to which they belong, e.g., emp.empno
Table names qualified by the schema to which they belong, e.g., public.emp
Column names qualified by table and schema, e.g., public.emp.empno

As a general rule, where a name appears in the syntax of an SPL statement you can use its qualified name as well. Typically, a qualified name is used only if ambiguity is associated with the name.
Examples of ambiguity include, for example:

Two procedures with the same name belonging to two different schemas are invoked from a program.
The same name is used for a table column and SPL variable in the same program.

Avoid using qualified names if possible. We use the following conventions to avoid naming conflicts:

All variables declared in the declaration section of an SPL program are prefixed by v_ , e.g., v_empno .
All formal parameters declared in a procedure or function definition are prefixed by p_ , e.g., p_empno .
Column names and table names don't have any special prefix conventions, e.g., column empno in table emp .

19.1.4 Constants

Constants or literals are fixed values that you can use in SPL programs to represent values of various types such as numbers, strings, and dates. Constants come in the following types:

Numeric (integer and real)
Character and string
Date/time

19.1.5 User-defined PL/SQL subtypes

EDB Postgres Advanced Server supports user-defined PL/SQL subtypes and subtype aliases. A subtype is a data type with an optional set of constraints that restrict the values that can be stored in a
column of that type. The rules that apply to the type on which the subtype is based are still enforced, but you can use additional constraints to place limits on the precision or scale of values stored in the
type.

You can define a subtype in the declaration of a PL function, procedure, anonymous block, or package. The syntax is:

SUBTYPE <subtype_name> IS <type_name>[(<constraint>)] [NOT NULL]

Where constraint is:

{<precision> [, <scale>]} | <length>

subtype_name

subtype_name specifies the name of the subtype.

type_name

type_name specifies the name of the original type on which the subtype is based. type_name can be:

The name of any of the types supported by EDB Postgres Advanced Server.
The name of any composite type.
A column anchored by a %TYPE operator.
The name of another subtype.

Include the constraint clause to define restrictions for types that support precision or scale.

precision

precision specifies the total number of digits permitted in a value of the subtype.

scale

scale specifies the number of fractional digits permitted in a value of the subtype.

length

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 518

length specifies the total length permitted in a value of CHARACTER , VARCHAR , or TEXT base types.

Include the NOT NULL clause to specify that you can't store NULL values in a column of the specified subtype.

A subtype that is based on a column inherits the column size constraints, but the subtype doesn't inherit NOT NULL or CHECK constraints.

Unconstrained subtypes

To create an unconstrained subtype, use the SUBTYPE command to specify the new subtype name and the name of the type on which the subtype is based. For example, the following command
creates a subtype named address that has all of the attributes of the type CHAR :

SUBTYPE address IS CHAR;

You can also create a subtype (constrained or unconstrained) that's a subtype of another subtype:

SUBTYPE cust_address IS address NOT NULL;

This command creates a subtype named cust_address that shares all of the attributes of the address subtype. Include the NOT NULL clause to specify that a value of the cust_address
can't be NULL .

Constrained subtypes

Include a length value when creating a subtype that's based on a character type to define the maximum length of the subtype. For example:

SUBTYPE acct_name IS VARCHAR (15);

This example creates a subtype named acct_name that's based on a VARCHAR data type but is limited to 15 characters.

Include values for precision to specify the maximum number of digits in a value of the subtype. Optionally, include values for scale to specify the number of digits to the right of the decimal
point when constraining a numeric base type. For example:

SUBTYPE acct_balance IS NUMBER (5, 2);

This example creates a subtype named acct_balance that shares all of the attributes of a NUMBER type but that can't exceed three digits to the left of the decimal point and two digits to the right
of the decimal.

An argument declaration (in a function or procedure header) is a formal argument. The value passed to a function or procedure is an actual argument. When invoking a function or procedure, the caller
provides 0 or more actual arguments. Each actual argument is assigned to a formal argument that holds the value in the body of the function or procedure.

If a formal argument is declared as a constrained subtype:

EDB Postgres Advanced Server doesn't enforce subtype constraints when assigning an actual argument to a formal argument when invoking a function.
EDB Postgres Advanced Server enforces subtype constraints when assigning an actual argument to a formal argument when invoking a procedure.

Using the %TYPE operator

You can use %TYPE notation to declare a subtype anchored to a column. For example:

SUBTYPE emp_type IS emp.empno%TYPE

This command creates a subtype named emp_type whose base type matches the type of the empno column in the emp table. A subtype that's based on a column shares the column size
constraints. NOT NULL and CHECK constraints aren't inherited.

Subtype conversion

Unconstrained subtypes are aliases for the type on which they are based. Any variable of type subtype (unconstrained) is interchangeable with a variable of the base type without conversion, and vice
versa.

You can interchange a variable of a constrained subtype with a variable of the base type without conversion. However, you can interchange a variable of the base type with a constrained subtype only if
it complies with the constraints of the subtype. You can implicitly convert a variable of a constrained subtype to another subtype if it's based on the same subtype and the constraint values are within the

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 519

values of the subtype to which it is being converted.

19.1.6 Character set

Write identifiers, expressions, statements, control structures, and so on that comprise the SPL language using the following characters:

Uppercase letters A–Z and lowercase letters a–z
Digits 0–9`
Symbols () + - * / < > = ! ~ ^ ; : . ' @ % , " # $ & _ | { } ? []
Whitespace characters tab, space, and carriage return

Note

The data that can be manipulated by an SPL program is determined by the character set supported by the database encoding.

19.2 SPL programs

SPL is a procedural, block-structured language. You can create four different types of programs using SPL: procedures, functions, triggers, and packages.

In addition, you can use SPL to create subprograms. A subprogram refers to a subprocedure or a subfunction. These are nearly identical in appearance to procedures and functions. They differ in that
procedures and functions are standalone programs. They are stored individually in the database, and you can invoke them from other SPL programs or from PSQL. You can invoke subprograms only from
the standalone program where they were created.

19.2.1 SPL block structure

Regardless of whether the program is a procedure, function, subprogram, or trigger, an SPL program has the same block structure. A block consists of up to three sections: an optional declaration
section, a mandatory executable section, and an optional exception section. Minimally, a block has an executable section that consists of one or more SPL statements between the keywords BEGIN
and END .

Use the optional declaration section to declare variables, cursors, types, and subprograms that are used by the statements in the executable and exception sections. Declarations appear just before the
BEGIN keyword of the executable section. Depending on the context of where the block is used, the declaration section can begin with the keyword DECLARE .

You can include an exception section in the BEGIN - END block. The exception section begins with the keyword EXCEPTION and continues until the end of the block in which it appears. If an
exception is thrown by a statement in the block, program control might go to the exception section where the thrown exception is handled, depending on the exception and the contents of the exception
section.

The following is the general structure of a block:

[[DECLARE]
 <pragmas>
 <declarations>]
 BEGIN
 <statements>
 [EXCEPTION
 WHEN <exception_condition> THEN
 <statements> [, ...]]
 END;

pragmas are the directives (AUTONOMOUS_TRANSACTION is the currently supported pragma).
declarations are one or more variable, cursor, type, or subprogram declarations that are local to the block. If subprogram declarations are included, you must declare them after all other

variable, cursor, and type declarations. Terminate each declaration with a semicolon. The use of the keyword DECLARE depends on the context in which the block appears.
statements are one or more SPL statements. Terminate each statement with a semicolon. You must also terminate the end of the block denoted by the keyword END with a semicolon.

If present, the keyword EXCEPTION marks the beginning of the exception section. exception_condition is a conditional expression testing for one or more types of exceptions. If an
exception matches one of the exceptions in exception_condition , the statements following the WHEN exception_condition clause are executed. There can be one or more
WHEN exception_condition clauses, each followed by statements .

Note

A BEGIN/END block is considered a statement, thus you can nest blocks. The exception section can also contain nested blocks.

The following is the simplest possible block, consisting of the NULL statement in the executable section. The NULL statement is an executable statement that does nothing.

BEGIN
 NULL;
END;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 520

The following block contains a declaration section as well as the executable section:

DECLARE
 v_numerator NUMBER(2);
 v_denominator NUMBER(2);
 v_result NUMBER(5,2);
BEGIN
 v_numerator := 75;
 v_denominator := 14;
 v_result := v_numerator / v_denominator;
 DBMS_OUTPUT.PUT_LINE(v_numerator || ' divided by ' || v_denominator ||
 ' is ' || v_result);
END;

In this example, three numeric variables are declared of data type NUMBER . Values are assigned to two of the variables, and one number is divided by the other. Results are stored in a third variable and
then displayed. The output is:

75 divided by 14 is 5.36

The following block consists of a declaration, an executable, and an exception:

DECLARE
 v_numerator NUMBER(2);
 v_denominator NUMBER(2);
 v_result NUMBER(5,2);
BEGIN
 v_numerator := 75;
 v_denominator := 0;
 v_result := v_numerator / v_denominator;
 DBMS_OUTPUT.PUT_LINE(v_numerator || ' divided by ' || v_denominator ||
 ' is ' || v_result);
EXCEPTION
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE('An exception occurred');
END;

The following output shows that the statement in the exception section is executed as a result of the division by zero:

An exception occurred

19.2.2 Anonymous blocks

You typically write blocks as part of a procedure, function, subprogram, or trigger. You name procedure, function, and trigger programs and store them in the database if you want to reuse them.

For quick, one-time execution such as testing, you can enter the block without providing a name or storing it in the database. A block without a name and that isn't stored in the database is called an
anonymous block. Once the block is executed and erased from the application buffer, you can't execute it again unless the block code you enter it into the application again.

Typically, the same block of code executes many times. To run a block of code repeatedly without reentering the code each time, with some simple modifications, you can turn an anonymous block into a
procedure or function. See Procedures overview and Functions overview.

19.2.3 Procedures overview

Procedures are standalone SPL programs that you invoke or call as an individual SPL program statement. When called, procedures can optionally receive values from the caller in the form of input
parameters. They can optionally return values to the caller in the form of output parameters.

19.2.3.1 Creating a procedure

The CREATE PROCEDURE command defines and names a standalone procedure that's stored in the database.

If you include a schema name, then the procedure is created in the specified schema. Otherwise it's created in the current schema. The name of the new procedure must not match any existing
procedure with the same input argument types in the same schema. However, procedures of different input argument types can share a name. This is called overloading.

Note

Overloading of procedures is an EDB Postgres Advanced Server feature. Overloading of stored, standalone procedures isn't compatible with Oracle databases.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 521

To update the definition of an existing procedure, use CREATE OR REPLACE PROCEDURE . You can't change the name or argument types of a procedure this way. Attempting to do so creates a new,
distinct procedure. When using OUT parameters, you can't change the types of any OUT parameters except by dropping the procedure.

CREATE [OR REPLACE] PROCEDURE <name> [(<parameters>)]
 [
 IMMUTABLE
 | STABLE
 | VOLATILE
 | DETERMINISTIC
 | [NOT] LEAKPROOF
 | CALLED ON NULL INPUT
 | RETURNS NULL ON NULL INPUT
 | STRICT
 | [EXTERNAL] SECURITY INVOKER
 | [EXTERNAL] SECURITY DEFINER
 | AUTHID DEFINER
 | AUTHID CURRENT_USER
 | PARALLEL { UNSAFE | RESTRICTED | SAFE }
 | COST <execution_cost>
 | ROWS <result_rows>
 | SET <configuration_parameter>
 { TO <value> | = <value> | FROM CURRENT }
 ...]
{ IS | AS }
 [PRAGMA AUTONOMOUS_TRANSACTION;]
 [<declarations>]
 BEGIN
 <statements>
 END [<name>];

Where:

name

name is the identifier of the procedure.

parameters

parameters is a list of formal parameters.

declarations

declarations are variable, cursor, type, or subprogram declarations. If you include subprogram declarations, you must declare them after all other variable, cursor, and type declarations.

statements

statements are SPL program statements. The BEGIN - END block can contain an EXCEPTION section.

IMMUTABLE

STABLE

VOLATILE

These attributes inform the query optimizer about the behavior of the procedure. You can specify only one choice. VOLATILE is the default behavior.

IMMUTABLE indicates that the procedure can't modify the database and always reaches the same result when given the same argument values. It doesn't perform database lookups or otherwise
use information not directly present in its argument list. If you include this clause, you can immediately replace any call of the procedure with all-constant arguments with the procedure value.

STABLE indicates that the procedure can't modify the database. It also indicates that, in a single table scan, it consistently returns the same result for the same argument values but that its
result might change across SQL statements. Use this selection for procedures that depend on database lookups, parameter variables (such as the current time zone), and so on.

VOLATILE indicates that the procedure value can change even in a single table scan, so you can't make optimizations. You must classify any function that has side effects as volatile, even if its
result is predictable, to prevent calls from being optimized away.

DETERMINISTIC

DETERMINISTIC is a synonym for IMMUTABLE . A DETERMINISTIC procedure can't modify the database and always reaches the same result when given the same argument values. It doesn't do
database lookups or otherwise use information not directly present in its argument list. If you include this clause, any call of the procedure with all-constant arguments can be immediately replaced
with the procedure value.

[NOT] LEAKPROOF

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 522

A LEAKPROOF procedure has no side effects and reveals no information about the values used to call the procedure.

CALLED ON NULL INPUT

RETURNS NULL ON NULL INPUT

STRICT

CALLED ON NULL INPUT (the default) indicates that the procedure is called normally when some of its arguments are NULL . It's the author's responsibility to check for NULL values if
necessary and respond appropriately.

RETURNS NULL ON NULL INPUT or STRICT indicates that the procedure always returns NULL when any of its arguments are NULL . If these clauses are specified, the procedure isn't
executed when there are NULL arguments. Instead a NULL result is assumed automatically.

[EXTERNAL] SECURITY DEFINER

SECURITY DEFINER specifies for the procedure to execute with the privileges of the user that created it. This is the default. The key word EXTERNAL is allowed for SQL conformance but is
optional.

[EXTERNAL] SECURITY INVOKER

The SECURITY INVOKER clause indicates for the procedure to execute with the privileges of the user that calls it. The key word EXTERNAL is allowed for SQL conformance but is optional.

AUTHID DEFINER

AUTHID CURRENT_USER

The AUTHID DEFINER clause is a synonym for [EXTERNAL] SECURITY DEFINER . If you omit the AUTHID clause or specify AUTHID DEFINER , the rights of the procedure owner
determine access privileges to database objects.

The AUTHID CURRENT_USER clause is a synonym for [EXTERNAL] SECURITY INVOKER . If you specify AUTHID CURRENT_USER , the rights of the current user executing the
procedure determine access privileges.

PARALLEL { UNSAFE | RESTRICTED | SAFE }

The PARALLEL clause enables the use of parallel sequential scans, that is, parallel mode. A parallel sequential scan uses multiple workers to scan a relation in parallel during a query, in contrast to a
serial sequential scan.

When the value is set to UNSAFE , you can't execute the procedure in parallel mode. The presence of such a procedure forces a serial execution plan. This is the default setting.

When the value is set to RESTRICTED , you can execute the procedure in parallel mode, but the execution is restricted to the parallel group leader. If the qualification for any particular relation
has anything that's parallel restricted, that relation isn't chosen for parallelism.

When the value is set to SAFE , you can execute the procedure in parallel mode without restriction.

COST execution_cost

execution_cost is a positive number giving the estimated execution cost for the procedure, in units of cpu_operator_cost . If the procedure returns a set, this is the cost per returned row.
Larger values cause the planner to try to avoid evaluating the function more often than necessary.

ROWS result_rows

result_rows is a positive number giving the estimated number of rows for the planner to expect the procedure to return. This setting is allowed only when the procedure is declared to return a set.
The default is 1000 rows.

SET configuration_parameter { TO value | = value | FROM CURRENT }

The SET clause causes the specified configuration parameter to be set to the specified value when the procedure is entered and then restored to its prior value when the procedure exits. SET FROM
CURRENT saves the session's current value of the parameter as the value to apply when the procedure is entered.

If a SET clause is attached to a procedure, then the effects of a SET LOCAL command executed inside the procedure for the same variable are restricted to the procedure. The configuration
parameter's prior value is restored at procedure exit. An ordinary SET command (without LOCAL) overrides the SET clause, much as it does for a previous SET LOCAL command. The effects of
this command persist after procedure exit, unless the current transaction is rolled back.

PRAGMA AUTONOMOUS_TRANSACTION

PRAGMA AUTONOMOUS_TRANSACTION is the directive that sets the procedure as an autonomous transaction.

Note

The STRICT , LEAKPROOF , PARALLEL , COST , ROWS and SET keywords provide extended functionality for EDB Postgres Advanced Server and aren't supported by Oracle.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 523

By default, stored procedures are created as SECURITY DEFINERS , but when written in plpgsql, the stored procedures are created as SECURITY INVOKERS .

Example

This example shows a simple procedure that takes no parameters:

CREATE OR REPLACE PROCEDURE simple_procedure
IS
BEGIN
 DBMS_OUTPUT.PUT_LINE('That''s all folks!');
END simple_procedure;

Store the procedure in the database by entering the procedure code in EDB Postgres Advanced Server.

This example shows using the AUTHID DEFINER and SET clauses in a procedure declaration. The update_salary procedure conveys the privileges of the role that defined the procedure to the
role that's calling the procedure while the procedure executes.

CREATE OR REPLACE PROCEDURE update_salary(id INT, new_salary NUMBER)
 SET SEARCH_PATH = 'public' SET WORK_MEM = '1MB'
 AUTHID DEFINER IS
BEGIN
 UPDATE emp SET salary = new_salary WHERE emp_id = id;
END;

Include the SET clause to set the procedure's search path to public and the work memory to 1MB . These settings don't affect other procedures, functions, and objects.

In the example, the AUTHID DEFINER clause temporarily grants privileges to a role that otherwise might not be allowed to execute the statements in the procedure. To instruct the server to use the
privileges associated with the role invoking the procedure, replace the AUTHID DEFINER clause with the AUTHID CURRENT_USER clause.

19.2.3.2 Calling a procedure

You can invoke a procedure from another SPL program by specifying the procedure name followed by any parameters and a semicolon:

<name> [([<parameters>])];

Where:

name is the identifier of the procedure.

parameters is a list of parameters.

Note

If there are no parameters to pass, you can call the procedure with an empty parameter list, or you can omit the parentheses.

The syntax for calling a procedure is the same as in the preceding syntax diagram when executing it with the EXEC command in PSQL or EDB*Plus. See Database Compatibility: SQL
for information about the EXEC command.

This example calls the procedure from an anonymous block:

BEGIN
 simple_procedure;
END;

That's all folks!

Note

Each application has its own way of calling a procedure. For example, a Java application uses the application programming interface JDBC.

19.2.3.3 Deleting a procedure

You can delete a procedure from the database using the DROP PROCEDURE command.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 524

DROP PROCEDURE [IF EXISTS] <name> [(<parameters>)]
 [CASCADE | RESTRICT];

Where name is the name of the procedure to drop.

Note

The specification of the parameter list is required in EDB Postgres Advanced Server under certain circumstances such as in an overloaded procedure. Oracle requires that you always
omit the parameter list.

Using IF EXISTS , CASCADE , or RESTRICT isn't compatible with Oracle databases. See Database Compatibility: SQL for information on these options.

This example drops the procedure simple_procedure :

DROP PROCEDURE simple_procedure;

19.2.4 Functions overview

Functions are standalone SPL programs that are invoked as expressions. When evaluated, a function returns a value that's substituted in the expression in which the function is embedded. Functions
can optionally take values from the calling program in the form of input parameters.

In addition to the fact that the function returns a value, a function can also optionally return values to the caller in the form of output parameters. However, we don't encourage the use of output
parameters in functions.

19.2.4.1 Creating a function

The CREATE FUNCTION command defines and names a standalone function to store in the database.

If a schema name is included, then the function is created in the specified schema. Otherwise it's created in the current schema. The name of the new function must not match any existing function with
the same input argument types in the same schema. However, functions of different input argument types can share a name. Sharing a name is called overloading.

Note

Overloading functions is an EDB Postgres Advanced Server feature. Overloading stored, standalone functions isn't compatible with Oracle databases.

To update the definition of an existing function, use CREATE OR REPLACE FUNCTION . You can't change the name or argument types of a function this way. If you try to, you instead create a new,
distinct function. Also, CREATE OR REPLACE FUNCTION doesn't let you change the return type of an existing function. To do that, you must drop and recreate the function. When using OUT
parameters, you can't change the types of any OUT parameters except by dropping the function.

CREATE [OR REPLACE] FUNCTION <name> [(<parameters>)]
 RETURN <data_type>
 [
 IMMUTABLE
 | STABLE
 | VOLATILE
 | DETERMINISTIC
 | [NOT] LEAKPROOF
 | CALLED ON NULL INPUT
 | RETURNS NULL ON NULL INPUT
 | STRICT
 | [EXTERNAL] SECURITY INVOKER
 | [EXTERNAL] SECURITY DEFINER
 | AUTHID DEFINER
 | AUTHID CURRENT_USER
 | PARALLEL { UNSAFE | RESTRICTED | SAFE }
 | COST <execution_cost>
 | ROWS <result_rows>
 | SET <configuration_parameter>
 { TO <value> | = <value> | FROM CURRENT }
 ...]
{ IS | AS }
 [PRAGMA AUTONOMOUS_TRANSACTION;]
 [<declarations>]
 BEGIN
 <statements>
 END [<name>];

Where:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 525

name is the identifier of the function.

parameters is a list of formal parameters.

data_type is the data type of the value returned by the function’s RETURN statement.

declarations are variable, cursor, type, or subprogram declarations. If you include subprogram declarations, you must declare them after all other variable, cursor, and type declarations.

statements are SPL program statements. The BEGIN - END block can contain an EXCEPTION section.

IMMUTABLE

STABLE

VOLATILE

These attributes inform the query optimizer about the behavior of the function. You can specify only one. VOLATILE is the default behavior.

IMMUTABLE indicates that the function can't modify the database and always reaches the same result when given the same argument values. It doesn't do database lookups or otherwise use
information not directly present in its argument list. If you include this clause, any call of the function with all-constant arguments can be immediately replaced with the function value.

STABLE indicates that the function can't modify the database. It also indicates that, in a single table scan, it consistently returns the same result for the same argument values but that its result
might change across SQL statements. Select this attribute for functions that depend on database lookups, parameter variables (such as the current time zone), and so on.

VOLATILE indicates that the function value can change even in a single table scan, so no optimizations can be made. Classify any function that has side effects as volatile, even if its result is
predictable, to prevent calls from being optimized away.

DETERMINISTIC

DETERMINISTIC is a synonym for IMMUTABLE . A DETERMINISTIC function can't modify the database and always reaches the same result when given the same argument values. It doesn't do
database lookups or otherwise use information not directly present in its argument list. If you include this clause, you can replace any call of the function with all-constant arguments with the function
value.

[NOT] LEAKPROOF

A LEAKPROOF function has no side effects and reveals no information about the values used to call the function.

CALLED ON NULL INPUT

RETURNS NULL ON NULL INPUT

STRICT

CALLED ON NULL INPUT (the default) indicates for the procedure to be called normally when some of its arguments are NULL . It is the author's responsibility to check for NULL values if
necessary and respond appropriately.

RETURNS NULL ON NULL INPUT or STRICT indicates that the procedure always returns NULL when any of its arguments are NULL . If you specify these clauses, the procedure isn't
executed when there are NULL arguments. Instead, a NULL result is assumed automatically.

[EXTERNAL] SECURITY DEFINER

SECURITY DEFINER (the default) specifies for the function to execute with the privileges of the user that created it. The key word EXTERNAL is allowed for SQL conformance but is optional.

[EXTERNAL] SECURITY INVOKER

The SECURITY INVOKER clause indicates for the function to execute with the privileges of the user that calls it. The key word EXTERNAL is allowed for SQL conformance but is optional.

AUTHID DEFINER

AUTHID CURRENT_USER

The AUTHID DEFINER clause is a synonym for [EXTERNAL] SECURITY DEFINER . If the AUTHID clause is omitted or if AUTHID DEFINER is specified, the rights of the function
owner determine access privileges to database objects.

The AUTHID CURRENT_USER clause is a synonym for [EXTERNAL] SECURITY INVOKER . If AUTHID CURRENT_USER is specified, the rights of the current user executing the function
determine access privileges.

PARALLEL { UNSAFE | RESTRICTED | SAFE }

The PARALLEL clause enables the use of parallel sequential scans, that is, parallel mode. A parallel sequential scan uses multiple workers to scan a relation in parallel during a query in contrast to a

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 526

serial sequential scan.

When this value is set to UNSAFE , you can't execute the function in parallel mode. The presence of such a function in a SQL statement forces a serial execution plan. This is the default setting.

When this value is set to RESTRICTED , you can execute the function in parallel mode, but the execution is restricted to the parallel group leader. If the qualification for any particular relation
has anything that's parallel restricted, that relation isn't chosen for parallelism.

When this value is set to SAFE , you can execute the function in parallel mode with no restriction.

COST execution_cost

execution_cost is a positive number giving the estimated execution cost for the function, in units of cpu_operator_cost . If the function returns a set, this is the cost per returned row. Larger
values cause the planner to try to avoid evaluating the function more often than necessary.

ROWS result_rows

result_rows is a positive number giving the estimated number of rows for the planner to expect the function to return. This is allowed only when the function is declared to return a set. The default
assumption is 1000 rows.

SET configuration_parameter { TO value | = value | FROM CURRENT }

The SET clause causes the specified configuration parameter to be set to the specified value when the function is entered and then restored to its prior value when the function exits. SET FROM
CURRENT saves the session's current value of the parameter as the value to apply when the function is entered.

If a SET clause is attached to a function, then the effects of a SET LOCAL command executed inside the function for the same variable are restricted to the function. The configuration parameter's
prior value is restored at function exit. A SET command without LOCAL overrides the SET clause, much as it does for a previous SET LOCAL command. The effects of such a command persist after
procedure exit, unless the current transaction is rolled back.

PRAGMA AUTONOMOUS_TRANSACTION

PRAGMA AUTONOMOUS_TRANSACTION is the directive that sets the function as an autonomous transaction.

Note

The STRICT , LEAKPROOF , PARALLEL , COST , ROWS and SET keywords provide extended functionality for EDB Postgres Advanced Server and aren't supported by Oracle.

Examples

This example shows a simple function that takes no parameters:

CREATE OR REPLACE FUNCTION simple_function
 RETURN VARCHAR2
IS
BEGIN
 RETURN 'That''s All Folks!';
END simple_function;

This function takes two input parameters:

CREATE OR REPLACE FUNCTION emp_comp (
 p_sal NUMBER,
 p_comm NUMBER
) RETURN NUMBER
IS
BEGIN
 RETURN (p_sal + NVL(p_comm, 0)) * 24;
END emp_comp;

This example uses the AUTHID CURRENT_USER clause and STRICT keyword in a function declaration:

CREATE OR REPLACE FUNCTION dept_salaries(dept_id int) RETURN NUMBER
 STRICT
 AUTHID CURRENT_USER
BEGIN
 RETURN QUERY (SELECT sum(salary) FROM emp WHERE deptno = id);
END;

Include the STRICT keyword to instruct the server to return NULL if any input parameter passed is NULL . If a NULL value is passed, the function doesn't execute.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 527

The dept_salaries function executes with the privileges of the role that's calling the function. If the current user doesn't have the privileges to perform the SELECT statement querying the emp
table (to display employee salaries), the function reports an error. To instruct the server to use the privileges associated with the role that defined the function, replace the AUTHID CURRENT_USER
clause with the AUTHID DEFINER clause.

19.2.4.2 Calling a function

You can use a function anywhere an expression can appear in an SPL statement. Invoke a function by specifying its name followed by any parameters enclosed in parentheses.

<name> [([<parameters>])]

name is the name of the function.

parameters is a list of parameters.

Note

If there are no parameters to pass, you can call the function with an empty parameter list, or you can omit the parentheses.

This example shows how to call the function from another SPL program:

BEGIN
 DBMS_OUTPUT.PUT_LINE(simple_function);
END;

That's All Folks!

You typically use a function in a SQL statement, as this example shows:

SELECT empno "EMPNO", ename "ENAME", sal "SAL", comm "COMM",
 emp_comp(sal, comm) "YEARLY COMPENSATION" FROM emp;

 EMPNO | ENAME | SAL | COMM | YEARLY COMPENSATION
-------+--------+---------+---------+---------------------
 7369 | SMITH | 800.00 | | 19200.00
 7499 | ALLEN | 1600.00 | 300.00 | 45600.00
 7521 | WARD | 1250.00 | 500.00 | 42000.00
 7566 | JONES | 2975.00 | | 71400.00
 7654 | MARTIN | 1250.00 | 1400.00 | 63600.00
 7698 | BLAKE | 2850.00 | | 68400.00
 7782 | CLARK | 2450.00 | | 58800.00
 7788 | SCOTT | 3000.00 | | 72000.00
 7839 | KING | 5000.00 | | 120000.00
 7844 | TURNER | 1500.00 | 0.00 | 36000.00
 7876 | ADAMS | 1100.00 | | 26400.00
 7900 | JAMES | 950.00 | | 22800.00
 7902 | FORD | 3000.00 | | 72000.00
 7934 | MILLER | 1300.00 | | 31200.00
(14 rows)

19.2.4.3 Deleting a function

You can delete a function from the database using DROP FUNCTION .

DROP FUNCTION [IF EXISTS] <name> [(<parameters>)]
 [CASCADE | RESTRICT];

Where name is the name of the function to drop.

Note

Specifying the parameter list is required in EDB Postgres Advanced Server under certain circumstances such as in an overloaded function. Oracle requires that you always omit the
parameter list.

Use of IF EXISTS , CASCADE , or RESTRICT isn't compatible with Oracle databases. See the Database Compatibility: SQL for information on these options.

This example drops the function simple_function :

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 528

DROP FUNCTION simple_function;

19.2.5 Procedure and function parameters

An important aspect of using procedures and functions is the capability to pass data from the calling program to the procedure or function and to receive data back from the procedure or function. You
do this by using parameters.

Declare parameters in the procedure or function definition, and enclose them in parentheses following the procedure or function name. Parameters declared in the procedure or function definition are
known as formal parameters. When you invoke the procedure or function, the calling program supplies the actual data to use in the called program’s processing as well as the variables that receive the
results of the called program’s processing. The data and variables supplied by the calling program when the procedure or function is called are referred to as the actual parameters.

The following is the general format of a formal parameter declaration.

(<name> [IN | OUT | IN OUT] <data_type> [DEFAULT <value>])

name is an identifier assigned to the formal parameter.
Whether a parameter is IN , OUT , or IN OUT is referred to as the parameter’s mode. If specified, IN defines the parameter for receiving input data into the procedure or function. An IN
parameter can also be initialized to a default value. If specified, OUT defines the parameter for returning data from the procedure or function. If specified, IN OUT allows the parameter to be
used for both input and output. If all of IN , OUT , and IN OUT are omitted, then the parameter acts as if it were defined as IN by default.
data_type defines the data type of the parameter.
value is a default value assigned to an IN parameter in the called program if you don't specify an actual parameter in the call.

This example shows a procedure that takes parameters:

CREATE OR REPLACE PROCEDURE emp_query (
 p_deptno IN NUMBER,
 p_empno IN OUT NUMBER,
 p_ename IN OUT VARCHAR2,
 p_job OUT VARCHAR2,
 p_hiredate OUT DATE,
 p_sal OUT NUMBER
)
IS
BEGIN
 SELECT empno, ename, job, hiredate, sal
 INTO p_empno, p_ename, p_job, p_hiredate, p_sal
 FROM emp
 WHERE deptno = p_deptno
 AND (empno = p_empno
 OR ename = UPPER(p_ename));
END;

In this example, p_deptno is an IN formal parameter, p_empno and p_ename are IN OUT formal parameters, and p_job, p_hiredate and p_sal are OUT formal parameters.

Note

In the example, no maximum length was specified on the VARCHAR2 parameters and no precision and scale were specified on the NUMBER parameters. It's illegal to specify a length,
precision, scale, or other constraints on parameter declarations. These constraints are inherited from the actual parameters that are used when the procedure or function is called.

The emp_query procedure can be called by another program, passing it the actual parameters. This example is another SPL program that calls emp_query .

DECLARE
 v_deptno NUMBER(2);
 v_empno NUMBER(4);
 v_ename VARCHAR2(10);
 v_job VARCHAR2(9);
 v_hiredate DATE;
 v_sal NUMBER;
BEGIN
 v_deptno := 30;
 v_empno := 7900;
 v_ename := '';
 emp_query(v_deptno, v_empno, v_ename, v_job, v_hiredate, v_sal);
 DBMS_OUTPUT.PUT_LINE('Department : ' || v_deptno);
 DBMS_OUTPUT.PUT_LINE('Employee No: ' || v_empno);
 DBMS_OUTPUT.PUT_LINE('Name : ' || v_ename);
 DBMS_OUTPUT.PUT_LINE('Job : ' || v_job);
 DBMS_OUTPUT.PUT_LINE('Hire Date : ' || v_hiredate);
 DBMS_OUTPUT.PUT_LINE('Salary : ' || v_sal);
END;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 529

In this example, v_deptno , v_empno , v_ename , v_job , v_hiredate , and v_sal are the actual parameters.

The output from the example is:

Department : 30
Employee No: 7900
Name : JAMES
Job : CLERK
Hire Date : 03-DEC-81
Salary : 950

19.2.5.1 Positional versus named parameter notation

You can use either positional or named parameter notation when passing parameters to a function or procedure. If you specify parameters using positional notation, you must list the parameters in the
order that they are declared. If you specify parameters with named notation, the order of the parameters doesn't matter.

To specify parameters using named notation, list the name of each parameter followed by an arrow (=>) and the parameter value. Named notation is more verbose but makes your code easier to read
and maintain.

This example uses positional and named parameter notation:

CREATE OR REPLACE PROCEDURE emp_info (
 p_deptno IN NUMBER,
 p_empno IN OUT NUMBER,
 p_ename IN OUT VARCHAR2,
)
IS
BEGIN
 dbms_output.put_line('Department Number =' || p_deptno);
 dbms_output.put_line('Employee Number =' || p_empno);
 dbms_output.put_line('Employee Name =' || p_ename;
END;

To call the procedure using positional notation, pass the following:

emp_info(30, 7455, 'Clark');

To call the procedure using named notation, pass the following:

emp_info(p_ename =>'Clark', p_empno=>7455, p_deptno=>30);

If you used named notation, you don't need to rearrange a procedure’s parameter list if the parameter list changes, the parameters are reordered, or an optional parameter is added.

When an argument has a default value and the argument isn't a trailing argument, you must use named notation to call the procedure or function. This example shows a procedure with two leading
default arguments:

CREATE OR REPLACE PROCEDURE check_balance (
 p_customerID IN NUMBER DEFAULT NULL,
 p_balance IN NUMBER DEFAULT NULL,
 p_amount IN NUMBER
)
IS
DECLARE
 balance NUMBER;
BEGIN
 IF (p_balance IS NULL AND p_customerID IS NULL) THEN
 RAISE_APPLICATION_ERROR
 (-20010, 'Must provide balance or customer');
 ELSEIF (p_balance IS NOT NULL AND p_customerID IS NOT NULL) THEN
 RAISE_APPLICATION_ERROR
 (-20020,'Must provide balance or customer, not both');
 ELSEIF (p_balance IS NULL) THEN
 balance := getCustomerBalance(p_customerID);
 ELSE
 balance := p_balance;
 END IF;

 IF (amount > balance) THEN
 RAISE_APPLICATION_ERROR
 (-20030, 'Balance insufficient');
 END IF;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 530

END;

You can omit nontrailing argument values when you call this procedure only by using named notation. When using positional notation, only trailing arguments are allowed to default. You can call this
procedure with the following arguments:

check_balance(p_customerID => 10, p_amount = 500.00)

check_balance(p_balance => 1000.00, p_amount = 500.00)

You can use a combination of positional and named notation, referred to as mixed notation, to specify parameters. This example shows using mixed parameter notation:

CREATE OR REPLACE PROCEDURE emp_info (
 p_deptno IN NUMBER,
 p_empno IN OUT NUMBER,
 p_ename IN OUT VARCHAR2,
)
IS
BEGIN
 dbms_output.put_line('Department Number =' || p_deptno);
 dbms_output.put_line('Employee Number =' || p_empno);
 dbms_output.put_line('Employee Name =' || p_ename;
END;

You can call the procedure using mixed notation:

emp_info(30, p_ename =>'Clark', p_empno=>7455);

When using mixed notation, named arguments can't precede positional arguments.

19.2.5.2 Parameter modes

A parameter has one of three possible modes: IN , OUT , or IN OUT . The following characteristics of a formal parameter depend on its mode:

Its initial value when the procedure or function is called
Whether the called procedure or function can modify the formal parameter
How the actual parameter value is passed from the calling program to the called program
What happens to the formal parameter value when an unhandled exception occurs in the called program

The following table summarizes the behavior of parameters according to their mode.

Mode property IN IN OUT OUT

Formal parameter initialized to: Actual parameter value Actual parameter value Actual parameter value

Formal parameter modifiable by the called program? No Yes Yes

Actual parameter contains: (after normal called program
termination)

Original actual parameter value prior to
the call

Last value of the formal parameter Last value of the formal parameter

Actual parameter contains: (after a handled exception in the called
program)

Original actual parameter value prior to
the call

Last value of the formal parameter Last value of the formal parameter

Actual parameter contains: (after an unhandled exception in the
called program)

Original actual parameter value prior to
the call

Original actual parameter value prior to
the call

Original actual parameter value prior to
the call

As shown by the table, an IN formal parameter is initialized to the actual parameter with which it's called unless it was explicitly initialized with a default value. You can reference the IN parameter in
the called program. However, the called program can't assign a new value to the IN parameter. After control returns to the calling program, the actual parameter always contains the same value that it
had prior to the call.

The OUT formal parameter is initialized to the actual parameter with which it's called. The called program can reference and assign new values to the formal parameter. If the called program ends
without an exception, the actual parameter takes on the value last set in the formal parameter. If a handled exception occurs, the value of the actual parameter takes on the last value assigned to the
formal parameter. If an unhandled exception occurs, the value of the actual parameter remains as it was prior to the call.

Like an IN parameter, an IN OUT formal parameter is initialized to the actual parameter with which it's called. Like an OUT parameter, an IN OUT formal parameter can be modifiwed by the
called program. The last value in the formal parameter is passed to the calling program’s actual parameter if the called program ends without an exception. If a handled exception occurs, the value of
the actual parameter takes on the last value assigned to the formal parameter. If an unhandled exception occurs, the value of the actual parameter remains as it was prior to the call.

19.2.5.3 Using default values in parameters

You can set a default value of a formal parameter by including the DEFAULT clause or using the assignment operator (:=) in the CREATE PROCEDURE or CREATE FUNCTION statement.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 531

The general form of a formal parameter declaration is:

(<name> [IN|OUT|IN OUT] <data_type> [{DEFAULT | := } <expr>])

name is an identifier assigned to the parameter.

IN|OUT|IN OUT specifies the parameter mode.

data_type is the data type assigned to the variable.

expr is the default value assigned to the parameter. If you don't include a DEFAULT clause, the caller must provide a value for the parameter.

The default value is evaluated every time you invoke the function or procedure. For example, assigning SYSDATE to a parameter of type DATE causes the parameter to have the time of the current
invocation, not the time when the procedure or function was created.

This example uses the assignment operator to set a default value of SYSDATE into the parameter hiredate:

CREATE OR REPLACE PROCEDURE hire_emp (
 p_empno NUMBER,
 p_ename VARCHAR2,
 p_hiredate DATE := SYSDATE
)
IS
BEGIN
 INSERT INTO emp(empno, ename, hiredate)
 VALUES(p_empno, p_ename, p_hiredate);

 DBMS_OUTPUT.PUT_LINE('Hired!');
END hire_emp;

If the parameter declaration includes a default value, you can omit the parameter from the actual parameter list when you call the procedure. Calls to the sample procedure (hire_emp) must
include two arguments: the employee number (p_empno) and employee name (p_empno) . The third parameter (p_hiredate) defaults to the value of SYSDATE:

hire_emp (7575, Clark)

If you do include a value for the actual parameter when you call the procedure, that value takes precedence over the default value. This command adds an employee with a hiredate of February 15,
2010 , regardless of the current value of SYSDATE .

hire_emp (7575, Clark, 15-FEB-2010)

You can write the same procedure by substituting the DEFAULT keyword for the assignment operator:

CREATE OR REPLACE PROCEDURE hire_emp (
 p_empno NUMBER,
 p_ename VARCHAR2,
 p_hiredate DATE DEFAULT SYSDATE
)
IS
BEGIN
 INSERT INTO emp(empno, ename, hiredate)
 VALUES(p_empno, p_ename, p_hiredate);

 DBMS_OUTPUT.PUT_LINE('Hired!');
END hire_emp;

19.2.6 Subprograms: subprocedures and subfunctions

You can use the capability and functionality of SPL procedure and function programs to your advantage to build well-structured and maintainable programs by organizing the SPL code into
subprocedures and subfunctions.

You can invoke the same SPL code multiple times from different locations in a relatively large SPL program by declaring subprocedures and subfunctions in the SPL program.

Subprocedures and subfunctions have the following characteristics:

The syntax, structure, and functionality of subprocedures and subfunctions are almost identical to standalone procedures and functions. The major difference is the use of the keyword
PROCEDURE or FUNCTION instead of CREATE PROCEDURE or CREATE FUNCTION to declare the subprogram.

Subprocedures and subfunctions provide isolation for the identifiers (that is, variables, cursors, types, and other subprograms) declared within itself. That is, you can't access or alter these
identifiers from the upper, parent-level SPL programs or subprograms outside of the subprocedure or subfunction. This ensures that the subprocedure and subfunction results are reliable and
predictable.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 532

The declaration section of subprocedures and subfunctions can include its own subprocedures and subfunctions. Thus, a multi-level hierarchy of subprograms can exist in the standalone
program. In the hierarchy, a subprogram can access the identifiers of upper-level parent subprograms and also invoke upper-level parent subprograms. However, the same access to identifiers
and invocation can't be done for lower-level child subprograms in the hierarchy.

You can declare and invoke subprocedures and subfunctions from any of the following types of SPL programs:

Standalone procedures and functions
Anonymous blocks
Triggers
Packages
Procedure and function methods of an object type body
Subprocedures and subfunctions declared in any of the preceding programs

19.2.6.1 Creating a subprocedure

The PROCEDURE clause specified in the declaration section defines and names a subprocedure local to that block.

The term block refers to the SPL block structure consisting of an optional declaration section, a mandatory executable section, and an optional exception section. Blocks are the structures for
standalone procedures and functions, anonymous blocks, subprograms, triggers, packages, and object type methods.

The phrase the identifier is local to the block means that the identifier (that is, a variable, cursor, type, or subprogram) is declared in the declaration section of that block. Therefore, the SPL code can
access it in the executable section and optional exception section of that block.

You can declare subprocedures only after all the other variable, cursor, and type declarations included in the declaration section. Subprograms must be the last set of declarations.

PROCEDURE <name> [(<parameters>)]
{ IS | AS }
 [PRAGMA AUTONOMOUS_TRANSACTION;]
 [<declarations>]
 BEGIN
 <statements>
 END [<name>];

Where:

name is the identifier of the subprocedure.

parameters is a list of formal parameters.

PRAGMA AUTONOMOUS_TRANSACTION is the directive that sets the subprocedure as an autonomous transaction.

declarations are variable, cursor, type, or subprogram declarations. If subprogram declarations are included, you must declare them after all other variable, cursor, and type declarations.

statements are SPL program statements. The BEGIN - END block can contain an EXCEPTION section.

Examples

This example is a subprocedure in an anonymous block:

DECLARE
 PROCEDURE list_emp
 IS
 v_empno NUMBER(4);
 v_ename VARCHAR2(10);
 CURSOR emp_cur IS
 SELECT empno, ename FROM emp ORDER BY empno;
 BEGIN
 OPEN emp_cur;
 DBMS_OUTPUT.PUT_LINE('Subprocedure list_emp:');
 DBMS_OUTPUT.PUT_LINE('EMPNO ENAME');
 DBMS_OUTPUT.PUT_LINE('----- -------');
 LOOP
 FETCH emp_cur INTO v_empno, v_ename;
 EXIT WHEN emp_cur%NOTFOUND;
 DBMS_OUTPUT.PUT_LINE(v_empno || ' ' || v_ename);
 END LOOP;
 CLOSE emp_cur;
 END;
BEGIN

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 533

 list_emp;
END;

Invoking this anonymous block produces the following output:

Subprocedure list_emp:
EMPNO ENAME
----- -------
7369 SMITH
7499 ALLEN
7521 WARD
7566 JONES
7654 MARTIN
7698 BLAKE
7782 CLARK
7788 SCOTT
7839 KING
7844 TURNER
7876 ADAMS
7900 JAMES
7902 FORD
7934 MILLER

This example is a subprocedure in a trigger:

CREATE OR REPLACE TRIGGER dept_audit_trig
 AFTER INSERT OR UPDATE OR DELETE ON dept
DECLARE
 v_action VARCHAR2(24);
 PROCEDURE display_action (
 p_action IN VARCHAR2
)
 IS
 BEGIN
 DBMS_OUTPUT.PUT_LINE('User ' || USER || ' ' || p_action ||
 ' dept on ' || TO_CHAR(SYSDATE,'YYYY-MM-DD'));
 END display_action;
BEGIN
 IF INSERTING THEN
 v_action := 'added';
 ELSIF UPDATING THEN
 v_action := 'updated';
 ELSIF DELETING THEN
 v_action := 'deleted';
 END IF;
 display_action(v_action);
END;

Invoking this trigger produces the following output:

INSERT INTO dept VALUES (50,'HR','DENVER');

User enterprisedb added dept on 2016-07-26

19.2.6.2 Creating a subfunction

The FUNCTION clause specified in the declaration section defines and names a subfunction local to that block.

The term block refers to the SPL block structure consisting of an optional declaration section, a mandatory executable section, and an optional exception section. Blocks are the structures for
standalone procedures and functions, anonymous blocks, subprograms, triggers, packages, and object type methods.

The phrase the identifier is local to the block means that the identifier (that is, a variable, cursor, type, or subprogram) is declared in the declaration section of that block and is therefore accessible by
the SPL code in the executable section and optional exception section of that block.

FUNCTION <name> [(<parameters>)]
RETURN <data_type>
{ IS | AS }
 [PRAGMA AUTONOMOUS_TRANSACTION;]
 [<declarations>]
 BEGIN
 <statements>
 END [<name>];

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 534

Where:

name is the identifier of the subfunction.

parameters is a list of formal parameters.

data_type is the data type of the value returned by the function’s RETURN statement.

PRAGMA AUTONOMOUS_TRANSACTION is the directive that sets the subfunction as an autonomous transaction.

declarations are variable, cursor, type, or subprogram declarations. If subprogram declarations are included, they must be declared after all other variable, cursor, and type declarations.

statements are SPL program statements. The BEGIN - END block can contain an EXCEPTION section.

Examples

This example shows the use of a recursive subfunction:

DECLARE
 FUNCTION factorial (
 n BINARY_INTEGER
) RETURN BINARY_INTEGER
 IS
 BEGIN
 IF n = 1 THEN
 RETURN n;
 ELSE
 RETURN n * factorial(n-1);
 END IF;
 END factorial;
BEGIN
 FOR i IN 1..5 LOOP
 DBMS_OUTPUT.PUT_LINE(i || '! = ' || factorial(i));
 END LOOP;
END;

The following is the output:

1! = 1
2! = 2
3! = 6
4! = 24
5! = 120

19.2.6.3 Block relationships

You can declare the relationship between blocks in an SPL program. The ability to invoke subprograms and access identifiers declared in a block depends on this relationship.

The following are the basic terms:

A block is the basic SPL structure consisting of an optional declaration section, a mandatory executable section, and an optional exception section. Blocks implement standalone procedure and
function programs, anonymous blocks, triggers, packages, and subprocedures and subfunctions.
An identifier (variable, cursor, type, or subprogram) local to a block means that it's declared in the declaration section of the given block. You can access such local identifiers from the executable
section and optional exception section of the block.
The parent block contains the declaration of another block, that is, the child block.
Descendent blocks are the set of blocks forming the child relationship starting from a given parent block.
Ancestor blocks are the set of blocks forming the parental relationship starting from a given child block.
The set of descendent (ancestor) blocks form a hierarchy.
The level is an ordinal number of a given block from the highest ancestor block. For example, given a standalone procedure, the subprograms declared in the declaration section of this procedure
are all at the same level, such as level 1. Additional subprograms in the declaration section of the subprograms declared in the standalone procedure are at the next level, that is, level 2.
The sibling blocks are the set of blocks that have the same parent block, that is, they are all locally declared in the same block. Sibling blocks are at the same level relative to each other.

The following schematic of a set of procedure declaration sections provides an example of a set of blocks and their relationships to their surrounding blocks.

The two vertical lines on the left-hand side of the blocks indicate there are two pairs of sibling blocks. block_1a and block_1b is one pair, and block_2a and block_2b is the second pair.

The relationship of each block with its ancestors is shown on the right-hand side of the blocks. Three hierarchical paths are formed when progressing up the hierarchy from the lowest-level child blocks.
The first consists of block_0 , block_1a , block_2a , and block_3 . The second is block_0 , block_1a , and block_2b . The third is block_0 , block_1b , and block_2b .

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 535

CREATE PROCEDURE block_0
IS
 .
 +---- PROCEDURE block_1a ------- Local to block_0
 | IS
 | . |
 | . |
 | . |
 | +-- PROCEDURE block_2a ---- Local to block_1a and descendant
 | | IS of block_0
 | | . |
 | | . |
 | | . |
 | | PROCEDURE block_3 -- Local to block_2a and descendant
 | | IS of block_1a, and block_0
 | Siblings . |
 | | . |
 | | . |
 | | END block_3; |
 | | END block_2a; |
 | +-- PROCEDURE block_2b ---- Local to block_1a and descendant
 | | IS of block_0
 Siblings | , |
 | | . |
 | | . |
 | +-- END block_2b; |
 | |
 | END block_1a; ---------+
 +---- PROCEDURE block_1b; ------- Local to block_0
 | IS
 | . |
 | . |
 | . |
 | PROCEDURE block_2b ---- Local to block_1b and descendant
 | IS of block_0
 | . |
 | . |
 | . |
 | END block_2b; |
 | |
 +---- END block_1b; ---------+
BEGIN
 .
 .
 .
END block_0;

The rules for invoking subprograms based on block location are described starting with Invoking subprograms. The rules for accessing variables based on block location are described in Accessing
subprogram variables.

19.2.6.4 Invoking subprograms

Invoke a subprogram in the same manner as a standalone procedure or function by specifying its name and any actual parameters.

You can invoke the subprogram with zero, one, or more qualifiers. Qualifiers are the names of the parent subprograms or labeled anonymous blocks forming the ancestor hierarchy from which the
subprogram was declared.

Invoke the subprogram using a dot-separated list of qualifiers ending with the subprogram name and any of its arguments:

[[<qualifier_1>.][...]<qualifier_n>.]<subprog> [(<arguments>)]

If specified, qualifier_n is the subprogram in which subprog was declared in its declaration section. The preceding list of qualifiers must reside in a continuous path up the hierarchy from
qualifier_n to qualifier_1 . qualifier_1 can be any ancestor subprogram in the path as well as any of the following:

Standalone procedure name containing the subprogram
Standalone function name containing the subprogram
Package name containing the subprogram
Object type name containing the subprogram in an object type method
An anonymous block label included prior to the DECLARE keyword if a declaration section exists, or prior to the BEGIN keyword if there is no declaration section

Note

qualifier_1 can't be a schema name. If it is, an error is thrown when invoking the subprogram. This EDB Postgres Advanced Server restriction isn't compatible with Oracle databases,
which allow the use of the schema name as a qualifier.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 536

arguments is the list of actual parameters to pass to the subprocedure or subfunction.

When you invoke the subprogram, the search for the subprogram occurs as follows:

The invoked subprogram name of its type (that is, subprocedure or subfunction) along with any qualifiers in the specified order (referred to as the invocation list) is used to find a matching set of
blocks residing in the same hierarchical order. The search begins in the block hierarchy where the lowest level is the block from where the subprogram is invoked. The declaration of the
subprogram must be in the SPL code prior to the code line where it's invoked when the code is observed from top to bottom. (You can achieve an exception to this requirement using a forward
declaration. See Using forward declarations.)
If the invocation list doesn't match the hierarchy of blocks starting from the block where the subprogram is invoked, a comparison is made by matching the invocation list starting with the parent
of the previous starting block. In other words, the comparison progresses up the hierarchy.
If there are sibling blocks of the ancestors, the invocation list comparison also includes the hierarchy of the sibling blocks but always comparing in an upward level. It doesn't compare the
descendants of the sibling blocks.
This comparison process continues up the hierarchies until the first complete match is found, in which case the located subprogram is invoked. The formal parameter list of the matched
subprogram must comply with the actual parameter list specified for the invoked subprogram. Otherwise an error occurs when invoking the subprogram.
If no match is found after searching up to the standalone program, then an error is thrown when invoking the subprogram.

Note

The EDB Postgres Advanced Server search algorithm for subprogram invocation isn't completely compatible with Oracle databases. For Oracle, the search looks for the first match of the first
qualifier (that is, qualifier_1). When such a match is found, all remaining qualifiers, the subprogram name, subprogram type, and arguments of the invocation must match the hierarchy
content where the matching first qualifier is found. Otherwise an error is thrown. For EDB Postgres Advanced Server, a match isn't found unless all qualifiers, the subprogram name, and the
subprogram type of the invocation match the hierarchy content. If such an exact match isn't initially found, EDB Postgres Advanced Server continues the search progressing up the hierarchy.

You can access the location of subprograms relative to the block from where the invocation is made as follows:

You can invoke subprograms declared in the local block from the executable section or the exception section of the same block.
You can invoke subprograms declared in the parent or other ancestor blocks from the child block of the parent or other ancestors.
You can call subprograms declared in sibling blocks from a sibling block or from any descendent block of the sibling.

However, you can't access the following locations of subprograms relative to the block from where the invocation is made:

Subprograms declared in blocks that are descendants of the block from where the invocation is attempted
Subprograms declared in blocks that are descendants of a sibling block from where the invocation is attempted

Invoking locally declared subprograms

This example contains a single hierarchy of blocks contained in the standalone procedure level_0 . In the executable section of the procedure level_1a , the means of invoking the local
procedure level_2a are shown, with and without qualifiers.

Access to the descendant of the local procedure level_2a , which is the procedure level_3a , isn't permitted, with or without qualifiers. These calls are commented out in the example.

CREATE OR REPLACE PROCEDURE level_0
IS
 PROCEDURE level_1a
 IS
 PROCEDURE level_2a
 IS
 PROCEDURE level_3a
 IS
 BEGIN
 DBMS_OUTPUT.PUT_LINE('........ BLOCK level_3a');
 DBMS_OUTPUT.PUT_LINE('........ END BLOCK level_3a');
 END level_3a;
 BEGIN
 DBMS_OUTPUT.PUT_LINE('...... BLOCK level_2a');
 DBMS_OUTPUT.PUT_LINE('...... END BLOCK level_2a');
 END level_2a;
 BEGIN
 DBMS_OUTPUT.PUT_LINE('.. BLOCK level_1a');
 level_2a; -- Local block called
 level_1a.level_2a; -- Qualified local block called
 level_0.level_1a.level_2a; -- Double qualified local block called
-- level_3a; -- Error - Descendant of local block
-- level_2a.level_3a; -- Error - Descendant of local block
 DBMS_OUTPUT.PUT_LINE('.. END BLOCK level_1a');
 END level_1a;
BEGIN
 DBMS_OUTPUT.PUT_LINE('BLOCK level_0');
 level_1a;
 DBMS_OUTPUT.PUT_LINE('END BLOCK level_0');
END level_0;

When the standalone procedure is invoked, the output is the following. This output indicates that the procedure level_2a is successfully invoked from the calls in the executable section of the
procedure level_1a :

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 537

BEGIN
 level_0;
END;

BLOCK level_0
.. BLOCK level_1a
...... BLOCK level_2a
...... END BLOCK level_2a
...... BLOCK level_2a
...... END BLOCK level_2a
...... BLOCK level_2a
...... END BLOCK level_2a
.. END BLOCK level_1a
END BLOCK level_0

If you try to run the procedure level_0 with any of the calls to the descendent block uncommented, then an error occurs.

Invoking subprograms declared in ancestor blocks

This example shows how to invoke subprograms that are declared in parent and other ancestor blocks relative to the block where the invocation is made.

In this example, the executable section of procedure level_3a invokes the procedure level_2a , which is its parent block. v_cnt is used to avoid an infinite loop.

CREATE OR REPLACE PROCEDURE level_0
IS
 v_cnt NUMBER(2) := 0;
 PROCEDURE level_1a
 IS
 PROCEDURE level_2a
 IS
 PROCEDURE level_3a
 IS
 BEGIN
 DBMS_OUTPUT.PUT_LINE('........ BLOCK level_3a');
 v_cnt := v_cnt + 1;
 IF v_cnt < 2 THEN
 level_2a; -- Parent block called
 END IF;
 DBMS_OUTPUT.PUT_LINE('........ END BLOCK level_3a');
 END level_3a;
 BEGIN
 DBMS_OUTPUT.PUT_LINE('...... BLOCK level_2a');
 level_3a; -- Local block called
 DBMS_OUTPUT.PUT_LINE('...... END BLOCK level_2a');
 END level_2a;
 BEGIN
 DBMS_OUTPUT.PUT_LINE('.. BLOCK level_1a');
 level_2a; -- Local block called
 DBMS_OUTPUT.PUT_LINE('.. END BLOCK level_1a');
 END level_1a;
BEGIN
 DBMS_OUTPUT.PUT_LINE('BLOCK level_0');
 level_1a;
 DBMS_OUTPUT.PUT_LINE('END BLOCK level_0');
END level_0;

The following is the output:

BEGIN
 level_0;
END;

BLOCK level_0
.. BLOCK level_1a
...... BLOCK level_2a
........ BLOCK level_3a
...... BLOCK level_2a
........ BLOCK level_3a
........ END BLOCK level_3a
...... END BLOCK level_2a
........ END BLOCK level_3a
...... END BLOCK level_2a
.. END BLOCK level_1a
END BLOCK level_0

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 538

In a similar example, the executable section of the procedure level_3a invokes the procedure level_1a , which is further up the ancestor hierarchy. v_cnt is again used to avoid an infinite loop.

CREATE OR REPLACE PROCEDURE level_0
IS
 v_cnt NUMBER(2) := 0;
 PROCEDURE level_1a
 IS
 PROCEDURE level_2a
 IS
 PROCEDURE level_3a
 IS
 BEGIN
 DBMS_OUTPUT.PUT_LINE('........ BLOCK level_3a');
 v_cnt := v_cnt + 1;
 IF v_cnt < 2 THEN
 level_1a; -- Ancestor block called
 END IF;
 DBMS_OUTPUT.PUT_LINE('........ END BLOCK level_3a');
 END level_3a;
 BEGIN
 DBMS_OUTPUT.PUT_LINE('...... BLOCK level_2a');
 level_3a; -- Local block called
 DBMS_OUTPUT.PUT_LINE('...... END BLOCK level_2a');
 END level_2a;
 BEGIN
 DBMS_OUTPUT.PUT_LINE('.. BLOCK level_1a');
 level_2a; -- Local block called
 DBMS_OUTPUT.PUT_LINE('.. END BLOCK level_1a');
 END level_1a;
BEGIN
 DBMS_OUTPUT.PUT_LINE('BLOCK level_0');
 level_1a;
 DBMS_OUTPUT.PUT_LINE('END BLOCK level_0');
END level_0;

The following is the output:

BEGIN
 level_0;
END;

BLOCK level_0
.. BLOCK level_1a
...... BLOCK level_2a
........ BLOCK level_3a
.. BLOCK level_1a
...... BLOCK level_2a
........ BLOCK level_3a
........ END BLOCK level_3a
...... END BLOCK level_2a
.. END BLOCK level_1a
........ END BLOCK level_3a
...... END BLOCK level_2a
.. END BLOCK level_1a
END BLOCK level_0

Invoking subprograms declared in sibling blocks

These examples show how you can invoke subprograms that are declared in a sibling block relative to the local, parent, or other ancestor blocks from where the invocation of the subprogram is made.

In this example, the executable section of the procedure level_1b invokes the procedure level_1a , which is its sibling block. Both are local to the standalone procedure level_0 .

Invoking level_2a or, equivalently, level_1a.level_2a from the procedure level_1b is commented out as this call results in an error. Invoking a descendent subprogram (level_2a) of a
sibling block (level_1a) isn't permitted.

CREATE OR REPLACE PROCEDURE level_0
IS
 v_cnt NUMBER(2) := 0;
 PROCEDURE level_1a
 IS
 PROCEDURE level_2a
 IS
 BEGIN

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 539

 DBMS_OUTPUT.PUT_LINE('...... BLOCK level_2a');
 DBMS_OUTPUT.PUT_LINE('...... END BLOCK level_2a');
 END level_2a;
 BEGIN
 DBMS_OUTPUT.PUT_LINE('.. BLOCK level_1a');
 DBMS_OUTPUT.PUT_LINE('.. END BLOCK level_1a');
 END level_1a;
 PROCEDURE level_1b
 IS
 BEGIN
 DBMS_OUTPUT.PUT_LINE('.. BLOCK level_1b');
 level_1a; -- Sibling block called
-- level_2a; -- Error – Descendant of sibling block
-- level_1a.level_2a; -- Error - Descendant of sibling block
 DBMS_OUTPUT.PUT_LINE('.. END BLOCK level_1b');
 END level_1b;
BEGIN
 DBMS_OUTPUT.PUT_LINE('BLOCK level_0');
 level_1b;
 DBMS_OUTPUT.PUT_LINE('END BLOCK level_0');
END level_0;

The following is the output:

BEGIN
 level_0;
END;

BLOCK level_0
.. BLOCK level_1b
.. BLOCK level_1a
.. END BLOCK level_1a
.. END BLOCK level_1b
END BLOCK level_0

In this example, the procedure level_1a is successfully invoked. It's the sibling of the procedure level_1b , which is an ancestor of the procedure level_3b .

CREATE OR REPLACE PROCEDURE level_0
IS
 PROCEDURE level_1a
 IS
 BEGIN
 DBMS_OUTPUT.PUT_LINE('.. BLOCK level_1a');
 DBMS_OUTPUT.PUT_LINE('.. END BLOCK level_1a');
 END level_1a;
 PROCEDURE level_1b
 IS
 PROCEDURE level_2b
 IS
 PROCEDURE level_3b
 IS
 BEGIN
 DBMS_OUTPUT.PUT_LINE('........ BLOCK level_3b');
 level_1a; -- Ancestor's sibling block called
 level_0.level_1a; -- Qualified ancestor's sibling block
 DBMS_OUTPUT.PUT_LINE('........ END BLOCK level_3b');
 END level_3b;
 BEGIN
 DBMS_OUTPUT.PUT_LINE('...... BLOCK level_2b');
 level_3b; -- Local block called
 DBMS_OUTPUT.PUT_LINE('...... END BLOCK level_2b');
 END level_2b;
 BEGIN
 DBMS_OUTPUT.PUT_LINE('.. BLOCK level_1b');
 level_2b; -- Local block called
 DBMS_OUTPUT.PUT_LINE('.. END BLOCK level_1b');
 END level_1b;
BEGIN
 DBMS_OUTPUT.PUT_LINE('BLOCK level_0');
 level_1b;
 DBMS_OUTPUT.PUT_LINE('END BLOCK level_0');
END level_0;

The following is the output:

BEGIN

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 540

 level_0;
END;

BLOCK level_0
.. BLOCK level_1b
...... BLOCK level_2b
........ BLOCK level_3b
.. BLOCK level_1a
.. END BLOCK level_1a
.. BLOCK level_1a
.. END BLOCK level_1a
........ END BLOCK level_3b
...... END BLOCK level_2b
.. END BLOCK level_1b
END BLOCK level_0

19.2.6.5 Using forward declarations

When you want to invoke a subprogram, you must declare it in the hierarchy of blocks in the standalone program prior to where you invoke it. In other words, when scanning the SPL code from
beginning to end, the subprogram declaration must appear before its invocation.

However, you can construct the SPL code so that the full declaration of the subprogram appears in the SPL code after the point in the code where it's invoked. (The full declaration includes its optional
declaration section, its mandatory executable section, and optional exception section.)

You can do this by inserting a forward declaration in the SPL code prior to its invocation. The forward declaration is the specification of a subprocedure or subfunction name, formal parameters, and
return type if it's a subfunction.

You must specify the full subprogram consisting of the optional declaration section, the executable section, and the optional exception section in the same declaration section as the forward
declaration. However it can appear following other subprogram declarations that invoke this subprogram with the forward declaration.

Typical use of a forward declaration is when two subprograms invoke each other:

DECLARE
 FUNCTION add_one (
 p_add IN NUMBER
) RETURN NUMBER;
 FUNCTION test_max (
 p_test IN NUMBER)
 RETURN NUMBER
 IS
 BEGIN
 IF p_test < 5 THEN
 RETURN add_one(p_test);
 END IF;
 DBMS_OUTPUT.PUT('Final value is ');
 RETURN p_test;
 END;
 FUNCTION add_one (
 p_add IN NUMBER)
 RETURN NUMBER
 IS
 BEGIN
 DBMS_OUTPUT.PUT_LINE('Increase by 1');
 RETURN test_max(p_add + 1);
 END;
BEGIN
 DBMS_OUTPUT.PUT_LINE(test_max(3));
END;

Subfunction test_max invokes subfunction add_one , which also invokes subfunction test_max . A forward declaration is required for one of the subprograms, which is implemented for
add_one at the beginning of the anonymous block declaration section.

The resulting output from the anonymous block is as follows:

Increase by 1
Increase by 1
Final value is 5

19.2.6.6 Overloading subprograms

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 541

Generally, subprograms of the same type (subprocedure or subfunction) with the same name and same formal parameter specification can appear multiple times in the same standalone program as long
as they aren't sibling blocks (that is, the subprograms aren't declared in the same local block).

You can invoke aach subprogram individually depending on the use of qualifiers and the location where the subprogram invocation is made.

However, it's possible to declare subprograms, even as siblings, that are of the same subprogram type and name as long as certain aspects of the formal parameters differ. These characteristics
(subprogram type, name, and formal parameter specification) are generally known as a program’s signature.

The declaration of multiple subprograms where the signatures are identical except for certain aspects of the formal parameter specification is referred to as subprogram overloading.

Thus, the particular overloaded subprogram to invoke is determined by a match of the actual parameters specified by the subprogram invocation and the formal parameter lists of the overloaded
subprograms.

Any of the following differences permit overloaded subprograms:

The number of formal parameters are different.
At least one pair of data types of the corresponding formal parameters (that is, compared according to the same order of appearance in the formal parameter list) are different but aren't aliases.

The following differences alone don't permit overloaded subprograms:

Different formal parameter names
Different parameter modes (IN , IN OUT , OUT) for the corresponding formal parameters
For subfunctions, different data types in the RETURN clause

One of the differences allowing overloaded subprograms is different data types.

However, certain data types have alternative names referred to as aliases, which can be used for the table definition.

For example, you can specify fixed-length character data types as CHAR or CHARACTER . You can specify variable-length character data types as CHAR VARYING , CHARACTER VARYING ,
VARCHAR , or VARCHAR2 . For integers, there are BINARY_INTEGER , PLS_INTEGER , and INTEGER data types. For numbers, there are NUMBER , NUMERIC , DEC , and DECIMAL data types.

For detailed information about the data types supported by EDB Postgres Advanced Server, see Data types.

Thus, when attempting to create overloaded subprograms, the formal parameter data types aren't considered different if the specified data types are aliases of each other.

You can determine if certain data types are aliases of other types by displaying the table definition containing the data types.

For example, the following table definition contains some data types and their aliases:

CREATE TABLE data_type_aliases (
 dt_BLOB BLOB,
 dt_LONG_RAW LONG RAW,
 dt_RAW RAW(4),
 dt_BYTEA BYTEA,
 dt_INTEGER INTEGER,
 dt_BINARY_INTEGER BINARY_INTEGER,
 dt_PLS_INTEGER PLS_INTEGER,
 dt_REAL REAL,
 dt_DOUBLE_PRECISION DOUBLE PRECISION,
 dt_FLOAT FLOAT,
 dt_NUMBER NUMBER,
 dt_DECIMAL DECIMAL,
 dt_NUMERIC NUMERIC,
 dt_CHAR CHAR,
 dt_CHARACTER CHARACTER,
 dt_VARCHAR2 VARCHAR2(4),
 dt_CHAR_VARYING CHAR VARYING(4),
 dt_VARCHAR VARCHAR(4)
);

Using the PSQL \d command to display the table definition, the Type column displays the data type internally assigned to each column based on its data type in the table definition.

\d data_type_aliases
 Column | Type | Modifiers
---------------------+----------------------+-----------
 dt_blob | bytea |
 dt_long_raw | bytea |
 dt_raw | bytea(4) |
 dt_bytea | bytea |
 dt_integer | integer |
 dt_binary_integer | integer |
 dt_pls_integer | integer |
 dt_real | real |
 dt_double_precision | double precision |
 dt_float | double precision |

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 542

 dt_number | numeric |
 dt_decimal | numeric |
 dt_numeric | numeric |
 dt_char | character(1) |
 dt_character | character(1) |
 dt_varchar2 | character varying(4) |
 dt_char_varying | character varying(4) |
 dt_varchar | character varying(4) |

In the example, the base set of data types are bytea , integer , real , double precision , numeric , character , and character varying .

When attempting to declare overloaded subprograms, a pair of formal parameter data types that are aliases aren't enough to allow subprogram overloading. Thus, parameters with data types
INTEGER and PLS_INTEGER can't overload a pair of subprograms. However, data types INTEGER and REAL , INTEGER and FLOAT , or INTEGER and NUMBER can overload the

subprograms.

Note

The overloading rules based on formal parameter data types aren't compatible with Oracle databases. Generally, the EDB Postgres Advanced Server rules are more flexible, and certain
combinations are allowed in EDB Postgres Advanced Server that result in an error when attempting to create the procedure or function in Oracle databases.

For certain pairs of data types used for overloading, you might need to cast the arguments specified by the subprogram invocation to avoid an error encountered during runtime of the subprogram.
Invoking a subprogram must include the actual parameter list that can specifically identify the data types. Certain pairs of overloaded data types might require the CAST function to explicitly identify
data types. For example, pairs of overloaded data types that might require casting during the invocation are CHAR and VARCHAR2 , or NUMBER and REAL .

This example shows a group of overloaded subfunctions invoked from an anonymous block. The executable section of the anonymous block contains the use of the CAST function to invoke overloaded
functions with certain data types.

DECLARE
 FUNCTION add_it (
 p_add_1 IN BINARY_INTEGER,
 p_add_2 IN BINARY_INTEGER
) RETURN VARCHAR2
 IS
 BEGIN
 RETURN 'add_it BINARY_INTEGER: ' || TO_CHAR(p_add_1 + p_add_2,9999.9999);
 END add_it;
 FUNCTION add_it (
 p_add_1 IN NUMBER,
 p_add_2 IN NUMBER
) RETURN VARCHAR2
 IS
 BEGIN
 RETURN 'add_it NUMBER: ' || TO_CHAR(p_add_1 + p_add_2,999.9999);
 END add_it;
 FUNCTION add_it (
 p_add_1 IN REAL,
 p_add_2 IN REAL
) RETURN VARCHAR2
 IS
 BEGIN
 RETURN 'add_it REAL: ' || TO_CHAR(p_add_1 + p_add_2,9999.9999);
 END add_it;
 FUNCTION add_it (
 p_add_1 IN DOUBLE PRECISION,
 p_add_2 IN DOUBLE PRECISION
) RETURN VARCHAR2
 IS
 BEGIN
 RETURN 'add_it DOUBLE PRECISION: ' || TO_CHAR(p_add_1 + p_add_2,9999.9999);
 END add_it;
BEGIN
 DBMS_OUTPUT.PUT_LINE(add_it (25, 50));
 DBMS_OUTPUT.PUT_LINE(add_it (25.3333, 50.3333));
 DBMS_OUTPUT.PUT_LINE(add_it (TO_NUMBER(25.3333), TO_NUMBER(50.3333)));
 DBMS_OUTPUT.PUT_LINE(add_it (CAST('25.3333' AS REAL), CAST('50.3333' AS REAL)));
 DBMS_OUTPUT.PUT_LINE(add_it (CAST('25.3333' AS DOUBLE PRECISION),
 CAST('50.3333' AS DOUBLE PRECISION)));
END;

The following is the output displayed from the anonymous block:

add_it BINARY_INTEGER: 75.0000
add_it NUMBER: 75.6666
add_it NUMBER: 75.6666
add_it REAL: 75.6666
add_it DOUBLE PRECISION: 75.6666

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 543

19.2.6.7 Accessing subprogram variables

You can access variables declared in blocks, such as subprograms or anonymous blocks, from the executable section or the exception section of other blocks depending on their relative location.

Accessing a variable means being able to reference it in a SQL statement or an SPL statement as you can with any local variable.

Note

If the subprogram signature contains formal parameters, you can access these in the same way as local variables of the subprogram. All discussion related to variables of a subprogram also
applies to formal parameters of the subprogram.

Accessing variables includes not only those defined as a data type but also includes others such as record types, collection types, and cursors.

At most one qualifier can access the variable. The qualifier is the name of the subprogram or labeled anonymous block in which the variable was locally declared.

The syntax to reference a variable is:

[<qualifier>.]<variable>

If specified, qualifier is the subprogram or labeled anonymous block in which variable was declared in its declaration section (that is, it's a local variable).

Note

In EDB Postgres Advanced Server, in only one circumstance are two qualifiers are permitted. This scenario is for accessing public variables of packages where you can specify the reference in
the following format:

schema_name.package_name.public_variable_name

For more information about supported package syntax, see Database Compatibility for Oracle Developers: Built-in Package.

You can access variables in the following ways:

Variables can be accessed as long as the block in which the variable was locally declared is in the ancestor hierarchical path starting from the block containing the reference to the variable. Such
variables declared in ancestor blocks are referred to as global variables.
If a reference to an unqualified variable is made, the first attempt is to locate a local variable of that name. If such a local variable doesn't exist, then the search for the variable is made in the
parent of the current block, and so forth, proceeding up the ancestor hierarchy. If such a variable isn't found, then an error occurs when the subprogram is invoked.
If a reference to a qualified variable is made, the same search process is performed but searching for the first match of the subprogram or labeled anonymous block that contains the local
variable. The search proceeds up the ancestor hierarchy until a match is found. If such a match isn't found, then an error occurs when the subprogram is invoked.

You can't access the following location of variables relative to the block from where the reference to the variable is made:

Variables declared in a descendent block
Variables declared in a sibling block, a sibling block of an ancestor block, or any descendants within the sibling block

Note

The EDB Postgres Advanced Server process for accessing variables isn't compatible with Oracle databases. For Oracle, you can specify any number of qualifiers, and the search is based on the
first match of the first qualifier in a similar manner to the Oracle matching algorithm for invoking subprograms.

This example shows how variables in various blocks are accessed, with and without qualifiers. The lines that are commented out show attempts to access variables that result in an error.

CREATE OR REPLACE PROCEDURE level_0
IS
 v_level_0 VARCHAR2(20) := 'Value from level_0';
 PROCEDURE level_1a
 IS
 v_level_1a VARCHAR2(20) := 'Value from level_1a';
 PROCEDURE level_2a
 IS
 v_level_2a VARCHAR2(20) := 'Value from level_2a';
 BEGIN
 DBMS_OUTPUT.PUT_LINE('...... BLOCK level_2a');
 DBMS_OUTPUT.PUT_LINE('........ v_level_2a: ' || v_level_2a);
 DBMS_OUTPUT.PUT_LINE('........ v_level_1a: ' || v_level_1a);
 DBMS_OUTPUT.PUT_LINE('........ level_1a.v_level_1a: ' || level_1a.v_level_1a);
 DBMS_OUTPUT.PUT_LINE('........ v_level_0: ' || v_level_0);
 DBMS_OUTPUT.PUT_LINE('........ level_0.v_level_0: ' || level_0.v_level_0);
 DBMS_OUTPUT.PUT_LINE('...... END BLOCK level_2a');
 END level_2a;
 BEGIN
 DBMS_OUTPUT.PUT_LINE('.. BLOCK level_1a');
 level_2a;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 544

-- DBMS_OUTPUT.PUT_LINE('.... v_level_2a: ' || v_level_2a);
-- Error - Descendent block ----^
-- DBMS_OUTPUT.PUT_LINE('.... level_2a.v_level_2a: ' || level_2a.v_level_2a);
-- Error - Descendent block ---------------^
 DBMS_OUTPUT.PUT_LINE('.. END BLOCK level_1a');
 END level_1a;
 PROCEDURE level_1b
 IS
 v_level_1b VARCHAR2(20) := 'Value from level_1b';
 BEGIN
 DBMS_OUTPUT.PUT_LINE('.. BLOCK level_1b');
 DBMS_OUTPUT.PUT_LINE('.... v_level_1b: ' || v_level_1b);
 DBMS_OUTPUT.PUT_LINE('.... v_level_0 : ' || v_level_0);
-- DBMS_OUTPUT.PUT_LINE('.... level_1a.v_level_1a: ' || level_1a.v_level_1a);
-- Error - Sibling block -----------------^
-- DBMS_OUTPUT.PUT_LINE('.... level_2a.v_level_2a: ' || level_2a.v_level_2a);
-- Error - Sibling block descendant ------^
 DBMS_OUTPUT.PUT_LINE('.. END BLOCK level_1b');
 END level_1b;
BEGIN
 DBMS_OUTPUT.PUT_LINE('BLOCK level_0');
 DBMS_OUTPUT.PUT_LINE('.. v_level_0: ' || v_level_0);
 level_1a;
 level_1b;
 DBMS_OUTPUT.PUT_LINE('END BLOCK level_0');
END level_0;

The following is the output showing the content of each variable when the procedure is invoked:

BEGIN
 level_0;
END;

BLOCK level_0
.. v_level_0: Value from level_0
.. BLOCK level_1a
...... BLOCK level_2a
........ v_level_2a: Value from level_2a
........ v_level_1a: Value from level_1a
........ level_1a.v_level_1a: Value from level_1a
........ v_level_0: Value from level_0
........ level_0.v_level_0: Value from level_0
...... END BLOCK level_2a
.. END BLOCK level_1a
.. BLOCK level_1b
.... v_level_1b: Value from level_1b
.... v_level_0 : Value from level_0
.. END BLOCK level_1b
END BLOCK level_0

This example shows similar access attempts when all variables in all blocks have the same name:

CREATE OR REPLACE PROCEDURE level_0
IS
 v_common VARCHAR2(20) := 'Value from level_0';
 PROCEDURE level_1a
 IS
 v_common VARCHAR2(20) := 'Value from level_1a';
 PROCEDURE level_2a
 IS
 v_common VARCHAR2(20) := 'Value from level_2a';
 BEGIN
 DBMS_OUTPUT.PUT_LINE('...... BLOCK level_2a');
 DBMS_OUTPUT.PUT_LINE('........ v_common: ' || v_common);
 DBMS_OUTPUT.PUT_LINE('........ level_2a.v_common: ' || level_2a.v_common);
 DBMS_OUTPUT.PUT_LINE('........ level_1a.v_common: ' || level_1a.v_common);
 DBMS_OUTPUT.PUT_LINE('........ level_0.v_common: ' || level_0.v_common);
 DBMS_OUTPUT.PUT_LINE('...... END BLOCK level_2a');
 END level_2a;
 BEGIN
 DBMS_OUTPUT.PUT_LINE('.. BLOCK level_1a');
 DBMS_OUTPUT.PUT_LINE('.... v_common: ' || v_common);
 DBMS_OUTPUT.PUT_LINE('.... level_0.v_common: ' || level_0.v_common);
 level_2a;
 DBMS_OUTPUT.PUT_LINE('.. END BLOCK level_1a');
 END level_1a;
 PROCEDURE level_1b

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 545

 IS
 v_common VARCHAR2(20) := 'Value from level_1b';
 BEGIN
 DBMS_OUTPUT.PUT_LINE('.. BLOCK level_1b');
 DBMS_OUTPUT.PUT_LINE('.... v_common: ' || v_common);
 DBMS_OUTPUT.PUT_LINE('.... level_0.v_common : ' || level_0.v_common);
 DBMS_OUTPUT.PUT_LINE('.. END BLOCK level_1b');
 END level_1b;
BEGIN
 DBMS_OUTPUT.PUT_LINE('BLOCK level_0');
 DBMS_OUTPUT.PUT_LINE('.. v_common: ' || v_common);
 level_1a;
 level_1b;
 DBMS_OUTPUT.PUT_LINE('END BLOCK level_0');
END level_0;

The following is the output showing the content of each variable when the procedure is invoked:

BEGIN
 level_0;
END;

BLOCK level_0
.. v_common: Value from level_0
.. BLOCK level_1a
.... v_common: Value from level_1a
.... level_0.v_common: Value from level_0
...... BLOCK level_2a
........ v_common: Value from level_2a
........ level_2a.v_common: Value from level_2a
........ level_1a.v_common: Value from level_1a
........ level_0.v_common: Value from level_0
...... END BLOCK level_2a
.. END BLOCK level_1a
.. BLOCK level_1b
.... v_common: Value from level_1b
.... level_0.v_common : Value from level_0
.. END BLOCK level_1b
END BLOCK level_0

You can also use the labels on anonymous blocks to qualify access to variables. This example shows variable access in a set of nested anonymous blocks:

DECLARE
 v_common VARCHAR2(20) := 'Value from level_0';
BEGIN
 DBMS_OUTPUT.PUT_LINE('BLOCK level_0');
 DBMS_OUTPUT.PUT_LINE('.. v_common: ' || v_common);
 <<level_1a>>
 DECLARE
 v_common VARCHAR2(20) := 'Value from level_1a';
 BEGIN
 DBMS_OUTPUT.PUT_LINE('.. BLOCK level_1a');
 DBMS_OUTPUT.PUT_LINE('.... v_common: ' || v_common);
 <<level_2a>>
 DECLARE
 v_common VARCHAR2(20) := 'Value from level_2a';
 BEGIN
 DBMS_OUTPUT.PUT_LINE('...... BLOCK level_2a');
 DBMS_OUTPUT.PUT_LINE('........ v_common: ' || v_common);
 DBMS_OUTPUT.PUT_LINE('........ level_1a.v_common: ' || level_1a.v_common);
 DBMS_OUTPUT.PUT_LINE('...... END BLOCK level_2a');
 END;
 DBMS_OUTPUT.PUT_LINE('.. END BLOCK level_1a');
 END;
 <<level_1b>>
 DECLARE
 v_common VARCHAR2(20) := 'Value from level_1b';
 BEGIN
 DBMS_OUTPUT.PUT_LINE('.. BLOCK level_1b');
 DBMS_OUTPUT.PUT_LINE('.... v_common: ' || v_common);
 DBMS_OUTPUT.PUT_LINE('.... level_1b.v_common: ' || level_1b.v_common);
 DBMS_OUTPUT.PUT_LINE('.. END BLOCK level_1b');
 END;
 DBMS_OUTPUT.PUT_LINE('END BLOCK level_0');
END;

The following is the output showing the content of each variable when the anonymous block is invoked:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 546

BLOCK level_0
.. v_common: Value from level_0
.. BLOCK level_1a
.... v_common: Value from level_1a
...... BLOCK level_2a
........ v_common: Value from level_2a
........ level_1a.v_common: Value from level_1a
...... END BLOCK level_2a
.. END BLOCK level_1a
.. BLOCK level_1b
.... v_common: Value from level_1b
.... level_1b.v_common: Value from level_1b
.. END BLOCK level_1b
END BLOCK level_0

This example is an object type whose object type method, display_emp , contains the record type emp_typ and the subprocedure emp_sal_query . The record variable r_emp declared locally
to emp_sal_query can access the record type emp_typ declared in the parent block display_emp .

CREATE OR REPLACE TYPE emp_pay_obj_typ AS OBJECT
(
 empno NUMBER(4),
 MEMBER PROCEDURE display_emp(SELF IN OUT emp_pay_obj_typ)
);

CREATE OR REPLACE TYPE BODY emp_pay_obj_typ AS
 MEMBER PROCEDURE display_emp (SELF IN OUT emp_pay_obj_typ)
 IS
 TYPE emp_typ IS RECORD (
 ename emp.ename%TYPE,
 job emp.job%TYPE,
 hiredate emp.hiredate%TYPE,
 sal emp.sal%TYPE,
 deptno emp.deptno%TYPE
);
 PROCEDURE emp_sal_query (
 p_empno IN emp.empno%TYPE
)
 IS
 r_emp emp_typ;
 v_avgsal emp.sal%TYPE;
 BEGIN
 SELECT ename, job, hiredate, sal, deptno
 INTO r_emp.ename, r_emp.job, r_emp.hiredate, r_emp.sal, r_emp.deptno
 FROM emp WHERE empno = p_empno;
 DBMS_OUTPUT.PUT_LINE('Employee # : ' || p_empno);
 DBMS_OUTPUT.PUT_LINE('Name : ' || r_emp.ename);
 DBMS_OUTPUT.PUT_LINE('Job : ' || r_emp.job);
 DBMS_OUTPUT.PUT_LINE('Hire Date : ' || r_emp.hiredate);
 DBMS_OUTPUT.PUT_LINE('Salary : ' || r_emp.sal);
 DBMS_OUTPUT.PUT_LINE('Dept # : ' || r_emp.deptno);

 SELECT AVG(sal) INTO v_avgsal
 FROM emp WHERE deptno = r_emp.deptno;
 IF r_emp.sal > v_avgsal THEN
 DBMS_OUTPUT.PUT_LINE('Employee''s salary is more than the '
 || 'department average of ' || v_avgsal);
 ELSE
 DBMS_OUTPUT.PUT_LINE('Employee''s salary does not exceed the '
 || 'department average of ' || v_avgsal);
 END IF;
 END;
 BEGIN
 emp_sal_query(SELF.empno);
 END;
END;

The following is the output displayed when an instance of the object type is created and the procedure display_emp is invoked:

DECLARE
 v_emp EMP_PAY_OBJ_TYP;
BEGIN
 v_emp := emp_pay_obj_typ(7900);
 v_emp.display_emp;
END;

Employee # : 7900
Name : JAMES

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 547

Job : CLERK
Hire Date : 03-DEC-81 00:00:00
Salary : 950.00
Dept # : 30
Employee's salary does not exceed the department average of 1566.67

This example is a package with three levels of subprocedures. A record type, collection type, and cursor type declared in the upper-level procedure can be accessed by the descendent subprocedure.

CREATE OR REPLACE PACKAGE emp_dept_pkg
IS
 PROCEDURE display_emp (
 p_deptno NUMBER
);
END;

CREATE OR REPLACE PACKAGE BODY emp_dept_pkg
IS
 PROCEDURE display_emp (
 p_deptno NUMBER
)
 IS
 TYPE emp_rec_typ IS RECORD (
 empno emp.empno%TYPE,
 ename emp.ename%TYPE
);
 TYPE emp_arr_typ IS TABLE OF emp_rec_typ INDEX BY BINARY_INTEGER;
 TYPE emp_cur_type IS REF CURSOR RETURN emp_rec_typ;
 PROCEDURE emp_by_dept (
 p_deptno emp.deptno%TYPE
)
 IS
 emp_arr emp_arr_typ;
 emp_refcur emp_cur_type;
 i BINARY_INTEGER := 0;
 PROCEDURE display_emp_arr
 IS
 BEGIN
 DBMS_OUTPUT.PUT_LINE('EMPNO ENAME');
 DBMS_OUTPUT.PUT_LINE('----- -------');
 FOR j IN emp_arr.FIRST .. emp_arr.LAST LOOP
 DBMS_OUTPUT.PUT_LINE(emp_arr(j).empno || ' ' ||
 emp_arr(j).ename);
 END LOOP;
 END display_emp_arr;
 BEGIN
 OPEN emp_refcur FOR SELECT empno, ename FROM emp WHERE deptno = p_deptno;
 LOOP
 i := i + 1;
 FETCH emp_refcur INTO emp_arr(i).empno, emp_arr(i).ename;
 EXIT WHEN emp_refcur%NOTFOUND;
 END LOOP;
 CLOSE emp_refcur;
 display_emp_arr;
 END emp_by_dept;
 BEGIN
 emp_by_dept(p_deptno);
 END;
END;

The following is the output displayed when the top-level package procedure is invoked:

BEGIN
 emp_dept_pkg.display_emp(20);
END;

EMPNO ENAME
----- -------
7369 SMITH
7566 JONES
7788 SCOTT
7876 ADAMS
7902 FORD

19.2.7 Compilation errors in procedures and functions

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 548

When the EDB Postgres Advanced Server parsers compile a procedure or function, they confirm that both the CREATE statement and the program body (the portion of the program that follows the AS
keyword) conform to the grammar rules for SPL and SQL constructs. By default, the server stops compiling if a parser detects an error. The parsers detect syntax errors in expressions, but they don't
detect semantic errors. Semantic errors include an expression referencing a nonexistent column, table, or function, or a value of incorrect type.

spl.max_error_count instructs the server to stop parsing if it encounters the specified number of errors in SPL code or when it encounters an error in SQL code. The default value of
spl.max_error_count is 10 . The maximum value is 1000 . Setting spl.max_error_count to a value of 1 instructs the server to stop parsing when it encounters the first error in either

SPL or SQL code.

You can use the SET command to specify a value for spl.max_error_count for your current session. The syntax is:

SET spl.max_error_count = <number_of_errors>

Where number_of_errors specifies the number of SPL errors that can occur before the server stops compiling. For example:

SET spl.max_error_count = 6

The example instructs the server to continue past the first five SPL errors it encounters. When the server encounters the sixth error, it stops validating and prints six detailed error messages and one
error summary.

To save time when developing new code or when importing code from another source, you might want to set the spl.max_error_count configuration parameter to a relatively high number of
errors.

If you instruct the server to continue parsing in spite of errors in the SPL code in a program body, and the parser encounters an error in a segment of SQL code, there can be more errors in any SPL or SQL
code that follows the incorrect SQL code. For example, the following function results in two errors:

CREATE FUNCTION computeBonus(baseSalary number) RETURN number AS
BEGIN

 bonus := baseSalary * 1.10;
 total := bonus + 100;

 RETURN bonus;
END;

ERROR: "bonus" is not a known variable
LINE 4: bonus := baseSalary * 1.10;
 ^
ERROR: "total" is not a known variable
LINE 5: total := bonus + 100;
 ^
ERROR: compilation of SPL function/procedure "computebonus" failed due to 2 errors

This example adds a SELECT statement to the example. The error in the SELECT statement masks the other errors that follow.

CREATE FUNCTION computeBonus(employeeName number) RETURN number AS
BEGIN
 SELECT salary INTO baseSalary FROM emp
 WHERE ename = employeeName;

 bonus := baseSalary * 1.10;
 total := bonus + 100;

 RETURN bonus;

END;

ERROR: "basesalary" is not a known variable
LINE 3: SELECT salary INTO baseSalary FROM emp WHERE ename = emp...

19.2.8 Program security

You can control the security over whether a user can execute an SPL program. You can also control the database objects an SPL program can access for any given user executing the program. These are
controlled by the following:

Privilege to execute a program
Privileges granted on the database objects (including other SPL programs) that a program attempts to access
Whether the program is defined with definer’s rights or invoker’s rights

19.2.8.1 EXECUTE privilege

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 549

An SPL program (function, procedure, or package) can begin execution only if any of the following are true:

The current user is a superuser.
The current user was granted EXECUTE privilege on the SPL program.
The current user inherits EXECUTE privilege on the SPL program by virtue of being a member of a group that has this privilege.
EXECUTE privilege was granted to the PUBLIC group.

Whenever an SPL program is created in EDB Postgres Advanced Server, EXECUTE privilege is granted to the PUBLIC group by default. Therefore, any user can immediately execute the program.

You can remove this default privilege by using the REVOKE EXECUTE command. For example:

REVOKE EXECUTE ON PROCEDURE list_emp FROM PUBLIC;

You can then grant explicit EXECUTE privilege on the program to individual users or groups.

GRANT EXECUTE ON PROCEDURE list_emp TO john;

Now, user john can execute the list_emp program. Other users who don't meet any of the required conditions can't.

Once a program begins to execute, the next aspect of security is the privilege checks that occur if the program attempts to perform an action on any database object including:

Reading or modifying table or view data
Creating, modifying, or deleting a database object such as a table, view, index, or sequence
Obtaining the current or next value from a sequence
Calling another program (function, procedure, or package)

Each such action can be protected by privileges on the database object either allowed or disallowed for the user.

It's possible for a database to have more than one object of the same type with the same name, but each such object belongs to a different schema in the database. If this is the case, which object is
being referenced by an SPL program? For more information, see Database object name resolution.

19.2.8.2 Database object name resolution

You can reference a database object inside an SPL program either by its qualified name or by an unqualified name. A qualified name is in the form of schema.name , where schema is the name of
the schema under which the database object with identifier name exists. An unqualified name doesn't have the schema. portion. When a reference is made to a qualified name, there is no ambiguity
as to which database object is intended. It either does or doesn't exist in the specified schema.

Locating an object with an unqualified name, however, requires the use of the current user’s search path. When a user becomes the current user of a session, a default search path is always associated
with that user. The search path consists of a list of schemas that are searched in left-to-right order for locating an unqualified database object reference. The object is considered nonexistent if it can’t
be found in any of the schemas in the search path. You can display the default search path in PSQL using the SHOW search_path command:

edb=# SHOW search_path;
 search_path

 "$user", public
(1 row)

$user in the search path is a generic placeholder that refers to the current user. So if the current user of this session is enterprisedb , an unqualified database object is searched for in the
following schemas in this order: first in enterprisedb , and then in public .

Once an unqualified name is resolved in the search path, you can determine if the current user has the appropriate privilege to perform the desired action on that specific object.

Note

The concept of the search path isn't compatible with Oracle databases. For an unqualified reference, Oracle looks in the schema of the current user for the named database object. Also, in
Oracle, a user and their schema is the same entity. In EDB Postgres Advanced Server, a user and a schema are two distinct objects.

19.2.8.3 Database object privileges

Once an SPL program begins execution, any attempt to access a database object from the program results in a check. This check ensures that the current user is authorized to perform the intended
action against the referenced object. Privileges on database objects are added and removed using the GRANT and REVOKE commands. If the current user attempts unauthorized access on a database
object, then the program throws an exception. See Exception handling.

19.2.8.4 Definer's versus invoker's rights

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 550

When an SPL program is about to begin executing, a determination is made as to the user to associate with this process. This user is referred to as the current user. The current user’s database object
privileges are used to determine whether access to database objects referenced in the program is permitted. The current prevailing search path in effect when the program is invoked is used to resolve
any unqualified object references.

The selection of the current user is influenced by whether the SPL program was created with definer’s right or invoker’s rights. The AUTHID clause determines that selection. Appearance of the clause
AUTHID DEFINER gives the program definer’s rights. This is also the default if the AUTHID clause is omitted. Use of the clause AUTHID CURRENT_USER gives the program invoker’s rights. The

difference between the two is summarized as follows:

If a program has definer’s rights, then the owner of the program becomes the current user when program execution begins. The program owner’s database object privileges are used to determine
if access to a referenced object is permitted. In a definer’s rights program, the user who actually invoked the program is irrelevant.
If a program has invoker’s rights, then the current user at the time the program is called remains the current user while the program (but not necessarily the subprogram) is executing. When an
invoker’s rights program is invoked, the current user is typically the user that started the session (made the database connection). You can change the current user after the session started using
the SET ROLE command. In an invoker’s rights program, who actually owns the program is irrelevant.

From the previous definitions, the following observations can be made:

If a definer’s rights program calls a definer’s rights program, the current user changes from the owner of the calling program to the owner of the called program while the called program
executes.
If a definer’s rights program calls an invoker’s rights program, the owner of the calling program remains the current user whiile both the calling and called programs execute.
If an invoker’s rights program calls an invoker’s rights program, the current user of the calling program remains the current user while the called program executes.
If an invoker’s rights program calls a definer’s rights program, the current user switches to the owner of the definer’s rights program while the called program executes.

The same principles apply if the called program in turn calls another program in these cases.

19.2.8.5 Security example

In this example, a new database is created along with two users:

– hr_mgr , who owns a copy of the entire sample application in schema hr_mgr
sales_mgr , who owns a schema named sales_mgr that has a copy of only the emp table containing only the employees who work in sales

The procedure list_emp , function hire_clerk , and package emp_admin are used in this example. All of the default privileges that are granted upon installation of the sample application are
removed and then explicitly regranted so as to present a more secure environment.

Programs list_emp and hire_clerk are changed from the default of definer’s rights to invoker’s rights. Then, when sales_mgr runs these programs, they act on the emp table in the
sales_mgr schema since the sales_mgr search path and privileges are used for name resolution and authorization checking.

Programs get_dept_name and hire_emp in the emp_admin package are then executed by sales_mgr . In this case, the dept table and emp table in the hr_mgr schema are accessed as
hr_mgr is the owner of the emp_admin package which is using definer’s rights. Since the default search path is in effect with the $user placeholder, the schema matching the user (in this case,
hr_mgr) is used to find the tables.

Step 1: Create database and users

As user enterprisedb , create the hr database:

CREATE DATABASE hr;

Switch to the hr database and create the users:

\c hr enterprisedb
CREATE USER hr_mgr IDENTIFIED BY password;
CREATE USER sales_mgr IDENTIFIED BY password;

Step 2: Create the sample application

Create the entire sample application, owned by hr_mgr , in the hr_mgr schema.

\c - hr_mgr
\i /usr/edb/as14/share/edb-sample.sql

BEGIN
CREATE TABLE
CREATE TABLE
CREATE TABLE
CREATE VIEW
CREATE SEQUENCE

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 551

 .
 .
 .
CREATE PACKAGE
CREATE PACKAGE BODY
COMMIT

Step 3: Create the emp table in schema sales_mgr

Create a subset of the emp table owned by sales_mgr in the sales_mgr schema.

\c – hr_mgr
GRANT USAGE ON SCHEMA hr_mgr TO sales_mgr;
\c – sales_mgr
CREATE TABLE emp AS SELECT * FROM hr_mgr.emp WHERE job = 'SALESMAN';

The GRANT USAGE ON SCHEMA command allows sales_mgr access into the hr_mgr ’s schema to make a copy of the hr_mgr emp table. This step is required in EDB Postgres Advanced
Server and isn't compatible with Oracle databases. Oracle doesn't have the concept of a schema that's distinct from its user.

Step 4: Remove default privileges

Remove all privileges to later illustrate the minimum required privileges needed.

\c – hr_mgr
REVOKE USAGE ON SCHEMA hr_mgr FROM sales_mgr;
REVOKE ALL ON dept FROM PUBLIC;
REVOKE ALL ON emp FROM PUBLIC;
REVOKE ALL ON next_empno FROM PUBLIC;
REVOKE EXECUTE ON FUNCTION new_empno() FROM PUBLIC;
REVOKE EXECUTE ON PROCEDURE list_emp FROM PUBLIC;
REVOKE EXECUTE ON FUNCTION hire_clerk(VARCHAR2,NUMBER) FROM PUBLIC;
REVOKE EXECUTE ON PACKAGE emp_admin FROM PUBLIC;

Step 5: Change list_emp to invoker’s rights

While connected as user hr_mgr , add the AUTHID CURRENT_USER clause to the list_emp program and resave it in EDB Postgres Advanced Server. When performing this step, be sure you're
logged in as hr_mgr . Otherwise the modified program might end up in the public schema instead of in the hr_mgr schema.

CREATE OR REPLACE PROCEDURE list_emp
AUTHID CURRENT_USER
IS
 v_empno NUMBER(4);
 v_ename VARCHAR2(10);
 CURSOR emp_cur IS
 SELECT empno, ename FROM emp ORDER BY empno;
BEGIN
 OPEN emp_cur;
 DBMS_OUTPUT.PUT_LINE('EMPNO ENAME');
 DBMS_OUTPUT.PUT_LINE('----- -------');
 LOOP
 FETCH emp_cur INTO v_empno, v_ename;
 EXIT WHEN emp_cur%NOTFOUND;
 DBMS_OUTPUT.PUT_LINE(v_empno || ' ' || v_ename);
 END LOOP;
 CLOSE emp_cur;
END;

Step 6: Change hire_clerk to invoker’s rights and qualify call to new_empno

While connected as user hr_mgr , add the AUTHID CURRENT_USER clause to the hire_clerk program.

Also, after the BEGIN statement, fully qualify the reference new_empno to hr_mgr.new_empno to ensure the hire_clerk function call to the new_empno function resolves to the
hr_mgr schema.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 552

When resaving the program, be sure you're logged in as hr_mgr . Otherwise the modified program might end up in the public schema instead of in the hr_mgr schema.

CREATE OR REPLACE FUNCTION hire_clerk (
 p_ename VARCHAR2,
 p_deptno NUMBER
) RETURN NUMBER
AUTHID CURRENT_USER
IS
 v_empno NUMBER(4);
 v_ename VARCHAR2(10);
 v_job VARCHAR2(9);
 v_mgr NUMBER(4);
 v_hiredate DATE;
 v_sal NUMBER(7,2);
 v_comm NUMBER(7,2);
 v_deptno NUMBER(2);
BEGIN
 v_empno := hr_mgr.new_empno;
 INSERT INTO emp VALUES (v_empno, p_ename, 'CLERK', 7782,
 TRUNC(SYSDATE), 950.00, NULL, p_deptno);
 SELECT empno, ename, job, mgr, hiredate, sal, comm, deptno INTO
 v_empno, v_ename, v_job, v_mgr, v_hiredate, v_sal, v_comm, v_deptno
 FROM emp WHERE empno = v_empno;
 DBMS_OUTPUT.PUT_LINE('Department : ' || v_deptno);
 DBMS_OUTPUT.PUT_LINE('Employee No: ' || v_empno);
 DBMS_OUTPUT.PUT_LINE('Name : ' || v_ename);
 DBMS_OUTPUT.PUT_LINE('Job : ' || v_job);
 DBMS_OUTPUT.PUT_LINE('Manager : ' || v_mgr);
 DBMS_OUTPUT.PUT_LINE('Hire Date : ' || v_hiredate);
 DBMS_OUTPUT.PUT_LINE('Salary : ' || v_sal);
 DBMS_OUTPUT.PUT_LINE('Commission : ' || v_comm);
 RETURN v_empno;
EXCEPTION
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE('The following is SQLERRM:');
 DBMS_OUTPUT.PUT_LINE(SQLERRM);
 DBMS_OUTPUT.PUT_LINE('The following is SQLCODE:');
 DBMS_OUTPUT.PUT_LINE(SQLCODE);
 RETURN -1;
END;

Step 7: Grant required privileges

While connected as user hr_mgr , grant the privileges needed so sales_mgr can execute the list_emp procedure, hire_clerk function, and emp_admin package. The only data object
sales_mgr has access to is the emp table in the sales_mgr schema. sales_mgr has no privileges on any table in the hr_mgr schema.

GRANT USAGE ON SCHEMA hr_mgr TO sales_mgr;
GRANT EXECUTE ON PROCEDURE list_emp TO sales_mgr;
GRANT EXECUTE ON FUNCTION hire_clerk(VARCHAR2,NUMBER) TO sales_mgr;
GRANT EXECUTE ON FUNCTION new_empno() TO sales_mgr;
GRANT EXECUTE ON PACKAGE emp_admin TO sales_mgr;

Step 8: Run programs list_emp and hire_clerk**

Connect as user sales_mgr , and run the following anonymous block:

\c – sales_mgr
DECLARE
 v_empno NUMBER(4);
BEGIN
 hr_mgr.list_emp;
 DBMS_OUTPUT.PUT_LINE('*** Adding new employee ***');
 v_empno := hr_mgr.hire_clerk('JONES',40);
 DBMS_OUTPUT.PUT_LINE('*** After new employee added ***');
 hr_mgr.list_emp;
END;

EMPNO ENAME
----- -------
7499 ALLEN
7521 WARD

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 553

7654 MARTIN
7844 TURNER
*** Adding new employee ***
Department : 40
Employee No: 8000
Name : JONES
Job : CLERK
Manager : 7782
Hire Date : 08-NOV-07 00:00:00
Salary : 950.00
*** After new employee added ***
EMPNO ENAME
----- -------
7499 ALLEN
7521 WARD
7654 MARTIN
7844 TURNER
8000 JONES

The table and sequence accessed by the programs of the anonymous block are shown in the following diagram. The gray ovals represent the schemas of sales_mgr and hr_mgr . The current user
during each program execution is shown in parenthesis in bold red font.

Fig. 1: Invokers Rights Programs

Selecting from the sales_mgr emp table shows that the update was made in this table.

SELECT empno, ename, hiredate, sal, deptno,
hr_mgr.emp_admin.get_dept_name(deptno) FROM sales_mgr.emp;

 empno | ename | hiredate | sal | deptno | get_dept_name
-------+--------+--------------------+---------+--------+---------------
 7499 | ALLEN | 20-FEB-81 00:00:00 | 1600.00 | 30 | SALES
 7521 | WARD | 22-FEB-81 00:00:00 | 1250.00 | 30 | SALES
 7654 | MARTIN | 28-SEP-81 00:00:00 | 1250.00 | 30 | SALES
 7844 | TURNER | 08-SEP-81 00:00:00 | 1500.00 | 30 | SALES
 8000 | JONES | 08-NOV-07 00:00:00 | 950.00 | 40 | OPERATIONS
(5 rows)

The following diagram shows that the SELECT command references the emp table in the sales_mgr schema. However, the dept table referenced by the get_dept_name function in the
emp_admin package is from the hr_mgr schema since the emp_admin package has definer’s rights and is owned by hr_mgr . The default search path setting with the $user placeholder

resolves the access by user hr_mgr to the dept table in the hr_mgr schema.

Fig. 2: Definer's Rights Package

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 554

Step 9: Run program hire_emp in the emp_admin package

While connected as user sales_mgr , run the hire_emp procedure in the emp_admin package.

EXEC hr_mgr.emp_admin.hire_emp(9001,
'ALICE','SALESMAN',8000,TRUNC(SYSDATE),1000,7369,40);

This diagram shows that the hire_emp procedure in the emp_admin definer’s rights package updates the emp table belonging to hr_mgr . The object privileges of hr_mgr are used and the
default search path setting with the $user placeholder resolves to the schema of hr_mgr .

Fig. 3: Definer's Rights Package

Now connect as user hr_mgr . The following SELECT command verifies that the new employee was added to the hr_mgr emp table since the emp_admin package has definer’s rights and
hr_mgr is the emp_admin owner.

\c – hr_mgr
SELECT empno, ename, hiredate, sal, deptno,
hr_mgr.emp_admin.get_dept_name(deptno) FROM hr_mgr.emp;

empno | ename | hiredate | sal | deptno | get_dept_name
-------+--------+--------------------+---------+--------+---------------
 7369 | SMITH | 17-DEC-80 00:00:00 | 800.00 | 20 | RESEARCH
 7499 | ALLEN | 20-FEB-81 00:00:00 | 1600.00 | 30 | SALES
 7521 | WARD | 22-FEB-81 00:00:00 | 1250.00 | 30 | SALES
 7566 | JONES | 02-APR-81 00:00:00 | 2975.00 | 20 | RESEARCH
 7654 | MARTIN | 28-SEP-81 00:00:00 | 1250.00 | 30 | SALES
 7698 | BLAKE | 01-MAY-81 00:00:00 | 2850.00 | 30 | SALES
 7782 | CLARK | 09-JUN-81 00:00:00 | 2450.00 | 10 | ACCOUNTING
 7788 | SCOTT | 19-APR-87 00:00:00 | 3000.00 | 20 | RESEARCH
 7839 | KING | 17-NOV-81 00:00:00 | 5000.00 | 10 | ACCOUNTING
 7844 | TURNER | 08-SEP-81 00:00:00 | 1500.00 | 30 | SALES
 7876 | ADAMS | 23-MAY-87 00:00:00 | 1100.00 | 20 | RESEARCH
 7900 | JAMES | 03-DEC-81 00:00:00 | 950.00 | 30 | SALES
 7902 | FORD | 03-DEC-81 00:00:00 | 3000.00 | 20 | RESEARCH
 7934 | MILLER | 23-JAN-82 00:00:00 | 1300.00 | 10 | ACCOUNTING
 9001 | ALICE | 08-NOV-07 00:00:00 | 8000.00 | 40 | OPERATIONS
(15 rows)

19.3 Variable declarations

SPL is a block-structured language. The first section that can appear in a block is the declaration. The declaration contains the definition of variables, cursors, and other types that you can use in SPL
statements contained in the block.

19.3.1 Declaring a variable

Generally, you must declare all variables used in a block in the declaration section of the block. A variable declaration consists of a name that's assigned to the variable and its data type. Optionally, you
can initialize the variable to a default value in the variable declaration.

The general syntax of a variable declaration is:

<name> <type> [{ := | DEFAULT } { <expression> | NULL }];

name is an identifier assigned to the variable.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 555

type is the data type assigned to the variable.

[:= expression] , if given, specifies the initial value assigned to the variable when the block is entered. If the clause isn't given then the variable is initialized to the SQL NULL value.

The default value is evaluated every time the block is entered. So, for example, assigning SYSDATE to a variable of type DATE causes the variable to have the time of the current invocation, not the
time when the procedure or function was precompiled.

This procedure shows some variable declarations that use defaults consisting of string and numeric expressions:

CREATE OR REPLACE PROCEDURE dept_salary_rpt (
 p_deptno NUMBER
)
IS
 todays_date DATE := SYSDATE;
 rpt_title VARCHAR2(60) := 'Report For Department # ' || p_deptno
 || ' on ' || todays_date;
 base_sal INTEGER := 35525;
 base_comm_rate NUMBER := 1.33333;
 base_annual NUMBER := ROUND(base_sal * base_comm_rate, 2);
BEGIN
 DBMS_OUTPUT.PUT_LINE(rpt_title);
 DBMS_OUTPUT.PUT_LINE('Base Annual Salary: ' || base_annual);
END;

The following output of the procedure shows that default values in the variable declarations are assigned to the variables:

EXEC dept_salary_rpt(20);

Report For Department # 20 on 10-JUL-07 16:44:45
Base Annual Salary: 47366.55

19.3.2 Using %TYPE in variable declarations

Often, variables are declared in SPL programs that are used to hold values from tables in the database. To ensure compatibility between the table columns and the SPL variables, make sure their data
types are the same.

However, often a change is made to the table definition. If the data type of the column is changed, you might need to make the corresponding change to the variable in the SPL program.

Instead of coding the specific column data type into the variable declaration, you can use the column attribute %TYPE . Specify a qualified column name in dot notation or the name of a previously
declared variable as a prefix to %TYPE . The data type of the column or variable prefixed to %TYPE is assigned to the variable being declared. If the data type of the given column or variable changes,
the new data type is associated with the variable, and you don't need to modify the declaration code.

Note

You can use the %TYPE attribute with formal parameter declarations as well.

<name> { { <table> | <view> }.<column> | <variable> }%TYPE;

name is the identifier assigned to the variable or formal parameter that's being declared.
column is the name of a column in table or view .
variable is the name of a variable that was declared prior to the variable identified by name .

Note

The variable doesn't inherit any of the column’s other attributes that you specify on the column with the NOT NULL clause or the DEFAULT clause.

In this example, a procedure:

Queries the emp table using an employee number
Displays the employee’s data
Finds the average salary of all employees in the department to which the employee belongs
Compares the chosen employee’s salary with the department average

CREATE OR REPLACE PROCEDURE emp_sal_query (
 p_empno IN NUMBER
)
IS
 v_ename VARCHAR2(10);
 v_job VARCHAR2(9);
 v_hiredate DATE;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 556

 v_sal NUMBER(7,2);
 v_deptno NUMBER(2);
 v_avgsal NUMBER(7,2);
BEGIN
 SELECT ename, job, hiredate, sal, deptno
 INTO v_ename, v_job, v_hiredate, v_sal, v_deptno
 FROM emp WHERE empno = p_empno;
 DBMS_OUTPUT.PUT_LINE('Employee # : ' || p_empno);
 DBMS_OUTPUT.PUT_LINE('Name : ' || v_ename);
 DBMS_OUTPUT.PUT_LINE('Job : ' || v_job);
 DBMS_OUTPUT.PUT_LINE('Hire Date : ' || v_hiredate);
 DBMS_OUTPUT.PUT_LINE('Salary : ' || v_sal);
 DBMS_OUTPUT.PUT_LINE('Dept # : ' || v_deptno);

 SELECT AVG(sal) INTO v_avgsal
 FROM emp WHERE deptno = v_deptno;
 IF v_sal > v_avgsal THEN
 DBMS_OUTPUT.PUT_LINE('Employee''s salary is more than the '
 || 'department average of ' || v_avgsal);
 ELSE
 DBMS_OUTPUT.PUT_LINE('Employee''s salary does not exceed the '
 || 'department average of ' || v_avgsal);
 END IF;
END;

Alternatively, you can write the procedure without explicitly coding the emp table data types into the declaration section of the procedure:

CREATE OR REPLACE PROCEDURE emp_sal_query (
 p_empno IN emp.empno%TYPE
)
IS
 v_ename emp.ename%TYPE;
 v_job emp.job%TYPE;
 v_hiredate emp.hiredate%TYPE;
 v_sal emp.sal%TYPE;
 v_deptno emp.deptno%TYPE;
 v_avgsal v_sal%TYPE;
BEGIN
 SELECT ename, job, hiredate, sal, deptno
 INTO v_ename, v_job, v_hiredate, v_sal, v_deptno
 FROM emp WHERE empno = p_empno;
 DBMS_OUTPUT.PUT_LINE('Employee # : ' || p_empno);
 DBMS_OUTPUT.PUT_LINE('Name : ' || v_ename);
 DBMS_OUTPUT.PUT_LINE('Job : ' || v_job);
 DBMS_OUTPUT.PUT_LINE('Hire Date : ' || v_hiredate);
 DBMS_OUTPUT.PUT_LINE('Salary : ' || v_sal);
 DBMS_OUTPUT.PUT_LINE('Dept # : ' || v_deptno);

 SELECT AVG(sal) INTO v_avgsal
 FROM emp WHERE deptno = v_deptno;
 IF v_sal > v_avgsal THEN
 DBMS_OUTPUT.PUT_LINE('Employee''s salary is more than the '
 || 'department average of ' || v_avgsal);
 ELSE
 DBMS_OUTPUT.PUT_LINE('Employee''s salary does not exceed the '
 || 'department average of ' || v_avgsal);
 END IF;
END;

p_empno shows an example of a formal parameter defined using %TYPE . v_avgsal shows the use of %TYPE referring to another variable instead of a table column.

The following is sample output from executing this procedure:

EXEC emp_sal_query(7698);

Employee # : 7698
Name : BLAKE
Job : MANAGER
Hire Date : 01-MAY-81 00:00:00
Salary : 2850.00
Dept # : 30
Employee's salary is more than the department average of 1566.67

19.3.3 Using %ROWTYPE in record declarations

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 557

The %TYPE attribute provides an easy way to create a variable that depends on a column's data type. Using the %ROWTYPE attribute, you can define a record that contains fields that correspond to all
columns of a given table. Each field takes on the data type of its corresponding column. The fields in the record don't inherit any of the columns' other attributes like those specified with the NOT
NULL clause or the DEFAULT clause.

A record is a named, ordered collection of fields. A field is similar to a variable. It has an identifier and data type but has the additional property of belonging to a record. You must refereence it using dot
notation with the record name as its qualifier.

You can use the %ROWTYPE attribute to declare a record. The %ROWTYPE attribute is prefixed by a table name. Each column in the named table defines an identically named field in the record with
the same data type as the column.

<record> <table>%ROWTYPE;

record is an identifier assigned to the record.
table is the name of a table or view whose columns define the fields in the record.

This example shows how you can modify the emp_sal_query procedure from Using %TYPE in variable declarations to use emp%ROWTYPE to create a record named r_emp instead of declaring
individual variables for the columns in emp :

CREATE OR REPLACE PROCEDURE emp_sal_query (
 p_empno IN emp.empno%TYPE
)
IS
 r_emp emp%ROWTYPE;
 v_avgsal emp.sal%TYPE;
BEGIN
 SELECT ename, job, hiredate, sal, deptno
 INTO r_emp.ename, r_emp.job, r_emp.hiredate, r_emp.sal, r_emp.deptno
 FROM emp WHERE empno = p_empno;
 DBMS_OUTPUT.PUT_LINE('Employee # : ' || p_empno);
 DBMS_OUTPUT.PUT_LINE('Name : ' || r_emp.ename);
 DBMS_OUTPUT.PUT_LINE('Job : ' || r_emp.job);
 DBMS_OUTPUT.PUT_LINE('Hire Date : ' || r_emp.hiredate);
 DBMS_OUTPUT.PUT_LINE('Salary : ' || r_emp.sal);
 DBMS_OUTPUT.PUT_LINE('Dept # : ' || r_emp.deptno);
 SELECT AVG(sal) INTO v_avgsal
 FROM emp WHERE deptno = r_emp.deptno;
 IF r_emp.sal > v_avgsal THEN
 DBMS_OUTPUT.PUT_LINE('Employee''s salary is more than the '
 || 'department average of ' || v_avgsal);
 ELSE
 DBMS_OUTPUT.PUT_LINE('Employee''s salary does not exceed the '
 || 'department average of ' || v_avgsal);
 END IF;
END;

19.3.4 User-defined record types and record variables

You can declare records based on a table definition using the %ROWTYPE attribute, as shown in Using %ROWTYPE in record declarations. You can also define a new record structure that isn't tied to a
particular table definition.

You use the TYPE IS RECORD statement to create the definition of a record type. A record type is a definition of a record made up of one or more identifiers and their corresponding data types. You
can't use a record type by itself to manipulate data.

The syntax for a TYPE IS RECORD statement is:

TYPE <rec_type> IS RECORD (<fields>)

Where fields is a comma-separated list of one or more field definitions of the following form:

<field_name> <data_type> [NOT NULL][{:= | DEFAULT} <default_value>]

Where:

rec_type is an identifier assigned to the record type.
field_name is the identifier assigned to the field of the record type.
data_type specifies the data type of field_name .

The DEFAULT clause assigns a default data value for the corresponding field. The data type of the default expression must match the data type of the column. If you don't specify a default, then
the default is NULL .

A record variable or record is an instance of a record type. A record is declared from a record type. The properties of the record such as its field names and types are inherited from the record type.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 558

The following is the syntax for a record declaration:

<record> <rectype>

record is an identifier assigned to the record variable. rectype is the identifier of a previously defined record type. Once declared, you can't then use a record to hold data.

Use dot notation to reference the fields in the record:

<record>.<field>

record is a previously declared record variable and field is the identifier of a field belonging to the record type from which record is defined.

This emp_sal_query procedure uses a user-defined record type and record variable:

CREATE OR REPLACE PROCEDURE emp_sal_query (
 p_empno IN emp.empno%TYPE
)
IS
 TYPE emp_typ IS RECORD (
 ename emp.ename%TYPE,
 job emp.job%TYPE,
 hiredate emp.hiredate%TYPE,
 sal emp.sal%TYPE,
 deptno emp.deptno%TYPE
);
 r_emp emp_typ;
 v_avgsal emp.sal%TYPE;
BEGIN
 SELECT ename, job, hiredate, sal, deptno
 INTO r_emp.ename, r_emp.job, r_emp.hiredate, r_emp.sal, r_emp.deptno
 FROM emp WHERE empno = p_empno;
 DBMS_OUTPUT.PUT_LINE('Employee # : ' || p_empno);
 DBMS_OUTPUT.PUT_LINE('Name : ' || r_emp.ename);
 DBMS_OUTPUT.PUT_LINE('Job : ' || r_emp.job);
 DBMS_OUTPUT.PUT_LINE('Hire Date : ' || r_emp.hiredate);
 DBMS_OUTPUT.PUT_LINE('Salary : ' || r_emp.sal);
 DBMS_OUTPUT.PUT_LINE('Dept # : ' || r_emp.deptno);

 SELECT AVG(sal) INTO v_avgsal
 FROM emp WHERE deptno = r_emp.deptno;
 IF r_emp.sal > v_avgsal THEN
 DBMS_OUTPUT.PUT_LINE('Employee''s salary is more than the '
 || 'department average of ' || v_avgsal);
 ELSE
 DBMS_OUTPUT.PUT_LINE('Employee''s salary does not exceed the '
 || 'department average of ' || v_avgsal);
 END IF;
END;

Instead of specifying data type names, you can use the %TYPE attribute for the field data types in the record type definition.

The following is the output from executing this stored procedure:

EXEC emp_sal_query(7698);

Employee # : 7698
Name : BLAKE
Job : MANAGER
Hire Date : 01-MAY-81 00:00:00
Salary : 2850.00
Dept # : 30
Employee's salary is more than the department average of 1566.67

19.4 Basic statements

You can use several programming statements in an SPL program.

19.4.1 Assignment

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 559

The assignment statement sets a variable or a formal parameter of mode OUT or IN OUT specified on the left side of the assignment := to the evaluated expression specified on the right side of the
assignment.

<variable> := <expression>;

variable is an identifier for a previously declared variable, OUT formal parameter, or IN OUT formal parameter.

expression is an expression that produces a single value. The value produced by the expression must have a data type compatible with that of variable .

This example shows the typical use of assignment statements in the executable section of the procedure:

CREATE OR REPLACE PROCEDURE dept_salary_rpt (
 p_deptno NUMBER
)
IS
 todays_date DATE;
 rpt_title VARCHAR2(60);
 base_sal INTEGER;
 base_comm_rate NUMBER;
 base_annual NUMBER;
BEGIN
 todays_date := SYSDATE;
 rpt_title := 'Report For Department # ' || p_deptno || ' on '
 || todays_date;
 base_sal := 35525;
 base_comm_rate := 1.33333;
 base_annual := ROUND(base_sal * base_comm_rate, 2);

 DBMS_OUTPUT.PUT_LINE(rpt_title);
 DBMS_OUTPUT.PUT_LINE('Base Annual Salary: ' || base_annual);
END;

19.4.2 DELETE

You can use the DELETE command available in the SQL language in SPL programs.

You can use an expression in the SPL language wherever an expression is allowed in the SQL DELETE command. Thus, you can use SPL variables and parameters to supply values to the delete
operation.

CREATE OR REPLACE PROCEDURE emp_delete (
 p_empno IN emp.empno%TYPE
)
IS
BEGIN
 DELETE FROM emp WHERE empno = p_empno;

 IF SQL%FOUND THEN
 DBMS_OUTPUT.PUT_LINE('Deleted Employee # : ' || p_empno);
 ELSE
 DBMS_OUTPUT.PUT_LINE('Employee # ' || p_empno || ' not found');
 END IF;
END;

The SQL%FOUND conditional expression returns TRUE if a row is deleted, FALSE otherwise. See Obtaining the result status for a discussion of SQL%FOUND and other similar expressions.

This example deletes an employee using this procedure:

EXEC emp_delete(9503);

Deleted Employee # : 9503

SELECT * FROM emp WHERE empno = 9503;

 empno | ename | job | mgr | hiredate | sal | comm | deptno
-------+-------+-----+-----+----------+-----+------+--------
(0 rows)

Note

You can include the DELETE command in a FORALL statement. A FORALL statement allows a single DELETE command to delete multiple rows from values supplied in one or more
collections. See Using the FORALL statement for more information.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 560

19.4.3 INSERT

You can use the INSERT command available in the SQL language in SPL programs.

You can use an expression in the SPL language wherever an expression is allowed in the SQL INSERT command. Thus, you can use SPL variables and parameters to supply values to the insert
operation.

This example is a procedure that inserts a new employee using data passed from a calling program:

CREATE OR REPLACE PROCEDURE emp_insert (
 p_empno IN emp.empno%TYPE,
 p_ename IN emp.ename%TYPE,
 p_job IN emp.job%TYPE,
 p_mgr IN emp.mgr%TYPE,
 p_hiredate IN emp.hiredate%TYPE,
 p_sal IN emp.sal%TYPE,
 p_comm IN emp.comm%TYPE,
 p_deptno IN emp.deptno%TYPE
)
IS
BEGIN
 INSERT INTO emp VALUES (
 p_empno,
 p_ename,
 p_job,
 p_mgr,
 p_hiredate,
 p_sal,
 p_comm,
 p_deptno);

 DBMS_OUTPUT.PUT_LINE('Added employee...');
 DBMS_OUTPUT.PUT_LINE('Employee # : ' || p_empno);
 DBMS_OUTPUT.PUT_LINE('Name : ' || p_ename);
 DBMS_OUTPUT.PUT_LINE('Job : ' || p_job);
 DBMS_OUTPUT.PUT_LINE('Manager : ' || p_mgr);
 DBMS_OUTPUT.PUT_LINE('Hire Date : ' || p_hiredate);
 DBMS_OUTPUT.PUT_LINE('Salary : ' || p_sal);
 DBMS_OUTPUT.PUT_LINE('Commission : ' || p_comm);
 DBMS_OUTPUT.PUT_LINE('Dept # : ' || p_deptno);
 DBMS_OUTPUT.PUT_LINE('----------------------');
EXCEPTION
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE('OTHERS exception on INSERT of employee # '
 || p_empno);
 DBMS_OUTPUT.PUT_LINE('SQLCODE : ' || SQLCODE);
 DBMS_OUTPUT.PUT_LINE('SQLERRM : ' || SQLERRM);
END;

If an exception occurs, all database changes made in the procedure are rolled back. In this example, the EXCEPTION section with the WHEN OTHERS clause catches all exceptions. Two variables are
displayed. SQLCODE is a number that identifies the specific exception that occurred. SQLERRM is a text message explaining the error. See Exception handling for more information.

The following shows the output when this procedure is executed:

EXEC emp_insert(9503,'PETERSON','ANALYST',7902,'31-MAR-05',5000,NULL,40);

Added employee...
Employee # : 9503
Name : PETERSON
Job : ANALYST
Manager : 7902
Hire Date : 31-MAR-05 00:00:00
Salary : 5000
Dept # : 40

SELECT * FROM emp WHERE empno = 9503;

 empno | ename | job | mgr | hiredate | sal | comm | deptno
-------+--------+--------+------+-------------------+---------+------+-------
 9503 |PETERSON| ANALYST| 7902 | 31-MAR-05 00:00:00| 5000.00 | | 40
(1 row)

Note

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 561

You can include the INSERT command in a FORALL statement. A FORALL statement allows a single INSERT command to insert multiple rows from values supplied in one or more
collections. See Using the FORALL statement for more information.

19.4.4 NULL

The simplest statement is the NULL statement. This statement is an executable statement that does nothing.

NULL;

The following is the simplest possible valid SPL program:

BEGIN
 NULL;
END;

The NULL statement can act as a placeholder where an executable statement is required such as in a branch of an IF-THEN-ELSE statement. For example:

CREATE OR REPLACE PROCEDURE divide_it (
 p_numerator IN NUMBER,
 p_denominator IN NUMBER,
 p_result OUT NUMBER
)
IS
BEGIN
 IF p_denominator = 0 THEN
 NULL;
 ELSE
 p_result := p_numerator / p_denominator;
 END IF;
END;

19.4.5 Using the RETURNING INTO clause

You can append the INSERT , UPDATE , and DELETE commands with the optional RETURNING INTO clause. This clause allows the SPL program to capture the newly added, modified, or deleted
values from the results of an INSERT , UPDATE , or DELETE command, respectively.

The following is the syntax:

{ <insert> | <update> | <delete> }
 RETURNING { * | <expr_1> [, <expr_2>] ...}
 INTO { <record> | <field_1> [, <field_2>] ...};

insert is a valid INSERT command.
update is a valid UPDATE command.
delete is a valid DELETE command.

If you specify * , then the values from the row affected by the INSERT , UPDATE , or DELETE command are made available for assignment to the record or fields to the right of the INTO
keyword. (The use of * is an EDB Postgres Advanced Server extension and isn't compatible with Oracle databases.)
expr_1, expr_2... are expressions evaluated upon the row affected by the INSERT , UPDATE , or DELETE command. The evaluated results are assigned to the record or fields to the

right of the INTO keyword.
record is the identifier of a record that must contain fields that match in number and order and are data-type compatible with the values in the RETURNING clause.
field_1, field_2,... are variables that must match in number and order and are data-type compatible with the set of values in the RETURNING clause.

If the INSERT , UPDATE , or DELETE command returns a result set with more than one row, then an exception is thrown with SQLCODE 01422, query returned more than one row . If
no rows are in the result set, then the variables following the INTO keyword are set to null.

Note

A variation of RETURNING INTO using the BULK COLLECT clause allows a result set of more than one row that's returned into a collection. See Using the BULK COLLECT clause for more
information.

This example modifies the emp_comp_update procedure introduced in UPDATE. It adds the RETURNING INTO clause:

CREATE OR REPLACE PROCEDURE emp_comp_update (
 p_empno IN emp.empno%TYPE,
 p_sal IN emp.sal%TYPE,
 p_comm IN emp.comm%TYPE
)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 562

IS
 v_empno emp.empno%TYPE;
 v_ename emp.ename%TYPE;
 v_job emp.job%TYPE;
 v_sal emp.sal%TYPE;
 v_comm emp.comm%TYPE;
 v_deptno emp.deptno%TYPE;
BEGIN
 UPDATE emp SET sal = p_sal, comm = p_comm WHERE empno = p_empno
 RETURNING
 empno,
 ename,
 job,
 sal,
 comm,
 deptno
 INTO
 v_empno,
 v_ename,
 v_job,
 v_sal,
 v_comm,
 v_deptno;

 IF SQL%FOUND THEN
 DBMS_OUTPUT.PUT_LINE('Updated Employee # : ' || v_empno);
 DBMS_OUTPUT.PUT_LINE('Name : ' || v_ename);
 DBMS_OUTPUT.PUT_LINE('Job : ' || v_job);
 DBMS_OUTPUT.PUT_LINE('Department : ' || v_deptno);
 DBMS_OUTPUT.PUT_LINE('New Salary : ' || v_sal);
 DBMS_OUTPUT.PUT_LINE('New Commission : ' || v_comm);
 ELSE
 DBMS_OUTPUT.PUT_LINE('Employee # ' || p_empno || ' not found');
 END IF;
END;

The following is the output from this procedure, assuming employee 9503 created by the emp_insert procedure still exists in the table:

EXEC emp_comp_update(9503, 6540, 1200);

Updated Employee # : 9503
Name : PETERSON
Job : ANALYST
Department : 40
New Salary : 6540.00
New Commission : 1200.00

This example modifies the emp_delete procedure, adding the RETURNING INTO clause using record types:

CREATE OR REPLACE PROCEDURE emp_delete (
 p_empno IN emp.empno%TYPE
)
IS
 r_emp emp%ROWTYPE;
BEGIN
 DELETE FROM emp WHERE empno = p_empno
 RETURNING
 *
 INTO
 r_emp;

 IF SQL%FOUND THEN
 DBMS_OUTPUT.PUT_LINE('Deleted Employee # : ' || r_emp.empno);
 DBMS_OUTPUT.PUT_LINE('Name : ' || r_emp.ename);
 DBMS_OUTPUT.PUT_LINE('Job : ' || r_emp.job);
 DBMS_OUTPUT.PUT_LINE('Manager : ' || r_emp.mgr);
 DBMS_OUTPUT.PUT_LINE('Hire Date : ' || r_emp.hiredate);
 DBMS_OUTPUT.PUT_LINE('Salary : ' || r_emp.sal);
 DBMS_OUTPUT.PUT_LINE('Commission : ' || r_emp.comm);
 DBMS_OUTPUT.PUT_LINE('Department : ' || r_emp.deptno);
 ELSE
 DBMS_OUTPUT.PUT_LINE('Employee # ' || p_empno || ' not found');
 END IF;
END;

The following is the output from this procedure:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 563

EXEC emp_delete(9503);

Deleted Employee # : 9503
Name : PETERSON
Job : ANALYST
Manager : 7902
Hire Date : 31-MAR-05 00:00:00
Salary : 6540.00
Commission : 1200.00
Department : 40

19.4.6 SELECT INTO

The SELECT INTO statement is an SPL variation of the SQL SELECT command. The differences are:

SELECT INTO assigns the results to variables or records where they can then be used in SPL program statements.
The accessible result set of SELECT INTO is at most one row.

Other than these differences, all of the clauses of the SELECT command, such as WHERE , ORDER BY , GROUP BY , and HAVING , are valid for SELECT INTO . The following are the two
variations of SELECT INTO :

SELECT <select_expressions> INTO <target> FROM ...;

target is a comma-separated list of simple variables. select_expressions and the remainder of the statement are the same as for the SELECT command. The selected values must exactly
match in data type, number, and order the structure of the target or a runtime error occurs.

SELECT * INTO <record> FROM <table> ...;

record is a record variable that was previously declared.

If the query returns zero rows, null values are assigned to the targets. If the query returns multiple rows, the first row is assigned to the targets and the rest are discarded. ("The first row" isn't well-
defined unless you used ORDER BY.)

Note

In either case, where no row is returned or more than one row is returned, SPL throws an exception.

There is a variation of SELECT INTO using the BULK COLLECT clause that allows a result set of more than one row that's returned into a collection. See SELECT BULK COLLECT
for more information.

You can use the WHEN NO_DATA_FOUND clause in an EXCEPTION block to determine whether the assignment was successful, that is, at least one row was returned by the query.

This version of the emp_sal_query procedure uses the variation of SELECT INTO that returns the result set into a record. It also uses the EXCEPTION block containing the WHEN
NO_DATA_FOUND conditional expression.

CREATE OR REPLACE PROCEDURE emp_sal_query (
 p_empno IN emp.empno%TYPE
)
IS
 r_emp emp%ROWTYPE;
 v_avgsal emp.sal%TYPE;
BEGIN
 SELECT * INTO r_emp
 FROM emp WHERE empno = p_empno;
 DBMS_OUTPUT.PUT_LINE('Employee # : ' || p_empno);
 DBMS_OUTPUT.PUT_LINE('Name : ' || r_emp.ename);
 DBMS_OUTPUT.PUT_LINE('Job : ' || r_emp.job);
 DBMS_OUTPUT.PUT_LINE('Hire Date : ' || r_emp.hiredate);
 DBMS_OUTPUT.PUT_LINE('Salary : ' || r_emp.sal);
 DBMS_OUTPUT.PUT_LINE('Dept # : ' || r_emp.deptno);

 SELECT AVG(sal) INTO v_avgsal
 FROM emp WHERE deptno = r_emp.deptno;
 IF r_emp.sal > v_avgsal THEN
 DBMS_OUTPUT.PUT_LINE('Employee''s salary is more than the '
 || 'department average of ' || v_avgsal);
 ELSE
 DBMS_OUTPUT.PUT_LINE('Employee''s salary does not exceed the '
 || 'department average of ' || v_avgsal);
 END IF;
EXCEPTION

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 564

 WHEN NO_DATA_FOUND THEN
 DBMS_OUTPUT.PUT_LINE('Employee # ' || p_empno || ' not found');
END;

If the query is executed with a nonexistent employee number, the results appear as follows:

EXEC emp_sal_query(0);

Employee # 0 not found

Another conditional clause useful in the EXCEPTION section with SELECT INTO is the TOO_MANY_ROWS exception. If more than one row is selected by the SELECT INTO statement, SPL
throws an exception.

When the following block is executed, the TOO_MANY_ROWS exception is thrown since there are many employees in the specified department:

DECLARE
 v_ename emp.ename%TYPE;
BEGIN
 SELECT ename INTO v_ename FROM emp WHERE deptno = 20 ORDER BY ename;
EXCEPTION
 WHEN TOO_MANY_ROWS THEN
 DBMS_OUTPUT.PUT_LINE('More than one employee found');
 DBMS_OUTPUT.PUT_LINE('First employee returned is ' || v_ename);
END;

More than one employee found
First employee returned is ADAMS

See Exception handling for information on exception handling.

19.4.7 UPDATE

You can use the UPDATE command available in the SQL language in SPL programs.

You can use an expression in the SPL language wherever an expression is allowed in the SQL UPDATE command. Thus, you can use SPL variables and parameters to supply values to the update
operation.

CREATE OR REPLACE PROCEDURE emp_comp_update (
 p_empno IN emp.empno%TYPE,
 p_sal IN emp.sal%TYPE,
 p_comm IN emp.comm%TYPE
)
IS
BEGIN
 UPDATE emp SET sal = p_sal, comm = p_comm WHERE empno = p_empno;

 IF SQL%FOUND THEN
 DBMS_OUTPUT.PUT_LINE('Updated Employee # : ' || p_empno);
 DBMS_OUTPUT.PUT_LINE('New Salary : ' || p_sal);
 DBMS_OUTPUT.PUT_LINE('New Commission : ' || p_comm);
 ELSE
 DBMS_OUTPUT.PUT_LINE('Employee # ' || p_empno || ' not found');
 END IF;
END;

The SQL%FOUND conditional expression returns TRUE if a row is updated, FALSE otherwise. See Obtaining the result status for a discussion of SQL%FOUND and other similar expressions.

The following shows the update on the employee using this procedure:

EXEC emp_comp_update(9503, 6540, 1200);

Updated Employee # : 9503
New Salary : 6540
New Commission : 1200

SELECT * FROM emp WHERE empno = 9503;

empno | ename | job | mgr | hiredate | sal | comm | deptno
------+--------+--------+------+-------------------+--------+-------+-------
 9503 |PETERSON| ANALYST| 7902 | 31-MAR-05 00:00:00|6540.00 |1200.00| 40
(1 row)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 565

Note

You can include the UPDATE command in a FORALL statement. A FORALL statement allows a single UPDATE command to update multiple rows from values supplied in one or more
collections. See Using the FORALL statement for more information.

19.4.8 Obtaining the result status

You can use several attributes to determine the effect of a command. SQL%FOUND is a Boolean that returns TRUE if at least one row was affected by an INSERT , UPDATE or DELETE command
or a SELECT INTO command retrieved one or more rows.

The following anonymous block inserts a row and then displays the fact that the row was inserted:

BEGIN
 INSERT INTO emp (empno,ename,job,sal,deptno) VALUES (
 9001, 'JONES', 'CLERK', 850.00, 40);
 IF SQL%FOUND THEN
 DBMS_OUTPUT.PUT_LINE('Row has been inserted');
 END IF;
END;

Row has been inserted

SQL%ROWCOUNT provides the number of rows affected by an INSERT , UPDATE , DELETE , or SELECT INTO command. The SQL%ROWCOUNT value is returned as a BIGINT data type. The
following example updates the row that was just inserted and displays SQL%ROWCOUNT :

BEGIN
 UPDATE emp SET hiredate = '03-JUN-07' WHERE empno = 9001;
 DBMS_OUTPUT.PUT_LINE('# rows updated: ' || SQL%ROWCOUNT);
END;

rows updated: 1

SQL%NOTFOUND is the opposite of SQL%FOUND . SQL%NOTFOUND returns TRUE if no rows were affected by an INSERT , UPDATE or DELETE command or a SELECT INTO command
retrieved no rows.

BEGIN
 UPDATE emp SET hiredate = '03-JUN-07' WHERE empno = 9000;
 IF SQL%NOTFOUND THEN
 DBMS_OUTPUT.PUT_LINE('No rows were updated');
 END IF;
END;

No rows were updated

19.5 Control structures

SPL includes programming statements that make it a full procedural complement to SQL.

19.5.1 IF statement

IF statements let you execute commands based on certain conditions. SPL has four forms of IF :

IF ... THEN
IF ... THEN ... ELSE
IF ... THEN ... ELSE IF
IF ... THEN ... ELSIF ... THEN ... ELSE

19.5.1.1 IF-THEN

IF boolean-expression THEN
 <statements>

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 566

END IF;

IF-THEN statements are the simplest form of IF . The statements between THEN and END IF are executed if the condition is TRUE . Otherwise, they are skipped.

This example uses IF-THEN statement to test and display employees who have a commission:

DECLARE
 v_empno emp.empno%TYPE;
 v_comm emp.comm%TYPE;
 CURSOR emp_cursor IS SELECT empno, comm FROM emp;
BEGIN
 OPEN emp_cursor;
 DBMS_OUTPUT.PUT_LINE('EMPNO COMM');
 DBMS_OUTPUT.PUT_LINE('----- -------');
 LOOP
 FETCH emp_cursor INTO v_empno, v_comm;
 EXIT WHEN emp_cursor%NOTFOUND;
--
-- Test whether or not the employee gets a commission
--
 IF v_comm IS NOT NULL AND v_comm > 0 THEN
 DBMS_OUTPUT.PUT_LINE(v_empno || ' ' ||
 TO_CHAR(v_comm,'$99999.99'));
 END IF;
 END LOOP;
 CLOSE emp_cursor;
END;

The following is the output from this program:

EMPNO COMM
----- -------
7499 $300.00
7521 $500.00
7654 $1400.00

19.5.1.2 IF-THEN-ELSE

IF boolean-expression THEN
 <statements>
ELSE
 <statements>
END IF;

IF-THEN-ELSE statements add to IF-THEN by letting you specify an alternative set of statements to execute if the condition evaluates to false.

This example shows an IF-THEN-ELSE statement being used to display the text Non-commission if an employee doesn't get a commission:

DECLARE
 v_empno emp.empno%TYPE;
 v_comm emp.comm%TYPE;
 CURSOR emp_cursor IS SELECT empno, comm FROM emp;
BEGIN
 OPEN emp_cursor;
 DBMS_OUTPUT.PUT_LINE('EMPNO COMM');
 DBMS_OUTPUT.PUT_LINE('----- -------');
 LOOP
 FETCH emp_cursor INTO v_empno, v_comm;
 EXIT WHEN emp_cursor%NOTFOUND;
--
-- Test whether or not the employee gets a commission
--
 IF v_comm IS NOT NULL AND v_comm > 0 THEN
 DBMS_OUTPUT.PUT_LINE(v_empno || ' ' ||
 TO_CHAR(v_comm,'$99999.99'));
 ELSE
 DBMS_OUTPUT.PUT_LINE(v_empno || ' ' || 'Non-commission');
 END IF;
 END LOOP;
 CLOSE emp_cursor;
END;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 567

The following is the output from this program:

EMPNO COMM
----- -------
7369 Non-commission
7499 $ 300.00
7521 $ 500.00
7566 Non-commission
7654 $ 1400.00
7698 Non-commission
7782 Non-commission
7788 Non-commission
7839 Non-commission
7844 Non-commission
7876 Non-commission
7900 Non-commission
7902 Non-commission
7934 Non-commission

19.5.1.3 IF-THEN-ELSE IF

You can nest IF statements. This allows you to invoke alternative IF statements once it's determined whether the conditional of an outer IF statement is TRUE or FALSE .

In this example, the outer IF-THEN-ELSE statement tests whether an employee has a commission. The inner IF-THEN-ELSE statements then test whether the employee’s total compensation
exceeds or is less than the company average.

Note

The logic in this program can be simplified by calculating the employee’s yearly compensation using the NVL function in the SELECT command of the cursor declaration. However, the
purpose of this example is to show the use of IF statements.

DECLARE
 v_empno emp.empno%TYPE;
 v_sal emp.sal%TYPE;
 v_comm emp.comm%TYPE;
 v_avg NUMBER(7,2);
 CURSOR emp_cursor IS SELECT empno, sal, comm FROM emp;
BEGIN
--
-- Calculate the average yearly compensation in the company
--
 SELECT AVG((sal + NVL(comm,0)) * 24) INTO v_avg FROM emp;
 DBMS_OUTPUT.PUT_LINE('Average Yearly Compensation: ' ||
 TO_CHAR(v_avg,'$999,999.99'));
 OPEN emp_cursor;
 DBMS_OUTPUT.PUT_LINE('EMPNO YEARLY COMP');
 DBMS_OUTPUT.PUT_LINE('----- -----------');
 LOOP
 FETCH emp_cursor INTO v_empno, v_sal, v_comm;
 EXIT WHEN emp_cursor%NOTFOUND;
--
-- Test whether or not the employee gets a commission
--
 IF v_comm IS NOT NULL AND v_comm > 0 THEN
--
-- Test if the employee's compensation with commission exceeds the average
--
 IF (v_sal + v_comm) * 24 > v_avg THEN
 DBMS_OUTPUT.PUT_LINE(v_empno || ' ' ||
 TO_CHAR((v_sal + v_comm) * 24,'$999,999.99') || ' Exceeds Average');
 ELSE
 DBMS_OUTPUT.PUT_LINE(v_empno || ' ' ||
 TO_CHAR((v_sal + v_comm) * 24,'$999,999.99') || ' Below Average');
 END IF;
 ELSE
--
-- Test if the employee's compensation without commission exceeds the
average
--
 IF v_sal * 24 > v_avg THEN
 DBMS_OUTPUT.PUT_LINE(v_empno || ' ' ||
 TO_CHAR(v_sal * 24,'$999,999.99') || ' Exceeds Average');
 ELSE
 DBMS_OUTPUT.PUT_LINE(v_empno || ' ' ||

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 568

 TO_CHAR(v_sal * 24,'$999,999.99') || ' Below Average');
 END IF;
 END IF;
 END LOOP;
 CLOSE emp_cursor;
END;

The following is the output from this program:

Average Yearly Compensation: $ 53,528.57
EMPNO YEARLY COMP
----- -----------
7369 $ 19,200.00 Below Average
7499 $ 45,600.00 Below Average
7521 $ 42,000.00 Below Average
7566 $ 71,400.00 Exceeds Average
7654 $ 63,600.00 Exceeds Average
7698 $ 68,400.00 Exceeds Average
7782 $ 58,800.00 Exceeds Average
7788 $ 72,000.00 Exceeds Average
7839 $ 120,000.00 Exceeds Average
7844 $ 36,000.00 Below Average
7876 $ 26,400.00 Below Average
7900 $ 22,800.00 Below Average
7902 $ 72,000.00 Exceeds Average
7934 $ 31,200.00 Below Average

When you use this form, you're actually nesting an IF statement inside the ELSE part of an outer IF statement. Thus you need one END IF statement for each nested IF and one for the parent
IF-ELSE .

19.5.1.4 IF-THEN-ELSIF-ELSE

IF boolean-expression THEN
 <statements>
[ELSIF boolean-expression THEN
 <statements>
[ELSIF boolean-expression THEN
 <statements>] ...]
[ELSE
 <statements>]
END IF;

IF-THEN-ELSIF-ELSE provides a method of checking many alternatives in one statement. Formally it is equivalent to nested IF-THEN-ELSE-IF-THEN commands, but only one END IF is
needed.

The following example uses an IF-THEN-ELSIF-ELSE statement to count the number of employees by compensation ranges of $25,000:

DECLARE
 v_empno emp.empno%TYPE;
 v_comp NUMBER(8,2);
 v_lt_25K SMALLINT := 0;
 v_25K_50K SMALLINT := 0;
 v_50K_75K SMALLINT := 0;
 v_75K_100K SMALLINT := 0;
 v_ge_100K SMALLINT := 0;
 CURSOR emp_cursor IS SELECT empno, (sal + NVL(comm,0)) * 24 FROM emp;
BEGIN
 OPEN emp_cursor;
 LOOP
 FETCH emp_cursor INTO v_empno, v_comp;
 EXIT WHEN emp_cursor%NOTFOUND;
 IF v_comp < 25000 THEN
 v_lt_25K := v_lt_25K + 1;
 ELSIF v_comp < 50000 THEN
 v_25K_50K := v_25K_50K + 1;
 ELSIF v_comp < 75000 THEN
 v_50K_75K := v_50K_75K + 1;
 ELSIF v_comp < 100000 THEN
 v_75K_100K := v_75K_100K + 1;
 ELSE
 v_ge_100K := v_ge_100K + 1;
 END IF;
 END LOOP;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 569

 CLOSE emp_cursor;
 DBMS_OUTPUT.PUT_LINE('Number of employees by yearly compensation');
 DBMS_OUTPUT.PUT_LINE('Less than 25,000 : ' || v_lt_25K);
 DBMS_OUTPUT.PUT_LINE('25,000 - 49,9999 : ' || v_25K_50K);
 DBMS_OUTPUT.PUT_LINE('50,000 - 74,9999 : ' || v_50K_75K);
 DBMS_OUTPUT.PUT_LINE('75,000 - 99,9999 : ' || v_75K_100K);
 DBMS_OUTPUT.PUT_LINE('100,000 and over : ' || v_ge_100K);
END;

The following is the output from this program:

Number of employees by yearly compensation
Less than 25,000 : 2
25,000 - 49,9999 : 5
50,000 - 74,9999 : 6
75,000 - 99,9999 : 0
100,000 and over : 1

19.5.2 RETURN statement

The RETURN statement terminates the current function, procedure, or anonymous block and returns control to the caller.

The RETURN statement has two forms. The first form of the RETURN statement terminates a procedure or function that returns void . The syntax of this form is:

RETURN;

The second form of RETURN returns a value to the caller. The syntax of this form is:

RETURN <expression>;

expression must evaluate to the same data type as the return type of the function.

This example uses the RETURN statement and returns a value to the caller:

CREATE OR REPLACE FUNCTION emp_comp (
 p_sal NUMBER,
 p_comm NUMBER
) RETURN NUMBER
IS
BEGIN
 RETURN (p_sal + NVL(p_comm, 0)) * 24;
END emp_comp;

19.5.3 GOTO statement

The GOTO statement causes the point of execution to jump to the statement with the specified label. The syntax of a GOTO statement is:

GOTO <label>

label is a name assigned to an executable statement. label must be unique in the scope of the function, procedure, or anonymous block.

To label a statement, use this syntax:

<<label>> <statement>

statement is the point of execution that the program jumps to.

You can label assignment statements, any SQL statement (like INSERT , UPDATE , and CREATE), and selected procedural language statements. The procedural language statements that can be
labeled are:

IF
EXIT
RETURN
RAISE
EXECUTE

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 570

PERFORM
GET DIAGNOSTICS
OPEN
FETCH
MOVE
CLOSE
NULL
COMMIT
ROLLBACK
GOTO
CASE
LOOP
WHILE
FOR

exit is considered a keyword and you can't use it as the name of a label.

GOTO statements can't transfer control into a conditional block or sub-block. However, they can transfer control from a conditional block or sub-block.

GOTO statements have the following restrictions:

A GOTO statement can't jump to a declaration.
A GOTO statement can't transfer control to another function, or procedure.
Don't place a label at the end of a block, function, or procedure.

This example verifies that an employee record contains a name, job description, and employee hire date. If any piece of information is missing, a GOTO statement transfers the point of execution to a
statement that prints a message that the employee isn't valid.

CREATE OR REPLACE PROCEDURE verify_emp (
 p_empno NUMBER
)
IS
 v_ename emp.ename%TYPE;
 v_job emp.job%TYPE;
 v_hiredate emp.hiredate%TYPE;
BEGIN
 SELECT ename, job, hiredate
 INTO v_ename, v_job, v_hiredate FROM emp
 WHERE empno = p_empno;
 IF v_ename IS NULL THEN
 GOTO invalid_emp;
 END IF;
 IF v_job IS NULL THEN
 GOTO invalid_emp;
 END IF;
 IF v_hiredate IS NULL THEN
 GOTO invalid_emp;
 END IF;
 DBMS_OUTPUT.PUT_LINE('Employee ' || p_empno ||
 ' validated without errors.');
 RETURN;
 <<invalid_emp>> DBMS_OUTPUT.PUT_LINE('Employee ' || p_empno ||
 ' is not a valid employee.');
END;

19.5.4 CASE expression

The CASE expression returns a value that's substituted where the CASE expression is located in an expression.

The two formats of the CASE expression are called a searched CASE and one that uses a selector.

19.5.4.1 Selector CASE expression

The selector CASE expression attempts to match an expression, called the selector, to the expression specified in one or more WHEN clauses. result is an expression that is type-compatible in the
context where the CASE expression is used. If a match is found, the value given in the corresponding THEN clause is returned by the CASE expression. If there are no matches, the value following
ELSE is returned. If ELSE is omitted, the CASE expression returns null.

CASE <selector-expression>
 WHEN <match-expression> THEN

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 571

 <result>
[WHEN <match-expression> THEN
 <result>
[WHEN <match-expression> THEN
 <result>] ...]
[ELSE
 <result>]
END;

match-expression is evaluated in the order in which it appears in the CASE expression.
result is an expression that is type-compatible in the context where the CASE expression is used.

When the first match-expression is encountered that equals selector-expression , result in the corresponding THEN clause is returned as the value of the CASE expression.
If none of match-expression equals selector-expression , then result following ELSE is returned.
If no ELSE is specified, the CASE expression returns null.

This example uses a selector CASE expression to assign the department name to a variable based on the department number:

DECLARE
 v_empno emp.empno%TYPE;
 v_ename emp.ename%TYPE;
 v_deptno emp.deptno%TYPE;
 v_dname dept.dname%TYPE;
 CURSOR emp_cursor IS SELECT empno, ename, deptno FROM emp;
BEGIN
 OPEN emp_cursor;
 DBMS_OUTPUT.PUT_LINE('EMPNO ENAME DEPTNO DNAME');
 DBMS_OUTPUT.PUT_LINE('----- ------- ------ ----------');
 LOOP
 FETCH emp_cursor INTO v_empno, v_ename, v_deptno;
 EXIT WHEN emp_cursor%NOTFOUND;
 v_dname :=
 CASE v_deptno
 WHEN 10 THEN 'Accounting'
 WHEN 20 THEN 'Research'
 WHEN 30 THEN 'Sales'
 WHEN 40 THEN 'Operations'
 ELSE 'unknown'
 END;
 DBMS_OUTPUT.PUT_LINE(v_empno || ' ' || RPAD(v_ename, 10) ||
 ' ' || v_deptno || ' ' || v_dname);
 END LOOP;
 CLOSE emp_cursor;
END;

The following is the output from this program:

EMPNO ENAME DEPTNO DNAME
----- ------- ------ ----------
7369 SMITH 20 Research
7499 ALLEN 30 Sales
7521 WARD 30 Sales
7566 JONES 20 Research
7654 MARTIN 30 Sales
7698 BLAKE 30 Sales
7782 CLARK 10 Accounting
7788 SCOTT 20 Research
7839 KING 10 Accounting
7844 TURNER 30 Sales
7876 ADAMS 20 Research
7900 JAMES 30 Sales
7902 FORD 20 Research
7934 MILLER 10 Accounting

19.5.4.2 Searched CASE expression

A searched CASE expression uses one or more Boolean expressions to determine the resulting value to return.

CASE WHEN <boolean-expression> THEN
 <result>
[WHEN <boolean-expression> THEN
 <result>
 [WHEN <boolean-expression> THEN
 <result>] ...]

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 572

[ELSE
 <result>]
END;

boolean-expression is evaluated in the order in which it appears in the CASE expression.
result is an expression that is type-compatible in the context where the CASE expression is used.

When the first boolean-expression is encountered that evaluates to TRUE , result in the corresponding THEN clause is returned as the value of the CASE expression.
If none of boolean-expression evaluates to true, then result following ELSE is returned.
If no ELSE is specified, the CASE expression returns null.

This example uses a searched CASE expression to assign the department name to a variable based on the department number:

DECLARE
 v_empno emp.empno%TYPE;
 v_ename emp.ename%TYPE;
 v_deptno emp.deptno%TYPE;
 v_dname dept.dname%TYPE;
 CURSOR emp_cursor IS SELECT empno, ename, deptno FROM emp;
BEGIN
 OPEN emp_cursor;
 DBMS_OUTPUT.PUT_LINE('EMPNO ENAME DEPTNO DNAME');
 DBMS_OUTPUT.PUT_LINE('----- ------- ------ ----------');
 LOOP
 FETCH emp_cursor INTO v_empno, v_ename, v_deptno;
 EXIT WHEN emp_cursor%NOTFOUND;
 v_dname :=
 CASE
 WHEN v_deptno = 10 THEN 'Accounting'
 WHEN v_deptno = 20 THEN 'Research'
 WHEN v_deptno = 30 THEN 'Sales'
 WHEN v_deptno = 40 THEN 'Operations'
 ELSE 'unknown'
 END;
 DBMS_OUTPUT.PUT_LINE(v_empno || ' ' || RPAD(v_ename, 10) ||
 ' ' || v_deptno || ' ' || v_dname);
 END LOOP;
 CLOSE emp_cursor;
END;

The following is the output from this program:

EMPNO ENAME DEPTNO DNAME
----- ------- ------ ----------
7369 SMITH 20 Research
7499 ALLEN 30 Sales
7521 WARD 30 Sales
7566 JONES 20 Research
7654 MARTIN 30 Sales
7698 BLAKE 30 Sales
7782 CLARK 10 Accounting
7788 SCOTT 20 Research
7839 KING 10 Accounting
7844 TURNER 30 Sales
7876 ADAMS 20 Research
7900 JAMES 30 Sales
7902 FORD 20 Research
7934 MILLER 10 Accounting

19.5.5 CASE statement

The CASE statement executes a set of one or more statements when a specified search condition is TRUE . The CASE statement is a standalone statement while the CASE expression must appear
as part of an expression.

The two formats of the CASE statement are a searched CASE and one that uses a selector.

19.5.5.1 Selector CASE statement

The selector CASE statement attempts to match an expression called the selector to the expression specified in one or more WHEN clauses. When a match is found, one or more corresponding
statements are executed.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 573

CASE <selector-expression>
WHEN <match-expression> THEN
 <statements>
[WHEN <match-expression> THEN
 <statements>
[WHEN <match-expression> THEN
 <statements>] ...]
[ELSE
 <statements>]
END CASE;

selector-expression returns a value type-compatible with each match-expression .
match-expression is evaluated in the order in which it appears in the CASE statement.
statements are one or more SPL statements, each terminated by a semi-colon.

When the value of selector-expression equals the first match-expression , the statements in the corresponding THEN clause are executed, and control continues following the
END CASE keywords.

If there are no matches, the statements following ELSE are executed.
If there are no matches and there is no ELSE clause, an exception is thrown.

This example uses a selector CASE statement to assign a department name and location to a variable based on the department number:

DECLARE
 v_empno emp.empno%TYPE;
 v_ename emp.ename%TYPE;
 v_deptno emp.deptno%TYPE;
 v_dname dept.dname%TYPE;
 v_loc dept.loc%TYPE;
 CURSOR emp_cursor IS SELECT empno, ename, deptno FROM emp;
BEGIN
 OPEN emp_cursor;
 DBMS_OUTPUT.PUT_LINE('EMPNO ENAME DEPTNO DNAME '
 || ' LOC');
 DBMS_OUTPUT.PUT_LINE('----- ------- ------ ----------'
 || ' ---------');
 LOOP
 FETCH emp_cursor INTO v_empno, v_ename, v_deptno;
 EXIT WHEN emp_cursor%NOTFOUND;
 CASE v_deptno
 WHEN 10 THEN v_dname := 'Accounting';
 v_loc := 'New York';
 WHEN 20 THEN v_dname := 'Research';
 v_loc := 'Dallas';
 WHEN 30 THEN v_dname := 'Sales';
 v_loc := 'Chicago';
 WHEN 40 THEN v_dname := 'Operations';
 v_loc := 'Boston';
 ELSE v_dname := 'unknown';
 v_loc := '';
 END CASE;
 DBMS_OUTPUT.PUT_LINE(v_empno || ' ' || RPAD(v_ename, 10) ||
 ' ' || v_deptno || ' ' || RPAD(v_dname, 14) || ' ' ||
 v_loc);
 END LOOP;
 CLOSE emp_cursor;
END;

The following is the output from this program:

EMPNO ENAME DEPTNO DNAME LOC
----- ------- ------ ---------- ---------
7369 SMITH 20 Research Dallas
7499 ALLEN 30 Sales Chicago
7521 WARD 30 Sales Chicago
7566 JONES 20 Research Dallas
7654 MARTIN 30 Sales Chicago
7698 BLAKE 30 Sales Chicago
7782 CLARK 10 Accounting New York
7788 SCOTT 20 Research Dallas
7839 KING 10 Accounting New York
7844 TURNER 30 Sales Chicago
7876 ADAMS 20 Research Dallas
7900 JAMES 30 Sales Chicago
7902 FORD 20 Research Dallas
7934 MILLER 10 Accounting New York

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 574

19.5.5.2 Searched CASE statement

A searched CASE statement uses one or more Boolean expressions to determine the resulting set of statements to execute.

CASE WHEN <boolean-expression> THEN
 <statements>
[WHEN <boolean-expression> THEN
 <statements>
[WHEN <boolean-expression> THEN
 <statements>] ...]
[ELSE
 <statements>]
END CASE;

boolean-expression is evaluated in the order in which it appears in the CASE statement.
When the first boolean-expression is encountered that evaluates to TRUE , the statements in the corresponding THEN clause are executed and control continues following the END
CASE keywords.
If none of boolean-expression evaluates to TRUE , the statements following ELSE are executed.
If none of boolean-expression evaluates to TRUE and there is no ELSE clause, an exception is thrown.

This example uses a searched CASE statement to assign a department name and location to a variable based on the department number:

DECLARE
 v_empno emp.empno%TYPE;
 v_ename emp.ename%TYPE;
 v_deptno emp.deptno%TYPE;
 v_dname dept.dname%TYPE;
 v_loc dept.loc%TYPE;
 CURSOR emp_cursor IS SELECT empno, ename, deptno FROM emp;
BEGIN
 OPEN emp_cursor;
 DBMS_OUTPUT.PUT_LINE('EMPNO ENAME DEPTNO DNAME '
 || ' LOC');
 DBMS_OUTPUT.PUT_LINE('----- ------- ------ ----------'
 || ' ---------');
 LOOP
 FETCH emp_cursor INTO v_empno, v_ename, v_deptno;
 EXIT WHEN emp_cursor%NOTFOUND;
 CASE
 WHEN v_deptno = 10 THEN v_dname := 'Accounting';
 v_loc := 'New York';
 WHEN v_deptno = 20 THEN v_dname := 'Research';
 v_loc := 'Dallas';
 WHEN v_deptno = 30 THEN v_dname := 'Sales';
 v_loc := 'Chicago';
 WHEN v_deptno = 40 THEN v_dname := 'Operations';
 v_loc := 'Boston';
 ELSE v_dname := 'unknown';
 v_loc := '';
 END CASE;
 DBMS_OUTPUT.PUT_LINE(v_empno || ' ' || RPAD(v_ename, 10) ||
 ' ' || v_deptno || ' ' || RPAD(v_dname, 14) || ' ' ||
 v_loc);
 END LOOP;
 CLOSE emp_cursor;
END;

The following is the output from this program:

EMPNO ENAME DEPTNO DNAME LOC
----- ------- ------ ---------- ---------
7369 SMITH 20 Research Dallas
7499 ALLEN 30 Sales Chicago
7521 WARD 30 Sales Chicago
7566 JONES 20 Research Dallas
7654 MARTIN 30 Sales Chicago
7698 BLAKE 30 Sales Chicago
7782 CLARK 10 Accounting New York
7788 SCOTT 20 Research Dallas
7839 KING 10 Accounting New York
7844 TURNER 30 Sales Chicago
7876 ADAMS 20 Research Dallas
7900 JAMES 30 Sales Chicago
7902 FORD 20 Research Dallas
7934 MILLER 10 Accounting New York

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 575

19.5.6 Loops

When you use the LOOP , EXIT , CONTINUE , WHILE , and FOR statements, your SPL program can repeat a series of commands.

19.5.6.1 LOOP

LOOP
 <statements>
END LOOP;

LOOP defines an unconditional loop that's repeated indefinitely until terminated by an EXIT or RETURN statement.

19.5.6.2 EXIT

EXIT [WHEN <expression>];

The innermost loop is terminated, and the statement following END LOOP is executed next.

If WHEN is present, loop exit occurs only if the specified condition is TRUE . Otherwise control passes to the statement after EXIT .

You can use EXIT to cause early exit from all types of loops, not just unconditional loops.

This example shows a loop that iterates 10 times and then uses the EXIT statement to terminate:

DECLARE
 v_counter NUMBER(2);
BEGIN
 v_counter := 1;
 LOOP
 EXIT WHEN v_counter > 10;
 DBMS_OUTPUT.PUT_LINE('Iteration # ' || v_counter);
 v_counter := v_counter + 1;
 END LOOP;
END;

The following is the output from this example:

Iteration # 1
Iteration # 2
Iteration # 3
Iteration # 4
Iteration # 5
Iteration # 6
Iteration # 7
Iteration # 8
Iteration # 9
Iteration # 10

19.5.6.3 CONTINUE

The CONTINUE statement provides a way to proceed with the next iteration of a loop while skipping intervening statements.

When the CONTINUE statement is encountered, the next iteration of the innermost loop begins, skipping all statements following the CONTINUE statement until the end of the loop. That is, control
is passed back to the loop control expression, if any, and the body of the loop is reevaluated.

If you use the WHEN clause, then the next iteration of the loop begins only if the specified expression in the WHEN clause evaluates to TRUE . Otherwise, control is passed to the statement following
the CONTINUE statement.

You can use the CONTINUE statement only inside a loop.

This example uses the CONTINUE statement to skip the display of the odd numbers:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 576

DECLARE
 v_counter NUMBER(2);
BEGIN
 v_counter := 0;
 LOOP
 v_counter := v_counter + 1;
 EXIT WHEN v_counter > 10;
 CONTINUE WHEN MOD(v_counter,2) = 1;
 DBMS_OUTPUT.PUT_LINE('Iteration # ' || v_counter);
 END LOOP;
END;

The following is the output from this example:

Iteration # 2
Iteration # 4
Iteration # 6
Iteration # 8
Iteration # 10

19.5.6.4 WHILE

WHILE <expression> LOOP
 <statements>
END LOOP;

The WHILE statement repeats a sequence of statements when the condition expression evaluates to TRUE . The condition is checked just before each entry to the loop body.

This example uses the WHILE statement instead of the EXIT statement to determine when to exit the loop:

Note

The conditional expression used to determine when to exit the loop differs when using WHILE versus EXIT . The EXIT statement terminates the loop when its conditional expression is
true. The WHILE statement terminates the loop or never begins it when its conditional expression is false.

DECLARE
 v_counter NUMBER(2);
BEGIN
 v_counter := 1;
 WHILE v_counter <= 10 LOOP
 DBMS_OUTPUT.PUT_LINE('Iteration # ' || v_counter);
 v_counter := v_counter + 1;
 END LOOP;
END;

The following is the output from this example:

Iteration # 1
Iteration # 2
Iteration # 3
Iteration # 4
Iteration # 5
Iteration # 6
Iteration # 7
Iteration # 8
Iteration # 9
Iteration # 10

19.5.6.5 FOR (integer variant)

FOR <name> IN [REVERSE] <expression .. expression> LOOP
 <statements>
END LOOP;

This form of FOR creates a loop that iterates over a range of integer values. The variable name is of type INTEGER and exists only inside the loop. The two expressions giving the loop range are
evaluated once when entering the loop. The iteration step is +1.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 577

name begins with the value of expression to the left of .. and terminates when name exceeds the value of expression to the right of .. . Thus the two expressions take on the roles
start-value.. end-value .

The optional REVERSE clause specifies for the loop to iterate in reverse order. The first time through the loop, name is set to the value of the right-most expression . The loop terminates when the
name is less than the left-most expression .

This example uses a FOR loop that iterates from 1 to 10:

BEGIN
 FOR i IN 1 .. 10 LOOP
 DBMS_OUTPUT.PUT_LINE('Iteration # ' || i);
 END LOOP;
END;

The following is the output after using the FOR statement:

Iteration # 1
Iteration # 2
Iteration # 3
Iteration # 4
Iteration # 5
Iteration # 6
Iteration # 7
Iteration # 8
Iteration # 9
Iteration # 10

If the start value is greater than the end value, the loop body doesn't execute. No error occurs, as shown by the following example:

BEGIN
 FOR i IN 10 .. 1 LOOP
 DBMS_OUTPUT.PUT_LINE('Iteration # ' || i);
 END LOOP;
END;

This example has no output as the loop body never executes.

Note

SPL also supports cursor FOR loops. See Cursor FOR loop.

19.5.7 Exception handling

By default, any error occurring in an SPL program stops the program from executing. You can trap errors and recover from them by using a BEGIN block with an EXCEPTION section. The syntax is an
extension of the normal syntax for a BEGIN block:

[DECLARE
 <declarations>]
 BEGIN
 <statements>
 EXCEPTION
 WHEN <condition> [OR <condition>]... THEN
 <handler_statements>
 [WHEN <condition> [OR <condition>]... THEN
 <handler_statements>]...
END;

If no error occurs, this form of block executes all the statements, and then control passes to the next statement after END . If an error occurs in the statements, further processing of the statements is
abandoned, and control passes to the EXCEPTION list. The list is searched for the first condition matching the error. If a match is found, the corresponding handler_statements are executed,
and then control passes to the next statement after END . If no match is found, the error propagates out as though the EXCEPTION clause wasn't there. You can catch the error by an enclosing block
with EXCEPTION . If there is no enclosing block, it aborts the subprogram.

The special condition named OTHERS matches every error type. Condition names aren't case sensitive.

If a new error occurs in the selected handler_statements , this EXCEPTION clause can't catch it, but it is propagated out. A surrounding EXCEPTION clause might catch it.

The following table lists the condition names that you can use.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 578

Condition name Description

CASE_NOT_FOUND The application encountered a situation where none of the cases in CASE statement evaluates to TRUE and there is no ELSE
condition.

COLLECTION_IS_NULL The application attempted to invoke a collection method on a null collection, such as an uninitialized nested table.

CURSOR_ALREADY_OPEN The application attempted to open a cursor that's already open.

DUP_VAL_ON_INDEX The application attempted to store a duplicate value that currently exists in a constrained column.

INVALID_CURSOR The application attempted to access an unopened cursor.

INVALID_NUMBER The application encountered a data exception equivalent to SQLSTATE class code 22. INVALID_NUMBER is an alias for VALUE_ERROR .

NO_DATA_FOUND No rows satisfy the selection criteria.

OTHERS The application encountered an exception that wasn't caught by a prior condition in the exception section.

SUBSCRIPT_BEYOND_COUNT The application attempted to reference a subscript of a nested table or varray beyond its initialized or extended size.

SUBSCRIPT_OUTSIDE_LIMIT The application attempted to reference a subscript or extend a varray beyond its maximum size limit.

TOO_MANY_ROWS The application encountered more than one row that satisfies the selection criteria where only one row is allowed to be returned.

VALUE_ERROR The application encountered a data exception equivalent to SQLSTATE class code 22. VALUE_ERROR is an alias for INVALID_NUMBER .

ZERO_DIVIDE The application tried to divide by zero.

User-defined Exception See User-defined exceptions.

Note

Condition names INVALID_NUMBER and VALUE_ERROR aren't compatible with Oracle databases for which these condition names are used for exceptions that result only from a failed
conversion of a string to a numeric literal. In addition, for Oracle databases, an INVALID_NUMBER exception applies only to SQL statements, while a VALUE_ERROR exception applies only
to procedural statements.

19.5.8 User-defined exceptions

Any number of errors (referred to in PL/SQL as exceptions) can occur while a program executes. When an exception is thrown, normal execution of the program stops, and control of the program
transfers to the error-handling portion of the program. An exception can be a predefined error that's generated by the server, or it can be a logical error that raises a user-defined exception.

The server never raises user-defined exceptions. They are raised explicitly by a RAISE statement. A user-defined exception is raised when a developer-defined logical rule is broken. A common
example of a logical rule being broken occurs when a check is presented against an account with insufficient funds. An attempt to cash a check against an account with insufficient funds causes a user-
defined exception.

You can define exceptions in functions, procedures, packages, or anonymous blocks. While you can't declare the same exception twice in the same block, you can declare the same exception in two
different blocks.

Before implementing a user-defined exception, you must declare the exception in the declaration section of a function, procedure, package, or anonymous block. You can then raise the exception using
the RAISE statement:

DECLARE
 <exception_name> EXCEPTION;

BEGIN
 ...
 RAISE <exception_name>;
 ...
END;

exception_name is the name of the exception.

Unhandled exceptions propagate back through the call stack. If the exception remains unhandled, the exception is eventually reported to the client application.

User-defined exceptions declared in a block are considered to be local to that block and global to any blocks nested in the block. To reference an exception that resides in an outer block, you must
assign a label to the outer block. Then, preface the name of the exception with block_name.exception_name .

Outer blocks can't reference exceptions declared in nested blocks.

The scope of a declaration is limited to the block in which it's declared unless it's created in a package and, when referenced, qualified by the package name. For example, to raise an exception named
out_of_stock that resides in a package named inventory_control , a program must raise an error named inventory_control.out_of_stock .

This example declares a user-defined exception in a package. The user-defined exception doesn't require a package qualifier when raised in check_balance , since it resides in the same package as
the exception:

CREATE OR REPLACE PACKAGE ar AS
 overdrawn EXCEPTION;
 PROCEDURE check_balance(p_balance NUMBER, p_amount NUMBER);

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 579

END;

CREATE OR REPLACE PACKAGE BODY ar AS
 PROCEDURE check_balance(p_balance NUMBER, p_amount NUMBER)
 IS
 BEGIN
 IF (p_amount > p_balance) THEN
 RAISE overdrawn;
 END IF;
 END;

Here, the procedure purchase calls the check_balance procedure. If p_amount is greater than p_balance , check_balance raises an exception. purchase catches the
ar.overdrawn exception. purchase must refer to the exception with a package-qualified name (ar.overdrawn) because purchase isn't defined in the ar package.

CREATE PROCEDURE purchase(customerID INT, amount NUMERIC)
AS
 BEGIN
 ar.check_ balance(getcustomerbalance(customerid), amount);
 record_purchase(customerid, amount);
 EXCEPTION
 WHEN ar.overdrawn THEN
 raise_credit_limit(customerid, amount*1.5);
 END;

When ar.check_balance raises an exception, execution jumps to the exception handler defined in purchase :

EXCEPTION
 WHEN ar.overdrawn THEN
 raise_credit_limit(customerid, amount*1.5);

The exception handler raises the customer’s credit limit and ends. When the exception handler ends, execution resumes with the statement that follows ar.check_balance .

19.5.9 PRAGMA EXCEPTION_INIT

PRAGMA EXCEPTION_INIT associates a user-defined error code with an exception. You can include a PRAGMA EXCEPTION_INIT declaration in any block, sub-block, or package. You can assign
an error code to an exception using PRAGMA EXCEPTION_INIT only after declaring the exception. The format of a PRAGMA EXCEPTION_INIT declaration is:

PRAGMA EXCEPTION_INIT(<exception_name>,
 {<exception_number> | <exception_code>})

Where:

exception_name is the name of the associated exception.

exception_number is a user-defined error code associated with the pragma. If you specify an unmapped exception_number , the server returns a warning.

exception_code is the name of a predefined exception. For a complete list of valid exceptions, see the Postgres core documentation.

This example uses a PRAGMA EXCEPTION_INIT declaration:

CREATE OR REPLACE PACKAGE ar AS
 overdrawn EXCEPTION;
 PRAGMA EXCEPTION_INIT (overdrawn, -20100);
 PROCEDURE check_balance(p_balance NUMBER, p_amount NUMBER);
END;

CREATE OR REPLACE PACKAGE BODY ar AS
 PROCEDURE check_balance(p_balance NUMBER, p_amount NUMBER)
 IS
 BEGIN
 IF (p_amount > p_balance) THEN
 RAISE overdrawn;
 END IF;
 END;

The following procedure calls the check_balance procedure. If p_amount is greater than p_balance , check_balance raises an exception. The purchase procedure catches the
ar.overdrawn exception.

CREATE PROCEDURE purchase(customerID int, amount NUMERIC)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 580

https://www.postgresql.org/docs/current/static/errcodes-appendix.html

AS
 BEGIN
 ar.check_ balance(getcustomerbalance(customerid), amount);
 record_purchase(customerid, amount);
 EXCEPTION
 WHEN ar.overdrawn THEN
 DBMS_OUTPUT.PUT_LINE ('This account is overdrawn.');
 DBMS_OUTPUT.PUT_LINE ('SQLCode :'||SQLCODE||' '||SQLERRM);
END;

When ar.check_balance raises an exception, execution jumps to the exception handler defined in purchase :

EXCEPTION
 WHEN ar.overdrawn THEN
 DBMS_OUTPUT.PUT_LINE ('This account is overdrawn.');
 DBMS_OUTPUT.PUT_LINE ('SQLCode :'||SQLCODE||' '||SQLERRM);

The exception handler returns an error message, followed by SQLCODE information:

This account is overdrawn.
SQLCODE: -20100 User-Defined Exception

This example uses a predefined exception. The code creates a more meaningful name for the no_data_found exception . If the given customer doesn't exist, the code catches the exception, calls
DBMS_OUTPUT.PUT_LINE to report the error, and then raises the original exception again:

CREATE OR REPLACE PACKAGE ar AS
 overdrawn EXCEPTION;
 PRAGMA EXCEPTION_INIT (unknown_customer, no_data_found);
 PROCEDURE check_balance(p_customer_id NUMBER);
END;

CREATE OR REPLACE PACKAGE BODY ar AS
 PROCEDURE check_balance(p_customer_id NUMBER)
 IS
 DECLARE
 v_balance NUMBER;
 BEGIN
 SELECT balance INTO v_balance FROM customer
 WHERE cust_id = p_customer_id;
 EXCEPTION WHEN unknown_customer THEN
 DBMS_OUTPUT.PUT_LINE('invalid customer id');
 RAISE;
 END;

19.5.10 RAISE_APPLICATION_ERROR

The procedure RAISE_APPLICATION_ERROR allows you to abort processing in an SPL program by causing an exception. The exception is handled in the same manner as described in Exception
handling. In addition, the RAISE_APPLICATION_ERROR procedure makes a user-defined code and error message available to the program, which you can then use to identify the exception.

The following is the syntax:

RAISE_APPLICATION_ERROR(<error_number>, <message>);

Where:

error_number is an integer value or expression returned in a variable named SQLCODE when the procedure is executed. The value is between ‑20000 and -20999 .

message is a string literal or expression returned in a variable named SQLERRM .

For more information on the SQLCODE and SQLERRM variables, see Errors and messages.

This example uses the RAISE_APPLICATION_ERROR procedure to display a different code and message depending on the information missing from an employee:

CREATE OR REPLACE PROCEDURE verify_emp (
 p_empno NUMBER
)
IS
 v_ename emp.ename%TYPE;
 v_job emp.job%TYPE;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 581

 v_mgr emp.mgr%TYPE;
 v_hiredate emp.hiredate%TYPE;
BEGIN
 SELECT ename, job, mgr, hiredate
 INTO v_ename, v_job, v_mgr, v_hiredate FROM emp
 WHERE empno = p_empno;
 IF v_ename IS NULL THEN
 RAISE_APPLICATION_ERROR(-20010, 'No name for ' || p_empno);
 END IF;
 IF v_job IS NULL THEN
 RAISE_APPLICATION_ERROR(-20020, 'No job for' || p_empno);
 END IF;
 IF v_mgr IS NULL THEN
 RAISE_APPLICATION_ERROR(-20030, 'No manager for ' || p_empno);
 END IF;
 IF v_hiredate IS NULL THEN
 RAISE_APPLICATION_ERROR(-20040, 'No hire date for ' || p_empno);
 END IF;
 DBMS_OUTPUT.PUT_LINE('Employee ' || p_empno ||
 ' validated without errors');
EXCEPTION
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE('SQLCODE: ' || SQLCODE);
 DBMS_OUTPUT.PUT_LINE('SQLERRM: ' || SQLERRM);
END;

The following shows the output in a case where the manager number is missing from an employee record:

EXEC verify_emp(7839);

SQLCODE: -20030
SQLERRM: EDB-20030: No manager for 7839

19.6 Transaction control

There might be times when you want all updates to a database to occur successfully or for none to occur in case of any error. A set of database updates that occur successfully as a single unit or not at
all is called a transaction.

A common example in banking is a funds transfer between two accounts. The two parts of the transaction are the withdrawal of funds from one account and the deposit of the funds in another account.
Both parts of this transaction must occur for the bank’s books to balance. The deposit and withdrawal are one transaction.

You can create an SPL application that uses a style of transaction control compatible with Oracle databases if the following conditions are met:

The edb_stmt_level_tx parameter is set to TRUE . This prevents the action of unconditionally rolling back all database updates in the BEGIN/END block if any exception occurs.
The application isn't running in autocommit mode. If autocommit mode is on, each successful database update is immediately committed and can't be undone. The manner in which autocommit
mode is turned on or off depends on the application.

A transaction begins when the first SQL command is encountered in the SPL program. All subsequent SQL commands are included as part of that transaction. The transaction ends when one of the
following occurs:

An unhandled exception occurs. In this case, the effects of all database updates made during the transaction are rolled back, and the transaction is aborted.
A COMMIT command is encountered. In this case, the effect of all database updates made during the transaction become permanent.
A ROLLBACK command is encountered. In this case, the effects of all database updates made during the transaction are rolled back, and the transaction is aborted. If a new SQL command is
encountered, a new transaction begins.
Control returns to the calling application (such as Java or PSQL). In this case, the action of the application determines whether the transaction is committed or rolled back. The exception is when
the transaction is in a block in which PRAGMA AUTONOMOUS_TRANSACTION was declared. In this case, the commitment or rollback of the transaction occurs independently of the calling
program.

Note

Unlike Oracle, DDL commands such as CREATE TABLE don't implicitly occur in their own transaction. Therefore, DDL commands don't cause an immediate database commit as in Oracle,
and you can roll back DDL commands just like DML commands.

A transaction can span one or more BEGIN/END blocks, or a single BEGIN/END block can contain one or more transactions.

19.6.1 COMMIT

The COMMIT command makes all database updates from the current transaction permanent and ends the current transaction.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 582

COMMIT [WORK];

You can use the COMMIT command in anonymous blocks, stored procedures, or functions. In an SPL program, it can appear in the executable section and the exception section.

In this example, the third INSERT command in the anonymous block results in an error. The effect of the first two INSERT commands is retained as shown by the first SELECT command. Even after
issuing a ROLLBACK command, the two rows remain in the table, as shown by the second SELECT command verifying that they were indeed committed.

Note

You can set the edb_stmt_level_tx configuration parameter shown in the example for the entire database using the ALTER DATABASE command. Alternatively, you can set it for the
entire database server by changing it in the postgresql.conf file.

\set AUTOCOMMIT off
SET edb_stmt_level_tx TO on;

BEGIN
 INSERT INTO dept VALUES (50, 'FINANCE', 'DALLAS');
 INSERT INTO dept VALUES (60, 'MARKETING', 'CHICAGO');
 COMMIT;
 INSERT INTO dept VALUES (70, 'HUMAN RESOURCES', 'CHICAGO');
EXCEPTION
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE('SQLERRM: ' || SQLERRM);
 DBMS_OUTPUT.PUT_LINE('SQLCODE: ' || SQLCODE);
END;

SQLERRM: value too long for type character varying(14)
SQLCODE: 22001

SELECT * FROM dept;

deptno | dname | loc
--------+------------+----------
 10 | ACCOUNTING | NEW YORK
 20 | RESEARCH | DALLAS
 30 | SALES | CHICAGO
 40 | OPERATIONS | BOSTON
 50 | FINANCE | DALLAS
 60 | MARKETING | CHICAGO
(6 rows)

ROLLBACK;

SELECT * FROM dept;

deptno | dname | loc
--------+------------+----------
 10 | ACCOUNTING | NEW YORK
 20 | RESEARCH | DALLAS
 30 | SALES | CHICAGO
 40 | OPERATIONS | BOSTON
 50 | FINANCE | DALLAS
 60 | MARKETING | CHICAGO
(6 rows)

19.6.2 ROLLBACK

The ROLLBACK command undoes all database updates made during the current transaction and ends the current transaction.

ROLLBACK [WORK];

You can use the ROLLBACK command in anonymous blocks, stored procedures, or functions. In an SPL program, it can appear in the executable section and the exception section.

In this example, the exception section contains a ROLLBACK command. Even though the first two INSERT commands execute successfully, the third causes an exception that results in the rollback
of all the INSERT commands in the anonymous block.

\set AUTOCOMMIT off
SET edb_stmt_level_tx TO on;

BEGIN
 INSERT INTO dept VALUES (50, 'FINANCE', 'DALLAS');
 INSERT INTO dept VALUES (60, 'MARKETING', 'CHICAGO');

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 583

 INSERT INTO dept VALUES (70, 'HUMAN RESOURCES', 'CHICAGO');
EXCEPTION
 WHEN OTHERS THEN
 ROLLBACK;
 DBMS_OUTPUT.PUT_LINE('SQLERRM: ' || SQLERRM);
 DBMS_OUTPUT.PUT_LINE('SQLCODE: ' || SQLCODE);
END;

SQLERRM: value too long for type character varying(14)
SQLCODE: 22001

SELECT * FROM dept;

deptno | dname | loc
--------+------------+----------
 10 | ACCOUNTING | NEW YORK
 20 | RESEARCH | DALLAS
 30 | SALES | CHICAGO
 40 | OPERATIONS | BOSTON
(4 rows)

This example uses both COMMIT and ROLLBACK . First, the following stored procedure is created. It inserts a new employee.

\set AUTOCOMMIT off
SET edb_stmt_level_tx TO on;

CREATE OR REPLACE PROCEDURE emp_insert (
 p_empno IN emp.empno%TYPE,
 p_ename IN emp.ename%TYPE,
 p_job IN emp.job%TYPE,
 p_mgr IN emp.mgr%TYPE,
 p_hiredate IN emp.hiredate%TYPE,
 p_sal IN emp.sal%TYPE,
 p_comm IN emp.comm%TYPE,
 p_deptno IN emp.deptno%TYPE
)
IS
BEGIN
 INSERT INTO emp VALUES (
 p_empno,
 p_ename,
 p_job,
 p_mgr,
 p_hiredate,
 p_sal,
 p_comm,
 p_deptno);

 DBMS_OUTPUT.PUT_LINE('Added employee...');
 DBMS_OUTPUT.PUT_LINE('Employee # : ' || p_empno);
 DBMS_OUTPUT.PUT_LINE('Name : ' || p_ename);
 DBMS_OUTPUT.PUT_LINE('Job : ' || p_job);
 DBMS_OUTPUT.PUT_LINE('Manager : ' || p_mgr);
 DBMS_OUTPUT.PUT_LINE('Hire Date : ' || p_hiredate);
 DBMS_OUTPUT.PUT_LINE('Salary : ' || p_sal);
 DBMS_OUTPUT.PUT_LINE('Commission : ' || p_comm);
 DBMS_OUTPUT.PUT_LINE('Dept # : ' || p_deptno);
 DBMS_OUTPUT.PUT_LINE('----------------------');
END;

This procedure has no exception section. Any errors are propagated up to the calling program.

Then the following anonymous block runs. The COMMIT command is used after all calls to the emp_insert procedure and the ROLLBACK command in the exception section.

BEGIN
 emp_insert(9601,'FARRELL','ANALYST',7902,'03-MAR-08',5000,NULL,40);
 emp_insert(9602,'TYLER','ANALYST',7900,'25-JAN-08',4800,NULL,40);
 COMMIT;
EXCEPTION
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE('SQLERRM: ' || SQLERRM);
 DBMS_OUTPUT.PUT_LINE('An error occurred - roll back inserts');
 ROLLBACK;
END;

Added employee...
Employee # : 9601

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 584

Name : FARRELL
Job : ANALYST
Manager : 7902
Hire Date : 03-MAR-08 00:00:00
Salary : 5000
Commission :
Dept # : 40

Added employee...
Employee # : 9602
Name : TYLER
Job : ANALYST
Manager : 7900
Hire Date : 25-JAN-08 00:00:00
Salary : 4800
Commission :
Dept # : 40

The following SELECT command shows that employees Farrell and Tyler were successfully added:

SELECT * FROM emp WHERE empno > 9600;

empno | ename | job | mgr | hiredate | sal | comm | deptno
------+--------+--------+-----+--------------------+---------+------+--------
 9601| FARRELL| ANALYST|7902 | 03-MAR-08 00:00:00 | 5000.00 | | 40
 9602| TYLER | ANALYST|7900 | 25-JAN-08 00:00:00 | 4800.00 | | 40
(2 rows)

Next, execute the following anonymous block:

BEGIN
 emp_insert(9603,'HARRISON','SALESMAN',7902,'13-DEC-07',5000,3000,20);
 emp_insert(9604,'JARVIS','SALESMAN',7902,'05-MAY-08',4800,4100,11);
 COMMIT;
EXCEPTION
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE('SQLERRM: ' || SQLERRM);
 DBMS_OUTPUT.PUT_LINE('An error occurred - roll back inserts');
 ROLLBACK;
END;

Added employee...
Employee # : 9603
Name : HARRISON
Job : SALESMAN
Manager : 7902
Hire Date : 13-DEC-07 00:00:00
Salary : 5000
Commission : 3000
Dept # : 20

SQLERRM: insert or update on table "emp" violates foreign key constraint
"emp_ref_dept_fk"
An error occurred - roll back inserts

A SELECT command run against the table produces the following:

SELECT * FROM emp WHERE empno > 9600;

empno | ename | job | mgr | hiredate | sal | comm | deptno
------+--------+--------+-----+--------------------+---------+------+--------
 9601| FARRELL| ANALYST|7902 | 03-MAR-08 00:00:00 | 5000.00 | | 40
 9602| TYLER | ANALYST|7900 | 25-JAN-08 00:00:00 | 4800.00 | | 40
(2 rows)

The ROLLBACK command in the exception section successfully undoes the insert of employee Harrison. Employees Farrell and Tyler are still in the table as their inserts were made permanent by the
COMMIT command in the first anonymous block.

Note

Executing a COMMIT or ROLLBACK in a plpgsql procedure throws an error if an Oracle-style SPL procedure is on the runtime stack.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 585

19.6.3 PRAGMA AUTONOMOUS_TRANSACTION

An SPL program can be declared as an autonomous transaction by specifying the following directive in the declaration section of the SPL block. An autonomous transaction is an independent
transaction started by a calling program.

PRAGMA AUTONOMOUS_TRANSACTION;

A commit or rollback of SQL commands in the autonomous transaction has no effect on the commit or rollback in any transaction of the calling program. A commit or rollback in the calling program has
no effect on the commit or rollback of SQL commands in the autonomous transaction.

The following SPL programs can include PRAGMA AUTONOMOUS_TRANSACTION :

Standalone procedures and functions
Anonymous blocks
Procedures and functions declared as subprograms in packages and other calling procedures, functions, and anonymous blocks
Triggers
Object type methods

The following are issues and restrictions related to autonomous transactions:

Each autonomous transaction consumes a connection slot for as long as it's in progress. In some cases, this might mean that you need to raise the max_connections parameter in the
postgresql.conf file.

In most respects, an autonomous transaction behaves as if it were a completely separate session, but GUCs (settings established with SET) are a deliberate exception. Autonomous transactions
absorb the surrounding values and can propagate values they commit to the outer transaction.
Autonomous transactions can be nested, but there is a limit of 16 levels of autonomous transactions in a single session.
Parallel query isn't supported in autonomous transactions.
The EDB Postgres Advanced Server implementation of autonomous transactions isn't entirely compatible with Oracle databases. The EDB Postgres Advanced Server autonomous transaction
doesn't produce an error if there's an uncommitted transaction at the end of an SPL block.

The following set of examples use autonomous transactions. This first set of scenarios shows the default behavior when there are no autonomous transactions.

Before each scenario, the dept table is reset to the following initial values:

SELECT * FROM dept;

 deptno | dname | loc
--------+------------+----------
 10 | ACCOUNTING | NEW YORK
 20 | RESEARCH | DALLAS
 30 | SALES | CHICAGO
 40 | OPERATIONS | BOSTON
(4 rows)

Scenario 1a: No autonomous transactions with only a final COMMIT

This first set of scenarios shows the insertion of three rows:

Starting just after the initial BEGIN command of the transaction
From an anonymous block in the starting transactions
From a stored procedure executed from the anonymous block

The stored procedure is the following:

CREATE OR REPLACE PROCEDURE insert_dept_70 IS
BEGIN
 INSERT INTO dept VALUES (70,'MARKETING','LOS ANGELES');
END;

The PSQL session is the following:

BEGIN;
INSERT INTO dept VALUES (50,'HR','DENVER');
BEGIN
 INSERT INTO dept VALUES (60,'FINANCE','CHICAGO');
 insert_dept_70;
END;
COMMIT;

After the final commit, all three rows are inserted:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 586

SELECT * FROM dept ORDER BY 1;

 deptno | dname | loc
--------+------------+-------------
 10 | ACCOUNTING | NEW YORK
 20 | RESEARCH | DALLAS
 30 | SALES | CHICAGO
 40 | OPERATIONS | BOSTON
 50 | HR | DENVER
 60 | FINANCE | CHICAGO
 70 | MARKETING | LOS ANGELES
(7 rows)

Scenario 1b: No autonomous transactions but a final ROLLBACK

The next scenario shows that a final ROLLBACK command after all inserts results in the rollback of all three insertions:

BEGIN;
INSERT INTO dept VALUES (50,'HR','DENVER');
BEGIN
 INSERT INTO dept VALUES (60,'FINANCE','CHICAGO');
 insert_dept_70;
END;
ROLLBACK;

SELECT * FROM dept ORDER BY 1;

 deptno | dname | loc
--------+------------+----------
 10 | ACCOUNTING | NEW YORK
 20 | RESEARCH | DALLAS
 30 | SALES | CHICAGO
 40 | OPERATIONS | BOSTON
(4 rows)

Scenario 1c: No autonomous transactions, but anonymous block ROLLBACK

A ROLLBACK command given at the end of the anonymous block also eliminates all three prior insertions:

BEGIN;
INSERT INTO dept VALUES (50,'HR','DENVER');
BEGIN
 INSERT INTO dept VALUES (60,'FINANCE','CHICAGO');
 insert_dept_70;
 ROLLBACK;
END;
COMMIT;

SELECT * FROM dept ORDER BY 1;

 deptno | dname | loc
--------+------------+----------
 10 | ACCOUNTING | NEW YORK
 20 | RESEARCH | DALLAS
 30 | SALES | CHICAGO
 40 | OPERATIONS | BOSTON
(4 rows)

The next set of scenarios shows the effect of using autonomous transactions with PRAGMA AUTONOMOUS_TRANSACTION in various locations.

Scenario 2a: Autonomous transaction of anonymous block with COMMIT

The procedure remains as initially created:

CREATE OR REPLACE PROCEDURE insert_dept_70 IS
BEGIN
 INSERT INTO dept VALUES (70,'MARKETING','LOS ANGELES');

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 587

END;

The PRAGMA AUTONOMOUS_TRANSACTION is given with the anonymous block along with the COMMIT command at the end of the anonymous block:

BEGIN;
INSERT INTO dept VALUES (50,'HR','DENVER');
DECLARE
 PRAGMA AUTONOMOUS_TRANSACTION;
BEGIN
 INSERT INTO dept VALUES (60,'FINANCE','CHICAGO');
 insert_dept_70;
 COMMIT;
END;
ROLLBACK;

After the ROLLBACK at the end of the transaction, only the first row insertion at the beginning of the transaction is discarded. The other two row insertions in the anonymous block with PRAGMA
AUTONOMOUS_TRANSACTION were independently committed.

SELECT * FROM dept ORDER BY 1;

 deptno | dname | loc
--------+------------+-------------
 10 | ACCOUNTING | NEW YORK
 20 | RESEARCH | DALLAS
 30 | SALES | CHICAGO
 40 | OPERATIONS | BOSTON
 60 | FINANCE | CHICAGO
 70 | MARKETING | LOS ANGELES
(6 rows)

Scenario 2b: Autonomous transaction anonymous block with COMMIT, including procedure with ROLLBACK but not an autonomous transaction procedure

This procedure has the ROLLBACK command at the end. However, the PRAGMA ANONYMOUS_TRANSACTION isn't included in this procedure.

CREATE OR REPLACE PROCEDURE insert_dept_70 IS
BEGIN
 INSERT INTO dept VALUES (70,'MARKETING','LOS ANGELES');
 ROLLBACK;
END;

The rollback in the procedure removes the two rows inserted in the anonymous block (deptno 60 and 70) before the final COMMIT command in the anonymous block:

BEGIN;
INSERT INTO dept VALUES (50,'HR','DENVER');
DECLARE
 PRAGMA AUTONOMOUS_TRANSACTION;
BEGIN
 INSERT INTO dept VALUES (60,'FINANCE','CHICAGO');
 insert_dept_70;
 COMMIT;
END;
COMMIT;

After the final commit at the end of the transaction, the only row inserted is the first one from the beginning of the transaction. Since the anonymous block is an autonomous transaction, the rollback in
the enclosed procedure has no effect on the insertion that occurs before the anonymous block is executed.

SELECT * FROM dept ORDER by 1;

 deptno | dname | loc
--------+------------+----------
 10 | ACCOUNTING | NEW YORK
 20 | RESEARCH | DALLAS
 30 | SALES | CHICAGO
 40 | OPERATIONS | BOSTON
 50 | HR | DENVER
(5 rows)

Scenario 2c: Autonomous transaction anonymous block with COMMIT, including procedure with ROLLBACK that is also an autonomous transaction procedure

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 588

The procedure with the ROLLBACK command at the end also has PRAGMA ANONYMOUS_TRANSACTION included. This isolates the effect of the ROLLBACK command in the procedure.

CREATE OR REPLACE PROCEDURE insert_dept_70 IS
 PRAGMA AUTONOMOUS_TRANSACTION;
BEGIN
 INSERT INTO dept VALUES (70,'MARKETING','LOS ANGELES');
 ROLLBACK;
END;

The rollback in the procedure removes the row inserted by the procedure but not the other row inserted in the anonymous block.

BEGIN;
INSERT INTO dept VALUES (50,'HR','DENVER');
DECLARE
 PRAGMA AUTONOMOUS_TRANSACTION;
BEGIN
 INSERT INTO dept VALUES (60,'FINANCE','CHICAGO');
 insert_dept_70;
 COMMIT;
END;
COMMIT;

After the final commit at the end of the transaction, the row inserted is the first one from the beginning of the transaction as well as the row inserted at the beginning of the anonymous block. The only
insertion rolled back is the one in the procedure.

SELECT * FROM dept ORDER by 1;

 deptno | dname | loc
--------+------------+----------
 10 | ACCOUNTING | NEW YORK
 20 | RESEARCH | DALLAS
 30 | SALES | CHICAGO
 40 | OPERATIONS | BOSTON
 50 | HR | DENVER
 60 | FINANCE | CHICAGO
(6 rows)

The following examples show PRAGMA AUTONOMOUS_TRANSACTION in a couple of other SPL program types.

Autonomous transaction trigger

This example shows the effect of declaring a trigger with PRAGMA AUTONOMOUS_TRANSACTION .

The following table is created to log changes to the emp table:

CREATE TABLE empauditlog (
 audit_date DATE,
 audit_user VARCHAR2(20),
 audit_desc VARCHAR2(20)
);

The trigger attached to the emp table that inserts these changes into the empauditlog table is the following. PRAGMA AUTONOMOUS_TRANSACTION is included in the declaration section.

CREATE OR REPLACE TRIGGER emp_audit_trig
 AFTER INSERT OR UPDATE OR DELETE ON emp
DECLARE
 PRAGMA AUTONOMOUS_TRANSACTION;
 v_action VARCHAR2(20);
BEGIN
 IF INSERTING THEN
 v_action := 'Added employee(s)';
 ELSIF UPDATING THEN
 v_action := 'Updated employee(s)';
 ELSIF DELETING THEN
 v_action := 'Deleted employee(s)';
 END IF;
 INSERT INTO empauditlog VALUES (SYSDATE, USER,
 v_action);
END;

The following two inserts are made into the emp table in a transaction started by the BEGIN command:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 589

BEGIN;
INSERT INTO emp VALUES (9001,'SMITH','ANALYST',7782,SYSDATE,NULL,NULL,10);
INSERT INTO emp VALUES (9002,'JONES','CLERK',7782,SYSDATE,NULL,NULL,10);

The following shows the two new rows in the emp table as well as the two entries in the empauditlog table:

SELECT * FROM emp WHERE empno > 9000;

 empno | ename | job | mgr | hiredate | sal | comm | deptno
-------+-------+---------+------+--------------------+-----+------+--------
 9001 | SMITH | ANALYST | 7782 | 23-AUG-18 07:12:27 | | | 10
 9002 | JONES | CLERK | 7782 | 23-AUG-18 07:12:27 | | | 10
(2 rows)

SELECT TO_CHAR(AUDIT_DATE,'DD-MON-YY HH24:MI:SS') AS "audit date",
 audit_user, audit_desc FROM empauditlog ORDER BY 1 ASC;

 audit date | audit_user | audit_desc
--------------------+--------------+-------------------
 23-AUG-18 07:12:27 | enterprisedb | Added employee(s)
 23-AUG-18 07:12:27 | enterprisedb | Added employee(s)
(2 rows)

But then the ROLLBACK command is given during this session. The emp table no longer contains the two rows, but the empauditlog table still contains its two entries. The trigger implicitly
performed a commit, and PRAGMA AUTONOMOUS_TRANSACTION commits those changes independent from the rollback given in the calling transaction.

ROLLBACK;

SELECT * FROM emp WHERE empno > 9000;

 empno | ename | job | mgr | hiredate | sal | comm | deptno
-------+-------+-----+-----+----------+-----+------+--------
(0 rows)

SELECT TO_CHAR(AUDIT_DATE,'DD-MON-YY HH24:MI:SS') AS "audit date",
 audit_user, audit_desc FROM empauditlog ORDER BY 1 ASC;

 audit date | audit_user | audit_desc
--------------------+--------------+-------------------
 23-AUG-18 07:12:27 | enterprisedb | Added employee(s)
 23-AUG-18 07:12:27 | enterprisedb | Added employee(s)
(2 rows)

Autonomous transaction object type method

This example shows the effect of declaring an object method with PRAGMA AUTONOMOUS_TRANSACTION .

The following object type and object type body are created. The member procedure in the object type body contains the PRAGMA AUTONOMOUS_TRANSACTION in the declaration section along with
COMMIT at the end of the procedure.

CREATE OR REPLACE TYPE insert_dept_typ AS OBJECT (
 deptno NUMBER(2),
 dname VARCHAR2(14),
 loc VARCHAR2(13),
 MEMBER PROCEDURE insert_dept
);

CREATE OR REPLACE TYPE BODY insert_dept_typ AS
 MEMBER PROCEDURE insert_dept
 IS
 PRAGMA AUTONOMOUS_TRANSACTION;
 BEGIN
 INSERT INTO dept VALUES (SELF.deptno,SELF.dname,SELF.loc);
 COMMIT;
 END;
END;

In the following anonymous block, an insert is performed into the dept table, followed by invoking the insert_dept method of the object and ending with a ROLLBACK command in the
anonymous block.

BEGIN;
DECLARE

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 590

 v_dept INSERT_DEPT_TYP :=
 insert_dept_typ(60,'FINANCE','CHICAGO');
BEGIN
 INSERT INTO dept VALUES (50,'HR','DENVER');
 v_dept.insert_dept;
 ROLLBACK;
END;

Since insert_dept was declared as an autonomous transaction, its insert of department number 60 remains in the table, but the rollback removes the insertion of department 50:

SELECT * FROM dept ORDER BY 1;

 deptno | dname | loc
--------+------------+----------
 10 | ACCOUNTING | NEW YORK
 20 | RESEARCH | DALLAS
 30 | SALES | CHICAGO
 40 | OPERATIONS | BOSTON
 60 | FINANCE | CHICAGO
(5 rows)

19.7 Dynamic SQL

Dynamic SQL is a technique that lets you execute SQL commands that aren't known until the commands are about to be executed. In static SQL commands, the full command (with the exception of
variables) must be known and coded into the program before the program can begin to execute. Using dynamic SQL, the executed SQL can change during program runtime.

In addition, dynamic SQL is the only method by which data definition commands, such as CREATE TABLE , can be executed from an SPL program.

However, the runtime performance of dynamic SQL is slower than static SQL.

The EXECUTE IMMEDIATE command is used to run SQL commands dynamically:

EXECUTE IMMEDIATE '<sql_expression>;'
 [INTO { <variable> [, ...] | <record> }]
 [USING <expression> [, ...]]

Where:

sql_expression is a string expression containing the SQL command to dynamically execute.

variable receives the output of the result set, typically from a SELECT command, created as a result of executing the SQL command in sql_expression . The number, order, and type of
variables must match the number and order and be type-compatible with the fields of the result set.

Alternatively, a record can be specified as long as the record’s fields match the number and order and are type-compatible with the result set.

When using the INTO clause, exactly one row must be returned in the result set. Otherwise an exception occurs. When using the USING clause, the value of expression is passed to a
placeholder. Placeholders appear embedded in the SQL command in sql_expression where variables can be used. Placeholders are denoted by an identifier with a colon (:) prefix, such as :name .
The number, order, and resultant data types of the evaluated expressions must match the number and order and be type-compatible with the placeholders in sql_expression .

Placeholders aren't declared anywhere in the SPL program. They appear only in sql_expression .

This example shows basic dynamic SQL commands as string literals:

DECLARE
 v_sql VARCHAR2(50);
BEGIN
 EXECUTE IMMEDIATE 'CREATE TABLE job (jobno NUMBER(3),' ||
 ' jname VARCHAR2(9))';
 v_sql := 'INSERT INTO job VALUES (100, ''ANALYST'')';
 EXECUTE IMMEDIATE v_sql;
 v_sql := 'INSERT INTO job VALUES (200, ''CLERK'')';
 EXECUTE IMMEDIATE v_sql;
END;

This example uses the USING clause to pass values to placeholders in the SQL string:

DECLARE
 v_sql VARCHAR2(50) := 'INSERT INTO job VALUES ' ||
 '(:p_jobno, :p_jname)';

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 591

 v_jobno job.jobno%TYPE;
 v_jname job.jname%TYPE;
BEGIN
 v_jobno := 300;
 v_jname := 'MANAGER';
 EXECUTE IMMEDIATE v_sql USING v_jobno, v_jname;
 v_jobno := 400;
 v_jname := 'SALESMAN';
 EXECUTE IMMEDIATE v_sql USING v_jobno, v_jname;
 v_jobno := 500;
 v_jname := 'PRESIDENT';
 EXECUTE IMMEDIATE v_sql USING v_jobno, v_jname;
END;

This example shows both the INTO and USING clauses. The last execution of the SELECT command returns the results into a record instead of individual variables.

DECLARE
 v_sql VARCHAR2(60);
 v_jobno job.jobno%TYPE;
 v_jname job.jname%TYPE;
 r_job job%ROWTYPE;
BEGIN
 DBMS_OUTPUT.PUT_LINE('JOBNO JNAME');
 DBMS_OUTPUT.PUT_LINE('----- -------');
 v_sql := 'SELECT jobno, jname FROM job WHERE jobno = :p_jobno';
 EXECUTE IMMEDIATE v_sql INTO v_jobno, v_jname USING 100;
 DBMS_OUTPUT.PUT_LINE(v_jobno || ' ' || v_jname);
 EXECUTE IMMEDIATE v_sql INTO v_jobno, v_jname USING 200;
 DBMS_OUTPUT.PUT_LINE(v_jobno || ' ' || v_jname);
 EXECUTE IMMEDIATE v_sql INTO v_jobno, v_jname USING 300;
 DBMS_OUTPUT.PUT_LINE(v_jobno || ' ' || v_jname);
 EXECUTE IMMEDIATE v_sql INTO v_jobno, v_jname USING 400;
 DBMS_OUTPUT.PUT_LINE(v_jobno || ' ' || v_jname);
 EXECUTE IMMEDIATE v_sql INTO r_job USING 500;
 DBMS_OUTPUT.PUT_LINE(r_job.jobno || ' ' || r_job.jname);
END;

The following is the output from this anonymous block:

JOBNO JNAME
----- -------
100 ANALYST
200 CLERK
300 MANAGER
400 SALESMAN
500 PRESIDENT

You can use the BULK COLLECT clause to assemble the result set from an EXECUTE IMMEDIATE statement into a named collection. See Using the BULK COLLECT clause, EXECUTE
IMMEDIATE BULK COLLECT for more information.

19.8 Static cursors

Rather than executing a whole query at once, you can set up a cursor that encapsulates the query and then read the query result set one row at a time. This approach allows you to create SPL program
logic that retrieves a row from the result set, does some processing on the data in that row, and then retrieves the next row and repeats the process.

Cursors are most often used in the context of a FOR or WHILE loop. Include a conditional test in the SPL logic that detects when the end of the result set was reached so the program can exit the loop.

19.8.1 Declaring a cursor

Before you can use a cursor, you must first declare it in the declaration section of the SPL program. A cursor declaration appears as follows:

CURSOR <name> IS <query>;

Where:

name is an identifier used to reference the cursor and its result set later in the program.

query is a SQL SELECT command that determines the result set retrievable by the cursor.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 592

Note

An extension of this syntax allows the use of parameters. For details, see Parameterized cursors.

This example shows some cursor declarations:

CREATE OR REPLACE PROCEDURE cursor_example
IS
 CURSOR emp_cur_1 IS SELECT * FROM emp;
 CURSOR emp_cur_2 IS SELECT empno, ename FROM emp;
 CURSOR emp_cur_3 IS SELECT empno, ename FROM emp WHERE deptno = 10
 ORDER BY empno;
BEGIN
 ...
END;

19.8.2 Opening a cursor

Before you can use a cursor to retrieve rows, you must open it using the OPEN statement.

OPEN <name>;

name is the identifier of a cursor that was previously declared in the declaration section of the SPL program. Don't execute the OPEN statement on a cursor that is already open.

This examples shows an OPEN statement with its corresponding cursor declaration:

CREATE OR REPLACE PROCEDURE cursor_example
IS
 CURSOR emp_cur_3 IS SELECT empno, ename FROM emp WHERE deptno = 10
 ORDER BY empno;
BEGIN
 OPEN emp_cur_3;
 ...
END;

19.8.3 Fetching rows from a cursor

Once a cursor is open, you can retrieve rows from the cursor’s result set by using the FETCH statement.

FETCH <name> INTO { <record> | <variable> [, <variable_2>]... };

Where:

name is the identifier of a previously opened cursor.

record is the identifier of a previously defined record (for example, using table%ROWTYPE).

variable, variable_2... are SPL variables that receive the field data from the fetched row. The fields in record or variable, variable_2... must match in number and order the
fields returned in the SELECT list of the query given in the cursor declaration. The data types of the fields in the SELECT list must match or be implicitly convertible to the data types of the fields in
record or the data types of variable, variable_2...

Note

A variation of FETCH INTO using the BULK COLLECT clause can return multiple rows at a time into a collection. See Using the BULK COLLECT clause for more information on using the
BULK COLLECT clause with the FETCH INTO statement.

The following shows the FETCH statement:

CREATE OR REPLACE PROCEDURE cursor_example
IS
 v_empno NUMBER(4);
 v_ename VARCHAR2(10);
 CURSOR emp_cur_3 IS SELECT empno, ename FROM emp WHERE deptno = 10
 ORDER BY empno;
BEGIN
 OPEN emp_cur_3;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 593

 FETCH emp_cur_3 INTO v_empno, v_ename;
 ...
END;

Instead of explicitly declaring the data type of a target variable, you can use %TYPE instead. In this way, if the data type of the database column changes, the target variable declaration in the SPL
program doesn't have to change. %TYPE picks up the new data type of the specified column.

CREATE OR REPLACE PROCEDURE cursor_example
IS
 v_empno emp.empno%TYPE;
 v_ename emp.ename%TYPE;
 CURSOR emp_cur_3 IS SELECT empno, ename FROM emp WHERE deptno = 10
 ORDER BY empno;
BEGIN
 OPEN emp_cur_3;
 FETCH emp_cur_3 INTO v_empno, v_ename;
 ...
END;

If all the columns in a table are retrieved in the order defined in the table, you can use %ROWTYPE to define a record into which the FETCH statement places the retrieved data. You can then access
each field in the record using dot notation:

CREATE OR REPLACE PROCEDURE cursor_example
IS
 v_emp_rec emp%ROWTYPE;
 CURSOR emp_cur_1 IS SELECT * FROM emp;
BEGIN
 OPEN emp_cur_1;
 FETCH emp_cur_1 INTO v_emp_rec;
 DBMS_OUTPUT.PUT_LINE('Employee Number: ' || v_emp_rec.empno);
 DBMS_OUTPUT.PUT_LINE('Employee Name : ' || v_emp_rec.ename);
 ...
END;

19.8.4 Closing a cursor

Once all the desired rows are retrieved from the cursor result set, close the cursor. After you close the cursor, you can no longer access the result set.

The CLOSE statement appears as follows:

CLOSE <name>;

name is the identifier of a cursor that's currently open. After you close a cursor, don't close it again. However, after you close the cursor, you can use the OPEN statement again on the closed cursor
and rebuild the query result set. After that, the FETCH statement can then retrieve the rows of the new result set.

This example uses the CLOSE statement:

CREATE OR REPLACE PROCEDURE cursor_example
IS
 v_emp_rec emp%ROWTYPE;
 CURSOR emp_cur_1 IS SELECT * FROM emp;
BEGIN
 OPEN emp_cur_1;
 FETCH emp_cur_1 INTO v_emp_rec;
 DBMS_OUTPUT.PUT_LINE('Employee Number: ' || v_emp_rec.empno);
 DBMS_OUTPUT.PUT_LINE('Employee Name : ' || v_emp_rec.ename);
 CLOSE emp_cur_1;
END;

This procedure produces the following output. Employee number 7369, SMITH is the first row of the result set.

EXEC cursor_example;

Employee Number: 7369
Employee Name : SMITH

19.8.5 Using %ROWTYPE with cursors

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 594

Using the %ROWTYPE attribute, you can define a record that contains fields corresponding to all columns fetched from a cursor or cursor variable. Each field takes on the data type of its corresponding
column. The %ROWTYPE attribute is prefixed by a cursor name or cursor variable name.

<record> <cursor>%ROWTYPE;

record is an identifier assigned to the record. cursor is an explicitly declared cursor in the current scope.

This example shows how you can use a cursor with %ROWTYPE to get information about which employee works in which department:

CREATE OR REPLACE PROCEDURE emp_info
IS
 CURSOR empcur IS SELECT ename, deptno FROM emp;
 myvar empcur%ROWTYPE;
BEGIN
 OPEN empcur;
 LOOP
 FETCH empcur INTO myvar;
 EXIT WHEN empcur%NOTFOUND;
 DBMS_OUTPUT.PUT_LINE(myvar.ename || ' works in department '
 || myvar.deptno);
 END LOOP;
 CLOSE empcur;
END;

The following is the output from this procedure:

EXEC emp_info;

SMITH works in department 20
ALLEN works in department 30
WARD works in department 30
JONES works in department 20
MARTIN works in department 30
BLAKE works in department 30
CLARK works in department 10
SCOTT works in department 20
KING works in department 10
TURNER works in department 30
ADAMS works in department 20
JAMES works in department 30
FORD works in department 20
MILLER works in department 10

19.8.6 Cursor attributes

Each cursor has a set of attributes associated with it that allows the program to test its state. These attributes are %ISOPEN , %FOUND , %NOTFOUND , and %ROWCOUNT .

19.8.6.1 %ISOPEN

Use the %ISOPEN attribute to test whether a cursor is open.

<cursor_name>%ISOPEN

cursor_name is the name of the cursor for which a BOOLEAN data type of TRUE is returned if the cursor is open, FALSE otherwise.

This example uses %ISOPEN :

CREATE OR REPLACE PROCEDURE cursor_example
IS
 ...
 CURSOR emp_cur_1 IS SELECT * FROM emp;
 ...
BEGIN
 ...
 IF emp_cur_1%ISOPEN THEN
 NULL;
 ELSE

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 595

 OPEN emp_cur_1;
 END IF;
 FETCH emp_cur_1 INTO ...
 ...
END;

19.8.6.2 %FOUND

The %FOUND attribute tests whether a row is retrieved from the result set of the specified cursor after a FETCH on the cursor.

<cursor_name>%FOUND

cursor_name is the name of the cursor for which a BOOLEAN data type of TRUE is returned if a row is retrieved from the result set of the cursor after a FETCH .

After the last row of the result set is fetched, the next FETCH results in %FOUND returning FALSE . FALSE is also returned after the first FETCH if the result set has no rows to begin with.

Referencing %FOUND on a cursor before it's opened or after it's closed results in an INVALID_CURSOR exception.

%FOUND returns null if it's referenced when the cursor is open but before the first FETCH .

This example uses %FOUND :

CREATE OR REPLACE PROCEDURE cursor_example
IS
 v_emp_rec emp%ROWTYPE;
 CURSOR emp_cur_1 IS SELECT * FROM emp;
BEGIN
 OPEN emp_cur_1;
 DBMS_OUTPUT.PUT_LINE('EMPNO ENAME');
 DBMS_OUTPUT.PUT_LINE('----- -------');
 FETCH emp_cur_1 INTO v_emp_rec;
 WHILE emp_cur_1%FOUND LOOP
 DBMS_OUTPUT.PUT_LINE(v_emp_rec.empno || ' ' || v_emp_rec.ename);
 FETCH emp_cur_1 INTO v_emp_rec;
 END LOOP;
 CLOSE emp_cur_1;
END;

The following is the output from this example:

EXEC cursor_example;

EMPNO ENAME
----- ------
7369 SMITH
7499 ALLEN
7521 WARD
7566 JONES
7654 MARTIN
7698 BLAKE
7782 CLARK
7788 SCOTT
7839 KING
7844 TURNER
7876 ADAMS
7900 JAMES
7902 FORD
7934 MILLER

19.8.6.3 %NOTFOUND

The %NOTFOUND attribute is the logical opposite of %FOUND .

<cursor_name>%NOTFOUND

cursor_name is the name of the cursor for which a BOOLEAN data type of FALSE is returned if a row is retrieved from the result set of the cursor after a FETCH .

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 596

After the last row of the result set is fetched, the next FETCH results in %NOTFOUND returning TRUE . TRUE is also returned after the first FETCH if the result set has no rows to begin with.

Referencing %NOTFOUND on a cursor before it's opened or after it's closed results in an INVALID_CURSOR exception.

%NOTFOUND returns null if it's referenced when the cursor is open but before the first FETCH .

This example uses %NOTFOUND :

CREATE OR REPLACE PROCEDURE cursor_example
IS
 v_emp_rec emp%ROWTYPE;
 CURSOR emp_cur_1 IS SELECT * FROM emp;
BEGIN
 OPEN emp_cur_1;
 DBMS_OUTPUT.PUT_LINE('EMPNO ENAME');
 DBMS_OUTPUT.PUT_LINE('----- -------');
 LOOP
 FETCH emp_cur_1 INTO v_emp_rec;
 EXIT WHEN emp_cur_1%NOTFOUND;
 DBMS_OUTPUT.PUT_LINE(v_emp_rec.empno || ' ' || v_emp_rec.ename);
 END LOOP;
 CLOSE emp_cur_1;
END;

The following is the output from this example:

EXEC cursor_example;

EMPNO ENAME
----- ------
7369 SMITH
7499 ALLEN
7521 WARD
7566 JONES
7654 MARTIN
7698 BLAKE
7782 CLARK
7788 SCOTT
7839 KING
7844 TURNER
7876 ADAMS
7900 JAMES
7902 FORD
7934 MILLER

19.8.6.4 %ROWCOUNT

The %ROWCOUNT attribute returns an integer showing the number of rows fetched so far from the specified cursor.

<cursor_name>%ROWCOUNT

cursor_name is the name of the cursor for which %ROWCOUNT returns the number of rows retrieved thus far. After the last row is retrieved, %ROWCOUNT remains set to the total number of rows
returned until the cursor is closed. At that point, %ROWCOUNT throws an INVALID_CURSOR exception if referenced.

Referencing %ROWCOUNT on a cursor before it's opened or after it's closed results in an INVALID_CURSOR exception.

%ROWCOUNT returns 0 if it's referenced when the cursor is open but before the first FETCH . %ROWCOUNT also returns 0 after the first FETCH when the result set has no rows to begin with.

This example uses %ROWCOUNT :

CREATE OR REPLACE PROCEDURE cursor_example
IS
 v_emp_rec emp%ROWTYPE;
 CURSOR emp_cur_1 IS SELECT * FROM emp;
BEGIN
 OPEN emp_cur_1;
 DBMS_OUTPUT.PUT_LINE('EMPNO ENAME');
 DBMS_OUTPUT.PUT_LINE('----- -------');
 LOOP
 FETCH emp_cur_1 INTO v_emp_rec;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 597

 EXIT WHEN emp_cur_1%NOTFOUND;
 DBMS_OUTPUT.PUT_LINE(v_emp_rec.empno || ' ' || v_emp_rec.ename);
 END LOOP;
 DBMS_OUTPUT.PUT_LINE('**********************');
 DBMS_OUTPUT.PUT_LINE(emp_cur_1%ROWCOUNT || ' rows were retrieved');
 CLOSE emp_cur_1;
END;

This procedure prints the total number of rows retrieved at the end of the employee list as follows:

EXEC cursor_example;

EMPNO ENAME
----- -------
7369 SMITH
7499 ALLEN
7521 WARD
7566 JONES
7654 MARTIN
7698 BLAKE
7782 CLARK
7788 SCOTT
7839 KING
7844 TURNER
7876 ADAMS
7900 JAMES
7902 FORD
7934 MILLER

14 rows were retrieved

19.8.6.5 Summary of cursor states and attributes

The table summarizes the possible cursor states and the values returned by the cursor attributes.

Cursor state %ISOPEN %FOUND %NOTFOUND %ROWCOUNT

Before OPEN False INVALID_CURSOR exception INVALID_CURSOR exception INVALID_CURSOR Exception

After OPEN & before 1st FETCH True Null Null 0

After 1st successful FETCH True True False 1

After nth successful FETCH (last row) True True False n

After n+1st FETCH (after last row) True False True n

After CLOSE False INVALID_CURSOR exception INVALID_CURSOR exception INVALID_CURSOR Exception

19.8.7 Cursor FOR loop

The programming logic required to process the result set of a cursor usually includes a statement to open the cursor, a loop construct to retrieve each row of the result set, a test for the end of the result
set, and a statement to close the cursor. The cursor FOR loop is a loop construct that eliminates the need to individually code these statements.

The cursor FOR loop opens a previously declared cursor, fetches all rows in the cursor result set, and then closes the cursor.

The syntax for creating a cursor FOR loop is as follows:

FOR <record> IN <cursor>
LOOP
 <statements>
END LOOP;

Where:

record is an identifier assigned to an implicitly declared record with definition cursor%ROWTYPE .

cursor is the name of a previously declared cursor.

statements are one or more SPL statements. There must be at least one statement.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 598

This example uses a cursor FOR loop:

CREATE OR REPLACE PROCEDURE cursor_example
IS
 CURSOR emp_cur_1 IS SELECT * FROM emp;
BEGIN
 DBMS_OUTPUT.PUT_LINE('EMPNO ENAME');
 DBMS_OUTPUT.PUT_LINE('----- -------');
 FOR v_emp_rec IN emp_cur_1 LOOP
 DBMS_OUTPUT.PUT_LINE(v_emp_rec.empno || ' ' || v_emp_rec.ename);
 END LOOP;
END;

The following is the output from this procedure:

EXEC cursor_example;

EMPNO ENAME
----- -------
7369 SMITH
7499 ALLEN
7521 WARD
7566 JONES
7654 MARTIN
7698 BLAKE
7782 CLARK
7788 SCOTT
7839 KING
7844 TURNER
7876 ADAMS
7900 JAMES
7902 FORD
7934 MILLER

19.8.8 Parameterized cursors

You can declare a static cursor that accepts parameters and can pass values for those parameters when opening that cursor. This example creates a parameterized cursor that displays the name and
salary of all employees from the emp table that have a salary less than a specified value. This information is passed as a parameter.

DECLARE
 my_record emp%ROWTYPE;
 CURSOR c1 (max_wage NUMBER) IS
 SELECT * FROM emp WHERE sal < max_wage;
BEGIN
 OPEN c1(2000);
 LOOP
 FETCH c1 INTO my_record;
 EXIT WHEN c1%NOTFOUND;
 DBMS_OUTPUT.PUT_LINE('Name = ' || my_record.ename || ', salary = '
 || my_record.sal);
 END LOOP;
 CLOSE c1;
END;

For example, if you pass the value 2000 as max_wage , then you see only the name and salary of all employees that have a salary less than 2000. The following is the result of the above query:

Name = SMITH, salary = 800.00
Name = ALLEN, salary = 1600.00
Name = WARD, salary = 1250.00
Name = MARTIN, salary = 1250.00
Name = TURNER, salary = 1500.00
Name = ADAMS, salary = 1100.00
Name = JAMES, salary = 950.00
Name = MILLER, salary = 1300.00

19.9 REF CURSOR and cursor variables

The REF CURSOR provides greater flexibility than static cursors.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 599

19.9.1 REF CURSOR overview

A cursor variable is a cursor that contains a pointer to a query result set. The result set is determined by executing the OPEN FOR statement using the cursor variable.

A cursor variable isn't tied to a single query like a static cursor is. You can open the same cursor variable a number of times with OPEN FOR statements containing different queries. Each time, a new
result set is created from that query and made available by way of the cursor variable.

You can pass REF CURSOR types as parameters to or from stored procedures and functions. The return type of a function can also be a REF CURSOR type. This ability lets you modularize the
operations on a cursor into separate programs by passing a cursor variable between programs.

19.9.2 Declaring a cursor variable

SPL supports two ways of declaring a cursor variable:

Using the SYS_REFCURSOR built-in data type. SYS_REFCURSOR is a REF CURSOR type that allows any result set to be associated with it. This is known as a weakly-typed REF CURSOR .
Creating a type of REF CURSOR and then declaring a variable of that type.

Only the declaration of SYS_REFCURSOR and user-defined REF CURSOR variables differ. The remaining usage, such as opening the cursor, selecting into the cursor, and closing the cursor, is the
same for both the cursor types. The examples primarily make use of the SYS_REFCURSOR cursors. To make the examples work for a user-defined REF CURSOR , change the declaration section.

Note

A strongly-typed REF CURSOR requires the result set to conform to a declared number and order of fields with compatible data types. It can also optionally return a result set.

19.9.2.1 Declaring a SYS_REFCURSOR cursor variable

The following is the syntax for declaring a SYS_REFCURSOR cursor variable:

<name> SYS_REFCURSOR;

Where name is an identifier assigned to the cursor variable.

This example shows a SYS_REFCURSOR variable declaration:

DECLARE
 emp_refcur SYS_REFCURSOR;
 ...

19.9.2.2 Declaring a user-defined REF CURSOR type variable

You must perform two distinct declaration steps to use a user-defined REF CURSOR variable:

Create a referenced cursor TYPE .
Declare the actual cursor variable based on that TYPE .

The syntax for creating a user-defined REF CURSOR type:

TYPE <cursor_type_name> IS REF CURSOR [RETURN <return_type>];

This example shows a cursor variable declaration:

DECLARE
 TYPE emp_cur_type IS REF CURSOR RETURN emp%ROWTYPE;
 my_rec emp_cur_type;
 ...

19.9.3 Opening a cursor variable

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 600

Once you declare a cursor variable, you must open it with an associated SELECT command. The OPEN FOR statement specifies the SELECT command to use to create the result set:

OPEN <name> FOR query;

Where:

name is the identifier of a previously declared cursor variable.

query is a SELECT command that determines the result set when the statement is executed.

The value of the cursor variable after the OPEN FOR statement is executed identifies the result set.

This example shows a result set that's a list of employee numbers and names from a selected department. You can use a variable or parameter in the SELECT command anywhere an expression can
normally appear. In this case, a parameter is used in the equality test for department number.

CREATE OR REPLACE PROCEDURE emp_by_dept (
 p_deptno emp.deptno%TYPE
)
IS
 emp_refcur SYS_REFCURSOR;
BEGIN
 OPEN emp_refcur FOR SELECT empno, ename FROM emp WHERE deptno = p_deptno;
 ...

19.9.4 Fetching rows From a cursor variable

After you open a cursor variable, you can retrieve rows from the result set using the FETCH statement. For details, see Fetching rows from a cursor.

This example uses a FETCH statement to cause the result set to be returned into two variables and then displayed. You can also use the cursor attributes used to determine cursor state of static cursors
with cursor variables. For details, see Cursor attributes.

CREATE OR REPLACE PROCEDURE emp_by_dept (
 p_deptno emp.deptno%TYPE
)
IS
 emp_refcur SYS_REFCURSOR;
 v_empno emp.empno%TYPE;
 v_ename emp.ename%TYPE;
BEGIN
 OPEN emp_refcur FOR SELECT empno, ename FROM emp WHERE deptno = p_deptno;
 DBMS_OUTPUT.PUT_LINE('EMPNO ENAME');
 DBMS_OUTPUT.PUT_LINE('----- -------');
 LOOP
 FETCH emp_refcur INTO v_empno, v_ename;
 EXIT WHEN emp_refcur%NOTFOUND;
 DBMS_OUTPUT.PUT_LINE(v_empno || ' ' || v_ename);
 END LOOP;
 ...

19.9.5 Closing a cursor variable

Use the CLOSE statement described in Closing a cursor to release the result set.

Note

Unlike static cursors, you don't have to close a cursor variable before you can reopen it. When you reopen it, the result set from the previous open is lost.

This example includes the CLOSE statement:

CREATE OR REPLACE PROCEDURE emp_by_dept (
 p_deptno emp.deptno%TYPE
)
IS
 emp_refcur SYS_REFCURSOR;
 v_empno emp.empno%TYPE;
 v_ename emp.ename%TYPE;
BEGIN

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 601

 OPEN emp_refcur FOR SELECT empno, ename FROM emp WHERE deptno = p_deptno;
 DBMS_OUTPUT.PUT_LINE('EMPNO ENAME');
 DBMS_OUTPUT.PUT_LINE('----- -------');
 LOOP
 FETCH emp_refcur INTO v_empno, v_ename;
 EXIT WHEN emp_refcur%NOTFOUND;
 DBMS_OUTPUT.PUT_LINE(v_empno || ' ' || v_ename);
 END LOOP;
 CLOSE emp_refcur;
END;

The following is the output from this procedure:

EXEC emp_by_dept(20)

EMPNO ENAME
----- -------
7369 SMITH
7566 JONES
7788 SCOTT
7876 ADAMS
7902 FORD

19.9.6 Usage restrictions

The following are restrictions on cursor variable usage:

You can't use comparison operators to test cursor variables for equality, inequality, null, or not null.
You can't assign null to a cursor variable.
You can't store the value of a cursor variable in a database column.
Static cursors and cursor variables aren't interchangeable. For example, you can't use a static cursor in an OPEN FOR statement.

The table shows the permitted parameter modes for a cursor variable used as a procedure or function parameter. This use depends on the operations on the cursor variable in the procedure or function.

Operation IN
IN
OUT OUT

OPEN No Yes No

FETCH Yes Yes No

CLOSE Yes Yes No

For example, if a procedure performs all three operations—OPEN FOR , FETCH , and CLOSE —on a cursor variable declared as the procedure’s formal parameter, then that parameter must be
declared with IN OUT mode.

19.9.7 Examples

The examples that follow show cursor variable usage.

19.9.7.1 Returning a REF CURSOR from a function

This example opens the cursor variable with a query that selects employees with a given job. The cursor variable is specified in this function’s RETURN statement, which makes the result set available
to the caller of the function.

CREATE OR REPLACE FUNCTION emp_by_job (p_job VARCHAR2)
RETURN SYS_REFCURSOR
IS
 emp_refcur SYS_REFCURSOR;
BEGIN
 OPEN emp_refcur FOR SELECT empno, ename FROM emp WHERE job = p_job;
 RETURN emp_refcur;
END;

This function is invoked in the following anonymous block by assigning the function’s return value to a cursor variable declared in the anonymous block’s declaration section. The result set is fetched

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 602

using this cursor variable, and then it is closed.

DECLARE
 v_empno emp.empno%TYPE;
 v_ename emp.ename%TYPE;
 v_job emp.job%TYPE := 'SALESMAN';
 v_emp_refcur SYS_REFCURSOR;
BEGIN
 DBMS_OUTPUT.PUT_LINE('EMPLOYEES WITH JOB ' || v_job);
 DBMS_OUTPUT.PUT_LINE('EMPNO ENAME');
 DBMS_OUTPUT.PUT_LINE('----- -------');
 v_emp_refcur := emp_by_job(v_job);
 LOOP
 FETCH v_emp_refcur INTO v_empno, v_ename;
 EXIT WHEN v_emp_refcur%NOTFOUND;
 DBMS_OUTPUT.PUT_LINE(v_empno || ' ' || v_ename);
 END LOOP;
 CLOSE v_emp_refcur;
END;

The following is the output when the anonymous block is executed:

EMPLOYEES WITH JOB SALESMAN
EMPNO ENAME
----- -------
7499 ALLEN
7521 WARD
7654 MARTIN
7844 TURNER

19.9.7.2 Modularizing cursor operations

This example shows how you can modularize the various operations on cursor variables into separate programs.

The following procedure opens the given cursor variable with a SELECT command that retrieves all rows:

CREATE OR REPLACE PROCEDURE open_all_emp (
 p_emp_refcur IN OUT SYS_REFCURSOR
)
IS
BEGIN
 OPEN p_emp_refcur FOR SELECT empno, ename FROM emp;
END;

This variation opens the given cursor variable with a SELECT command that retrieves all rows of a given department:

CREATE OR REPLACE PROCEDURE open_emp_by_dept (
 p_emp_refcur IN OUT SYS_REFCURSOR,
 p_deptno emp.deptno%TYPE
)
IS
BEGIN
 OPEN p_emp_refcur FOR SELECT empno, ename FROM emp
 WHERE deptno = p_deptno;
END;

This variation opens the given cursor variable with a SELECT command that retrieves all rows but from a different table. The function’s return value is the opened cursor variable.

CREATE OR REPLACE FUNCTION open_dept (
 p_dept_refcur IN OUT SYS_REFCURSOR
) RETURN SYS_REFCURSOR
IS
 v_dept_refcur SYS_REFCURSOR;
BEGIN
 v_dept_refcur := p_dept_refcur;
 OPEN v_dept_refcur FOR SELECT deptno, dname FROM dept;
 RETURN v_dept_refcur;
END;

This procedure fetches and displays a cursor variable result set consisting of employee number and name:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 603

CREATE OR REPLACE PROCEDURE fetch_emp (
 p_emp_refcur IN OUT SYS_REFCURSOR
)
IS
 v_empno emp.empno%TYPE;
 v_ename emp.ename%TYPE;
BEGIN
 DBMS_OUTPUT.PUT_LINE('EMPNO ENAME');
 DBMS_OUTPUT.PUT_LINE('----- -------');
 LOOP
 FETCH p_emp_refcur INTO v_empno, v_ename;
 EXIT WHEN p_emp_refcur%NOTFOUND;
 DBMS_OUTPUT.PUT_LINE(v_empno || ' ' || v_ename);
 END LOOP;
END;

This procedure fetches and displays a cursor variable result set consisting of department number and name:

CREATE OR REPLACE PROCEDURE fetch_dept (
 p_dept_refcur IN SYS_REFCURSOR
)
IS
 v_deptno dept.deptno%TYPE;
 v_dname dept.dname%TYPE;
BEGIN
 DBMS_OUTPUT.PUT_LINE('DEPT DNAME');
 DBMS_OUTPUT.PUT_LINE('---- ---------');
 LOOP
 FETCH p_dept_refcur INTO v_deptno, v_dname;
 EXIT WHEN p_dept_refcur%NOTFOUND;
 DBMS_OUTPUT.PUT_LINE(v_deptno || ' ' || v_dname);
 END LOOP;
END;

This procedure closes the given cursor variable:

CREATE OR REPLACE PROCEDURE close_refcur (
 p_refcur IN OUT SYS_REFCURSOR
)
IS
BEGIN
 CLOSE p_refcur;
END;

This anonymous block executes all the previous programs:

DECLARE
 gen_refcur SYS_REFCURSOR;
BEGIN
 DBMS_OUTPUT.PUT_LINE('ALL EMPLOYEES');
 open_all_emp(gen_refcur);
 fetch_emp(gen_refcur);
 DBMS_OUTPUT.PUT_LINE('****************');

 DBMS_OUTPUT.PUT_LINE('EMPLOYEES IN DEPT #10');
 open_emp_by_dept(gen_refcur, 10);
 fetch_emp(gen_refcur);
 DBMS_OUTPUT.PUT_LINE('****************');

 DBMS_OUTPUT.PUT_LINE('DEPARTMENTS');
 fetch_dept(open_dept(gen_refcur));
 DBMS_OUTPUT.PUT_LINE('*****************');

 close_refcur(gen_refcur);
END;

The following is the output from the anonymous block:

ALL EMPLOYEES
EMPNO ENAME
----- -------
7369 SMITH
7499 ALLEN
7521 WARD
7566 JONES

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 604

7654 MARTIN
7698 BLAKE
7782 CLARK
7788 SCOTT
7839 KING
7844 TURNER
7876 ADAMS
7900 JAMES
7902 FORD
7934 MILLER

EMPLOYEES IN DEPT #10
EMPNO ENAME
----- -------
7782 CLARK
7839 KING
7934 MILLER

DEPARTMENTS
DEPT DNAME
---- ---------
10 ACCOUNTING
20 RESEARCH
30 SALES
40 OPERATIONS

19.9.8 Dynamic queries with REF CURSOR

EDB Postgres Advanced Server supports dynamic queries by way of the OPEN FOR USING statement. A string literal or string variable is supplied in the OPEN FOR USING statement to the
SELECT command:

OPEN <name> FOR <dynamic_string>
 [USING <bind_arg> [, <bind_arg_2>] ...];

Where:

name is the identifier of a previously declared cursor variable.

dynamic_string is a string literal or string variable containing a SELECT command without the terminating semi-colon.

bind_arg, bind_arg_2... are bind arguments that pass variables to corresponding placeholders in the SELECT command when the cursor variable is opened. The placeholders are identifiers
prefixed by a colon character.

This example shows a dynamic query using a string literal:

CREATE OR REPLACE PROCEDURE dept_query
IS
 emp_refcur SYS_REFCURSOR;
 v_empno emp.empno%TYPE;
 v_ename emp.ename%TYPE;
BEGIN
 OPEN emp_refcur FOR 'SELECT empno, ename FROM emp WHERE deptno = 30' ||
 ' AND sal >= 1500';
 DBMS_OUTPUT.PUT_LINE('EMPNO ENAME');
 DBMS_OUTPUT.PUT_LINE('----- -------');
 LOOP
 FETCH emp_refcur INTO v_empno, v_ename;
 EXIT WHEN emp_refcur%NOTFOUND;
 DBMS_OUTPUT.PUT_LINE(v_empno || ' ' || v_ename);
 END LOOP;
 CLOSE emp_refcur;
END;

The following is the output from this procedure:

EXEC dept_query;

EMPNO ENAME
----- -------
7499 ALLEN
7698 BLAKE

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 605

7844 TURNER

This example query uses bind arguments to pass the query parameters:

CREATE OR REPLACE PROCEDURE dept_query (
 p_deptno emp.deptno%TYPE,
 p_sal emp.sal%TYPE
)
IS
 emp_refcur SYS_REFCURSOR;
 v_empno emp.empno%TYPE;
 v_ename emp.ename%TYPE;
BEGIN
 OPEN emp_refcur FOR 'SELECT empno, ename FROM emp WHERE deptno = :dept'
 || ' AND sal >= :sal' USING p_deptno, p_sal;
 DBMS_OUTPUT.PUT_LINE('EMPNO ENAME');
 DBMS_OUTPUT.PUT_LINE('----- -------');
 LOOP
 FETCH emp_refcur INTO v_empno, v_ename;
 EXIT WHEN emp_refcur%NOTFOUND;
 DBMS_OUTPUT.PUT_LINE(v_empno || ' ' || v_ename);
 END LOOP;
 CLOSE emp_refcur;
END;

The following is the resulting output:

EXEC dept_query(30, 1500);

EMPNO ENAME
----- -------
7499 ALLEN
7698 BLAKE
7844 TURNER

Finally, a string variable is used to pass the SELECT , providing the most flexibility:

CREATE OR REPLACE PROCEDURE dept_query (
 p_deptno emp.deptno%TYPE,
 p_sal emp.sal%TYPE
)
IS
 emp_refcur SYS_REFCURSOR;
 v_empno emp.empno%TYPE;
 v_ename emp.ename%TYPE;
 p_query_string VARCHAR2(100);
BEGIN
 p_query_string := 'SELECT empno, ename FROM emp WHERE ' ||
 'deptno = :dept AND sal >= :sal';
 OPEN emp_refcur FOR p_query_string USING p_deptno, p_sal;
 DBMS_OUTPUT.PUT_LINE('EMPNO ENAME');
 DBMS_OUTPUT.PUT_LINE('----- -------');
 LOOP
 FETCH emp_refcur INTO v_empno, v_ename;
 EXIT WHEN emp_refcur%NOTFOUND;
 DBMS_OUTPUT.PUT_LINE(v_empno || ' ' || v_ename);
 END LOOP;
 CLOSE emp_refcur;
END;
EXEC dept_query(20, 1500);

EMPNO ENAME
----- -------
7566 JONES
7788 SCOTT
7902 FORD

19.10 Collections

A collection is a set of ordered data items with the same data type. Generally, the data item is a scalar field. It can also be a user-defined type such as a record type or an object type. In this case, the
structure and the data types that make up each field of the user-defined type must be the same for each element in the set. Reference each data item in the set by using subscript notation inside a pair of
parentheses.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 606

Note

Multilevel collections (that is, where the data item of a collection is another collection) aren't supported.

The most commonly known type of collection is an array. In EDB Postgres Advanced Server, the supported collection types are associative arrays (formerly called index-by-tables in Oracle), nested
tables, and varrays.

The general steps for using a collection are the following:

Define a collection of the desired type. You can do this in the declaration section of an SPL program, which results in a local type that you can access only in that program. For nested table and
varray types, you can also do this using the CREATE TYPE command, which creates a persistent, standalone type that any SPL program in the database can reference.
Declare variables of the collection type. The collection associated with the declared variable is uninitialized at this point if no value assignment is made as part of the variable declaration.
Uninitialized collections of nested tables and varrays are null. A null collection doesn't yet exist. Generally, a COLLECTION_IS_NULL exception is thrown if a collection method is invoked on a
null collection.
Uninitialized collections of associative arrays exist but have no elements. An existing collection with no elements is called an empty collection.
To initialize a null collection, you must either make it an empty collection or assign a non-null value to it. Generally, a null collection is initialized by using its constructor.
To add elements to an empty associative array, you can assign values to its keys. For nested tables and varrays, generally its constructor is used to assign initial values to the nested table or
varray. For nested tables and varrays, you then use the EXTEND method to grow the collection beyond its initial size set by the constructor.

19.10.1 Associative arrays

An associative array is a type of collection that associates a unique key with a value. The key doesn't have to be numeric. It can be character data as well.

An associative array has the following characteristics:

You must define an associative array type after which you can declare array variables of that array type. Data manipulation occurs using the array variable.
When an array variable is declared, the associative array is created, but it is empty. Start assigning values to key values.
The key can be any negative integer, positive integer, or zero if you specify INDEX BY BINARY_INTEGER or PLS_INTEGER .
The key can be character data if you specify INDEX BY VARCHAR2 .
There's no predefined limit on the number of elements in the array. It grows dynamically as elements are added.
The array can be sparse. There can be gaps in the assignment of values to keys.
An attempt to reference an array element that hasn't been assigned a value results in an exception.

The TYPE IS TABLE OF ... INDEX BY statement is used to define an associative array type:

TYPE <assoctype> IS TABLE OF { <datatype> | <rectype> | <objtype> }
 INDEX BY { BINARY_INTEGER | PLS_INTEGER | VARCHAR2(<n>) };

Where:

assoctype is an identifier assigned to the array type.

datatype is a scalar data type such as VARCHAR2 or NUMBER .

rectype is a previously defined record type.

objtype is a previously defined object type.

n is the maximum length of a character key.

To make use of the array, you must declare a variable with that array type. The following is the syntax for declaring an array variable:

<array> <assoctype>

Where:

array is an identifier assigned to the associative array.

assoctype is the identifier of a previously defined array type.

Reference an element of the array using the following syntax:

<array>(<n>)[<.field>]

array is the identifier of a previously declared array.

n is the key value, type-compatible with the data type given in the INDEX BY clause.

If the array type of array is defined from a record type or object type, then [.field] must reference an individual field in the record type or attribute in the object type from which the array type is

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 607

defined. Alternatively, you can reference the entire record by omitting [.field] .

This example reads the first 10 employee names from the emp table, stores them in an array, and then displays the results from the array:

DECLARE
 TYPE emp_arr_typ IS TABLE OF VARCHAR2(10) INDEX BY BINARY_INTEGER;
 emp_arr emp_arr_typ;
 CURSOR emp_cur IS SELECT ename FROM emp WHERE ROWNUM <= 10;
 i INTEGER := 0;
BEGIN
 FOR r_emp IN emp_cur LOOP
 i := i + 1;
 emp_arr(i) := r_emp.ename;
 END LOOP;
 FOR j IN 1..10 LOOP
 DBMS_OUTPUT.PUT_LINE(emp_arr(j));
 END LOOP;
END;

This example produces the following output:

SMITH
ALLEN
WARD
JONES
MARTIN
BLAKE
CLARK
SCOTT
KING
TURNER

This example uses a record type in the array definition:

DECLARE
 TYPE emp_rec_typ IS RECORD (
 empno NUMBER(4),
 ename VARCHAR2(10)
);
 TYPE emp_arr_typ IS TABLE OF emp_rec_typ INDEX BY BINARY_INTEGER;
 emp_arr emp_arr_typ;
 CURSOR emp_cur IS SELECT empno, ename FROM emp WHERE ROWNUM <= 10;
 i INTEGER := 0;
BEGIN
 DBMS_OUTPUT.PUT_LINE('EMPNO ENAME');
 DBMS_OUTPUT.PUT_LINE('----- -------');
 FOR r_emp IN emp_cur LOOP
 i := i + 1;
 emp_arr(i).empno := r_emp.empno;
 emp_arr(i).ename := r_emp.ename;
 END LOOP;
 FOR j IN 1..10 LOOP
 DBMS_OUTPUT.PUT_LINE(emp_arr(j).empno || ' ' ||
 emp_arr(j).ename);
 END LOOP;
END;

The following is the output from this anonymous block:

EMPNO ENAME
----- -------
7369 SMITH
7499 ALLEN
7521 WARD
7566 JONES
7654 MARTIN
7698 BLAKE
7782 CLARK
7788 SCOTT
7839 KING
7844 TURNER

This example uses the emp%ROWTYPE attribute to define emp_arr_typ instead of using the emp_rec_typ record type:

DECLARE

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 608

 TYPE emp_arr_typ IS TABLE OF emp%ROWTYPE INDEX BY BINARY_INTEGER;
 emp_arr emp_arr_typ;
 CURSOR emp_cur IS SELECT empno, ename FROM emp WHERE ROWNUM <= 10;
 i INTEGER := 0;
BEGIN
 DBMS_OUTPUT.PUT_LINE('EMPNO ENAME');
 DBMS_OUTPUT.PUT_LINE('----- -------');
 FOR r_emp IN emp_cur LOOP
 i := i + 1;
 emp_arr(i).empno := r_emp.empno;
 emp_arr(i).ename := r_emp.ename;
 END LOOP;
 FOR j IN 1..10 LOOP
 DBMS_OUTPUT.PUT_LINE(emp_arr(j).empno || ' ' ||
 emp_arr(j).ename);
 END LOOP;
END;

The results are the same as using a record type in the array definition.

Instead of assigning each field of the record individually, you can make a record-level assignment from r_emp to emp_arr :

DECLARE
 TYPE emp_rec_typ IS RECORD (
 empno NUMBER(4),
 ename VARCHAR2(10)
);
 TYPE emp_arr_typ IS TABLE OF emp_rec_typ INDEX BY BINARY_INTEGER;
 emp_arr emp_arr_typ;
 CURSOR emp_cur IS SELECT empno, ename FROM emp WHERE ROWNUM <= 10;
 i INTEGER := 0;
BEGIN
 DBMS_OUTPUT.PUT_LINE('EMPNO ENAME');
 DBMS_OUTPUT.PUT_LINE('----- -------');
 FOR r_emp IN emp_cur LOOP
 i := i + 1;
 emp_arr(i) := r_emp;
 END LOOP;
 FOR j IN 1..10 LOOP
 DBMS_OUTPUT.PUT_LINE(emp_arr(j).empno || ' ' ||
 emp_arr(j).ename);
 END LOOP;
END;

This example uses the key of an associative array as character data:

DECLARE
 TYPE job_arr_typ IS TABLE OF NUMBER INDEX BY VARCHAR2(9);
 job_arr job_arr_typ;
BEGIN
 job_arr('ANALYST') := 100;
 job_arr('CLERK') := 200;
 job_arr('MANAGER') := 300;
 job_arr('SALESMAN') := 400;
 job_arr('PRESIDENT') := 500;
 DBMS_OUTPUT.PUT_LINE('ANALYST : ' || job_arr('ANALYST'));
 DBMS_OUTPUT.PUT_LINE('CLERK : ' || job_arr('CLERK'));
 DBMS_OUTPUT.PUT_LINE('MANAGER : ' || job_arr('MANAGER'));
 DBMS_OUTPUT.PUT_LINE('SALESMAN : ' || job_arr('SALESMAN'));
 DBMS_OUTPUT.PUT_LINE('PRESIDENT: ' || job_arr('PRESIDENT'));
END;

ANALYST : 100
CLERK : 200
MANAGER : 300
SALESMAN : 400
PRESIDENT: 500

19.10.2 Nested tables

A nested table is a type of collection that associates a positive integer with a value. A nested table has the following characteristics:

You must define a nested table type. After that, you can declare nested table variables of that nested table type. Data manipulation occurs using the nested table variable, also known simply as a

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 609

table.
When you declare a nested table variable, the nested table doesn't yet exist. It is a null collection. You must initialize the null table with a constructor. You can also initialize the table by using an
assignment statement where the right-hand side of the assignment is an initialized table of the same type. Note: Initialization of a nested table is mandatory in Oracle but optional in SPL.
The key is a positive integer.
The constructor establishes the number of elements in the table. The EXTEND method adds elements to the table. For details, see Collection methods. Note: Using the constructor to establish
the number of elements in the table and using the EXTEND method to add elements to the table are mandatory in Oracle but optional in SPL.
The table can be sparse. There can be gaps in assigning values to keys.
An attempt to reference a table element beyond its initialized or extended size results in a SUBSCRIPT_BEYOND_COUNT exception.

Use the TYPE IS TABLE statement to define a nested table type in the declaration section of an SPL program:

TYPE <tbltype> IS TABLE OF { <datatype> | <rectype> | <objtype> };

Where:

tbltype is an identifier assigned to the nested table type.

datatype is a scalar data type such as VARCHAR2 or NUMBER .

rectype is a previously defined record type.

objtype is a previously defined object type.

Note

You can use the CREATE TYPE command to define a nested table type that's available to all SPL programs in the database. See Database Compatibility for Oracle Developers: SQL for more
information about the CREATE TYPE command.

To use the table, you must declare a variable of that nested table type. The following is the syntax for declaring a table variable:

<table> <tbltype>

Where:

table is an identifier assigned to the nested table.

tbltype is the identifier of a previously defined nested table type.

Initialize a nested table using the nested table type’s constructor:

<tbltype> ([{ <expr1> | NULL } [, { <expr2> | NULL }] [, ...]])

Where:

tbltype is the identifier of the nested table type’s constructor, which has the same name as the nested table type.

expr1, expr2, … are expressions that are type-compatible with the element type of the table. If you specify NULL , the corresponding element is set to null. If the parameter list is empty, then an
empty nested table is returned, which means the table has no elements. If the table is defined from an object type, then exprn must return an object of that object type. The object can be the return
value of a function or the object type’s constructor. Or the object can be an element of another nested table of the same type.

If you apply a collection method other than EXISTS to an uninitialized nested table, a COLLECTION_IS_NULL exception is thrown. For details, see Collection methods.

This example shows a constructor for a nested table:

DECLARE
 TYPE nested_typ IS TABLE OF CHAR(1);
 v_nested nested_typ := nested_typ('A','B');

Reference an element of the table using the following syntax:

<table>(<n>)[<.element>]

Where:

table is the identifier of a previously declared table.

n is a positive integer.

If the table type of table is defined from a record type or object type, then [.element] must reference an individual field in the record type or attribute in the object type from which the nested
table type is defined. Alternatively, you can reference the entire record or object by omitting [.element] .

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 610

This example shows a nested table where it's known that there are four elements:

DECLARE
 TYPE dname_tbl_typ IS TABLE OF VARCHAR2(14);
 dname_tbl dname_tbl_typ;
 CURSOR dept_cur IS SELECT dname FROM dept ORDER BY dname;
 i INTEGER := 0;
BEGIN
 dname_tbl := dname_tbl_typ(NULL, NULL, NULL, NULL);
 FOR r_dept IN dept_cur LOOP
 i := i + 1;
 dname_tbl(i) := r_dept.dname;
 END LOOP;
 DBMS_OUTPUT.PUT_LINE('DNAME');
 DBMS_OUTPUT.PUT_LINE('----------');
 FOR j IN 1..i LOOP
 DBMS_OUTPUT.PUT_LINE(dname_tbl(j));
 END LOOP;
END;

The following is the output from the example:

DNAME

ACCOUNTING
OPERATIONS
RESEARCH
SALES

This example reads the first 10 employee names from the emp table, stores them in a nested table, and then displays the results from the table. The SPL code is written to assume that the number of
employees to return isn't known beforehand.

DECLARE
 TYPE emp_rec_typ IS RECORD (
 empno NUMBER(4),
 ename VARCHAR2(10)
);
 TYPE emp_tbl_typ IS TABLE OF emp_rec_typ;
 emp_tbl emp_tbl_typ;
 CURSOR emp_cur IS SELECT empno, ename FROM emp WHERE ROWNUM <= 10;
 i INTEGER := 0;
BEGIN
 emp_tbl := emp_tbl_typ();
 DBMS_OUTPUT.PUT_LINE('EMPNO ENAME');
 DBMS_OUTPUT.PUT_LINE('----- -------');
 FOR r_emp IN emp_cur LOOP
 i := i + 1;
 emp_tbl.EXTEND;
 emp_tbl(i) := r_emp;
 END LOOP;
 FOR j IN 1..10 LOOP
 DBMS_OUTPUT.PUT_LINE(emp_tbl(j).empno || ' ' ||
 emp_tbl(j).ename);
 END LOOP;
END;

An empty table with the constructor emp_tbl_typ() is created as the first statement in the executable section of the anonymous block. The EXTEND collection method is then used to add an
element to the table for each employee returned from the result set. See Extend.

The following is the output:

EMPNO ENAME
----- -------
7369 SMITH
7499 ALLEN
7521 WARD
7566 JONES
7654 MARTIN
7698 BLAKE
7782 CLARK
7788 SCOTT
7839 KING
7844 TURNER

This example shows how you can use a nested table of an object type. First, create an object type with attributes for the department name and location:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 611

CREATE TYPE dept_obj_typ AS OBJECT (
 dname VARCHAR2(14),
 loc VARCHAR2(13)
);

This anonymous block defines a nested table type whose element consists of the dept_obj_typ object type. A nested table variable is declared, initialized, and then populated from the dept
table. Finally, the elements from the nested table are displayed.

DECLARE
 TYPE dept_tbl_typ IS TABLE OF dept_obj_typ;
 dept_tbl dept_tbl_typ;
 CURSOR dept_cur IS SELECT dname, loc FROM dept ORDER BY dname;
 i INTEGER := 0;
BEGIN
 dept_tbl := dept_tbl_typ(
 dept_obj_typ(NULL,NULL),
 dept_obj_typ(NULL,NULL),
 dept_obj_typ(NULL,NULL),
 dept_obj_typ(NULL,NULL)
);
 FOR r_dept IN dept_cur LOOP
 i := i + 1;
 dept_tbl(i).dname := r_dept.dname;
 dept_tbl(i).loc := r_dept.loc;
 END LOOP;
 DBMS_OUTPUT.PUT_LINE('DNAME LOC');
 DBMS_OUTPUT.PUT_LINE('---------- ----------');
 FOR j IN 1..i LOOP
 DBMS_OUTPUT.PUT_LINE(RPAD(dept_tbl(j).dname,14) || ' ' ||
 dept_tbl(j).loc);
 END LOOP;
END;

The parameters that make up the nested table’s constructor, dept_tbl_typ , are calls to the object type’s constructor dept_obj_typ. The following is the output from the anonymous block:

DNAME LOC
---------- ----------
ACCOUNTING NEW YORK
OPERATIONS BOSTON
RESEARCH DALLAS
SALES CHICAGO

19.10.3 Varrays

A varray or variable-size array is a type of collection that associates a positive integer with a value. In many respects, it's similar to a nested table.

A varray has the following characteristics:

You must define a varray type with a maximum size limit. After you define the varray type, you can declare varray variables of that varray type. Data manipulation occurs using the varray variable,
also known simply as a varray. The number of elements in the varray can't exceed the maximum size limit set in the varray type definition.
When you declare a varray variable, the varray at first is a null collection. You must initialize the null varray with a constructor. You can also initialize the varray by using an assignment statement
where the right-hand side of the assignment is an initialized varray of the same type.
The key is a positive integer.
The constructor sets the number of elements in the varray, which must not exceed the maximum size limit. The EXTEND method can add elements to the varray up to the maximum size limit. For
details, see Collection methods.
Unlike a nested table, a varray cannot be sparse. There are no gaps when assigning values to keys.
An attempt to reference a varray element beyond its initialized or extended size but within the maximum size limit results in a SUBSCRIPT_BEYOND_COUNT exception.
An attempt to reference a varray element beyond the maximum size limit or extend a varray beyond the maximum size limit results in a SUBSCRIPT_OUTSIDE_LIMIT exception.

The TYPE IS VARRAY statement is used to define a varray type in the declaration section of an SPL program:

TYPE <varraytype> IS { VARRAY | VARYING ARRAY }(<maxsize>)
 OF { <datatype> | <objtype> };

Where:

varraytype is an identifier assigned to the varray type.

datatype is a scalar data type such as VARCHAR2 or NUMBER .

maxsize is the maximum number of elements permitted in varrays of that type.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 612

objtype is a previously defined object type.

You can use the CREATE TYPE command to define a varray type that's available to all SPL programs in the database. To make use of the varray, you must declare a variable of that varray type. The
following is the syntax for declaring a varray variable:

<varray> <varraytype>

Where:

varray is an identifier assigned to the varray.

varraytype is the identifier of a previously defined varray type.

Initialize a varray using the varray type’s constructor:

<varraytype> ([{ <expr1> | NULL } [, { <expr2> | NULL }]
 [, ...]])

Where:

varraytype is the identifier of the varray type’s constructor, which has the same name as the varray type.

expr1, expr2, … are expressions that are type-compatible with the element type of the varray. If you specify NULL , the corresponding element is set to null. If the parameter list is empty, then an
empty varray is returned, which means there are no elements in the varray. If the varray is defined from an object type, then exprn must return an object of that object type. The object can be the
return value of a function or the return value of the object type’s constructor. The object can also be an element of another varray of the same varray type.

If you apply a collection method other than EXISTS to an uninitialized varray, a COLLECTION_IS_NULL exception is thrown. For details, see Collection methods.

The following is an example of a constructor for a varray:

DECLARE
 TYPE varray_typ IS VARRAY(2) OF CHAR(1);
 v_varray varray_typ := varray_typ('A','B');

Reference an element of the varray using this syntax:

<varray>(<n>)[<.element>]

Where:

varray is the identifier of a previously declared varray.

n is a positive integer.

If the varray type of varray is defined from an object type, then [.element] must reference an attribute in the object type from which the varray type is defined. Alternatively, you cam reference
the entire object by omitting [.element].

This example shows a varray where it is known that there are four elements:

DECLARE
 TYPE dname_varray_typ IS VARRAY(4) OF VARCHAR2(14);
 dname_varray dname_varray_typ;
 CURSOR dept_cur IS SELECT dname FROM dept ORDER BY dname;
 i INTEGER := 0;
BEGIN
 dname_varray := dname_varray_typ(NULL, NULL, NULL, NULL);
 FOR r_dept IN dept_cur LOOP
 i := i + 1;
 dname_varray(i) := r_dept.dname;
 END LOOP;
 DBMS_OUTPUT.PUT_LINE('DNAME');
 DBMS_OUTPUT.PUT_LINE('----------');
 FOR j IN 1..i LOOP
 DBMS_OUTPUT.PUT_LINE(dname_varray(j));
 END LOOP;
END;

The following is the output from this example:

DNAME

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 613

ACCOUNTING
OPERATIONS
RESEARCH
SALES

19.11 Collection methods

Collection methods are functions and procedures that provide useful information about a collection that can aid in the processing of data in the collection.

19.11.1 COUNT

COUNT is a method that returns the number of elements in a collection. The syntax for using COUNT is:

<collection>.COUNT

Where collection is the name of a collection.

For a varray, COUNT always equals LAST .

This example shows that an associative array can be sparsely populated, with gaps in the sequence of assigned elements. COUNT includes only the elements that were assigned a value.

DECLARE
 TYPE sparse_arr_typ IS TABLE OF NUMBER INDEX BY BINARY_INTEGER;
 sparse_arr sparse_arr_typ;
BEGIN
 sparse_arr(-100) := -100;
 sparse_arr(-10) := -10;
 sparse_arr(0) := 0;
 sparse_arr(10) := 10;
 sparse_arr(100) := 100;
 DBMS_OUTPUT.PUT_LINE('COUNT: ' || sparse_arr.COUNT);
END;

The following output shows that there are five populated elements included in COUNT :

COUNT: 5

19.11.2 DELETE

The DELETE method deletes entries from a collection. You can call the DELETE method in three different ways.

Use this form of the DELETE method to remove all entries from a collection:

<collection>.DELETE

Use this form of the DELETE method to remove the specified entry from a collection:

<collection>.DELETE(<subscript>)

Use this form of the DELETE method to remove the entries that fall in the range specified by first_subscript and last_subscript (including the entries for the first_subscript and
the last_subscript) from a collection.

<collection>.DELETE(<first_subscript>, <last_subscript>)

If first_subscript and last_subscript refer to elements that don't exist, elements that are in the range between the specified subscripts are deleted. If first_subscript is greater
than last_subscript , or if you specify a value of NULL for one of the arguments, DELETE has no effect.

When you delete an entry, the subscript remains in the collection. You can reuse the subscript with an alternate entry. If you specify a subscript that doesn't exist in the call to the DELETE method,
DELETE doesn't raise an exception.

This example uses the DELETE method to remove the element with subscript 0 from the collection:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 614

DECLARE
 TYPE sparse_arr_typ IS TABLE OF NUMBER INDEX BY BINARY_INTEGER;
 sparse_arr sparse_arr_typ;
 v_results VARCHAR2(50);
 v_sub NUMBER;
BEGIN
 sparse_arr(-100) := -100;
 sparse_arr(-10) := -10;
 sparse_arr(0) := 0;
 sparse_arr(10) := 10;
 sparse_arr(100) := 100;
 DBMS_OUTPUT.PUT_LINE('COUNT: ' || sparse_arr.COUNT);
 sparse_arr.DELETE(0);
 DBMS_OUTPUT.PUT_LINE('COUNT: ' || sparse_arr.COUNT);
 v_sub := sparse_arr.FIRST;
 WHILE v_sub IS NOT NULL LOOP
 IF sparse_arr(v_sub) IS NULL THEN
 v_results := v_results || 'NULL ';
 ELSE
 v_results := v_results || sparse_arr(v_sub) || ' ';
 END IF;
 v_sub := sparse_arr.NEXT(v_sub);
 END LOOP;
 DBMS_OUTPUT.PUT_LINE('Results: ' || v_results);
END;

COUNT: 5
COUNT: 4
Results: -100 -10 10 100

COUNT indicates that before the DELETE method, there were five elements in the collection. After the DELETE method is invoked, the collection contains four elements.

19.11.3 EXISTS

The EXISTS method verifies that a subscript exists in a collection. EXISTS returns TRUE if the subscript exists. If the subscript doesn't exist, EXISTS returns FALSE . The method takes a single
argument: the subscript that you are testing for. The syntax is:

<collection>.EXISTS(<subscript>)

Where:

collection is the name of the collection.

subscript is the value that you are testing for. If you specify a value of NULL , EXISTS returns false .

This example verifies that subscript number 10 exists in the associative array:

DECLARE
 TYPE sparse_arr_typ IS TABLE OF NUMBER INDEX BY BINARY_INTEGER;
 sparse_arr sparse_arr_typ;
BEGIN
 sparse_arr(-100) := -100;
 sparse_arr(-10) := -10;
 sparse_arr(0) := 0;
 sparse_arr(10) := 10;
 sparse_arr(100) := 100;
 DBMS_OUTPUT.PUT_LINE('The index exists: ' ||
 CASE WHEN sparse_arr.exists(10) = TRUE THEN 'true' ELSE 'false' END);
END;

The index exists: true

Some collection methods raise an exception if you call them with a subscript that doesn't exist in the specified collection. Rather than raising an error, the EXISTS method returns a value of FALSE .

19.11.4 EXTEND

The EXTEND method increases the size of a collection. The EXTEND method has three variations. The first variation appends a single NULL element to a collection. The syntax for this variation is:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 615

<collection>.EXTEND

Where collection is the name of a collection.

This example uses the EXTEND method to append a single, null element to a collection:

DECLARE
 TYPE sparse_arr_typ IS TABLE OF NUMBER;
 sparse_arr sparse_arr_typ := sparse_arr_typ(-100,-10,0,10,100);
 v_results VARCHAR2(50);
BEGIN
 DBMS_OUTPUT.PUT_LINE('COUNT: ' || sparse_arr.COUNT);
 sparse_arr.EXTEND;
 DBMS_OUTPUT.PUT_LINE('COUNT: ' || sparse_arr.COUNT);
 FOR i IN sparse_arr.FIRST .. sparse_arr.LAST LOOP
 IF sparse_arr(i) IS NULL THEN
 v_results := v_results || 'NULL ';
 ELSE
 v_results := v_results || sparse_arr(i) || ' ';
 END IF;
 END LOOP;
 DBMS_OUTPUT.PUT_LINE('Results: ' || v_results);
END;

COUNT: 5
COUNT: 6
Results: -100 -10 0 10 100 NULL

COUNT indicates that before the EXTEND method, there were five elements in the collection. After the EXTEND method is invoked, the collection contains six elements.

This variation of the EXTEND method appends a specified number of elements to the end of a collection:

<collection>.EXTEND(<count>)

Where:

collection is the name of a collection.

count is the number of null elements added to the end of the collection.

This example uses the EXTEND method to append multiple null elements to a collection:

DECLARE
 TYPE sparse_arr_typ IS TABLE OF NUMBER;
 sparse_arr sparse_arr_typ := sparse_arr_typ(-100,-10,0,10,100);
 v_results VARCHAR2(50);
BEGIN
 DBMS_OUTPUT.PUT_LINE('COUNT: ' || sparse_arr.COUNT);
 sparse_arr.EXTEND(3);
 DBMS_OUTPUT.PUT_LINE('COUNT: ' || sparse_arr.COUNT);
 FOR i IN sparse_arr.FIRST .. sparse_arr.LAST LOOP
 IF sparse_arr(i) IS NULL THEN
 v_results := v_results || 'NULL ';
 ELSE
 v_results := v_results || sparse_arr(i) || ' ';
 END IF;
 END LOOP;
 DBMS_OUTPUT.PUT_LINE('Results: ' || v_results);
END;

COUNT: 5
COUNT: 8
Results: -100 -10 0 10 100 NULL NULL NULL

COUNT indicates that before the EXTEND method, there were five elements in the collection. After the EXTEND method is invoked, the collection contains eight elements.

This variation of the EXTEND method appends a specified number of copies of a particular element to the end of a collection:

<collection>.EXTEND(<count>, <index_number>)

Where:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 616

collection is the name of a collection.

count is the number of elements added to the end of the collection.

index_number is the subscript of the element that's being copied to the collection.

This example uses the EXTEND method to append multiple copies of the second element to the collection:

DECLARE
 TYPE sparse_arr_typ IS TABLE OF NUMBER;
 sparse_arr sparse_arr_typ := sparse_arr_typ(-100,-10,0,10,100);
 v_results VARCHAR2(50);
BEGIN
 DBMS_OUTPUT.PUT_LINE('COUNT: ' || sparse_arr.COUNT);
 sparse_arr.EXTEND(3, 2);
 DBMS_OUTPUT.PUT_LINE('COUNT: ' || sparse_arr.COUNT);
 FOR i IN sparse_arr.FIRST .. sparse_arr.LAST LOOP
 IF sparse_arr(i) IS NULL THEN
 v_results := v_results || 'NULL ';
 ELSE
 v_results := v_results || sparse_arr(i) || ' ';
 END IF;
 END LOOP;
 DBMS_OUTPUT.PUT_LINE('Results: ' || v_results);
END;

COUNT: 5
COUNT: 8
Results: -100 -10 0 10 100 -10 -10 -10

COUNT indicates that before the EXTEND method, there were five elements in the collection. After the EXTEND method is invoked, the collection contains eight elements.

Note

You can't use the EXTEND method on a null or empty collection.

19.11.5 FIRST

FIRST is a method that returns the subscript of the first element in a collection. The syntax for using FIRST is as follows:

<collection>.FIRST

Where collection is the name of a collection.

This example displays the first element of the associative array:

DECLARE
 TYPE sparse_arr_typ IS TABLE OF NUMBER INDEX BY BINARY_INTEGER;
 sparse_arr sparse_arr_typ;
BEGIN
 sparse_arr(-100) := -100;
 sparse_arr(-10) := -10;
 sparse_arr(0) := 0;
 sparse_arr(10) := 10;
 sparse_arr(100) := 100;
 DBMS_OUTPUT.PUT_LINE('FIRST element: ' || sparse_arr(sparse_arr.FIRST));
END;

FIRST element: -100

19.11.6 LAST

LAST is a method that returns the subscript of the last element in a collection. The syntax for using LAST is as follows:

<collection>.LAST

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 617

Where collection is the name of a collection.

This example displays the last element of the associative array:

DECLARE
 TYPE sparse_arr_typ IS TABLE OF NUMBER INDEX BY BINARY_INTEGER;
 sparse_arr sparse_arr_typ;
BEGIN
 sparse_arr(-100) := -100;
 sparse_arr(-10) := -10;
 sparse_arr(0) := 0;
 sparse_arr(10) := 10;
 sparse_arr(100) := 100;
 DBMS_OUTPUT.PUT_LINE('LAST element: ' || sparse_arr(sparse_arr.LAST));
END;

LAST element: 100

19.11.7 LIMIT

LIMIT is a method that returns the maximum number of elements permitted in a collection. LIMIT applies only to varrays. The syntax for using LIMIT is:

<collection>.LIMIT

Where collection is the name of a collection.

For an initialized varray, LIMIT returns the maximum size limit determined by the varray type definition. If the varray is uninitialized (that is, it's a null varray), an exception is thrown.

For an associative array or an initialized nested table, LIMIT returns NULL . If the nested table is uninitialized (that is, it's a null nested table), an exception is thrown.

19.11.8 NEXT

NEXT is a method that returns the subscript that follows a specified subscript. The method takes a single argument: the subscript that you are testing for. The syntax is:

<collection>.NEXT(<subscript>)

Where collection is the name of the collection.

If the specified subscript is less than the first subscript in the collection, the function returns the first subscript. If the subscript doesn't have a successor, NEXT returns NULL . If you specify a NULL
subscript, PRIOR doesn't return a value.

This example uses NEXT to return the subscript that follows subscript 10 in the associative array, sparse_arr:

DECLARE
 TYPE sparse_arr_typ IS TABLE OF NUMBER INDEX BY BINARY_INTEGER;
 sparse_arr sparse_arr_typ;
BEGIN
 sparse_arr(-100) := -100;
 sparse_arr(-10) := -10;
 sparse_arr(0) := 0;
 sparse_arr(10) := 10;
 sparse_arr(100) := 100;
 DBMS_OUTPUT.PUT_LINE('NEXT element: ' || sparse_arr.next(10));
END;

NEXT element: 100

19.11.9 PRIOR

The PRIOR method returns the subscript that precedes a specified subscript in a collection. The method takes a single argument: the subscript that you are testing for. The syntax is:

<collection>.PRIOR(<subscript>)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 618

Where collection is the name of the collection.

If the subscript specified doesn't have a predecessor, PRIOR returns NULL . If the specified subscript is greater than the last subscript in the collection, the method returns the last subscript. If you
specify a NULL subscript, PRIOR doesn't return a value.

This example returns the subscript that precedes subscript 100 in the associative array sparse_arr:

DECLARE
 TYPE sparse_arr_typ IS TABLE OF NUMBER INDEX BY BINARY_INTEGER;
 sparse_arr sparse_arr_typ;
BEGIN
 sparse_arr(-100) := -100;
 sparse_arr(-10) := -10;
 sparse_arr(0) := 0;
 sparse_arr(10) := 10;
 sparse_arr(100) := 100;
 DBMS_OUTPUT.PUT_LINE('PRIOR element: ' || sparse_arr.prior(100));
END;

PRIOR element: 10

19.11.10 TRIM

The TRIM method removes one or more elements from the end of a collection. The syntax for the TRIM method is:

<collection>.TRIM[(<count>)]

Where:

collection is the name of a collection.

count is the number of elements removed from the end of the collection. EDB Postgres Advanced Server returns an error if count is less than 0 or greater than the number of elements in the
collection.

This example uses the TRIM method to remove an element from the end of a collection:

DECLARE
 TYPE sparse_arr_typ IS TABLE OF NUMBER;
 sparse_arr sparse_arr_typ := sparse_arr_typ(-100,-10,0,10,100);
BEGIN
 DBMS_OUTPUT.PUT_LINE('COUNT: ' || sparse_arr.COUNT);
 sparse_arr.TRIM;
 DBMS_OUTPUT.PUT_LINE('COUNT: ' || sparse_arr.COUNT);
END;

COUNT: 5
COUNT: 4

COUNT indicates that before the TRIM method, there were five elements in the collection. After the TRIM method is invoked, the collection contains four elements.

You can also specify the number of elements to remove from the end of the collection using the TRIM method:

DECLARE
 TYPE sparse_arr_typ IS TABLE OF NUMBER;
 sparse_arr sparse_arr_typ := sparse_arr_typ(-100,-10,0,10,100);
 v_results VARCHAR2(50);
BEGIN
 DBMS_OUTPUT.PUT_LINE('COUNT: ' || sparse_arr.COUNT);
 sparse_arr.TRIM(2);
 DBMS_OUTPUT.PUT_LINE('COUNT: ' || sparse_arr.COUNT);
 FOR i IN sparse_arr.FIRST .. sparse_arr.LAST LOOP
 IF sparse_arr(i) IS NULL THEN
 v_results := v_results || 'NULL ';
 ELSE
 v_results := v_results || sparse_arr(i) || ' ';
 END IF;
 END LOOP;
 DBMS_OUTPUT.PUT_LINE('Results: ' || v_results);
END;

COUNT: 5

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 619

COUNT: 3
Results: -100 -10 0

COUNT indicates that before the TRIM method, there were five elements in the collection. After the TRIM method is invoked, the collection contains three elements.

19.12 Working with collections

Collection operators allow you to transform, query, and manipulate the contents of a collection.

19.12.1 TABLE()

Use the TABLE() function to transform the members of an array into a set of rows. The signature is:

TABLE(<collection_value>)

Where collection_value is an expression that evaluates to a value of collection type.

The TABLE() function expands the nested contents of a collection into a table format. You can use the TABLE() function anywhere you use a regular table expression.

The TABLE() function returns a SETOF ANYELEMENT , which is a set of values of any type. For example, if the argument passed to this function is an array of dates , TABLE() returns a SETOF
dates . If the argument passed to this function is an array of paths , TABLE() returns a SETOF paths .

You can use the TABLE() function to expand the contents of a collection into table form:

postgres=# SELECT * FROM TABLE(monthly_balance(445.00, 980.20, 552.00));

 monthly_balance

 445.00
 980.20
 552.00
(3 rows)

19.12.2 Using the MULTISET UNION operator

The MULTISET UNION operator combines two collections to form a third collection. The signature is:

<coll_1> MULTISET UNION [ALL | DISTINCT | UNIQUE] <coll_2>

Where coll_1 and coll_2 specify the names of the collections to combine.

Include the ALL keyword to specify to represent duplicate elements (elements that are present in both coll_1 and coll_2) in the result, once for each time they're present in the original
collections. This behavior is the default.

Include the DISTINCT or UNIQUE keyword to include duplicate elements in the result only once. There is no difference between the DISTINCT and UNIQUE keywords.

This example uses the MULTISET UNION operator to combine collection_1 and collection_2 into a third collection, collection_3 :

DECLARE
 TYPE int_arr_typ IS TABLE OF NUMBER(2);
 collection_1 int_arr_typ;
 collection_2 int_arr_typ;
 collection_3 int_arr_typ;
 v_results VARCHAR2(50);
BEGIN
 collection_1 := int_arr_typ(10,20,30);
 collection_2 := int_arr_typ(30,40);
 collection_3 := collection_1 MULTISET UNION ALL collection_2;
 DBMS_OUTPUT.PUT_LINE('COUNT: ' || collection_3.COUNT);
 FOR i IN collection_3.FIRST .. collection_3.LAST LOOP
 IF collection_3(i) IS NULL THEN
 v_results := v_results || 'NULL ';
 ELSE

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 620

 v_results := v_results || collection_3(i) || ' ';
 END IF;
 END LOOP;
 DBMS_OUTPUT.PUT_LINE('Results: ' || v_results);
END;

COUNT: 5
Results: 10 20 30 30 40

The resulting collection includes one entry for each element in collection_1 and collection_2 . If you use the DISTINCT keyword, the results are as follows:

DECLARE
 TYPE int_arr_typ IS TABLE OF NUMBER(2);
 collection_1 int_arr_typ;
 collection_2 int_arr_typ;
 collection_3 int_arr_typ;
 v_results VARCHAR2(50);
BEGIN
 collection_1 := int_arr_typ(10,20,30);
 collection_2 := int_arr_typ(30,40);
 collection_3 := collection_1 MULTISET UNION DISTINCT collection_2;
 DBMS_OUTPUT.PUT_LINE('COUNT: ' || collection_3.COUNT);
 FOR i IN collection_3.FIRST .. collection_3.LAST LOOP
 IF collection_3(i) IS NULL THEN
 v_results := v_results || 'NULL ';
 ELSE
 v_results := v_results || collection_3(i) || ' ';
 END IF;
 END LOOP;
 DBMS_OUTPUT.PUT_LINE('Results: ' || v_results);
END;

COUNT: 4
Results: 10 20 30 40

The resulting collection includes only those members with distinct values.

In this example, the MULTISET UNION DISTINCT operator removes duplicate entries that are stored in the same collection:

DECLARE
 TYPE int_arr_typ IS TABLE OF NUMBER(2);
 collection_1 int_arr_typ;
 collection_2 int_arr_typ;
 collection_3 int_arr_typ;
 v_results VARCHAR2(50);
BEGIN
 collection_1 := int_arr_typ(10,20,30,30);
 collection_2 := int_arr_typ(40,50);
 collection_3 := collection_1 MULTISET UNION DISTINCT collection_2;
 DBMS_OUTPUT.PUT_LINE('COUNT: ' || collection_3.COUNT);
 FOR i IN collection_3.FIRST .. collection_3.LAST LOOP
 IF collection_3(i) IS NULL THEN
 v_results := v_results || 'NULL ';
 ELSE
 v_results := v_results || collection_3(i) || ' ';
 END IF;
 END LOOP;
 DBMS_OUTPUT.PUT_LINE('Results: ' || v_results);
END;

COUNT: 5
Results: 10 20 30 40 50

19.12.3 Using the FORALL statement

You can use collections to process DML commands more efficiently by passing all the values to be used for repetitive execution of a DELETE , INSERT , or UPDATE command in one pass to the
database server. The alternative is to reiteratively invoking the DML command with new values. Specify the DML command to process this way with the FORALL statement. In addition, provide one or
more collections in the DML command where you want to subsitute different values are each time the command is executed.

FORALL <index> IN <lower_bound> .. <upper_bound>
 { <insert_stmt> | <update_stmt> | <delete_stmt> };

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 621

index is the position in the collection given in the insert_stmt , update_stmt , or delete_stmt DML command that iterates from the integer value given as lower_bound up to and
including upper_bound.

If an exception occurs during any iteration of the FORALL statement, all updates that occurred since the start of the execution of the FORALL statement are rolled back. This behavior isn't
compatible with Oracle databases. Oracle allows explicit use of the COMMIT or ROLLBACK commands to control whether to commit or roll back updates that occurred prior to the exception.

The FORALL statement creates a loop. Each iteration of the loop increments the index variable. You typically use the index in the loop to select a member of a collection. Control the number of
iterations with the lower_bound .. upper_bound clause. The loop is executes once for each integer between the lower_bound and upper_bound (inclusive), and the index increments by
one for each iteration.

For example:

FORALL i IN 2 .. 5

This expression creates a loop that executes four times. In the first iteration, index (i) is set to the value 2 . In the second iteration, the index is set to the value 3 , and so on. The loop executes for
the value 5 and then terminates.

This example creates a table emp_copy that's an empty copy of the emp table. The example declares a type emp_tbl that's an array. Each element in the array is of composite type, composed of
the column definitions used to create the table emp . The example also creates an index on the emp_tbl type.

t_emp is an associative array of type emp_tbl . The SELECT statement uses the BULK COLLECT INTO command to populate the t_emp array. After the t_emp array is populated, the
FORALL statement iterates through the values (i) in the t_emp array index and inserts a row for each record into emp_copy .

CREATE TABLE emp_copy(LIKE emp);

DECLARE

 TYPE emp_tbl IS TABLE OF emp%ROWTYPE INDEX BY BINARY_INTEGER;

 t_emp emp_tbl;

BEGIN
 SELECT * FROM emp BULK COLLECT INTO t_emp;

 FORALL i IN t_emp.FIRST .. t_emp.LAST
 INSERT INTO emp_copy VALUES t_emp(i);

END;

This example uses a FORALL statement to update the salary of three employees:

DECLARE
 TYPE empno_tbl IS TABLE OF emp.empno%TYPE INDEX BY BINARY_INTEGER;
 TYPE sal_tbl IS TABLE OF emp.ename%TYPE INDEX BY BINARY_INTEGER;
 t_empno EMPNO_TBL;
 t_sal SAL_TBL;
BEGIN
 t_empno(1) := 9001;
 t_sal(1) := 3350.00;
 t_empno(2) := 9002;
 t_sal(2) := 2000.00;
 t_empno(3) := 9003;
 t_sal(3) := 4100.00;
 FORALL i IN t_empno.FIRST..t_empno.LAST
 UPDATE emp SET sal = t_sal(i) WHERE empno = t_empno(i);
END;

SELECT * FROM emp WHERE empno > 9000;

 empno | ename | job | mgr | hiredate | sal | comm | deptno
-------+--------+---------+-----+----------+---------+------+--------
 9001 | JONES | ANALYST | | | 3350.00 | | 40
 9002 | LARSEN | CLERK | | | 2000.00 | | 40
 9003 | WILSON | MANAGER | | | 4100.00 | | 40
(3 rows)

This example deletes three employees in a FORALL statement:

DECLARE
 TYPE empno_tbl IS TABLE OF emp.empno%TYPE INDEX BY BINARY_INTEGER;
 t_empno EMPNO_TBL;
BEGIN
 t_empno(1) := 9001;
 t_empno(2) := 9002;
 t_empno(3) := 9003;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 622

 FORALL i IN t_empno.FIRST..t_empno.LAST
 DELETE FROM emp WHERE empno = t_empno(i);
END;

SELECT * FROM emp WHERE empno > 9000;

 empno | ename | job | mgr | hiredate | sal | comm | deptno
-------+-------+-----+-----+----------+-----+------+--------
(0 rows)

19.12.4 Using the BULK COLLECT clause

SQL commands that return a result set consisting of a large number of rows might not operate efficiently. This is due to the constant context switching to transfer the entire result set that occurs
between the database server and the client.

You can mitigate this inefficiency by using a collection to gather the entire result set in memory, which the client can then access. You use the BULK COLLECT clause to specify the aggregation of the
result set into a collection.

You can use the BULK COLLECT clause with the SELECT INTO , FETCH INTO , and EXECUTE IMMEDIATE commands. You can also use it with the RETURNING INTO clause of the
DELETE , INSERT , and UPDATE commands.

19.12.4.1 SELECT BULK COLLECT

The following shows the syntax for the BULK COLLECT clause with the SELECT INTO statement. For details on the SELECT INTO statement, see SELECT INTO.

SELECT <select_expressions> BULK COLLECT INTO <collection>
 [, ...] FROM ...;

If you specify a single collection, then collection can be a collection of a single field, or it can be a collection of a record type. If you specify more than one collection, then each collection
must consist of a single field. select_expressions must match all fields in the target collections in number, order, and type-compatibility.

This example uses the BULK COLLECT clause where the target collections are associative arrays consisting of a single field:

DECLARE
 TYPE empno_tbl IS TABLE OF emp.empno%TYPE INDEX BY BINARY_INTEGER;
 TYPE ename_tbl IS TABLE OF emp.ename%TYPE INDEX BY BINARY_INTEGER;
 TYPE job_tbl IS TABLE OF emp.job%TYPE INDEX BY BINARY_INTEGER;
 TYPE hiredate_tbl IS TABLE OF emp.hiredate%TYPE INDEX BY BINARY_INTEGER;
 TYPE sal_tbl IS TABLE OF emp.sal%TYPE INDEX BY BINARY_INTEGER;
 TYPE comm_tbl IS TABLE OF emp.comm%TYPE INDEX BY BINARY_INTEGER;
 TYPE deptno_tbl IS TABLE OF emp.deptno%TYPE INDEX BY BINARY_INTEGER;
 t_empno EMPNO_TBL;
 t_ename ENAME_TBL;
 t_job JOB_TBL;
 t_hiredate HIREDATE_TBL;
 t_sal SAL_TBL;
 t_comm COMM_TBL;
 t_deptno DEPTNO_TBL;
BEGIN
 SELECT empno, ename, job, hiredate, sal, comm, deptno BULK COLLECT
 INTO t_empno, t_ename, t_job, t_hiredate, t_sal, t_comm, t_deptno
 FROM emp;
 DBMS_OUTPUT.PUT_LINE('EMPNO ENAME JOB HIREDATE ' ||
 'SAL ' || 'COMM DEPTNO');
 DBMS_OUTPUT.PUT_LINE('----- ------- --------- --------- ' ||
 '-------- ' || '-------- ------');
 FOR i IN 1..t_empno.COUNT LOOP
 DBMS_OUTPUT.PUT_LINE(t_empno(i) || ' ' ||
 RPAD(t_ename(i),8) || ' ' ||
 RPAD(t_job(i),10) || ' ' ||
 TO_CHAR(t_hiredate(i),'DD-MON-YY') || ' ' ||
 TO_CHAR(t_sal(i),'99,999.99') || ' ' ||
 TO_CHAR(NVL(t_comm(i),0),'99,999.99') || ' ' ||
 t_deptno(i));
 END LOOP;
END;

EMPNO ENAME JOB HIREDATE SAL COMM DEPTNO
----- ------- --------- --------- -------- -------- ------
7369 SMITH CLERK 17-DEC-80 800.00 .00 20

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 623

7499 ALLEN SALESMAN 20-FEB-81 1,600.00 300.00 30
7521 WARD SALESMAN 22-FEB-81 1,250.00 500.00 30
7566 JONES MANAGER 02-APR-81 2,975.00 .00 20
7654 MARTIN SALESMAN 28-SEP-81 1,250.00 1,400.00 30
7698 BLAKE MANAGER 01-MAY-81 2,850.00 .00 30
7782 CLARK MANAGER 09-JUN-81 2,450.00 .00 10
7788 SCOTT ANALYST 19-APR-87 3,000.00 .00 20
7839 KING PRESIDENT 17-NOV-81 5,000.00 .00 10
7844 TURNER SALESMAN 08-SEP-81 1,500.00 .00 30
7876 ADAMS CLERK 23-MAY-87 1,100.00 .00 20
7900 JAMES CLERK 03-DEC-81 950.00 .00 30
7902 FORD ANALYST 03-DEC-81 3,000.00 .00 20
7934 MILLER CLERK 23-JAN-82 1,300.00 .00 10

This example produces the same result but uses an associative array on a record type defined with the %ROWTYPE attribute:

DECLARE
 TYPE emp_tbl IS TABLE OF emp%ROWTYPE INDEX BY BINARY_INTEGER;
 t_emp EMP_TBL;
BEGIN
 SELECT * BULK COLLECT INTO t_emp FROM emp;
 DBMS_OUTPUT.PUT_LINE('EMPNO ENAME JOB HIREDATE ' ||
 'SAL ' || 'COMM DEPTNO');
 DBMS_OUTPUT.PUT_LINE('----- ------- --------- --------- ' ||
 '-------- ' || '-------- ------');
 FOR i IN 1..t_emp.COUNT LOOP
 DBMS_OUTPUT.PUT_LINE(t_emp(i).empno || ' ' ||
 RPAD(t_emp(i).ename,8) || ' ' ||
 RPAD(t_emp(i).job,10) || ' ' ||
 TO_CHAR(t_emp(i).hiredate,'DD-MON-YY') || ' ' ||
 TO_CHAR(t_emp(i).sal,'99,999.99') || ' ' ||
 TO_CHAR(NVL(t_emp(i).comm,0),'99,999.99') || ' ' ||
 t_emp(i).deptno);
 END LOOP;
END;

EMPNO ENAME JOB HIREDATE SAL COMM DEPTNO
----- ------- --------- --------- -------- -------- ------
7369 SMITH CLERK 17-DEC-80 800.00 .00 20
7499 ALLEN SALESMAN 20-FEB-81 1,600.00 300.00 30
7521 WARD SALESMAN 22-FEB-81 1,250.00 500.00 30
7566 JONES MANAGER 02-APR-81 2,975.00 .00 20
7654 MARTIN SALESMAN 28-SEP-81 1,250.00 1,400.00 30
7698 BLAKE MANAGER 01-MAY-81 2,850.00 .00 30
7782 CLARK MANAGER 09-JUN-81 2,450.00 .00 10
7788 SCOTT ANALYST 19-APR-87 3,000.00 .00 20
7839 KING PRESIDENT 17-NOV-81 5,000.00 .00 10
7844 TURNER SALESMAN 08-SEP-81 1,500.00 .00 30
7876 ADAMS CLERK 23-MAY-87 1,100.00 .00 20
7900 JAMES CLERK 03-DEC-81 950.00 .00 30
7902 FORD ANALYST 03-DEC-81 3,000.00 .00 20
7934 MILLER CLERK 23-JAN-82 1,300.00 .00 10

19.12.4.2 FETCH BULK COLLECT

You can use the BULK COLLECT clause with a FETCH statement. Instead of returning a single row at a time from the result set, the FETCH BULK COLLECT returns all rows at once from the
result set into the specified collection unless restricted by the LIMIT clause:

FETCH <name> BULK COLLECT INTO <collection> [, ...] [LIMIT <n>];

For information on the FETCH statement, see Fetching rows from a cursor.

If you specify a single collection, then collection can be a collection of a single field, or it can be a collection of a record type. If you specify more than one collection, then each collection
must consist of a single field. The expressions in the SELECT list of the cursor identified by name must match all fields in the target collections in number, order, and type-compatibility. If you specify
LIMIT n , the number of rows returned into the collection on each FETCH doesn't exceed n .

This example uses the FETCH BULK COLLECT statement to retrieve rows into an associative array:

DECLARE
 TYPE emp_tbl IS TABLE OF emp%ROWTYPE INDEX BY BINARY_INTEGER;
 t_emp EMP_TBL;
 CURSOR emp_cur IS SELECT * FROM emp;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 624

BEGIN
 OPEN emp_cur;
 FETCH emp_cur BULK COLLECT INTO t_emp;
 CLOSE emp_cur;
 DBMS_OUTPUT.PUT_LINE('EMPNO ENAME JOB HIREDATE ' ||
 'SAL ' || 'COMM DEPTNO');
 DBMS_OUTPUT.PUT_LINE('----- ------- --------- --------- ' ||
 '-------- ' || '-------- ------');
 FOR i IN 1..t_emp.COUNT LOOP
 DBMS_OUTPUT.PUT_LINE(t_emp(i).empno || ' ' ||
 RPAD(t_emp(i).ename,8) || ' ' ||
 RPAD(t_emp(i).job,10) || ' ' ||
 TO_CHAR(t_emp(i).hiredate,'DD-MON-YY') || ' ' ||
 TO_CHAR(t_emp(i).sal,'99,999.99') || ' ' ||
 TO_CHAR(NVL(t_emp(i).comm,0),'99,999.99') || ' ' ||
 t_emp(i).deptno);
 END LOOP;
END;

EMPNO ENAME JOB HIREDATE SAL COMM DEPTNO
----- ------- --------- --------- -------- -------- ------
7369 SMITH CLERK 17-DEC-80 800.00 .00 20
7499 ALLEN SALESMAN 20-FEB-81 1,600.00 300.00 30
7521 WARD SALESMAN 22-FEB-81 1,250.00 500.00 30
7566 JONES MANAGER 02-APR-81 2,975.00 .00 20
7654 MARTIN SALESMAN 28-SEP-81 1,250.00 1,400.00 30
7698 BLAKE MANAGER 01-MAY-81 2,850.00 .00 30
7782 CLARK MANAGER 09-JUN-81 2,450.00 .00 10
7788 SCOTT ANALYST 19-APR-87 3,000.00 .00 20
7839 KING PRESIDENT 17-NOV-81 5,000.00 .00 10
7844 TURNER SALESMAN 08-SEP-81 1,500.00 .00 30
7876 ADAMS CLERK 23-MAY-87 1,100.00 .00 20
7900 JAMES CLERK 03-DEC-81 950.00 .00 30
7902 FORD ANALYST 03-DEC-81 3,000.00 .00 20
7934 MILLER CLERK 23-JAN-82 1,300.00 .00 10

19.12.4.3 EXECUTE IMMEDIATE BULK COLLECT

You can use the BULK COLLECT clause with an EXECUTE IMMEDIATE statement to specify a collection to receive the returned rows:

EXECUTE IMMEDIATE '<sql_expression>;'
 BULK COLLECT INTO <collection> [,...]
 [USING {[<bind_type>] <bind_argument>} [, ...]}];

Where:

collection specifies the name of a collection.

bind_type specifies the parameter mode of the bind_argument .

A bind_type of IN specifies that the bind_argument contains a value that's passed to the sql_expression .
A bind_type of OUT specifies that the bind_argument receives a value from the sql_expression .
A bind_type of IN OUT specifies that the bind_argument is passed to sql_expression and then stores the value returned by sql_expression .

bind_argument specifies a parameter that contains a value that either:

Is passed to the sql_expression (specified with a bind_type of IN)
Receives a value from the sql_expression (specified with a bind_type of OUT)
Does both (specified with a bind_type of IN OUT)

If you specify a single collection, then collection can be a collection of a single field or a collection of a record type. If you specify more than one collection, each collection must consist of a
single field.

19.12.4.4 RETURNING BULK COLLECT

You can add BULK COLLECT to the RETURNING INTO clause of a DELETE , INSERT , or UPDATE command:

{ <insert> | <update> | <delete> }
 RETURNING { * | <expr_1> [, <expr_2>] ...}

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 625

 BULK COLLECT INTO <collection> [, ...];

For information on the RETURNING INTO clause, see Using the RETURNING INTO clause. insert , update , and delete are the same as the INSERT , UPDATE , and DELETE commands
described in INSERT, UPDATE, and DELETE.

If you specify a single collection, then collection can be a collection of a single field, or it can be a collection of a record type. If you specify more than one collection, then each collection
must consist of a single field. The expressions following the RETURNING keyword must match all fields in the target collections in number, order, and type-compatibility. Specifying * returns all
columns in the affected table.

Note

The use of * is an EDB Postgres Advanced Server extension and isn't compatible with Oracle databases.

The clerkemp table created by copying the emp table is used in the examples that follow.

CREATE TABLE clerkemp AS SELECT * FROM emp WHERE job = 'CLERK';

SELECT * FROM clerkemp;

 empno | ename | job | mgr | hiredate | sal | comm | deptno
-------+--------+-------+------+--------------------+---------+------+-------
-
 7369 | SMITH | CLERK | 7902 | 17-DEC-80 00:00:00 | 800.00 | | 20
 7876 | ADAMS | CLERK | 7788 | 23-MAY-87 00:00:00 | 1100.00 | | 20
 7900 | JAMES | CLERK | 7698 | 03-DEC-81 00:00:00 | 950.00 | | 30
 7934 | MILLER | CLERK | 7782 | 23-JAN-82 00:00:00 | 1300.00 | | 10
(4 rows)

This example increases all employee salaries by 1.5, stores the employees’ numbers, names, and new salaries in three associative arrays, and displays the contents of these arrays:

DECLARE
 TYPE empno_tbl IS TABLE OF emp.empno%TYPE INDEX BY BINARY_INTEGER;
 TYPE ename_tbl IS TABLE OF emp.ename%TYPE INDEX BY BINARY_INTEGER;
 TYPE sal_tbl IS TABLE OF emp.sal%TYPE INDEX BY BINARY_INTEGER;
 t_empno EMPNO_TBL;
 t_ename ENAME_TBL;
 t_sal SAL_TBL;
BEGIN
 UPDATE clerkemp SET sal = sal * 1.5 RETURNING empno, ename, sal
 BULK COLLECT INTO t_empno, t_ename, t_sal;
 DBMS_OUTPUT.PUT_LINE('EMPNO ENAME SAL ');
 DBMS_OUTPUT.PUT_LINE('----- ------- -------- ');
 FOR i IN 1..t_empno.COUNT LOOP
 DBMS_OUTPUT.PUT_LINE(t_empno(i) || ' ' || RPAD(t_ename(i),8) ||
 ' ' || TO_CHAR(t_sal(i),'99,999.99'));
 END LOOP;
END;

EMPNO ENAME SAL
----- ------- --------
7369 SMITH 1,200.00
7876 ADAMS 1,650.00
7900 JAMES 1,425.00
7934 MILLER 1,950.00

This example uses a single collection defined with a record type to store the employees’ numbers, names, and new salaries:

DECLARE
 TYPE emp_rec IS RECORD (
 empno emp.empno%TYPE,
 ename emp.ename%TYPE,
 sal emp.sal%TYPE
);
 TYPE emp_tbl IS TABLE OF emp_rec INDEX BY BINARY_INTEGER;
 t_emp EMP_TBL;
BEGIN
 UPDATE clerkemp SET sal = sal * 1.5 RETURNING empno, ename, sal
 BULK COLLECT INTO t_emp;
 DBMS_OUTPUT.PUT_LINE('EMPNO ENAME SAL ');
 DBMS_OUTPUT.PUT_LINE('----- ------- -------- ');
 FOR i IN 1..t_emp.COUNT LOOP
 DBMS_OUTPUT.PUT_LINE(t_emp(i).empno || ' ' ||
 RPAD(t_emp(i).ename,8) || ' ' ||
 TO_CHAR(t_emp(i).sal,'99,999.99'));
 END LOOP;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 626

END;

EMPNO ENAME SAL
----- ------- --------
7369 SMITH 1,200.00
7876 ADAMS 1,650.00
7900 JAMES 1,425.00
7934 MILLER 1,950.00

This example deletes all rows from the clerkemp table and returns information on the deleted rows into an associative array. It then displays the array.

DECLARE
 TYPE emp_rec IS RECORD (
 empno emp.empno%TYPE,
 ename emp.ename%TYPE,
 job emp.job%TYPE,
 hiredate emp.hiredate%TYPE,
 sal emp.sal%TYPE,
 comm emp.comm%TYPE,
 deptno emp.deptno%TYPE
);
 TYPE emp_tbl IS TABLE OF emp_rec INDEX BY BINARY_INTEGER;
 r_emp EMP_TBL;
BEGIN
 DELETE FROM clerkemp RETURNING empno, ename, job, hiredate, sal,
 comm, deptno BULK COLLECT INTO r_emp;
 DBMS_OUTPUT.PUT_LINE('EMPNO ENAME JOB HIREDATE ' ||
 'SAL ' || 'COMM DEPTNO');
 DBMS_OUTPUT.PUT_LINE('----- ------- --------- --------- ' ||
 '-------- ' || '-------- ------');
 FOR i IN 1..r_emp.COUNT LOOP
 DBMS_OUTPUT.PUT_LINE(r_emp(i).empno || ' ' ||
 RPAD(r_emp(i).ename,8) || ' ' ||
 RPAD(r_emp(i).job,10) || ' ' ||
 TO_CHAR(r_emp(i).hiredate,'DD-MON-YY') || ' ' ||
 TO_CHAR(r_emp(i).sal,'99,999.99') || ' ' ||
 TO_CHAR(NVL(r_emp(i).comm,0),'99,999.99') || ' ' ||
 r_emp(i).deptno);
 END LOOP;
END;

EMPNO ENAME JOB HIREDATE SAL COMM DEPTNO
----- ------- --------- --------- -------- -------- ------
7369 SMITH CLERK 17-DEC-80 1,200.00 .00 20
7876 ADAMS CLERK 23-MAY-87 1,650.00 .00 20
7900 JAMES CLERK 03-DEC-81 1,425.00 .00 30
7934 MILLER CLERK 23-JAN-82 1,950.00 .00 10

19.12.5 Errors and messages

Use the DBMS_OUTPUT.PUT_LINE statement to report messages:

DBMS_OUTPUT.PUT_LINE (<message>);

Where message is any expression evaluating to a string.

This example displays the message on the user’s output display:

DBMS_OUTPUT.PUT_LINE('My name is John');

The special variables SQLCODE and SQLERRM contain a numeric code and a text message, respectively, that describe the outcome of the last SQL command issued. If any other error occurs in the
program, such as division by zero, these variables contain information about the error.

19.13 Triggers

As with procedures and functions, triggers are written in the SPL language.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 627

19.13.1 Trigger overview

A trigger is a named SPL code block that's associated with a table and stored in the database. When a specified event occurs on the associated table, the SPL code block executes. The trigger is said to
be fired when the code block executes.

The event that causes a trigger to fire can be any combination of an insert, update, or deletion carried out on the table, either directly or indirectly. If the table is the object of a SQL INSERT , UPDATE ,
DELETE , or TRUNCATE command, the trigger is directly fired when the corresponding insert, update, delete, or truncate event is defined as a triggering event. The events that fire the trigger are

defined in the CREATE TRIGGER command.

A trigger can fire indirectly if a triggering event occurs on the table as a result of an event initiated on another table. For example, suppose a trigger is defined on a table containing a foreign key defined
with the ON DELETE CASCADE clause, and a row in the parent table is deleted. In this case, all children of the parent are deleted as well. If deletion is a triggering event on the child table, deleting
the children causes the trigger to fire.

19.13.2 Types of triggers

EDB Postgres Advanced Server supports row-level and statement-level triggers. A row-level trigger fires once for each row that's affected by a triggering event. For example, suppose deletion is defined
as a triggering event on a table, and a single DELETE command is issued that deletes five rows from the table. In this case, the trigger fires five times, once for each row.

A statement-level trigger fires once per triggering statement, regardless of the number of rows affected by the triggering event. In the previous example of a single DELETE command deleting five
rows, a statement-level trigger fires only once.

You can define the sequence of actions regarding whether the trigger code block executes before or after the triggering statement for statement-level triggers. For row-level triggers, you can define
whether the trigger code block executes before or after each row is affected by the triggering statement.

In a before row-level trigger, the trigger code block executes before the triggering action is carried out on each affected row. In a before statement-level trigger, the trigger code block executes before
the action of the triggering statement is carried out.

In an after row-level trigger, the trigger code block executes after the triggering action is carried out on each affected row. In an after statement-level trigger, the trigger code block executes after the
action of the triggering statement is carried out.

In a compound trigger, you can define a statement-level and a row-level trigger in a single trigger and fire it at more than one timing point. For details, see Compound triggers.

19.13.3 Creating triggers

The CREATE TRIGGER command defines and names a trigger that's stored in the database.

Name

CREATE TRIGGER — Define a simple trigger.

Synopsis

CREATE [OR REPLACE] TRIGGER <name>
 { BEFORE | AFTER | INSTEAD OF }
 { INSERT | UPDATE | DELETE | TRUNCATE }
 [OR { INSERT | UPDATE | DELETE | TRUNCATE }] [, ...]
 ON <table>
 [REFERENCING { OLD AS <old> | NEW AS <new> } ...]
 [FOR EACH ROW]
 [WHEN <condition>]
 [DECLARE
 [PRAGMA AUTONOMOUS_TRANSACTION;]
 <declaration>; [, ...]]
 BEGIN
 <statement>; [, ...]
 [EXCEPTION
 { WHEN <exception> [OR <exception>] [...] THEN
 <statement>; [, ...] } [, ...]
]
 END

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 628

Name

CREATE TRIGGER — Define a compound trigger.

Synopsis

CREATE [OR REPLACE] TRIGGER <name>
 FOR { INSERT | UPDATE | DELETE | TRUNCATE }
 [OR { INSERT | UPDATE | DELETE | TRUNCATE }] [, ...]
 ON <table>
 [REFERENCING { OLD AS <old> | NEW AS <new>. } ...]
 [WHEN <condition>]
 COMPOUND TRIGGER
 [<private_declaration>;] ...
 [<procedure_or_function_definition>] ...
 <compound_trigger_definition>
 END

Where private_declaration is an identifier of a private variable that can be accessed by any procedure or function. There can be zero, one, or more private variables. private_declaration
can be any of the following:

Variable declaration
Record declaration
Collection declaration
REF CURSOR and cursor variable declaration
TYPE definitions for records, collections, and REF CURSOR

Exception
Object variable declaration

Where procedure_or_function_definition :=

procedure_definition | function_definition

Where procedure_definition :=

PROCEDURE proc_name[argument_list]
 [options_list]
 { IS | AS }
 procedure_body
 END [proc_name] ;

Where procedure_body :=

[<declaration>;] [, ...]
BEGIN
 <statement>; [...]
[EXCEPTION
 { WHEN <exception> [OR <exception>] [...]] THEN <statement>; }
 [...]
]

Where function_definition :=

FUNCTION func_name [argument_list]
 RETURN rettype [DETERMINISTIC]
 [options_list]
 { IS | AS }
 function_body
 END [func_name] ;

Where function_body :=

[<declaration>;] [, ...]
BEGIN
 <statement>; [...]
[EXCEPTION
 { WHEN <exception> [OR <exception>] [...] THEN <statement>; }
 [...]
]

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 629

Where compound_trigger_definition is:

{ compound_trigger_event } { IS | AS }
 compound_trigger_body
END [compound_trigger_event] [...]

Where compound_trigger_event:=

[BEFORE STATEMENT | BEFORE EACH ROW | AFTER EACH ROW | AFTER STATEMENT | INSTEAD OF EACH ROW]

Where compound_trigger_body:=

[<declaration>;] [, ...]
BEGIN
 <statement>; [...]
[EXCEPTION
 { WHEN <exception> [OR <exception>] [...] THEN <statement>; }
 [...]
]

Description

CREATE TRIGGER defines a new trigger. CREATE OR REPLACE TRIGGER creates a new trigger or replaces an existing definition.

If you're using the CREATE TRIGGER keywords to create a trigger, the name of the new trigger must not match any existing trigger defined on the same table. New triggers are created in the same
schema as the table on which the triggering event is defined.

If you're updating the definition of an existing trigger, use the CREATE OR REPLACE TRIGGER keywords.

When you use syntax compatible with Oracle databases to create a trigger, the trigger runs as a SECURITY DEFINER function.

Parameters

name

The name of the trigger to create.

BEFORE | AFTER

Determines whether the trigger is fired before or after the triggering event.

INSTEAD OF

Trigger that modifies an updatable view. The trigger executes to update the underlying tables appropriately. The INSTEAD OF trigger executes for each row of the view that's updated or modified.

INSERT | UPDATE | DELETE | TRUNCATE

Defines the triggering event.

table

The name of the table or view on which the triggering event occurs.

condition

A Boolean expression that determines if the trigger actually executes. If condition evaluates to TRUE , the trigger fires.

If the simple trigger definition includes the FOR EACH ROW keywords, the WHEN clause can refer to columns of the old or new row values by writing OLD.column_name or
NEW.column_name respectively. INSERT triggers can't refer to OLD , and DELETE triggers can't refer to NEW .

If the compound trigger definition includes a statement-level trigger having a WHEN clause, then the trigger executes without evaluating the expression in the WHEN clause. Similarly, if a
compound trigger definition includes a row-level trigger having a WHEN clause, then the trigger executes if the expression evaluates to TRUE .

If the trigger includes the INSTEAD OF keywords, it can't include a WHEN clause. A WHEN clause can't contain subqueries.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 630

REFERENCING { OLD AS old | NEW AS new } ...

REFERENCING clause to reference old rows and new rows but restricted in that old can be replaced only by an identifier named old or any equivalent that's saved in all lowercase. Examples
include REFERENCING OLD AS old , REFERENCING OLD AS OLD , or REFERENCING OLD AS "old" . Also, new can be replaced only by an identifier named new or any equivalent that's
saved in all lowercase. Examples include REFERENCING NEW AS new , REFERENCING NEW AS NEW , or REFERENCING NEW AS "new" .

You can specify one or both phrases OLD AS old and NEW AS new in the REFERENCING clause, such as REFERENCING NEW AS New OLD AS Old . This clause isn't compatible with
Oracle databases in that you can't use identifiers other than old or new .

FOR EACH ROW

Determines whether to fire the trigger once for every row affected by the triggering event or once per SQL statement. If specified, the trigger is fired once for every affected row (row-level trigger).
Otherwise the trigger is a statement-level trigger.

PRAGMA AUTONOMOUS_TRANSACTION

PRAGMA AUTONOMOUS_TRANSACTION is the directive that sets the trigger as an autonomous transaction.

declaration

A variable, type, REF CURSOR , or subprogram declaration. If subprogram declarations are included, you must declare them after all other variable, type, and REF CURSOR declarations.

statement

An SPL program statement. A DECLARE - BEGIN - END block is considered an SPL statement. Thus, the trigger body can contain nested blocks.

exception

An exception condition name such as NO_DATA_FOUND .

19.13.4 Trigger variables

In the trigger code block, several special variables are available for use.

NEW

NEW is a pseudo-record name that refers to the new table row for insert and update operations in row-level triggers. This variable doesn't apply to statement-level triggers and delete operations of row-
level triggers.

Its usage is:

:NEW.column

Where column is the name of a column in the table where the trigger is defined.

The initial content of :NEW.column is the value in the named column of the new row to insert. Or, when used in a before row-level trigger, it's the value of the new row that replaces the old one. When
used in an after row-level trigger, this value is already stored in the table since the action already occurred on the affected row.

In the trigger code block, you can use :NEW.column like any other variable. If a value is assigned to :NEW.column in the code block of a before row-level trigger, the assigned value is used in the
new inserted or updated row.

OLD

OLD is a pseudo-record name that refers to the old table row for update and delete operations in row-level triggers. This variable doesn't apply in statement-level triggers and in insert operations of
row-level triggers.

Its usage is: :OLD.column , where column is the name of a column in the table on which the trigger is defined.

The initial content of :OLD.column is the value in the named column of the row to delete or of the old row to replace with the new one when used in a before row-level trigger. When used in an after
row-level trigger, this value is no longer stored in the table since the action already occurred on the affected row.

In the trigger code block, you can use :OLD.column like any other variable. Assigning a value to :OLD.column has no effect on the action of the trigger.

INSERTING

INSERTING is a conditional expression that returns TRUE if an insert operation fired the trigger. Otherwise it returns FALSE .

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 631

UPDATING

UPDATING is a conditional expression that returns TRUE if an update operation fired the trigger. Otherwise it returns FALSE .

DELETING

DELETING is a conditional expression that returns TRUE if a delete operation fired the trigger. Otherwise it returns FALSE .

19.13.5 Transactions and exceptions

A trigger is always executed as part of the same transaction in which the triggering statement is executing. When no exceptions occur in the trigger code block, the effects of any triggering commands in
the trigger are committed only if the transaction containing the triggering statement is committed. Therefore, if the transaction is rolled back, the effects of any triggering commands in the trigger are
also rolled back.

If an exception does occur in the trigger code block, but it is caught and handled in an exception section, the effects of any triggering commands in the trigger are still rolled back. The triggering
statement, however, is rolled back only if the application forces a rollback of the containing transaction.

If an unhandled exception occurs in the trigger code block, the transaction that contains the trigger is aborted and rolled back. Therefore, the effects of any triggering commands in the trigger and the
triggering statement are all rolled back.

19.13.6 Compound triggers

EDB Postgres Advanced Server has compatible syntax to support compound triggers. A compound trigger combines all the triggering timings under one trigger body that you can invoke at one or more
timing points. A timing point is a point in time related to a triggering statement, which is an INSERT , UPDATE , DELETE , or TRUNCATE statement that modifies data. The supported timing points
are:

BEFORE STATEMENT — Before the triggering statement executes.
BEFORE EACH ROW — Before each row that the triggering statement affects.
AFTER EACH ROW — After each row that the triggering statement affects.
AFTER STATEMENT — After the triggering statement executes.
INSTEAD OF EACH ROW — Trigger fires once for every row affected by the triggering statement.

A compound trigger can include any combination of timing points defined in a single trigger.

The optional declaration section in a compound trigger allows you to declare trigger-level variables and subprograms. The content of the declaration is accessible to all timing points referenced by the
trigger definition. The variables and subprograms created by the declaration persist only for the duration of the triggering statement.

A compound trigger contains a declaration followed by a PL block for each timing point:

CREATE OR REPLACE TRIGGER compound_trigger_name
FOR INSERT OR UPDATE OR DELETE ON table_name
COMPOUND TRIGGER
 -- Global Declaration Section (optional)
 -- Variables declared here can be used inside any timing-point blocks.

 BEFORE STATEMENT IS
 BEGIN
 NULL;
 END BEFORE STATEMENT;

 BEFORE EACH ROW IS
 BEGIN
 NULL;
 END BEFORE EACH ROW;

 AFTER EACH ROW IS
 BEGIN
 NULL;
 END AFTER EACH ROW;

 AFTER STATEMENT IS
 BEGIN
 NULL;
 END AFTER STATEMENT;
END compound_trigger_name;
/
Trigger created.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 632

Note

You don't have to have all the four timing blocks. You can create a compound trigger for any of the required timing points.

A compound trigger has the following restrictions:

A compound trigger body is made up of a compound trigger block.
You can define a compound trigger on a table or a view.
You can't transfer exceptions to another timing-point section. They must be handled separately in that section only by each compound trigger block.
If a GOTO statement is specified in a timing-point section, then the target of the GOTO statement must also be specified in the same timing-point section.
:OLD and :NEW variable identifiers can't exist in the declarative section, the BEFORE STATEMENT section, or the AFTER STATEMENT section.
:NEW values are modified only by the BEFORE EACH ROW block.

The sequence of compound trigger timing-point execution is specific. However, if a simple trigger is in the same timing point, then the simple trigger is fired first, followed by the compound
triggers.

19.13.7 Trigger examples

The examples that follow show each type of trigger.

19.13.7.1 Before statement-level trigger

This example shows a simple before statement-level trigger that displays a message before an insert operation on the emp table:

CREATE OR REPLACE TRIGGER emp_alert_trig
 BEFORE INSERT ON emp
BEGIN
 DBMS_OUTPUT.PUT_LINE('New employees are about to be added');
END;

The following INSERT is constructed so that several new rows are inserted upon a single execution of the command. For each row that has an employee id between 7900 and 7999, a new row is
inserted with an employee id incremented by 1000. The following are the results of executing the command when three new rows are inserted:

INSERT INTO emp (empno, ename, deptno) SELECT empno + 1000, ename, 40
 FROM emp WHERE empno BETWEEN 7900 AND 7999;
New employees are about to be added

SELECT empno, ename, deptno FROM emp WHERE empno BETWEEN 8900 AND 8999;

 EMPNO ENAME DEPTNO
---------- ---------- ----------
 8900 JAMES 40
 8902 FORD 40
 8934 MILLER 40

The message New employees are about to be added is displayed once by the firing of the trigger even though the result adds three rows.

19.13.7.2 After statement-level trigger

This example shows an after statement-level trigger. When an insert, update, or delete operation occurs on the emp table, a row is added to the empauditlog table recording the date, user, and
action.

CREATE TABLE empauditlog (
 audit_date DATE,
 audit_user VARCHAR2(20),
 audit_desc VARCHAR2(20)
);
CREATE OR REPLACE TRIGGER emp_audit_trig
 AFTER INSERT OR UPDATE OR DELETE ON emp
DECLARE
 v_action VARCHAR2(20);
BEGIN
 IF INSERTING THEN
 v_action := 'Added employee(s)';
 ELSIF UPDATING THEN
 v_action := 'Updated employee(s)';
 ELSIF DELETING THEN

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 633

 v_action := 'Deleted employee(s)';
 END IF;
 INSERT INTO empauditlog VALUES (SYSDATE, USER,
 v_action);
END;

In the following sequence of commands, two rows are inserted into the emp table using two INSERT commands. One UPDATE command updates the sal and comm columns of both rows. Then,
one DELETE command deletes both rows.

INSERT INTO emp VALUES (9001,'SMITH','ANALYST',7782,SYSDATE,NULL,NULL,10);

INSERT INTO emp VALUES (9002,'JONES','CLERK',7782,SYSDATE,NULL,NULL,10);

UPDATE emp SET sal = 4000.00, comm = 1200.00 WHERE empno IN (9001, 9002);

DELETE FROM emp WHERE empno IN (9001, 9002);

SELECT TO_CHAR(AUDIT_DATE,'DD-MON-YY HH24:MI:SS') AS "AUDIT DATE",
 audit_user, audit_desc FROM empauditlog ORDER BY 1 ASC;

AUDIT DATE AUDIT_USER AUDIT_DESC
------------------ -------------------- --------------------
31-MAR-05 14:59:48 SYSTEM Added employee(s)
31-MAR-05 15:00:07 SYSTEM Added employee(s)
31-MAR-05 15:00:19 SYSTEM Updated employee(s)
31-MAR-05 15:00:34 SYSTEM Deleted employee(s)

The contents of the empauditlog table show how many times the trigger was fired:

Once each for the two inserts
Once for the update (even though two rows were changed)
Once for the deletion (even though two rows were deleted)

19.13.7.3 Before row-level trigger

This example shows a before row-level trigger that calculates the commission of every new employee belonging to department 30 that's inserted into the emp table:

CREATE OR REPLACE TRIGGER emp_comm_trig
 BEFORE INSERT ON emp
 FOR EACH ROW
BEGIN
 IF :NEW.deptno = 30 THEN
 :NEW.comm := :NEW.sal * .4;
 END IF;
END;

The listing following the addition of the two employees shows that the trigger computed their commissions and inserted it as part of the new employee rows:

INSERT INTO emp VALUES (9005,'ROBERS','SALESMAN',7782,SYSDATE,3000.00,NULL,30);

INSERT INTO emp VALUES (9006,'ALLEN','SALESMAN',7782,SYSDATE,4500.00,NULL,30);

SELECT * FROM emp WHERE empno IN (9005, 9006);

 EMPNO ENAME JOB MGR HIREDATE SAL COMM DEPTNO
------ ------ -------- ------ ---------- --------- ---------- -------------
 9005 ROBERS SALESMAN 7782 01-APR-05 3000 1200 30
 9006 ALLEN SALESMAN 7782 01-APR-05 4500 1800 30

19.13.7.4 After row-level trigger

This example shows an after row-level trigger. When a new employee row is inserted, the trigger adds a row to the jobhist table for that employee. When an existing employee is updated, the trigger
sets the enddate column of the latest jobhist row (assumed to be the one with a null enddate) to the current date and inserts a new jobhist row with the employee’s new information.

Then, the trigger adds a row to the empchglog table with a description of the action.

CREATE TABLE empchglog (
 chg_date DATE,

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 634

 chg_desc VARCHAR2(30)
);
CREATE OR REPLACE TRIGGER emp_chg_trig
 AFTER INSERT OR UPDATE OR DELETE ON emp
 FOR EACH ROW
DECLARE
 v_empno emp.empno%TYPE;
 v_deptno emp.deptno%TYPE;
 v_dname dept.dname%TYPE;
 v_action VARCHAR2(7);
 v_chgdesc jobhist.chgdesc%TYPE;
BEGIN
 IF INSERTING THEN
 v_action := 'Added';
 v_empno := :NEW.empno;
 v_deptno := :NEW.deptno;
 INSERT INTO jobhist VALUES (:NEW.empno, SYSDATE, NULL,
 :NEW.job, :NEW.sal, :NEW.comm, :NEW.deptno, 'New Hire');
 ELSIF UPDATING THEN
 v_action := 'Updated';
 v_empno := :NEW.empno;
 v_deptno := :NEW.deptno;
 v_chgdesc := '';
 IF NVL(:OLD.ename, '-null-') != NVL(:NEW.ename, '-null-') THEN
 v_chgdesc := v_chgdesc || 'name, ';
 END IF;
 IF NVL(:OLD.job, '-null-') != NVL(:NEW.job, '-null-') THEN
 v_chgdesc := v_chgdesc || 'job, ';
 END IF;
 IF NVL(:OLD.sal, -1) != NVL(:NEW.sal, -1) THEN
 v_chgdesc := v_chgdesc || 'salary, ';
 END IF;
 IF NVL(:OLD.comm, -1) != NVL(:NEW.comm, -1) THEN
 v_chgdesc := v_chgdesc || 'commission, ';
 END IF;
 IF NVL(:OLD.deptno, -1) != NVL(:NEW.deptno, -1) THEN
 v_chgdesc := v_chgdesc || 'department, ';
 END IF;
 v_chgdesc := 'Changed ' || RTRIM(v_chgdesc, ', ');
 UPDATE jobhist SET enddate = SYSDATE WHERE empno = :OLD.empno
 AND enddate IS NULL;
 INSERT INTO jobhist VALUES (:NEW.empno, SYSDATE, NULL,
 :NEW.job, :NEW.sal, :NEW.comm, :NEW.deptno, v_chgdesc);
 ELSIF DELETING THEN
 v_action := 'Deleted';
 v_empno := :OLD.empno;
 v_deptno := :OLD.deptno;
 END IF;

 INSERT INTO empchglog VALUES (SYSDATE,
 v_action || ' employee # ' || v_empno);
END;

In the first sequence of the following commands, two employees are added using two separate INSERT commands. Then both are updated using a single UPDATE command. The contents of the
jobhist table show the action of the trigger for each affected row: two new-hire entries for the two new employees and two changed commission records for the updated commissions on the two

employees. The empchglog table also shows the trigger was fired a total of four times, once for each action on the two rows.

INSERT INTO emp VALUES (9003,'PETERS','ANALYST',7782,SYSDATE,5000.00,NULL,40);

INSERT INTO emp VALUES (9004,'AIKENS','ANALYST',7782,SYSDATE,4500.00,NULL,40);

UPDATE emp SET comm = sal * 1.1 WHERE empno IN (9003, 9004);

SELECT * FROM jobhist WHERE empno IN (9003, 9004);

 EMPNO STARTDATE ENDDATE JOB SAL COMM DEPTNO CHGDESC
---------- --------- --------- --------- ---------- ---------- ---------- -------------
 9003 31-MAR-05 31-MAR-05 ANALYST 5000 40 New Hire
 9004 31-MAR-05 31-MAR-05 ANALYST 4500 40 New Hire
 9003 31-MAR-05 ANALYST 5000 5500 40 Changed commission
 9004 31-MAR-05 ANALYST 4500 4950 40 Changed commission

SELECT * FROM empchglog;

CHG_DATE CHG_DESC
--------- ------------------------------
31-MAR-05 Added employee # 9003
31-MAR-05 Added employee # 9004

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 635

31-MAR-05 Updated employee # 9003
31-MAR-05 Updated employee # 9004

Then, a single DELETE command deletes both employees. The empchglog table shows the trigger was fired twice, once for each deleted employee.

DELETE FROM emp WHERE empno IN (9003, 9004);

SELECT * FROM empchglog;

CHG_DATE CHG_DESC
--------- ------------------------------
31-MAR-05 Added employee # 9003
31-MAR-05 Added employee # 9004
31-MAR-05 Updated employee # 9003
31-MAR-05 Updated employee # 9004
31-MAR-05 Deleted employee # 9003
31-MAR-05 Deleted employee # 9004

19.13.7.5 INSTEAD OF trigger

This example shows an INSTEAD OF trigger for inserting a new employee row into the emp_vw view. The CREATE VIEW statement creates the emp_vw view by joining the two tables. The
trigger adds the corresponding new rows into the emp and dept tables, respectively, for a specific employee.

CREATE VIEW emp_vw AS SELECT * FROM emp e JOIN dept d USING(deptno);
CREATE VIEW

CREATE OR REPLACE TRIGGER empvw_instead_of_trig
 INSTEAD OF INSERT ON emp_vw
 FOR EACH ROW
DECLARE
 v_empno emp.empno%TYPE;
 v_ename emp.ename%TYPE;
 v_deptno emp.deptno%TYPE;
 v_dname dept.dname%TYPE;
 v_loc dept.loc%TYPE;
 v_action VARCHAR2(7);
BEGIN
 v_empno := :NEW.empno;
 v_ename := :New.ename;
 v_deptno := :NEW.deptno;
 v_dname := :NEW.dname;
 v_loc := :NEW.loc;
 INSERT INTO emp(empno, ename, deptno) VALUES(v_empno, v_ename, v_deptno);
 INSERT INTO dept(deptno, dname, loc) VALUES(v_deptno, v_dname, v_loc);
END;
CREATE TRIGGER

Next, insert the values into the emp_vw view. The insert action inserts a new row and produces the following output:

INSERT INTO emp_vw (empno, ename, deptno, dname, loc) VALUES(1234, 'ASHTON', 50, 'IT', 'NEW JERSEY');
INSERT 0 1

SELECT empno, ename, deptno FROM emp WHERE deptno = 50;
 empno | ename | deptno
-------+--------+--------
 1234 | ASHTON | 50
(1 row)

SELECT * FROM dept WHERE deptno = 50;
 deptno | dname | loc
--------+-------+------------
 50 | IT | NEW JERSEY
(1 row)

Similarly, if you specify an UPDATE or DELETE statement, the trigger performs the appropriate actions for UPDATE or DELETE events.

19.13.7.6 Compound triggers

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 636

This example shows a compound trigger that records a change to the employee salary by defining a compound trigger (named hr_trigger) on the emp table.

Create a table named emp :

CREATE TABLE emp(EMPNO INT, ENAME TEXT, SAL INT, DEPTNO INT);
CREATE TABLE

Create a compound trigger named hr_trigger . The trigger uses each of the four timing points to modify the salary with an INSERT , UPDATE , or DELETE statement. In the global declaration
section, the initial salary is declared as 10,000 .

CREATE OR REPLACE TRIGGER hr_trigger
 FOR INSERT OR UPDATE OR DELETE ON emp
 COMPOUND TRIGGER
 -- Global declaration.
 var_sal NUMBER := 10000;

 BEFORE STATEMENT IS
 BEGIN
 var_sal := var_sal + 1000;
 DBMS_OUTPUT.PUT_LINE('Before Statement: ' || var_sal);
 END BEFORE STATEMENT;

 BEFORE EACH ROW IS
 BEGIN
 var_sal := var_sal + 1000;
 DBMS_OUTPUT.PUT_LINE('Before Each Row: ' || var_sal);
 END BEFORE EACH ROW;

 AFTER EACH ROW IS
 BEGIN
 var_sal := var_sal + 1000;
 DBMS_OUTPUT.PUT_LINE('After Each Row: ' || var_sal);
 END AFTER EACH ROW;

 AFTER STATEMENT IS
 BEGIN
 var_sal := var_sal + 1000;
 DBMS_OUTPUT.PUT_LINE('After Statement: ' || var_sal);
 END AFTER STATEMENT;

END hr_trigger;

Output: Trigger created.

Insert the record into table emp :

INSERT INTO emp (EMPNO, ENAME, SAL, DEPTNO) VALUES(1111,'SMITH', 10000, 20);

The INSERT statement produces the following output:

Before Statement: 11000
Before each row: 12000
After each row: 13000
After statement: 14000
INSERT 0 1

The UPDATE statement updates the employee salary record, setting the salary to 15000 for a specific employee number:

UPDATE emp SET SAL = 15000 where EMPNO = 1111;

The UPDATE statement produces the following output:

Before Statement: 11000
Before each row: 12000
After each row: 13000
After statement: 14000
UPDATE 1

SELECT * FROM emp;
 EMPNO | ENAME | SAL | DEPTNO
-------+-------+-------+--------
 1111 | SMITH | 15000 | 20
(1 row)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 637

The DELETE statement deletes the employee salary record:

DELETE from emp where EMPNO = 1111;

The DELETE statement produces the following output:

Before Statement: 11000
Before each row: 12000
After each row: 13000
After statement: 14000
DELETE 1

SELECT * FROM emp;
 EMPNO | ENAME | SAL | DEPTNO
-------+-------+-----+--------
(0 rows)

The TRUNCATE statement removes all the records from the emp table:

CREATE OR REPLACE TRIGGER hr_trigger
 FOR TRUNCATE ON emp
 COMPOUND TRIGGER
 -- Global declaration.
 var_sal NUMBER := 10000;
 BEFORE STATEMENT IS
 BEGIN
 var_sal := var_sal + 1000;
 DBMS_OUTPUT.PUT_LINE('Before Statement: ' || var_sal);
 END BEFORE STATEMENT;

 AFTER STATEMENT IS
 BEGIN
 var_sal := var_sal + 1000;
 DBMS_OUTPUT.PUT_LINE('After Statement: ' || var_sal);
 END AFTER STATEMENT;

END hr_trigger;

Output: Trigger created.

The TRUNCATE statement produces the following output:

TRUNCATE emp;
Before Statement: 11000
After statement: 12000
TRUNCATE TABLE

Note

You can use the TRUNCATE statement only at a BEFORE STATEMENT or AFTER STATEMENT timing point.

This example creates a compound trigger named hr_trigger on the emp table with a WHEN condition. The WHEN condition checks and prints the employee salary when an INSERT , UPDATE ,
or DELETE statement affects the emp table. The database evaluates the WHEN condition for a row-level trigger, and the trigger executes once per row if the WHEN condition evaluates to TRUE .
The statement-level trigger executes regardless of the WHEN condition.

CREATE OR REPLACE TRIGGER hr_trigger
 FOR INSERT OR UPDATE OR DELETE ON emp
 REFERENCING NEW AS new OLD AS old
 WHEN (old.sal > 5000 OR new.sal < 8000)
 COMPOUND TRIGGER

 BEFORE STATEMENT IS
 BEGIN
 DBMS_OUTPUT.PUT_LINE('Before Statement');
 END BEFORE STATEMENT;

 BEFORE EACH ROW IS
 BEGIN
 DBMS_OUTPUT.PUT_LINE('Before Each Row: ' || :OLD.sal ||' ' || :NEW.sal);
 END BEFORE EACH ROW;

 AFTER EACH ROW IS
 BEGIN
 DBMS_OUTPUT.PUT_LINE('After Each Row: ' || :OLD.sal ||' ' || :NEW.sal);

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 638

 END AFTER EACH ROW;

 AFTER STATEMENT IS
 BEGIN
 DBMS_OUTPUT.PUT_LINE('After Statement');
 END AFTER STATEMENT;

END hr_trigger;

Insert the record into table emp :

INSERT INTO emp(EMPNO, ENAME, SAL, DEPTNO) VALUES(1111, 'SMITH', 1600, 20);

The INSERT statement produces the following output:

Before Statement
Before Each Row: 1600
After Each Row: 1600
After Statement
INSERT 0 1

The UPDATE statement updates the employee salary record, setting the salary to 7500 :

UPDATE emp SET SAL = 7500 where EMPNO = 1111;

The UPDATE statement produces the following output:

Before Statement
Before Each Row: 1600 7500
After Each Row: 1600 7500
After Statement
UPDATE 1

SELECT * from emp;
 empno | ename | sal | deptno
-------+-------+------+--------
 1111 | SMITH | 7500 | 20
(1 row)

The DELETE statement deletes the employee salary record:

DELETE from emp where EMPNO = 1111;

The DELETE statement produces the following output:

Before Statement
Before Each Row: 7500
After Each Row: 7500
After Statement
DELETE 1

SELECT * from emp;
 empno | ename | sal | deptno
-------+-------+-----+--------
(0 rows)

19.14 Packages

EDB Postgres Advanced Server provides a collection of packages that provide compatibility with Oracle packages.

A package is a named collection of functions, procedures, variables, cursors, user-defined record types, and records that are referenced using a common qualifier, known as the package identifier.
Packages have the following characteristics:

Packages provide a convenient means of organizing the functions and procedures that perform a related purpose. Permission to use the package functions and procedures depends on one
privilege granted to the entire package. All of the package programs must be referenced with a common name.
Certain functions, procedures, variables, types, and so on in the package can be declared as public. Public entities are visible and can be referenced by other programs that are given EXECUTE
privilege on the package. For public functions and procedures, only their signatures are visible, that is, the program names, parameters, if any, and return types of functions. The SPL code of
these functions and procedures isn't accessible to others, therefore applications that use a package depend only on the information available in the signature and not in the procedural logic itself.
You can declare Other functions, procedures, variables, types, and so on in the package as private. Private entities can be referenced and used by function and procedures in the package but not
by other external applications. Private entities are for use only by programs in the package.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 639

You can overload function and procedure names in a package. One or more functions or procedures can be defined with the same name but with different signatures. This ability lets you create
identically named programs that perform the same job but on different types of input.

For more information about the package support provided by EDB Postgres Advanced Server, see Built-in packages.

19.15 Object types and objects

You can use object-oriented programming techniques in SPL. Object-oriented programming as seen in programming languages such as Java and C++ centers on the concept of objects. An object
represents a real-world entity such as a person, place, or thing. The generic description or definition of a particular object such as a person, for example, is called an object type. Specific people such as
“Joe” or “Sally” are said to be objects of object type person. They are also known as instances of the object type person or, simply, person objects.

Note

The terms “database objects” and “objects” are different from the terms "object type" and "object" used in object-oriented programming. Database objects are the entities that can be
created in a database, such as tables, views, indexes, and users. In the context of object-oriented program, object type and object refer to specific data structures supported by the SPL
programming language to implement object-oriented concepts.

In Oracle, the term abstract data type (ADT) describes object types in PL/SQL. The SPL implementation of object types is intended to be compatible with Oracle abstract data types.

EDB Postgres Advanced Server hasn't yet implemented support for some features of object-oriented programming languages.

19.15.1 Basic object concepts

An object type is a description or definition of some entity. This definition of an object type is characterized by two components:

Attributes — Fields that describe particular characteristics of an object instance. For a person object, examples are name, address, gender, date of birth, height, weight, eye color, and occupation.
Methods — Programs that perform some type of function or operation on or are related to an object. For a person object, examples are calculating the person’s age, displaying the person’s
attributes, and changing the values assigned to the person’s attributes.

19.15.1.1 Attributes

Every object type must contain at least one attribute. The data type of an attribute can be any of the following:

A base data type such as NUMBER or VARCHAR2
Another object type
A globally defined collection type (created by the CREATE TYPE command) such as a nested table or varray

An attribute gets its initial value, which can be null, when an object instance is first created. Each object instance has its own set of attribute values.

19.15.1.2 Methods

Methods are SPL procedures or functions defined in an object type. Methods are categorized into three general types:

Member methods — Procedures or functions that operate in the context of an object instance. Member methods have access to and can change the attributes of the object instance on which
they're operating.
Static methods — Procedures or functions that operate independently of any particular object instance. Static methods don't have access to and can't change the attributes of an object instance.
Constructor methods — Functions used to create an instance of an object type. A default constructor method is always provided when an object type is defined.

19.15.1.3 Overloading methods

In an object type you can define two or more identically named methods (that is, a procedure or function) of the same type but with different signatures. Such methods are referred to as overloaded
methods.

A method’s signature consists of the number of formal parameters, the data types of its formal parameters, and their order.

19.15.2 Object type components

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 640

Object types are created and stored in the database by using the following two constructs of the SPL language:

The object type specification. This construct is the public interface specifying the attributes and method signatures of the object type.
The object type body. This construct contains the implementation of the methods specified in the object type specification.

19.15.2.1 Object type specification syntax

The following is the syntax of the object type specification:

CREATE [OR REPLACE] TYPE <name>
 [AUTHID { DEFINER | CURRENT_USER }]
 { IS | AS } OBJECT
({ <attribute> { <datatype> | <objtype> | <collecttype> } }
 [, ...]
 [<method_spec>] [, ...]
 [<constructor>] [, ...]
) [[NOT] { FINAL | INSTANTIABLE }] ...;

Where method_spec is the following:

[[NOT] { FINAL | INSTANTIABLE }] ...
[OVERRIDING]
 <subprogram_spec>

Where subprogram_spec is the following:

{ MEMBER | STATIC }
{ PROCEDURE <proc_name>
 [([SELF [IN | IN OUT] <name>]
 [, <parm1> [IN | IN OUT | OUT] <datatype1>
 [DEFAULT <value1>]]
 [, <parm2> [IN | IN OUT | OUT] <datatype2>
 [DEFAULT <value2>]
] ...)
]
|
 FUNCTION <func_name>
 [([SELF [IN | IN OUT] <name>]
 [, <parm1> [IN | IN OUT | OUT] <datatype1>
 [DEFAULT <value1>]]
 [, <parm2> [IN | IN OUT | OUT] <datatype2>
 [DEFAULT <value2>]
] ...)
]
 RETURN <return_type>
}

Where constructor is the following:

CONSTRUCTOR FUNCTION <func_name>
 [([<parm1> [IN | IN OUT | OUT] <datatype1>
 [DEFAULT <value1>]]
 [, <parm2> [IN | IN OUT | OUT] <datatype2>
 [DEFAULT <value2>]
] ...)
]
RETURN <return_type>;

Note

You can't use the OR REPLACE option to add, delete, or modify the attributes of an existing object type. Use the DROP TYPE command to first delete the existing object type. You
can use the OR REPLACE option to add, delete, or modify the methods in an existing object type.

You can use the PostgreSQL form of the ALTER TYPE ALTER ATTRIBUTE command to change the data type of an attribute in an existing object type. However, the ALTER TYPE
command can't add or delete attributes in the object type.

name is an identifier (optionally schema-qualified) assigned to the object type.

If you omit the AUTHID clause or specify DEFINER , the rights of the object type owner are used to determine access privileges to database objects. If you specify CURRENT_USER , the rights of the
current user executing a method in the object determine access privileges.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 641

attribute is an identifier assigned to an attribute of the object type.

datatype is a base data type.

objtype is a previously defined object type.

collecttype is a previously defined collection type.

Following the closing parenthesis of the CREATE TYPE definition, [NOT] FINAL specifies whether a subtype can be derived from this object type. FINAL , which is the default, means that no
subtypes can be derived from this object type. Specify NOT FINAL if you want to allow subtypes to be defined under this object type.

Note

Even though the specification of NOT FINAL is accepted in the CREATE TYPE command, SPL doesn't currently support creating subtypes.

Following the closing parenthesis of the CREATE TYPE definition, [NOT] INSTANTIABLE specifies whether an object instance of this object type can be created. INSTANTIABLE , which is
the default, means that an instance of this object type can be created. Specify NOT INSTANTIABLE if this object type is to be used only as a parent “template” from which other specialized subtypes
are defined. If NOT INSTANTIABLE is specified, then you must specify NOT FINAL as well. If any method in the object type contains the NOT INSTANTIABLE qualifier, then the object type
must be defined with NOT INSTANTIABLE and NOT FINAL .

Note

Even though specifying NOT INSTANTIABLE is accepted in the CREATE TYPE command, SPL doesn't currently support creating subtypes.

method_spec denotes the specification of a member method or static method.

Before defining a method, use [NOT] FINAL to specify whether the method can be overridden in a subtype. NOT FINAL is the default, meaning the method can be overridden in a subtype.

Before defining a method, specify OVERRIDING if the method overrides an identically named method in a supertype. The overriding method must have the same number of identically named method
parameters with the same data types and parameter modes, in the same order, and with the same return type (if the method is a function) as defined in the supertype.

Before defining a method, use [NOT] INSTANTIABLE to specify whether the object type definition provides an implementation for the method. If you specify INSTANTIABLE , then the
CREATE TYPE BODY command for the object type must specify the implementation of the method. If you specify NOT INSTANTIABLE , then the CREATE TYPE BODY command for the object

type must not contain the implementation of the method. In this latter case, it is assumed a subtype contains the implementation of the method, overriding the method in this object type. If there are
any NOT INSTANTIABLE methods in the object type, then the object type definition must specify NOT INSTANTIABLE and NOT FINAL following the closing parenthesis of the object type
specification. The default is INSTANTIABLE .

subprogram_spec denotes the specification of a procedure or function and begins with the specification of either MEMBER or STATIC . A member subprogram must be invoked with respect to a
particular object instance while a static subprogram isn't invoked with respect to any object instance.

proc_name is an identifier of a procedure. If you specify the SELF parameter, name is the object type name given in the CREATE TYPE command. If specified, parm1, parm2, … are the
formal parameters of the procedure. datatype1, datatype2, … are the data types of parm1, parm2, … respectively. IN , IN OUT , and OUT are the possible parameter modes for each
formal parameter. The default is IN . value1, value2, … are default values that you can specify for IN parameters.

Include the CONSTRUCTOR FUNCTION keyword and function definition to define a constructor function.

func_name is an identifier of a function. If specified, parm1, parm2, … are the formal parameters of the function. datatype1, datatype2, … are the data types of parm1, parm2, …
respectively. IN , IN OUT , and OUT are the possible parameter modes for each formal parameter. The default is IN . value1, value2, … are default values that you can specify for IN
parameters. return_type is the data type of the value the function returns.

Note the following about an object type specification:

There must be at least one attribute defined in the object type.

There can be zero, one, or more methods defined in the object type.

A static method can't be overridden. You can't specify OVERRIDING and STATIC together in method_spec .

A static method must be instantiable. You can't specify NOT INSTANTIABLE and STATIC together in method_spec .

19.15.2.2 Object type body syntax

The following is the syntax of the object type body:

CREATE [OR REPLACE] TYPE BODY <name>
 { IS | AS }
 <method_spec> [...]
 [<constructor>] [...]
END;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 642

Where method_spec is subprogram_spec , and subprogram_spec is the following:

{ MEMBER | STATIC }
{ PROCEDURE <proc_name>
 [([SELF [IN | IN OUT] <name>]
 [, <parm1> [IN | IN OUT | OUT] <datatype1>
 [DEFAULT <value1>]]
 [, <parm2> [IN | IN OUT | OUT] <datatype2>
 [DEFAULT <value2>]
] ...)
]
{ IS | AS }
 [PRAGMA AUTONOMOUS_TRANSACTION;]
 [<declarations>]
 BEGIN
 <statement>; ...
[EXCEPTION
 WHEN ... THEN
 <statement>; ...]
 END;
|
 FUNCTION <func_name>
 [([SELF [IN | IN OUT] <name>]
 [, <parm1> [IN | IN OUT | OUT] <datatype1>
 [DEFAULT <value1>]]
 [, <parm2> [IN | IN OUT | OUT] <datatype2>
 [DEFAULT <value2>]
] ...)
]
 RETURN <return_type>
{ IS | AS }
 [PRAGMA AUTONOMOUS_TRANSACTION;]
 [<declarations>]
 BEGIN
 <statement>; ...
[EXCEPTION
 WHEN ... THEN
 <statement>; ...]
 END;

Where constructor is:

CONSTRUCTOR FUNCTION <func_name>
 [([<parm1> [IN | IN OUT | OUT] <datatype1>
 [DEFAULT <value1>]]
 [, <parm2> [IN | IN OUT | OUT] <datatype2>
 [DEFAULT <value2>]
] ...)
]
RETURN <return_type>;
{ IS | AS }
[<declarations>]
BEGIN
 <statement>; ...
[EXCEPTION
 WHEN ... THEN
 <statement>; ...]
END;

Where:

name is an identifier (optionally schema-qualified) assigned to the object type.

method_spec denotes the implementation of an instantiable method that was specified in the CREATE TYPE command.

If INSTANTIABLE was specified or omitted in method_spec of the CREATE TYPE command, then there must be a method_spec for this method in the CREATE TYPE BODY command.

If NOT INSTANTIABLE was specified in method_spec of the CREATE TYPE command, then there must be no method_spec for this method in the CREATE TYPE BODY command.

subprogram_spec denotes the specification of a procedure or function and begins with the specification of either MEMBER or STATIC . The same qualifier must be used as specified in
subprogram_spec of the CREATE TYPE command.

proc_name is an identifier of a procedure specified in the CREATE TYPE command. The parameter declarations have the same meaning as described for the CREATE TYPE command. They must
be specified in the CREATE TYPE BODY command in the same manner as in the CREATE TYPE command.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 643

Include the CONSTRUCTOR FUNCTION keyword and function definition to define a constructor function.

func_name is an identifier of a function specified in the CREATE TYPE command. The parameter declarations have the same meaning as described for the CREATE TYPE command and must be
specified in the CREATE TYPE BODY command in the same manner as in the CREATE TYPE command. return_type is the data type of the value the function returns and must match the
return_type given in the CREATE TYPE command.

PRAGMA AUTONOMOUS_TRANSACTION is the directive that sets the procedure or function as an autonomous transaction.

declarations are variable, cursor, type, or subprogram declarations. If subprogram declarations are included, they must be declared after all other variable, cursor, and type declarations.

statement is an SPL program statement.

19.15.3 Creating object types

You can use the CREATE TYPE command to create an object type specification and the CREATE TYPE BODY command to create an object type body. The examples that follow use the CREATE
TYPE and CREATE TYPE BODY commands.

The first example creates the addr_object_type object type that contains only attributes and no methods:

CREATE OR REPLACE TYPE addr_object_type AS OBJECT
(
 street VARCHAR2(30),
 city VARCHAR2(20),
 state CHAR(2),
 zip NUMBER(5)
);

Since there are no methods in this object type, an object type body isn't required. This example creates a composite type, which allows you to treat related objects as a single attribute.

19.15.3.1 Member methods

A member method is a function or procedure that's defined in an object type and can be invoked only through an instance of that type. Member methods have access to, and can change the attributes of,
the object instance on which they're operating.

This object type specification creates the emp_obj_typ object type:

CREATE OR REPLACE TYPE emp_obj_typ AS OBJECT
(
 empno NUMBER(4),
 ename VARCHAR2(20),
 addr ADDR_OBJ_TYP,
 MEMBER PROCEDURE display_emp(SELF IN OUT emp_obj_typ)
);

Object type emp_obj_typ contains a member method named display_emp . display_emp uses a SELF parameter, which passes the object instance on which the method is invoked.

A SELF parameter is a parameter whose data type is that of the object type being defined. SELF always refers to the instance that's invoking the method. A SELF parameter is the first parameter in
a member procedure or function regardless of whether it's explicitly declared in the parameter list.

The following code defines an object type body for emp_obj_typ :

CREATE OR REPLACE TYPE BODY emp_obj_typ AS
 MEMBER PROCEDURE display_emp (SELF IN OUT emp_obj_typ)
 IS
 BEGIN
 DBMS_OUTPUT.PUT_LINE('Employee No : ' || empno);
 DBMS_OUTPUT.PUT_LINE('Name : ' || ename);
 DBMS_OUTPUT.PUT_LINE('Street : ' || addr.street);
 DBMS_OUTPUT.PUT_LINE('City/State/Zip: ' || addr.city || ', ' ||
 addr.state || ' ' || LPAD(addr.zip,5,'0'));
 END;
END;

You can also use the SELF parameter in an object type body. Using the SELF parameter in the CREATE TYPE BODY command, you can write the same object type body as follows:

CREATE OR REPLACE TYPE BODY emp_obj_typ AS

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 644

 MEMBER PROCEDURE display_emp (SELF IN OUT emp_obj_typ)
 IS
 BEGIN
 DBMS_OUTPUT.PUT_LINE('Employee No : ' || SELF.empno);
 DBMS_OUTPUT.PUT_LINE('Name : ' || SELF.ename);
 DBMS_OUTPUT.PUT_LINE('Street : ' || SELF.addr.street);
 DBMS_OUTPUT.PUT_LINE('City/State/Zip: ' || SELF.addr.city || ', ' ||
 SELF.addr.state || ' ' || LPAD(SELF.addr.zip,5,'0'));
 END;
END;

Both versions of the emp_obj_typ body are equivalent.

19.15.3.2 Static methods

Like a member method, a static method belongs to a type. A static method, however, is invoked not by an instance of the type, but by using the name of the type. For example, to invoke a static function
named get_count , defined in the emp_obj_type type , you can write:

emp_obj_type.get_count();

A static method doesn't have access to and can't change the attributes of an object instance. It doesn't typically work with an instance of the type.

The following object type specification includes a static function get_dname and a member procedure display_dept :

CREATE OR REPLACE TYPE dept_obj_typ AS OBJECT (
 deptno NUMBER(2),
 STATIC FUNCTION get_dname(p_deptno IN NUMBER) RETURN VARCHAR2,
 MEMBER PROCEDURE display_dept
);

The object type body for dept_obj_typ defines a static function named get_dname and a member procedure named display_dept :

CREATE OR REPLACE TYPE BODY dept_obj_typ AS
 STATIC FUNCTION get_dname(p_deptno IN NUMBER) RETURN VARCHAR2
 IS
 v_dname VARCHAR2(14);
 BEGIN
 CASE p_deptno
 WHEN 10 THEN v_dname := 'ACCOUNTING';
 WHEN 20 THEN v_dname := 'RESEARCH';
 WHEN 30 THEN v_dname := 'SALES';
 WHEN 40 THEN v_dname := 'OPERATIONS';
 ELSE v_dname := 'UNKNOWN';
 END CASE;
 RETURN v_dname;
 END;

 MEMBER PROCEDURE display_dept
 IS
 BEGIN
 DBMS_OUTPUT.PUT_LINE('Dept No : ' || SELF.deptno);
 DBMS_OUTPUT.PUT_LINE('Dept Name : ' ||
 dept_obj_typ.get_dname(SELF.deptno));
 END;
END;

The static function get_dname can't reference SELF . Since a static function is invoked independently of any object instance, it has no implicit access to any object attribute.

Member procedure display_dept can access the deptno attribute of the object instance passed in the SELF parameter. It isn't necessary to explicitly declare the SELF parameter in the
display_dept parameter list.

The last DBMS_OUTPUT.PUT_LINE statement in the display_dept procedure includes a call to the static function get_dname , qualified by its object type name dept_obj_typ .

19.15.3.3 Constructor methods

A constructor method is a function that creates an instance of an object type, typically by assigning values to the members of the object. An object type can define several constructors to accomplish
different tasks. A constructor method is a member function invoked with a SELF parameter whose name matches the name of the type.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 645

For example, if you define a type named address , each constructor is named address . You can overload a constructor by creating one or more different constructor functions with the same name
but with different argument types.

The SPL compiler provides a default constructor for each object type. The default constructor is a member function whose name matches the name of the type and whose argument list matches the type
members in order. For example, given an object type such as:

CREATE TYPE address AS OBJECT
(
 street_address VARCHAR2(40),
 postal_code VARCHAR2(10),
 city VARCHAR2(40),
 state VARCHAR2(2)
)

The SPL compiler provides a default constructor with the following signature:

CONSTRUCTOR FUNCTION address
(
 street_address VARCHAR2(40),
 postal_code VARCHAR2(10),
 city VARCHAR2(40),
 state VARCHAR2(2)
)

The body of the default constructor sets each member to NULL .

To create a custom constructor, declare the constructor function (using the keyword constructor) in the CREATE TYPE command and define the construction function in the CREATE TYPE BODY
command. For example, you might want to create a custom constructor for the address type that computes the city and state given a street_address and postal_code :

CREATE TYPE address AS OBJECT
(
 street_address VARCHAR2(40),
 postal_code VARCHAR2(10),
 city VARCHAR2(40),
 state VARCHAR2(2),

 CONSTRUCTOR FUNCTION address
 (
 street_address VARCHAR2,
 postal_code VARCHAR2
) RETURN self AS RESULT
)
CREATE TYPE BODY address AS
 CONSTRUCTOR FUNCTION address
 (
 street_address VARCHAR2,
 postal_code VARCHAR2
) RETURN self AS RESULT
 IS
 BEGIN
 self.street_address := street_address;
 self.postal_code := postal_code;
 self.city := postal_code_to_city(postal_code);
 self.state := postal_code_to_state(postal_code);
 RETURN;
 END;
END;

To create an instance of an object type, you invoke one of the constructor methods for that type. For example:

DECLARE
 cust_addr address := address('100 Main Street', 02203');
BEGIN
 DBMS_OUTPUT.PUT_LINE(cust_addr.city); -- displays Boston
 DBMS_OUTPUT.PUT_LINE(cust_addr.state); -- displays MA
END;

Custom constructor functions are typically used to compute member values when given incomplete information. The example computes the values for city and state when given a postal code.

Custom constructor functions are also used to enforce business rules that restrict the state of an object. For example, if you define an object type to represent a payment , you can use a custom
constructor to ensure that no object of type payment can be created with an amount that is NULL , negative, or zero. The default constructor sets payment.amount to NULL , so you must
create a custom constructor whose signature matches the default constructor to prohibit NULL amounts.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 646

19.15.4 Creating object instances

To create an instance of an object type, you must first declare a variable of the object type and then initialize the declared object variable. The syntax for declaring an object variable is:

<object> <obj_type>

Where:

object is an identifier assigned to the object variable.

obj_type is the identifier of a previously defined object type.

After declaring the object variable, you must invoke a constructor method to initialize the object with values. Use the following syntax to invoke the constructor method:

[NEW] <obj_type> ({<expr1> | NULL} [, {<expr2> | NULL}] [, ...])

Where:

obj_type is the identifier of the object type’s constructor method. The constructor method has the same name as the previously declared object type.

expr1, expr2, … are expressions that are type-compatible with the first attribute of the object type, the second attribute of the object type, and so on. If an attribute is of an object type, then the
corresponding expression can be NULL , an object initialization expression, or any expression that returns that object type.

This anonymous block declares and initializes a variable:

DECLARE
 v_emp EMP_OBJ_TYP;
BEGIN
 v_emp := emp_obj_typ (9001,'JONES',
 addr_obj_typ('123 MAIN STREET','EDISON','NJ',08817));
END;

The variable v_emp is declared with a previously defined object type named EMP_OBJ_TYPE . The body of the block initializes the variable using the emp_obj_typ and addr_obj_type
constructors.

You can include the NEW keyword when creating a new instance of an object in the body of a block. The NEW keyword invokes the object constructor whose signature matches the arguments
provided.

This example declares two variables named mgr and emp . The variables are both of EMP_OBJ_TYPE . The mgr object is initialized in the declaration, while the emp object is initialized to NULL
in the declaration and assigned a value in the body.

DECLARE
 mgr EMP_OBJ_TYPE := (9002,'SMITH');
 emp EMP_OBJ_TYPE;
BEGIN
 emp := NEW EMP_OBJ_TYPE (9003,'RAY');
END;

Note

In EDB Postgres Advanced Server, you can use the following alternate syntax in place of the constructor method.

[ROW] ({ <expr1> | NULL } [, { <expr2> | NULL }] [, ...])

ROW is an optional keyword if two or more terms are specified in the parenthesis-enclosed, comma-delimited list. If you specify only one term, then you must specify the ROW keyword.

19.15.5 Referencing an object

After you create and initialize an object variable, you can reference individual attributes using dot notation of the form:

<object>.<attribute>

Where:

object is the identifier assigned to the object variable.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 647

attribute is the identifier of an object type attribute.

If attribute is of an object type, then the reference must take the form:

<object>.<attribute>.<attribute_inner>

Where attribute_inner is an identifier belonging to the object type to which attribute references in its definition of object .

This example displays the values assigned to the emp_obj_typ object:

DECLARE
 v_emp EMP_OBJ_TYP;
BEGIN
 v_emp := emp_obj_typ(9001,'JONES',
 addr_obj_typ('123 MAIN STREET','EDISON','NJ',08817));
 DBMS_OUTPUT.PUT_LINE('Employee No : ' || v_emp.empno);
 DBMS_OUTPUT.PUT_LINE('Name : ' || v_emp.ename);
 DBMS_OUTPUT.PUT_LINE('Street : ' || v_emp.addr.street);
 DBMS_OUTPUT.PUT_LINE('City/State/Zip: ' || v_emp.addr.city || ', ' ||
 v_emp.addr.state || ' ' || LPAD(v_emp.addr.zip,5,'0'));
END;

The following is the output from this anonymous block:

Employee No : 9001
Name : JONES
Street : 123 MAIN STREET
City/State/Zip: EDISON, NJ 08817

Methods are called in a similar manner as attributes.

Once an object variable is created and initialized, member procedures or functions are called using dot notation of the form:

<object>.<prog_name>

Where:

object is the identifier assigned to the object variable.

prog_name is the identifier of the procedure or function.

Static procedures or functions aren't called using an object variable. Instead call the procedure or function using the object type name:

<object_type>.<prog_name>

Where:

object_type is the identifier assigned to the object type.

prog_name is the identifier of the procedure or function.

You can duplicate the results of the previous anonymous block by calling the member procedure display_emp :

DECLARE
 v_emp EMP_OBJ_TYP;
BEGIN
 v_emp := emp_obj_typ(9001,'JONES',
 addr_obj_typ('123 MAIN STREET','EDISON','NJ',08817));
 v_emp.display_emp;
END;

The following is the output from this anonymous block:

Employee No : 9001
Name : JONES
Street : 123 MAIN STREET
City/State/Zip: EDISON, NJ 08817

This anonymous block creates an instance of dept_obj_typ and calls the member procedure display_dept :

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 648

DECLARE
 v_dept DEPT_OBJ_TYP := dept_obj_typ (20);
BEGIN
 v_dept.display_dept;
END;

The following is the output from this anonymous block:

Dept No : 20
Dept Name : RESEARCH

You can call the static function defined in dept_obj_typ directly by qualifying it by the object type name as follows:

BEGIN
 DBMS_OUTPUT.PUT_LINE(dept_obj_typ.get_dname(20));
END;

RESEARCH

19.15.6 Dropping an object type

The syntax for deleting an object type is as follows:

DROP TYPE <objtype>;

Where objtype is the identifier of the object type to drop. If the definition of objtype contains attributes that are themselves object types or collection types, you must drop these nested object
types or collection types last.

If an object type body is defined for the object type, the DROP TYPE command deletes the object-type body as well as the object-type specification. To re-create the complete object type, you must
reissue both the CREATE TYPE and CREATE TYPE BODY commands.

This example drops the emp_obj_typ and the addr_obj_typ object types. You must drop emp_obj_typ first since it contains addr_obj_typ in its definition as an attribute.

DROP TYPE emp_obj_typ;
DROP TYPE addr_obj_typ;

The syntax for deleting an object type body but not the object type specification is:

DROP TYPE BODY <objtype>;

You can re-create the object type body by issuing the CREATE TYPE BODY command.

This example drops only the object type body of the dept_obj_typ :

DROP TYPE BODY dept_obj_typ;

20 Database Compatibility for Oracle Developers: SQL

EDB Postgres Advanced Server supports many SQL commands compatible with Oracle databases. These SQL commands work on both an Oracle database and an EDB Postgres Advanced Server
database.

EDB Postgres Advanced Server supports additional commands not described here. These commands might not have an Oracle equivalent, or they might provide the similar or same functionality as an
Oracle SQL command but with different syntax.

The SQL commands covered here don't necessarily represent the full syntax, options, and functionality available for each command. In most cases, syntax, options, and functionality that aren't
compatible with Oracle databases aren't included in the command description and syntax.

Command functionality that isn't compatible with Oracle databases is noted.

20.1 ALTER DIRECTORY

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 649

Name

ALTER DIRECTORY — Change the owner of a directory created using the CREATE DIRECTORY command.

Synopsis

ALTER DIRECTORY <name> OWNER TO <rolename>

Description

The ALTER DIRECTORY ...OWNER TO command changes the owner of a directory. You must have the superuser privilege to execute this command. The new owner of the directory must also have
the superuser privilege.

Parameters

name

The name of the directory to alter.

rolename

The name of an owner of the directory.

Examples

These examples change ownership. bob and carol are superusers. bob is a current owner of the directory EMPDIR .

SELECT * FROM all_directories where directory_name = 'EMPDIR' order
by 1,2,3;
 owner | directory_name | directory_path
-------+----------------+----------------
 bob | EMPDIR | /path
(1 row)

To change the ownership of directory EMPDIR to carol :

ALTER DIRECTORY EMPDIR OWNER TO carol;
ALTER DIRECTORY

SELECT * FROM all_directories where directory_name = 'EMPDIR' order by
1,2,3;
 owner | directory_name | directory_path
-------+----------------+----------------
 carol | EMPDIR | /path
(1 row)

See also

CREATE DIRECTORY, DROP DIRECTORY

20.2 ALTER INDEX

Name

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 650

ALTER INDEX — Modify an existing index.

Synopsis

EDB Postgres Advanced Server supports three variations of the ALTER INDEX command compatible with Oracle databases. Use the first variation to rename an index:

ALTER INDEX <name> RENAME TO <new_name>

Use the second variation of the ALTER INDEX command to rebuild an index:

ALTER INDEX <name> REBUILD

Use the third variation of the ALTER INDEX command to set the PARALLEL or NOPARALLEL clause:

ALTER INDEX <name> { NOPARALLEL | PARALLEL [<integer>] }

Description

ALTER INDEX changes the definition of an existing index. The RENAME clause changes the name of the index. The REBUILD clause reconstructs an index, replacing the old copy of the index with
an updated version based on the index's table.

The REBUILD clause invokes the PostgreSQL REINDEX command. For more information about using the REBUILD clause, see the PostgreSQL core documentation.

The PARALLEL clause sets the degree of parallelism for an index that can be used to parallelize rebuilding an index.

The NOPARALLEL clause resets parallelism to use default values. reloptions shows the parallel_workers parameter as 0 .

ALTER INDEX has no effect on stored data.

Parameters

name

The name (possibly schema-qualified) of an existing index.

new_name

New name for the index.

PARALLEL

Include the PARALLEL clause to specify a degree of parallelism. Set the parallel_workers parameter equal to the degree of parallelism for rebuilding an index. If you specify PARALLEL but
don't provide a degree of parallelism, the default parallelism is used.

NOPARALLEL

Specify NOPARALLEL to reset parallelism to default values.

integer

The integer indicates the degree of parallelism, that is, the number of parallel_workers used when rebuilding an index.

Examples

To change the name of an index from name_idx to empname_idx :

ALTER INDEX name_idx RENAME TO empname_idx;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 651

https://www.postgresql.org/docs/current/static/sql-reindex.html

To rebuild an index named empname_idx :

ALTER INDEX empname_idx REBUILD;

This example sets the degree of parallelism on an empname_idx index to 7:

ALTER INDEX empname_idx PARALLEL 7;

See also

CREATE INDEX, DROP INDEX

20.3 ALTER PROCEDURE

Name

ALTER PROCEDURE — Modify an existing procedure.

Synopsis

ALTER PROCEDURE <procedure_name> <options> [RESTRICT]

Description

Use the ALTER PROCEDURE statement to specify that a procedure is a SECURITY INVOKER or SECURITY DEFINER .

Parameters

procedure_name

The (possibly schema-qualified) name of a stored procedure.

options can be:

[EXTERNAL] SECURITY DEFINER

Specify SECURITY DEFINER to execute the procedure with the privileges of the user that created the procedure. The EXTERNAL keyword is accepted for compatibility but ignored.

[EXTERNAL] SECURITY INVOKER

Specify SECURITY INVOKER to execute the procedure with the privileges of the user that's invoking the procedure. The EXTERNAL keyword is accepted for compatibility but ignored.

The RESTRICT keyword is accepted for compatibility but ignored.

Examples

This command specifies for the update_balance to execute with the privileges of the user invoking the procedure:

ALTER PROCEDURE update_balance SECURITY INVOKER;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 652

See also

CREATE PROCEDURE, DROP PROCEDURE

20.4 ALTER PROFILE

Name

ALTER PROFILE — Alter an existing profile.

Synopsis

ALTER PROFILE <profile_name> RENAME TO <new_name>;

ALTER PROFILE <profile_name>
 LIMIT {<parameter value>}[...];

Description

Use the ALTER PROFILE command to modify a user-defined profile. EDB Postgres Advanced Server supports two forms of the command:

Use ALTER PROFILE…RENAME TO to change the name of a profile.
Use ALTER PROFILE…LIMIT to modify the limits associated with a profile.

Include the LIMIT clause and one or more space-delimited parameter/value pairs to specify the rules enforced by EDB Postgres Advanced Server. Use ALTER PROFILE…RENAME TO to
change the name of a profile.

Parameters

profile_name

The name of the profile.

new_name

The new name of the profile.

parameter

The attribute limited by the profile.

value

The parameter limit.

EDB Postgres Advanced Server supports these values for each parameter:

FAILED_LOGIN_ATTEMPTS specifies the number of failed login attempts that a user can make before the server locks them out of their account for the length of time specified by
PASSWORD_LOCK_TIME . Supported values are:

An INTEGER value greater than 0 .
DEFAULT — The value of FAILED_LOGIN_ATTEMPTS specified in the DEFAULT profile.
UNLIMITED — The connecting user can make an unlimited number of failed login attempts.

PASSWORD_LOCK_TIME specifies the length of time that must pass before the server unlocks an account that was locked because of FAILED_LOGIN_ATTEMPTS . Supported values are:

A NUMERIC value of 0 or greater. To specify a fractional portion of a day, specify a decimal value. For example, use the value 4.5 to specify 4 days, 12 hours.
DEFAULT — The value of PASSWORD_LOCK_TIME specified in the DEFAULT profile.
UNLIMITED — The account is locked until manually unlocked by a database superuser.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 653

PASSWORD_LIFE_TIME specifies the number of days to use the current password before the user is prompted to provide a new password. Include the PASSWORD_GRACE_TIME clause when using
the PASSWORD_LIFE_TIME clause to specify the number of days after the password expires before connections by the role are rejected. If you don't specify PASSWORD_GRACE_TIME , the password
expires on the day specified by the default value of PASSWORD_GRACE_TIME . The user can't execute any command until they provide a new password. Supported values are:

A NUMERIC value of 0 or greater. To specify a fractional portion of a day, specify a decimal value. For example, use the value 4.5 to specify 4 days, 12 hours.
DEFAULT — The value of PASSWORD_LIFE_TIME specified in the DEFAULT profile.
UNLIMITED — The password doesn't have an expiration date.

PASSWORD_GRACE_TIME specifies the length of the grace period after a password expires until the user is forced to change their password. When the grace period expires, a user is allowed to
connect but isn't allowed to execute any command until they update their expired password. Supported values are:

A NUMERIC value of 0 or greater. To specify a fractional portion of a day, specify a decimal value. For example, use the value 4.5 to specify 4 days, 12 hours.
DEFAULT — The value of PASSWORD_GRACE_TIME specified in the DEFAULT profile.
UNLIMITED — The grace period is infinite.

PASSWORD_REUSE_TIME specifies the number of days a user must wait before reusing a password. Use the PASSWORD_REUSE_TIME and PASSWORD_REUSE_MAX parameters together. If you
specify a finite value for one of these parameters while the other is UNLIMITED , old passwords can never be reused. If both parameters are set to UNLIMITED , there are no restrictions on password
reuse. Supported values are:

A NUMERIC value of 0 or greater. To specify a fractional portion of a day, specify a decimal value. For example, use the value 4.5 to specify 4 days, 12 hours.
DEFAULT — The value of PASSWORD_REUSE_TIME specified in the DEFAULT profile.
UNLIMITED — The password can be reused without restrictions.

PASSWORD_REUSE_MAX specifies the number of password changes that must occur before a password can be reused. Use the PASSWORD_REUSE_TIME and PASSWORD_REUSE_MAX
parameters together. If you specify a finite value for one of these parameters while the other is UNLIMITED , old passwords can never be reused. If both parameters are set to UNLIMITED , there are
no restrictions on password reuse. Supported values are:

An INTEGER value of 0 or greater.
DEFAULT — The value of PASSWORD_REUSE_MAX specified in the DEFAULT profile.
UNLIMITED — The password can be reused without restrictions.

PASSWORD_VERIFY_FUNCTION specifies password complexity. Supported values are:

The name of a PL/SQL function.
DEFAULT — The value of PASSWORD_VERIFY_FUNCTION specified in the DEFAULT profile.
NULL

PASSWORD_ALLOW_HASHED specifies whether an encrypted password is allowed. If you specify the value as TRUE , the system allows a user to change the password by specifying a hash-computed
encrypted password on the client side. However, if you specify the value as FALSE , then a password must be specified in a plain-text form to validate without error. Supported values are:

A BOOLEAN value TRUE/ON/YES/1 or FALSE/OFF/NO/0 .
DEFAULT — The value of PASSWORD_ALLOW_HASHED specified in the DEFAULT profile.

Note

The PASSWORD_ALLOW_HASHED isn't compatible with Oracle.

Examples

This example modifies a profile named acctg_profile :

ALTER PROFILE acctg_profile
 LIMIT FAILED_LOGIN_ATTEMPTS 3 PASSWORD_LOCK_TIME 1;

acctg_profile counts failed connection attempts when a login role attempts to connect to the server. The profile specifies that if a user doesn't authenticate with the correct password in three
attempts, the account is locked for one day.

This example changes the name of acctg_profile to payables_profile :

ALTER PROFILE acctg_profile RENAME TO payables_profile;

See also

CREATE PROFILE, DROP PROFILE

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 654

20.5 ALTER QUEUE

EDB Postgres Advanced Server includes an extra syntax not offered by Oracle with the ALTER QUEUE SQL command. You can use this syntax with the DBMS_AQADM package.

Name

ALTER QUEUE — Allows a superuser or a user with the aq_administrator_role privilege to modify the attributes of a queue.

Synopsis

This command is available in four forms.

Parameters for the first form

The first form of this command changes the name of a queue:

ALTER QUEUE <queue_name> RENAME TO <new_name>

queue_name

The name (optionally schema-qualified) of an existing queue.

RENAME TO

To rename the queue, include the RENAME TO clause and a new name for the queue.

new_name

New name for the queue.

Parameters for the second form

The second form of the ALTER QUEUE command modifies the attributes of the queue:

ALTER QUEUE <queue_name> SET [({ <option_name option_value>) } [,SET <option_name>]]

queue_name

The name (optionally schema-qualified) of an existing queue.

Include the SET clause and option_name/option_value pairs to modify the attributes of the queue.

option_name option_value

The name of an option to associate with the new queue and the corresponding value of the option. If you provide duplicate option names, the server returns an error.

If option_name is retries , provide an integer that represents the number of times to attempt a dequeue.
If option_name is retrydelay , provide a double-precision value that represents the delay in seconds.
If option_name is retention , provide a double-precision value that represents the retention time in seconds.

Parameters for the third form

Use the third form of the ALTER QUEUE command to enable or disable enqueuing or dequeuing on a queue:

ALTER QUEUE <queue_name> ACCESS { START | STOP } [FOR { enqueue | dequeue }] [NOWAIT]

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 655

queue_name

The name (optionally schema-qualified) of an existing queue.

ACCESS

Include the ACCESS keyword to enable or disable enqueuing or dequeuing on a queue.

START | STOP

Use the START and STOP keywords to indicate the desired state of the queue.

FOR enqueue|dequeue

Use the FOR clause to indicate if you are specifying the state of enqueueing or dequeueing activity on the specified queue.

NOWAIT

Include the NOWAIT keyword to specify for the server not to wait for the completion of outstanding transactions before changing the state of the queue. You can use the NOWAIT keyword only when
specifying an ACCESS value of STOP . The server returns an error if NOWAIT is specified with an ACCESS value of START .

Parameters for the fourth form

Use the fourth form to ADD or DROP callback details for a queue.

ALTER QUEUE <queue_name> { ADD | DROP } CALL TO <location_name> [WITH <callback_option>]

queue_name

The name (optionally schema-qualified) of an existing queue.

ADD | DROP

Include the ADD or DROP keywords to enable add or remove callback details for a queue.

location_name

Specifies the name of the callback procedure.

callback_option

Can be context . Specify a RAW value when including this clause.

Examples

This example changes the name of a queue from work_queue_east to work_order :

ALTER QUEUE work_queue_east RENAME TO work_order;

This example modifies a queue named work_order . It sets the number of retries to 100, the delay between retries to 2 seconds, and the length of time that the queue retains dequeued messages to
10 seconds:

ALTER QUEUE work_order SET (retries 100, retrydelay 2, retention 10);

These commands enable enqueueing and dequeueing in a queue named work_order :

ALTER QUEUE work_order ACCESS START;
ALTER QUEUE work_order ACCESS START FOR enqueue;
ALTER QUEUE work_order ACCESS START FOR dequeue;

These commands disable enqueueing and dequeueing in a queue named work_order :

ALTER QUEUE work_order ACCESS STOP NOWAIT;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 656

ALTER QUEUE work_order ACCESS STOP FOR enqueue;
ALTER QUEUE work_order ACCESS STOP FOR dequeue;

See also

CREATE QUEUE, DROP QUEUE

20.6 ALTER QUEUE TABLE

EDB Postgres Advanced Server includes extra syntax not offered by Oracle with the ALTER QUEUE SQL command. You can use this syntax with the DBMS_AQADM package.

Name

ALTER QUEUE TABLE — Modify an existing queue table.

Synopsis

Use ALTER QUEUE TABLE to change the name of an existing queue table:

ALTER QUEUE TABLE <name> RENAME TO <new_name>

Description

ALTER QUEUE TABLE allows a superuser or a user with the aq_administrator_role privilege to change the name of an existing queue table.

Parameters

name

The name (optionally schema-qualified) of an existing queue table.

new_name

New name for the queue table.

Examples

This example changes the name of a queue table from wo_table_east to work_order_table :

ALTER QUEUE TABLE wo_queue_east RENAME TO work_order_table;

See also

CREATE QUEUE TABLE, DROP QUEUE TABLE

20.7 ALTER ROLE… IDENTIFIED BY

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 657

Name

ALTER ROLE — Change the password associated with a database role.

Synopsis

ALTER ROLE <role_name> IDENTIFIED BY <password>
 [REPLACE <prev_password>]

Description

A role without the CREATEROLE privilege can use this command to change their own password. An unprivileged role must include the REPLACE clause and their previous password if
PASSWORD_VERIFY_FUNCTION isn't NULL in their profile. When a non-superuser uses the REPLACE clause, the server compares the password provided to the existing password and raises an

error if the passwords don't match.

A database superuser can use this command to change the password associated with any role. If a superuser includes the REPLACE clause, the clause is ignored. A non-matching value for the
previous password doesn't throw an error.

If the role whose password is being changed has the SUPERUSER attribute, then a superuser must issue this command. A role with the CREATEROLE attribute can use this command to change the
password associated with a role that isn't a superuser.

Parameters

role_name

The name of the role whose password to alter.

password

The role’s new password.

prev_password

The role’s previous password.

Examples

This example changes a role’s password:

ALTER ROLE john IDENTIFIED BY xyRP35z REPLACE 23PJ74a;

20.8 ALTER ROLE: Managing database link and DBMS_RLS privileges

EDB Postgres Advanced Server includes extra syntax not offered by Oracle for the ALTER ROLE command. This syntax can be useful when assigning privileges related to creating and dropping
database links compatible with Oracle databases and fine-grained access control using DBMS_RLS .

CREATE DATABASE LINK

A user who holds the CREATE DATABASE LINK privilege can create a private database link. The following ALTER ROLE command grants privileges to an EDB Postgres Advanced Server role that
allow the specified role to create a private database link:

ALTER ROLE role_name
 WITH [CREATEDBLINK | CREATE DATABASE LINK]

This command is the functional equivalent of:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 658

GRANT CREATE DATABASE LINK to role_name

Use the following command to revoke the privilege:

ALTER ROLE role_name
 WITH [NOCREATEDBLINK | NO CREATE DATABASE LINK]

Note

The CREATEDBLINK and NOCREATEDBLINK keywords are deprecated syntaxes. We recommend using the CREATE DATABASE LINK and NO CREATE DATABASE LINK syntax
options.

CREATE PUBLIC DATABASE LINK

A user who holds the CREATE PUBLIC DATABASE LINK privilege can create a public database link. The following ALTER ROLE command grants privileges to an EDB Postgres Advanced Server
role that allow the specified role to create a public database link:

ALTER ROLE role_name
 WITH [CREATEPUBLICDBLINK | CREATE PUBLIC DATABASE LINK]

This command is the functional equivalent of:

GRANT CREATE PUBLIC DATABASE LINK to role_name

Use the following command to revoke the privilege:

ALTER ROLE role_name
 WITH [NOCREATEPUBLICDBLINK | NO CREATE PUBLIC DATABASE LINK]

Note

The CREATEPUBLICDBLINK and NOCREATEPUBLICDBLINK keywords are deprecated syntaxes. We recommend using the CREATE PUBLIC DATABASE LINK and NO CREATE
PUBLIC DATABASE LINK syntax options.

DROP PUBLIC DATABASE LINK

A user who holds the DROP PUBLIC DATABASE LINK privilege can drop a public database link. The following ALTER ROLE command grants privileges to an EDB Postgres Advanced Server role
that allow the specified role to drop a public database link:

ALTER ROLE role_name
 WITH [DROPPUBLICDBLINK | DROP PUBLIC DATABASE LINK]

This command is the functional equivalent of:

GRANT DROP PUBLIC DATABASE LINK to role_name

Use the following command to revoke the privilege:

ALTER ROLE role_name
 WITH [NODROPPUBLICDBLINK | NO DROP PUBLIC DATABASE LINK]

Note

The DROPPUBLICDBLINK and NODROPPUBLICDBLINK keywords are deprecated syntaxes. We recommend using the DROP PUBLIC DATABASE LINK and NO DROP PUBLIC
DATABASE LINK syntax options.

EXEMPT ACCESS POLICY

A user who holds the EXEMPT ACCESS POLICY privilege is exempt from fine-grained access control (DBMS_RLS) policies. A user who holds these privileges can view or modify any row in a table
constrained by a DBMS_RLS policy. The following ALTER ROLE command grants privileges to an EDB Postgres Advanced Server role that exempt the specified role from any defined DBMS_RLS
policies:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 659

ALTER ROLE role_name
 WITH [POLICYEXEMPT | EXEMPT ACCESS POLICY]

This command is the functional equivalent of:

GRANT EXEMPT ACCESS POLICY TO role_name

Use the following command to revoke the privilege:

ALTER ROLE role_name
 WITH [NOPOLICYEXEMPT | NO EXEMPT ACCESS POLICY]

Note

The POLICYEXEMPT and NOPOLICYEXEMPT keywords are deprecated syntaxes. We recommend using the EXEMPT ACCESS POLICY and NO EXEMPT ACCESS POLICY syntax
options.

See also

CREATE ROLE, DROP ROLE, GRANT, REVOKE, SET ROLE

20.9 ALTER SEQUENCE

Name

ALTER SEQUENCE — Change the definition of a sequence generator.

Synopsis

ALTER SEQUENCE <name> [INCREMENT BY <increment>]
 [MINVALUE <minvalue>] [MAXVALUE <maxvalue>]
 [CACHE <cache> | NOCACHE] [CYCLE]

Description

ALTER SEQUENCE changes the parameters of an existing sequence generator. Any parameter not specifically set in the ALTER SEQUENCE command retains its prior setting.

Parameters

name

The name (optionally schema-qualified) of a sequence to alter.

increment

The clause INCREMENT BY increment is optional. A positive value makes an ascending sequence, a negative one a descending sequence. If unspecified, the old increment value is maintained.

minvalue

The optional clause MINVALUE minvalue determines the minimum value a sequence can generate. If not specified, the current minimum value is maintained. You can use the keywords NO
MINVALUE to set this behavior back to the defaults of 1 and -263-1 for ascending and descending sequences, respectively. However, this term isn't compatible with Oracle databases.

maxvalue

The optional clause MAXVALUE maxvalue determines the maximum value for the sequence. If not specified, the current maximum value is maintained. You can use the keywords NO MAXVALUE to

set this behavior back to the defaults of 263-1 and -1 for ascending and descending sequences, respectively. However, this term isn't compatible with Oracle databases.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 660

cache

The optional clause CACHE cache specifies how many sequence numbers to preallocate and store in memory for faster access. The minimum value is 1 . Only one value can be generated at a time,
i.e., NOCACHE . If unspecified, the old cache value is maintained.

CYCLE

The CYCLE option allows the sequence to wrap around when the maxvalue or minvalue is reached by an ascending or descending sequence. If the limit is reached, the next number generated is
the minvalue or maxvalue . If not specified, the old cycle behavior is maintained. You can use the keywords NO CYCLE to alter the sequence so that it doesn't recycle. However, this term isn't
compatible with Oracle databases.

Notes

To avoid blocking concurrent transactions that obtain numbers from the same sequence, ALTER SEQUENCE is never rolled back. The changes take effect immediately and aren't reversible.

ALTER SEQUENCE doesn't immediately affect NEXTVAL results in backends, other than the current one, that have preallocated (cached) sequence values. They use up all cached values prior to
noticing the changed sequence parameters. The current backend is affected immediately.

Examples

Change the increment and cache values of the sequence serial :

ALTER SEQUENCE serial INCREMENT BY 2 CACHE 5;

See also

CREATE SEQUENCE, DROP SEQUENCE

20.10 ALTER SESSION

Name

ALTER SESSION — Change a runtime parameter.

Synopsis

ALTER SESSION SET <name> = <value>

Description

The ALTER SESSION command changes runtime configuration parameters. ALTER SESSION affects only the value used by the current session. Some of these parameters are provided solely for
compatibility with Oracle syntax and have no effect on the runtime behavior of EDB Postgres Advanced Server. Others alter a corresponding EDB Postgres Advanced Server database server runtime
configuration parameter.

Parameters

name

Name of a settable runtime parameter.

value

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 661

New value of parameter.

Configuration parameters

You can modify the following configuration parameters using the ALTER SESSION command:

NLS_DATE_FORMAT (string)

Sets the display format for date and time values as well as the rules for interpreting ambiguous date input values. Has the same effect as setting the EDB Postgres Advanced Server datestyle
runtime configuration parameter.

NLS_LANGUAGE (string)

Sets the message-display language. Has the same effect as setting the EDB Postgres Advanced Server lc_messages runtime configuration parameter.

NLS_LENGTH_SEMANTICS (string)

Valid values are BYTE and CHAR . The default is BYTE . This parameter is provided only for syntax compatibility and has no effect in the EDB Postgres Advanced Server.

OPTIMIZER_MODE (string)

Sets the default optimization mode for queries. Valid values are ALL_ROWS , CHOOSE , FIRST_ROWS , FIRST_ROWS_10 , FIRST_ROWS_100 , and FIRST_ROWS_1000 . The default is
CHOOSE . This parameter is implemented in EDB Postgres Advanced Server.

QUERY_REWRITE_ENABLED (string)

Valid values are TRUE , FALSE , and FORCE . The default is FALSE . This parameter is provided only for syntax compatibility and has no effect in EDB Postgres Advanced Server.

QUERY_REWRITE_INTEGRITY (string)

Valid values are ENFORCED , TRUSTED , and STALE_TOLERATED . The default is ENFORCED . This parameter is provided only for syntax compatibility and has no effect in EDB Postgres
Advanced Server.

Examples

Set the language to U.S. English in UTF-8 encoding. In this example, the value en_US.UTF-8 is in the format for EDB Postgres Advanced Server. This form isn't compatible with Oracle databases.

ALTER SESSION SET NLS_LANGUAGE = 'en_US.UTF-8';

Set the date display format:

ALTER SESSION SET NLS_DATE_FORMAT = 'dd/mm/yyyy';

20.11 ALTER SYNONYM

Name

ALTER SYNONYM — Change ownership of a synonym object.

Synopsis

ALTER SYNONYM <syn_name> OWNER TO <new_owner>

Description

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 662

The ALTER SYNONYM command changes the owner of the synonym.

Examples

-- create user t1 and t2
edb=# create user t1;
CREATE ROLE
edb=# create user t2;
CREATE ROLE

-- grant all the privileges to user t1 and t2 on public schema
edb=# GRANT ALL PRIVILEGES ON SCHEMA public TO GROUP t1;
GRANT
edb=# GRANT ALL PRIVILEGES ON SCHEMA public TO GROUP t2;
GRANT

-- connect to the database as user t1 and create the table
edb=# \c - t1
You are now connected to database "edb" as user "t1".
edb=> create table t(n int);
CREATE TABLE

-- create a synonym for table t
edb=> create public synonym x for t;
CREATE SYNONYM

-- check the owner of the synonym x is t1
edb=# select * from all_synonyms;
 owner | schema_name | objid | synonym_name | table_owner | table_schema_name | table_name | db_link
-------+-------------+-------+--------------+-------------+-------------------+------------+---------
 T1 | PUBLIC | 16390 | X | T1 | PUBLIC | T |

-- connect the database as user edb and change the owner of the synonym x to user t2
edb=> \c - edb
You are now connected to database "edb" as user "edb".
edb=# alter synonym x owner to t2;

-- check the owner of the synonym x is changed to t2
edb=# select * from all_synonyms;
 owner | schema_name | objid | synonym_name | table_owner | table_schema_name | table_name | db_link
-------+-------------+-------+--------------+-------------+-------------------+------------+---------
 T2 | PUBLIC | 16390 | X | T1 | PUBLIC | T |

20.12 ALTER TABLE

Name

ALTER TABLE — Change the definition of a table.

Synopsis

ALTER TABLE <name>
 action [, ...]
ALTER TABLE <name>
 RENAME COLUMN <column> TO <new_column>
ALTER TABLE <name>
 RENAME TO <new_name>
ALTER TABLE <name>
 { NOPARALLEL | PARALLEL [<integer>] }

action is one of:

ADD <column type> [<column_constraint> [...]]
DROP COLUMN <column>
ADD <table_constraint>
DROP CONSTRAINT <constraint_name> [CASCADE]

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 663

Description

ALTER TABLE changes the definition of an existing table. There are several subforms:

ADD column type

This form adds a column to the table using the same syntax as CREATE TABLE .

DROP COLUMN

This form drops a column from a table. Indexes and table constraints involving the column are dropped as well.

ADD table_constraint

This form adds a constraint to a table. For details, see CREATE TABLE.

DROP CONSTRAINT

This form drops constraints on a table. Currently, constraints on tables don't need unique names, so there might be more than one constraint matching the specified name. All matching
constraints are dropped.

RENAME

The RENAME forms change the name of a table (or an index, sequence, or view) or the name of a column in a table. There is no effect on the stored data.

The PARALLEL clause sets the degree of parallelism for a table. The NOPARALLEL clause resets the values to their defaults. reloptions shows the parallel_workers parameter as 0 .

A superuser has permission to create a trigger on any user's table, but a user can create a trigger only on the table they own. However, when the ownership of a table is changed, the ownership of the
trigger's implicit objects is updated when they're matched with a table owner owning a trigger.

You can use the ALTER TRIGGER ...ON AUTHORIZATION command to alter a trigger's implicit object owner. For information, see ALTER TRIGGER.

You must own the table to use ALTER TABLE .

Parameters

name

The name (possibly schema-qualified) of an existing table to alter.

column

Name of a new or existing column.

new_column

New name for an existing column.

new_name

New name for the table.

type

Data type of the new column.

table_constraint

New table constraint for the table.

constraint_name

Name of an existing constraint to drop.

CASCADE

Automatically drop objects that depend on the dropped constraint.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 664

PARALLEL

Specify PARALLEL to select a degree of parallelism. You can also specify the degree of parallelism by setting the parallel_workers parameter when performing a parallel scan on a table. If you
specify PARALLEL without including a degree of parallelism, the index uses default parallelism.

NOPARALLEL

Specify NOPARALLEL to reset parallelism to default values.

integer

The integer indicates the degree of parallelism, which is the number of parallel_workers used in the parallel operation to perform a parallel scan on a table.

Notes

When you invoke ADD COLUMN , all existing rows in the table are initialized with the column’s default value (null if no DEFAULT clause is specified). Adding a column with a non-null default requires
rewriting the entire table. This can take a long time for a large table, and it temporarily requires double the disk space. Adding a CHECK or NOT NULL constraint requires scanning the table to verify
that existing rows meet the constraint.

The DROP COLUMN form doesn't physically remove the column but makes it invisible to SQL operations. Subsequent insert and update operations in the table store a null value for the column. Thus,
dropping a column is quick, but it doesn't immediately reduce the on-disk size of your table since the space occupied by the dropped column isn't reclaimed. The space is reclaimed over time as existing
rows are updated.

Changing any part of a system catalog table isn't permitted. Refer to CREATE TABLE for a further description of valid parameters.

Examples

To add a column of type VARCHAR2 to a table:

ALTER TABLE emp ADD address VARCHAR2(30);

To drop a column from a table:

ALTER TABLE emp DROP COLUMN address;

To rename an existing column:

ALTER TABLE emp RENAME COLUMN address TO city;

To rename an existing table:

ALTER TABLE emp RENAME TO employee;

To add a check constraint to a table:

ALTER TABLE emp ADD CONSTRAINT sal_chk CHECK (sal > 500);

To remove a check constraint from a table:

ALTER TABLE emp DROP CONSTRAINT sal_chk;

To reset the degree of parallelism to 0 on the emp table:

ALTER TABLE emp NOPARALLEL;

This example creates a table named dept and then alters the dept table to define and enable a unique key on the dname column. The constraint dept_dname_uq identifies the dname column
as a unique key. The USING_INDEX clause creates an index on a table dept with the index statement specified to enable the unique constraint.

CREATE TABLE dept (
 deptno NUMBER(2),
 dname VARCHAR2(14),
 loc VARCHAR2(13)
);

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 665

ALTER TABLE dept
 ADD CONSTRAINT dept_dname_uq UNIQUE(dname)
 USING INDEX (CREATE UNIQUE INDEX idx_dept_dname_uq ON dept (dname));

This example creates a table named emp and then alters the emp table to define and enable a primary key on the ename column. The emp_ename_pk constraint identifies the column ename as
a primary key of the emp table. The USING_INDEX clause creates an index on a table emp with the index statement specified to enable the primary constraint.

CREATE TABLE emp (
 empno NUMBER(4) NOT NULL,
 ename VARCHAR2(10),
 job VARCHAR2(9),
 sal NUMBER(7,2),
 deptno NUMBER(2)
);

ALTER TABLE emp
 ADD CONSTRAINT emp_ename_pk PRIMARY KEY (ename)
 USING INDEX (CREATE INDEX idx_emp_ename_pk ON emp (ename));

See also

CREATE TABLE, DROP TABLE

20.13 ALTER TRIGGER

Name

ALTER TRIGGER — Change the definition of a trigger.

Synopsis

EDB Postgres Advanced Server supports three variations of the ALTER TRIGGER command. Use the first variation to change the name of a given trigger without changing the trigger definition:

ALTER TRIGGER <name> ON <table_name> RENAME TO <new_name>

Use the second variation of the ALTER TRIGGER command if the trigger depends on an extension. If the extension is dropped, the trigger is dropped as well.

ALTER TRIGGER <name> ON <table_name> DEPENDS ON EXTENSION <extension_name>

Use the third variation of the ALTER TRIGGER command to change the ownership of a trigger's object:

ALTER TRIGGER <name> ON <table_name> AUTHORIZATION <rolespec>

For information about using non-compatible implementations of the ALTER TRIGGER command that are supported by EDB Postgres Advanced Server, see the PostgreSQL core documentation.

Description

ALTER TRIGGER changes the properties of an existing trigger. You must own the table the trigger acts on to change its properties.

To alter an owner of the trigger's implicit object, you can use the ALTER TRIGGER ...ON AUTHORIZATION command. You must have the privilege to execute ALTER TRIGGER ...ON
AUTHORIZATION command to assign the trigger's implicit object ownership to a user after authorization.

Parameters

name

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 666

https://www.postgresql.org/docs/current/sql-altertrigger.html

The name of the trigger to alter.

table_name

The name of a table on which trigger acts.

rolespec

Determines an owner of trigger objects.

Examples

This example includes the users bob and carol as superusers. The user bob owns a table emp . The user carol owns a trigger named emp_sal_trig , which is created on table emp :

SELECT relname, relowner::regrole FROM pg_class WHERE relname = 'emp';
 relname | relowner
---------+----------
 emp | bob
(1 row)

SELECT proname, proowner::regrole FROM pg_proc WHERE oid = (SELECT tgfoid
FROM pg_trigger WHERE tgname = 'emp_sal_trig') ORDER BY oid;
 proname | proowner
-------------------+----------
 emp_sal_trig_emp | carol
(1 row)

To alter the ownership of table emp from user bob to a new owner edb :

ALTER TABLE emp OWNER TO edb;
ALTER TABLE

SELECT relname, relowner::regrole FROM pg_class WHERE relname = 'emp';
 relname | relowner
---------+----------
 emp | edb
(1 row)

The table ownership is changed from the user bob to an owner edb , but the trigger ownership of emp_sal_trig isn't altered and is owned by user carol . Alter the trigger emp_sal_trig on
table emp , and grant authorization to an owner edb :

ALTER TRIGGER emp_sal_trig ON emp AUTHORIZATION edb;
ALTER TRIGGER

SELECT proname, proowner::regrole FROM pg_proc WHERE oid = (SELECT tgfoid
FROM pg_trigger WHERE tgname = 'emp_sal_trig') ORDER BY oid;
 proname | proowner
------------------+----------
 emp_sal_trig_emp | edb
(1 row)

The trigger ownership emp_sal_trig on table emp is altered and granted to an owner edb .

See also

CREATE TRIGGER, DROP TRIGGER

20.14 ALTER TABLESPACE

Name

ALTER TABLESPACE — Change the definition of a tablespace.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 667

Synopsis

ALTER TABLESPACE <name> RENAME TO <newname>

Description

ALTER TABLESPACE changes the definition of a tablespace.

Parameters

name

The name of an existing tablespace.

newname

The new name of the tablespace. The new name can't begin with pg_ . These names are reserved for system tablespaces.

Examples

Rename tablespace empspace to employee_space :

ALTER TABLESPACE empspace RENAME TO employee_space;

See also

DROP TABLESPACE

20.15 ALTER USER… IDENTIFIED BY

Name

ALTER USER — Change a database user account.

Synopsis

ALTER USER <role_name> IDENTIFIED BY <password> REPLACE <prev_password>

Description

A role without the CREATEROLE privilege can use this command to change their own password. An unprivileged role must include the REPLACE clause and their previous password if
PASSWORD_VERIFY_FUNCTION isn't NULL in their profile. When a non-superuser uses the REPLACE clause, the server compares the password provided to the existing password and raises an

error if the passwords don't match.

A database superuser can use this command to change the password associated with any role. If a superuser includes the REPLACE clause, the clause is ignored. A non-matching value for the
previous password doesn't throw an error.

If the role for which the password is being changed has the SUPERUSER attribute, then a superuser must issue this command. A role with the CREATEROLE attribute can use this command to
change the password associated with a role that isn't a superuser.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 668

Parameters

role_name

The name of the role whose password to alter.

password

The role’s new password.

prev_password

The role’s previous password.

Examples

Change a user password:

ALTER USER john IDENTIFIED BY xyRP35z REPLACE 23PJ74a;

See also

CREATE USER, DROP USER

20.16 ALTER USER|ROLE… PROFILE MANAGEMENT CLAUSES

Name

ALTER USER|ROLE

Synopsis

ALTER USER|ROLE <name> [[WITH] option[…]

option can be the following compatible clauses:

 PROFILE <profile_name>
| ACCOUNT {LOCK|UNLOCK}
| PASSWORD EXPIRE [AT '<timestamp>']

option can be the following non-compatible clauses:

| PASSWORD SET AT '<timestamp>'
| LOCK TIME '<timestamp>'
| STORE PRIOR PASSWORD {'<password>' '<timestamp>} [, ...]

For information about the administrative clauses of the ALTER USER or ALTER ROLE command that are supported by EDB Postgres Advanced Server, see the PostgreSQL core documentation.

Only a database superuser can use the ALTER USER|ROLE clauses that enforce profile management. The clauses enforce the following behaviors:

Include the PROFILE clause and a profile_name to associate a predefined profile with a role or to change the predefined profile associated with a user.

Include the ACCOUNT clause and the LOCK or UNLOCK keyword to place the user account in a locked or unlocked state.

Include the LOCK TIME 'timestamp' clause and a date/time value to lock the role at the specified time and unlock the role at the time indicated by the PASSWORD_LOCK_TIME
parameter of the profile assigned to this role. If LOCK TIME is used with the ACCOUNT LOCK clause, only a database superuser can unlock the role with the ACCOUNT UNLOCK clause.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 669

https://www.postgresql.org/docs/current/static/sql-commands.html

Include the PASSWORD EXPIRE clause with the AT 'timestamp' keywords to specify a date/time for the password associated with the role to expire. If you omit the AT 'timestamp'
keywords, the password expires immediately.

Include the PASSWORD SET AT 'timestamp' keywords to set the password modification date to the time specified.

Include the STORE PRIOR PASSWORD {'password' 'timestamp} [, ...] clause to modify the password history, adding the new password and the time the password was set.

Each login role can have only one profile. To discover the profile that's currently associated with a login role, query the profile column of the DBA_USERS view.

Parameters

name

The name of the role to associate with the specified profile.

password

The password associated with the role.

profile_name

The name of the profile to associate with the role.

timestamp

The date and time when the clause is enforced. When specifying a value for timestamp , enclose the value in single quotes.

Notes

For information about the Postgres-compatible clauses of the ALTER USER or ALTER ROLE command, see the PostgreSQL core documentation.

Examples

This example uses the ALTER USER… PROFILE command to associate a profile named acctg with a user named john :

ALTER USER john PROFILE acctg_profile;

This example uses the ALTER ROLE… PROFILE command to associate a profile named acctg with a user named john :

ALTER ROLE john PROFILE acctg_profile;

See also

CREATE USER|ROLE… PROFILE MANAGEMENT CLAUSES

20.17 CALL

Name

CALL — Invoke a procedure.

Synopsis

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 670

https://www.postgresql.org/docs/current/static/sql-alterrole.html

CALL <procedure_name> '('[<argument_list>]')'

Description

Use the CALL statement to invoke a procedure. To use the CALL statement, you must have EXECUTE privileges on the procedure that the CALL statement invokes.

Parameters

procedure_name

The (optionally schema-qualified) procedure name.

argument_list

Specifies a comma-separated list of arguments required by the procedure. Each member of argument_list corresponds to a formal argument expected by the procedure. Each formal argument can
be an IN parameter, an OUT parameter, or an INOUT parameter.

!!!! Note You must specify an OUT parameter in the CALL statement when calling a package function. The OUT parameter acts as an INOUT parameter during package overloading.

Examples

The CALL statement can take several forms, depending on the arguments required by the procedure:

CALL update_balance();
CALL update_balance(1,2,3);

20.18 COMMENT

Name

COMMENT — Define or change the comment of an object.

Synopsis

COMMENT ON
{
 TABLE <table_name> |
 COLUMN <table_name.column_name>
} IS '<text>'

Description

COMMENT stores a comment about a database object. To modify a comment, issue a new COMMENT command for the same object. Only one comment string is stored for each object. To remove a
comment, specify an empty string (two consecutive single quotes with no intervening space) for text . Comments are dropped when the object is dropped.

Parameters

table_name

The name of the table (optionally schema-qualified) to comment.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 671

table_name.column_name

The name of a column (optionally schema-qualified) in table_name to comment.

text

The new comment.

Notes

There is currently no security mechanism for comments. Any user connected to a database can see all the comments for objects in that database, although only superusers can change comments for
objects that they don’t own. Don't put security-critical information in a comment.

Examples

Attach a comment to the table emp :

COMMENT ON TABLE emp IS 'Current employee information';

Attach a comment to the empno column of the emp table:

COMMENT ON COLUMN emp.empno IS 'Employee identification number';

Remove these comments:

COMMENT ON TABLE emp IS '';
COMMENT ON COLUMN emp.empno IS '';

20.19 COMMIT

Name

COMMIT — Commit the current transaction.

Synopsis

COMMIT [WORK]

Description

COMMIT commits the current transaction. All changes made by the transaction become visible to others and are guaranteed to be durable if a crash occurs.

Parameters

WORK

Optional keyword that has no effect.

Notes

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 672

Use ROLLBACK to abort a transaction. Issuing COMMIT when not inside a transaction does no harm.

Note

Executing a COMMIT in a plpgsql procedure throws an error if there's an Oracle-style SPL procedure on the runtime stack.

Examples

To commit the current transaction and make all changes permanent:

COMMIT;

See also

ROLLBACK, ROLLBACK TO SAVEPOINT

20.20 CREATE DATABASE

Name

CREATE DATABASE — Create a database.

Synopsis

CREATE DATABASE <name>

Description

CREATE DATABASE creates a database.

To create a database, you must be a superuser or have the CREATEDB privilege. Normally, the creator becomes the owner of the new database. Non-superusers with the CREATEDB privilege can
create only databases they own.

The new database is a clone of the standard system database template1 .

Parameters

name

The name of the database to create.

Notes

You can't execute CREATE DATABASE inside a transaction block.

Errors along the line of “could not initialize database directory” are most likely related to insufficient permissions on the data directory, a full disk, or other file system problems.

Examples

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 673

To create a database:

CREATE DATABASE employees;

20.21 CREATE PUBLIC DATABASE LINK

Name

CREATE [PUBLIC] DATABASE LINK — Create a database link.

Synopsis

CREATE [PUBLIC] DATABASE LINK <name>
 CONNECT TO { CURRENT_USER |
 <username> IDENTIFIED BY '<password>'}
 USING { postgres_fdw '<fdw_connection_string>' |
 [oci] '<oracle_connection_string>' }

Description

CREATE DATABASE LINK creates a database link. A database link is an object that allows a reference to a table or view in a remote database in a DELETE , INSERT , SELECT or UPDATE
command. Reference a database link by appending @dblink to the table or view name referenced in the SQL command, where dblink is the name of the database link.

Database links can be public or private. A public database link is one that any user can use. Only the database link's owner can use a private database link. Specify the PUBLIC option to create a public
database link. Otherwise, a private database link is created.

When you use the CREATE DATABASE LINK command, the database link name and the given connection attributes are stored in the EDB Postgres Advanced Server system table named
pg_catalog.edb_dblink . When using a given database link, the database containing the edb_dblink entry defining this database link is called the local database. The server and database

whose connection attributes are defined in the edb_dblink entry is called the remote database. You can use edb_dblink_oci to access remote Oracle tables and views using any SELECT ,
INSERT , UPDATE , or DELETE statement.

You must be connected to the local database when you issue a SQL command containing a reference to a database link. When the SQL command executes, the appropriate authentication and
connection is made to the remote database to access the table or view to which the @dblink reference is appended.

Note

You can't use a database link to access a remote database in a standby database server. Standby database servers are for high availability, load balancing, and replication.

For information about high availability, load balancing, and replication for Postgres database servers, see the PostgreSQL core documentation.

Note

For EDB Postgres Advanced Server 12, the CREATE DATABASE LINK command is tested against and certified for use with Oracle version 10g Release 2 (10.2), Oracle version 11g
Release 2 (11.2), and Oracle version 12c Release 1 (12.1).
You can set the edb_dblink_oci.rescans GUC to SCROLL or SERIALIZABLE at the server level in the postgresql.conf file. You can also set it at the session level
using the SET command. However, the setting isn't applied to existing dblink connections due to dblink connection caching.
When executing SELECT on LOB data of more than 4000 characters, we recommend using edb_dblink_oci.rescans=serializable to free up the temporary PGA memory
and avoid exceeding PGA_AGGREGATE_LIMIT .

The edb_dblink_oci supports both types of rescans: SCROLL and SERIALIZABLE . By default it's set to SERIALIZABLE . When set to SERIALIZABLE , edb_dblink_oci uses the
SERIALIZABLE transaction isolation level on the Oracle side, which corresponds to PostgreSQL’s REPEATABLE READ . This is necessary because a single PostgreSQL statement can lead to

multiple Oracle queries. It thereby uses a serializable isolation level to provide consistent results.

A serialization failure can occur when modifying a table concurrent with long-running DML transactions, for example, ADD , UPDATE , or DELETE statements. If such a failure occurs, the OCI reports
ORA-08177: can't serialize access for this transaction , and the application must retry the transaction.

A SCROLL rescan is quick, but each iteration resets the current row position to 1 . A SERIALIZABLE rescan has performance benefits over a SCROLL rescan.

Parameters

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 674

https://www.postgresql.org/docs/current/static/high-availability.html

PUBLIC

Create a public database link that any user can use. If you omit this parameter, then the database link is private and only the database link’s owner can use it.

name

The name of the database link.

username

The username to use for connecting to the remote database.

CURRENT_USER

Include CURRENT_USER to use the user mapping associated with the role that's using the link when establishing a connection to the remote server.

password

The password for username .

postgres_fdw

Specifies foreign data wrapper postgres_fdw as the connection to a remote EDB Postgres Advanced Server database. If postgres_fdw isn't installed on the database, use the CREATE
EXTENSION command to install postgres_fdw . For more information, see the CREATE EXTENSION command in the PostgreSQL core documentation.

fdw_connection_string

Specifies the connection information for the postgres_fdw foreign data wrapper.

oci

Specifies a connection to a remote Oracle database. This is the default behavior.

oracle_connection_string

Specifies the connection information for an oci connection.

Note

To create a non-public database link, you need the CREATE DATABASE LINK privilege. To create a public database link, you need the CREATE PUBLIC DATABASE LINK privilege.

Setting up an Oracle instant client for oci-dblink

To use oci-dblink, you must download and install an Oracle instant client on the host running the EDB Postgres Advanced Server database in which you want to create the database link.

You can download an instant client here.

Oracle instant client for Linux

These instructions apply to Linux hosts running EDB Postgres Advanced Server.

Be sure the libaio library (the Linux-native asynchronous I/O facility) is installed on the Linux host running EDB Postgres Advanced Server.

You can install the libaio library with the following command:

yum install libaio

If the Oracle instant client that you downloaded doesn't include the file named libclntsh.so without a version number suffix, create a symbolic link named libclntsh.so that points to the
downloaded version of the library file. To do so, navigate to the instant client directory and execute the following command:

ln -s libclntsh.so.<version> libclntsh.so

Where version is the version number of the libclntsh.so library. For example:

ln -s libclntsh.so.12.1 libclntsh.so

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 675

https://www.postgresql.org/docs/current/static/sql-createextension.html
http://www.oracle.com/technetwork/database/features/instant-client/index-097480.html

When executing a SQL command that references a database link to a remote Oracle database, EDB Postgres Advanced Server must know where the Oracle instant client library resides on the EDB
Postgres Advanced Server host.

The LD_LIBRARY_PATH environment variable must include the path to the Oracle client installation directory containing the libclntsh.so file. For example, if the installation directory
containing libclntsh.so is /tmp/instantclient , use:

export LD_LIBRARY_PATH=/tmp/instantclient:$LD_LIBRARY_PATH

Alternatively, you can set the value of the oracle_home configuration parameter in the postgresql.conf file. The oracle_home configuration parameter is an alternative to the
LD_LIBRARY_PATH environment variable. For more details on the oracle_home configuration parameter, see configuration paramters.

The ORACLE_HOME environment variable must be set and include the path to the Oracle home directory. For example,

export ORACLE_HOME=/opt/product/version/dbhomeXE

Note

You must set either the LD_LIBRARY_PATH or the oracle_home configuration parameter and the ORACLE_HOME environment variable before executing the pg_ctl utility to start
or restart EDB Postgres Advanced Server.

If you're running the current session as the user account (for example, enterprisedb) that directly invokes pg_ctl to start or restart EDB Postgres Advanced Server, then set either the
LD_LIBRARY_PATH environment variable or the oracle_home configuration parameter and the ORACLE_HOME environment variable before invoking pg_ctl .

You can set the LD_LIBRARY_PATH and the ORACLE_HOME environment variable in the .bash_profile file under the home directory of the enterprisedb user account. That is, set
LD_LIBRARY_PATH and ORACLE_HOME in the file ~enterprisedb/.bash_profile . This setting ensures that LD_LIBRARY_PATH and ORACLE_HOME are set when you log in as
enterprisedb .

If you're using a Linux service script with the systemctl or service command to start or restart EDB Postgres Advanced Server, you must set LD_LIBRARY_PATH and ORACLE_HOME so it's in
effect when the script invokes the pg_ctl utility.

For example, to set an environment variable for EDB Postgres Advanced Server, you can create a file named /etc/systemd/system/edb-as-14.service . Include
/lib/systemd/system/edb-as-14.service in the file.

If the LD_LIBRARY_PATH=/tmp/instantclient , include the environment variable by specifying:

[Service]
Environment=LD_LIBRARY_PATH=/tmp/instantclient:$LD_LIBRARY_PATH
Environment=ORACLE_HOME=/tmp/instantclient

Use the following command to reload systemd :

systemctl daemon-reload

Restart the EDB Postgres Advanced Server service:

systemctl restart edb-as-14

The script file that you need to modify to include the LD_LIBRARY_PATH setting depends on the EDB Postgres Advanced Server version and the Linux system on which it was installed.

Oracle instant client for Windows

These instructions apply to Windows hosts running EDB Postgres Advanced Server.

When you're executing a SQL command that references a database link to a remote Oracle database, EDB Postgres Advanced Server must know where the Oracle instant client library resides on the
EDB Postgres Advanced Server host.

Set the Windows PATH system environment variable to include the Oracle client installation directory that contains the oci.dll file.

Alternatively, you can set the value of the oracle_home configuration parameter in the postgresql.conf file. The value specified in the oracle_home configuration parameter overrides the
Windows PATH environment variable.

To set the oracle_home configuration parameter in the postgresql.conf file, add the following line:

oracle_home = 'lib_directory'

Substitute the name of the Windows directory that contains oci.dll for lib_directory . For example:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 676

oracle_home = 'C:/tmp/instantclient_10_2'

After setting the PATH environment variable or the oracle_home configuration parameter, you must restart the server for the changes to take effect. Restart the server from the Windows Services
console.

Note

If tnsnames.ora is configured in failover mode, and a client:server failure occurs, the client connection is established with a secondary server (usually a backup server). Later, when the
primary server resumes, the client retains its connection to a secondary server until a new session is established. The new client connections is automatically established with the primary
server. If the primary and secondary servers are out of sync, then the clients that established a connection to the secondary server and the clients that later connected to the primary server
might see a different database view.

Examples

Creating an oci-dblink database link

This example uses the CREATE DATABASE LINK command to create a database link named chicago that connects an instance of EDB Postgres Advanced Server to an Oracle server using an oci-
dblink connection. The connection information tells EDB Postgres Advanced Server to log in to Oracle as the user admin whose password is mypassword . Including the oci option tells EDB
Postgres Advanced Server that this is an oci-dblink connection. The connection string '//127.0.0.1/acctg' specifies the server address and name of the database.

CREATE DATABASE LINK chicago
 CONNECT TO admin IDENTIFIED BY 'mypassword'
 USING oci '//127.0.0.1/acctg';

Note

You can specify a hostname in the connection string in place of an IP address.

Creating a postgres_fdw database link

This example uses the CREATE DATABASE LINK command to create a database link named bedford . The database link connects an instance of EDB Postgres Advanced Server to another EDB
Postgres Advanced Server instance by way of a postgres_fdw foreign data wrapper connection. The connection information tells EDB Postgres Advanced Server to log in as the user admin with
the password mypassword . Including the postgres_fdw option tells EDB Postgres Advanced Server that this is a postgres_fdw connection. The connection string, 'host=127.0.0.1
port=5444 dbname=marketing' specifies the server address and name of the database.

CREATE DATABASE LINK bedford
 CONNECT TO admin IDENTIFIED BY 'mypassword'
 USING postgres_fdw 'host=127.0.0.1 port=5444 dbname=marketing';

Note

You can specify a hostname in the connection string in place of an IP address.

Using a database link

These examples use a database link with EDB Postgres Advanced Server to connect to an Oracle database. The examples assume that a copy of the EDB Postgres Advanced Server sample application’s
emp table was created in an Oracle database. A second EDB Postgres Advanced Server database cluster with the sample application is accepting connections at port 5443 .

Create a public database link, named oralink , to an Oracle database named xe located at 127.0.0.1 on port 1521 . Connect to the Oracle database with the username edb and password
password .

CREATE PUBLIC DATABASE LINK oralink CONNECT TO edb IDENTIFIED BY 'password'
USING '//127.0.0.1:1521/xe';

Issue a SELECT command on the emp table in the Oracle database using the database link oralink .

SELECT * FROM emp@oralink;

 empno | ename | job | mgr | hiredate | sal | comm | deptno
-------+--------+-----------+------+--------------------+------+------+--------
 7369 | SMITH | CLERK | 7902 | 17-DEC-80 00:00:00 | 800 | | 20
 7499 | ALLEN | SALESMAN | 7698 | 20-FEB-81 00:00:00 | 1600 | 300 | 30
 7521 | WARD | SALESMAN | 7698 | 22-FEB-81 00:00:00 | 1250 | 500 | 30
 7566 | JONES | MANAGER | 7839 | 02-APR-81 00:00:00 | 2975 | | 20

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 677

 7654 | MARTIN | SALESMAN | 7698 | 28-SEP-81 00:00:00 | 1250 | 1400 | 30
 7698 | BLAKE | MANAGER | 7839 | 01-MAY-81 00:00:00 | 2850 | | 30
 7782 | CLARK | MANAGER | 7839 | 09-JUN-81 00:00:00 | 2450 | | 10
 7788 | SCOTT | ANALYST | 7566 | 19-APR-87 00:00:00 | 3000 | | 20
 7839 | KING | PRESIDENT | | 17-NOV-81 00:00:00 | 5000 | | 10
 7844 | TURNER | SALESMAN | 7698 | 08-SEP-81 00:00:00 | 1500 | 0 | 30
 7876 | ADAMS | CLERK | 7788 | 23-MAY-87 00:00:00 | 1100 | | 20
 7900 | JAMES | CLERK | 7698 | 03-DEC-81 00:00:00 | 950 | | 30
 7902 | FORD | ANALYST | 7566 | 03-DEC-81 00:00:00 | 3000 | | 20
 7934 | MILLER | CLERK | 7782 | 23-JAN-82 00:00:00 | 1300 | | 10
(14 rows)

Create a private database link, named fdwlink , to the EDB Postgres Advanced Server database named edb located on host 192.168.2.22 running on port 5444 . Connect to the EDB Postgres
Advanced Server database with the username enterprisedb and password password .

CREATE DATABASE LINK fdwlink CONNECT TO enterprisedb IDENTIFIED BY
'password' USING postgres_fdw 'host=192.168.2.22 port=5444 dbname=edb';

Display attributes of database links oralink and fdwlink from the local edb_dblink system table:

SELECT lnkname, lnkuser, lnkconnstr FROM pg_catalog.edb_dblink;

 lnkname | lnkuser | lnkconnstr
---------+--------------+--
 oralink | edb | //127.0.0.1:1521/xe
 fdwlink | enterprisedb |
(2 rows)

Perform a join of the emp table from the Oracle database with the dept table from the EDB Postgres Advanced Server database:

SELECT d.deptno, d.dname, e.empno, e.ename, e.job, e.sal, e.comm FROM
emp@oralink e, dept@fdwlink d WHERE e.deptno = d.deptno ORDER BY 1, 3;

 deptno | dname | empno | ename | job | sal | comm
--------+------------+-------+--------+-----------+------+------
 10 | ACCOUNTING | 7782 | CLARK | MANAGER | 2450 |
 10 | ACCOUNTING | 7839 | KING | PRESIDENT | 5000 |
 10 | ACCOUNTING | 7934 | MILLER | CLERK | 1300 |
 20 | RESEARCH | 7369 | SMITH | CLERK | 800 |
 20 | RESEARCH | 7566 | JONES | MANAGER | 2975 |
 20 | RESEARCH | 7788 | SCOTT | ANALYST | 3000 |
 20 | RESEARCH | 7876 | ADAMS | CLERK | 1100 |
 20 | RESEARCH | 7902 | FORD | ANALYST | 3000 |
 30 | SALES | 7499 | ALLEN | SALESMAN | 1600 | 300
 30 | SALES | 7521 | WARD | SALESMAN | 1250 | 500
 30 | SALES | 7654 | MARTIN | SALESMAN | 1250 | 1400
 30 | SALES | 7698 | BLAKE | MANAGER | 2850 |
 30 | SALES | 7844 | TURNER | SALESMAN | 1500 | 0
 30 | SALES | 7900 | JAMES | CLERK | 950 |
(14 rows)

Pushdown for an oci database link

When the oci-dblink is used to execute SQL statements on a remote Oracle database, sometimes the pushdown of the processing occurs on the foreign server.

Pushdown refers to the occurrence of processing on the foreign (that is, remote) server instead of the local client where the SQL statement was issued. Pushdown can result in performance improvement
since the data is processed on the remote server before being returned to the local client.

Pushdown applies to statements with the standard SQL join operations (inner join, left outer join, right outer join, and full outer join). Pushdown occurs even when a sort is specified on the resulting
data set.

For pushdown to occur, some basic conditions must be met. The tables involved in the join operation must belong to the same foreign server and use the identical connection information to the foreign
server. This connection information is the same database link defined with the CREATE DATABASE LINK command.

To determine whether to use pushdown for a SQL statement, display the execution plan by using the EXPLAIN command. For information about the EXPLAIN command, see the PostgreSQL core
documentation.

These examples use the following database link:

CREATE PUBLIC DATABASE LINK oralink CONNECT TO edb IDENTIFIED BY 'password'
USING '//192.168.2.23:1521/xe';

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 678

https://www.postgresql.org/docs/current/static/sql-explain.html

This example shows the execution plan of an inner join:

EXPLAIN (verbose,costs off) SELECT d.deptno, d.dname, e.empno, e.ename FROM
dept@oralink d, emp@oralink e WHERE d.deptno = e.deptno ORDER BY 1, 3;

 QUERY PLAN
--
 Foreign Scan
 Output: d.deptno, d.dname, e.empno, e.ename
 Relations: (_dblink_dept_1 d) INNER JOIN (_dblink_emp_2 e)
 Remote Query: SELECT r1.deptno, r1.dname, r2.empno, r2.ename FROM (dept r1 INNER
JOIN emp r2 ON ((r1.deptno = r2.deptno))) ORDER BY r1.deptno ASC NULLS LAST, r2.empno ASC NULLS LAST
(4 rows)

The INNER JOIN operation occurs under the Foreign Scan section. The output of this join is the following:

deptno | dname | empno | ename
-------+------------+-------+--------
 10 | ACCOUNTING | 7782 | CLARK
 10 | ACCOUNTING | 7839 | KING
 10 | ACCOUNTING | 7934 | MILLER
 20 | RESEARCH | 7369 | SMITH
 20 | RESEARCH | 7566 | JONES
 20 | RESEARCH | 7788 | SCOTT
 20 | RESEARCH | 7876 | ADAMS
 20 | RESEARCH | 7902 | FORD
 30 | SALES | 7499 | ALLEN
 30 | SALES | 7521 | WARD
 30 | SALES | 7654 | MARTIN
 30 | SALES | 7698 | BLAKE
 30 | SALES | 7844 | TURNER
 30 | SALES | 7900 | JAMES
(14 rows)

The following shows the execution plan of a left outer join:

EXPLAIN (verbose,costs off) SELECT d.deptno, d.dname, e.empno, e.ename FROM
dept@oralink d LEFT OUTER JOIN emp@oralink e ON d.deptno = e.deptno ORDER BY 1, 3;

 QUERY PLAN
--
 Foreign Scan
 Output: d.deptno, d.dname, e.empno, e.ename
 Relations: (_dblink_dept_1 d) LEFT JOIN (_dblink_emp_2 e)
 Remote Query: SELECT r1.deptno, r1.dname, r2.empno, r2.ename FROM (dept r1 LEFT JOIN
emp r2 ON ((r1.deptno = r2.deptno))) ORDER BY r1.deptno ASC NULLS LAST, r2.empno ASC NULLS LAST
(4 rows)

The output of this join is the following:

deptno | dname | empno | ename
-------+------------+-------+--------
 10 | ACCOUNTING | 7782 | CLARK
 10 | ACCOUNTING | 7839 | KING
 10 | ACCOUNTING | 7934 | MILLER
 20 | RESEARCH | 7369 | SMITH
 20 | RESEARCH | 7566 | JONES
 20 | RESEARCH | 7788 | SCOTT
 20 | RESEARCH | 7876 | ADAMS
 20 | RESEARCH | 7902 | FORD
 30 | SALES | 7499 | ALLEN
 30 | SALES | 7521 | WARD
 30 | SALES | 7654 | MARTIN
 30 | SALES | 7698 | BLAKE
 30 | SALES | 7844 | TURNER
 30 | SALES | 7900 | JAMES
 40 | OPERATIONS | |
(15 rows)

This example shows a case where the entire processing isn't pushed down because the emp joined table resides locally instead of on the same foreign server:

EXPLAIN (verbose,costs off) SELECT d.deptno, d.dname, e.empno, e.ename FROM
dept@oralink d LEFT OUTER JOIN emp e ON d.deptno = e.deptno ORDER BY 1, 3;

 QUERY PLAN

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 679

--
 Sort
 Output: d.deptno, d.dname, e.empno, e.ename
 Sort Key: d.deptno, e.empno
 -> Hash Left Join
 Output: d.deptno, d.dname, e.empno, e.ename
 Hash Cond: (d.deptno = e.deptno)
 -> Foreign Scan on _dblink_dept_1 d
 Output: d.deptno, d.dname, d.loc
 Remote Query: SELECT deptno, dname, NULL FROM dept
 -> Hash
 Output: e.empno, e.ename, e.deptno
 -> Seq Scan on public.emp e
 Output: e.empno, e.ename, e.deptno
(13 rows)

The output of this join is the same as the previous left-outer-join example.

Creating a foreign table from a database link

Note

This procedure isn't compatible with Oracle databases.

After you create a database link, you can create a foreign table based on this database link. You can then use the foreign table to access the remote table, referencing it with the foreign table name
instead of using the database link syntax. Using the database link requires appending @dblink to the table or view name referenced in the SQL command, where dblink is the name of the
database link.

You can use this technique for either an oci-dblink connection for remote Oracle access or a postgres_fdw connection for remote Postgres access.

This example creates a foreign table to access a remote Oracle table.

The following creates a database link named oralink for connecting to the Oracle database:

CREATE PUBLIC DATABASE LINK oralink CONNECT TO edb IDENTIFIED BY 'password'
USING '//127.0.0.1:1521/xe';

The following query shows the database link:

SELECT lnkname, lnkuser, lnkconnstr FROM pg_catalog.edb_dblink;

 lnkname | lnkuser | lnkconnstr
---------+---------+---------------------
 oralink | edb | //127.0.0.1:1521/xe
(1 row)

When you create the database link, EDB Postgres Advanced Server creates a corresponding foreign server. The following query displays the foreign server:

SELECT srvname, srvowner, srvfdw, srvtype, srvoptions FROM
pg_foreign_server;

 srvname | srvowner | srvfdw | srvtype | srvoptions
---------+----------+--------+---------+-------------------------------
 oralink | 10 | 14005 | | {connstr=//127.0.0.1:1521/xe}
(1 row)

For more information about foreign servers, see the CREATE SERVER command in the PostgreSQL core documentation.

Create the foreign table:

CREATE FOREIGN TABLE emp_ora (
 empno NUMERIC(4),
 ename VARCHAR(10),
 job VARCHAR(9),
 mgr NUMERIC(4),
 hiredate TIMESTAMP WITHOUT TIME ZONE,
 sal NUMERIC(7,2),
 comm NUMERIC(7,2),
 deptno NUMERIC(2)
)
 SERVER oralink

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 680

https://www.postgresql.org/docs/current/static/sql-createserver.html

 OPTIONS (table_name 'emp', schema_name 'edb'
);

Note the following in the CREATE FOREIGN TABLE command:

The name specified in the SERVER clause at the end of the CREATE FOREIGN TABLE command is the name of the foreign server, which is oralink in this example. You can see this name
in the srvname column from the query on pg_foreign_server .
The table name and schema name are specified in the OPTIONS clause by the table and schema options.
The column names specified in the CREATE FOREIGN TABLE command must match the column names in the remote table.
Generally, CONSTRAINT clauses can't be accepted or enforced on the foreign table. They are assumed to have been defined on the remote table.

For more information about the CREATE FOREIGN TABLE command, see the PostgreSQL core documentation.

The following is a query on the foreign table:

SELECT * FROM emp_ora;

 empno | ename | job | mgr | hiredate | sal | comm | deptno
-------+--------+-----------+------+--------------------+---------+---------+--------
 7369 | SMITH | CLERK | 7902 | 17-DEC-80 00:00:00 | 800.00 | | 20
 7499 | ALLEN | SALESMAN | 7698 | 20-FEB-81 00:00:00 | 1600.00 | 300.00 | 30
 7521 | WARD | SALESMAN | 7698 | 22-FEB-81 00:00:00 | 1250.00 | 500.00 | 30
 7566 | JONES | MANAGER | 7839 | 02-APR-81 00:00:00 | 2975.00 | | 20
 7654 | MARTIN | SALESMAN | 7698 | 28-SEP-81 00:00:00 | 1250.00 | 1400.00 | 30
 7698 | BLAKE | MANAGER | 7839 | 01-MAY-81 00:00:00 | 2850.00 | | 30
 7782 | CLARK | MANAGER | 7839 | 09-JUN-81 00:00:00 | 2450.00 | | 10
 7788 | SCOTT | ANALYST | 7566 | 19-APR-87 00:00:00 | 3000.00 | | 20
 7839 | KING | PRESIDENT | | 17-NOV-81 00:00:00 | 5000.00 | | 10
 7844 | TURNER | SALESMAN | 7698 | 08-SEP-81 00:00:00 | 1500.00 | 0.00 | 30
 7876 | ADAMS | CLERK | 7788 | 23-MAY-87 00:00:00 | 1100.00 | | 20
 7900 | JAMES | CLERK | 7698 | 03-DEC-81 00:00:00 | 950.00 | | 30
 7902 | FORD | ANALYST | 7566 | 03-DEC-81 00:00:00 | 3000.00 | | 20
 7934 | MILLER | CLERK | 7782 | 23-JAN-82 00:00:00 | 1300.00 | | 10
(14 rows)

In contrast, the following is a query on the same remote table but using the database link instead of the foreign table:

SELECT * FROM emp@oralink;

 empno | ename | job | mgr | hiredate | sal | comm | deptno
-------+--------+-----------+------+--------------------+------+------+--------
 7369 | SMITH | CLERK | 7902 | 17-DEC-80 00:00:00 | 800 | | 20
 7499 | ALLEN | SALESMAN | 7698 | 20-FEB-81 00:00:00 | 1600 | 300 | 30
 7521 | WARD | SALESMAN | 7698 | 22-FEB-81 00:00:00 | 1250 | 500 | 30
 7566 | JONES | MANAGER | 7839 | 02-APR-81 00:00:00 | 2975 | | 20
 7654 | MARTIN | SALESMAN | 7698 | 28-SEP-81 00:00:00 | 1250 | 1400 | 30
 7698 | BLAKE | MANAGER | 7839 | 01-MAY-81 00:00:00 | 2850 | | 30
 7782 | CLARK | MANAGER | 7839 | 09-JUN-81 00:00:00 | 2450 | | 10
 7788 | SCOTT | ANALYST | 7566 | 19-APR-87 00:00:00 | 3000 | | 20
 7839 | KING | PRESIDENT | | 17-NOV-81 00:00:00 | 5000 | | 10
 7844 | TURNER | SALESMAN | 7698 | 08-SEP-81 00:00:00 | 1500 | 0 | 30
 7876 | ADAMS | CLERK | 7788 | 23-MAY-87 00:00:00 | 1100 | | 20
 7900 | JAMES | CLERK | 7698 | 03-DEC-81 00:00:00 | 950 | | 30
 7902 | FORD | ANALYST | 7566 | 03-DEC-81 00:00:00 | 3000 | | 20
 7934 | MILLER | CLERK | 7782 | 23-JAN-82 00:00:00 | 1300 | | 10
(14 rows)

Note

For backward compatibility, you can still write USING libpq instead of USING postgres_fdw . However, the libpq connector is missing important optimizations that the
postgres_fdw connector has. Therefore, use the postgres_fdw connector when possible. The libpq option is deprecated and might be removed in a future EDB Postgres Advanced

Server release.

See also

DROP DATABASE LINK

20.22 CREATE DIRECTORY

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 681

https://www.postgresql.org/docs/current/static/sql-createforeigntable.html

Name

CREATE DIRECTORY — Create an alias for a file system directory path.

Synopsis

CREATE DIRECTORY <name> AS '<pathname>'

Description

The CREATE DIRECTORY command creates an alias for a file system directory pathname. You must be a database superuser to use this command.

When you specify the alias as the appropriate parameter to the programs of the UTL_FILE package, the operating system files are created in or accessed from the directory corresponding to the alias.

Parameters

name

The directory alias name.

pathname

The fully qualified directory path represented by the alias name. The CREATE DIRECTORY command doesn't create the operating system directory. The physical directory must be created
independently using operating system commands.

Notes

The operating system user id enterprisedb must have the appropriate read and write privileges on the directory if you want to use the UTL_FILE package to create or read files using the
directory.

The directory alias is stored in the pg_catalog.edb_dir system catalog table.

Note

The edb_dir table isn't compatible with Oracle databases.

You can also view the directory alias from the Oracle catalog views SYS.ALL_DIRECTORIES and SYS.DBA_DIRECTORIES . These views are compatible with Oracle databases.

Use the DROP DIRECTORY command to delete the directory alias. Deleting a directory alias doesn't affect the corresponding physical file system directory. Delete the file system directory using
operating system commands.

In a Linux system, the directory name separator is a forward slash (/) .

In a Windows system, you can specify the directory name separator as a forward slash (/) or two consecutive backslashes (\\) .

Examples

Create an alias named empdir for the directory /tmp/empdir on Linux:

CREATE DIRECTORY empdir AS '/tmp/empdir';

Create an alias named empdir for the directory C:\TEMP\EMPDIR on Windows:

CREATE DIRECTORY empdir AS 'C:/TEMP/EMPDIR';

View all of the directory aliases:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 682

SELECT * FROM pg_catalog.edb_dir;

dirname | dirowner | dirpath | diracl
--------+----------+----------------+--------
 empdir | 10 | C:/TEMP/EMPDIR |
(1 row)

View the directory aliases using a view compatible with Oracle databases:

SELECT * FROM SYS.ALL_DIRECTORIES;

 owner | directory_name | directory_path
--------------+----------------+----------------
 ENTERPRISEDB | EMPDIR | C:/TEMP/EMPDIR
(1 row)

See also

ALTER DIRECTORY, DROP DIRECTORY

20.23 CREATE FUNCTION

Name

CREATE FUNCTION — Define a new function.

Synopsis

CREATE [OR REPLACE] FUNCTION <name> [(<parameters>)]
 RETURN <data_type>
 [
 IMMUTABLE
 | STABLE
 | VOLATILE
 | DETERMINISTIC
 | [NOT] LEAKPROOF
 | CALLED ON NULL INPUT
 | RETURNS NULL ON NULL INPUT
 | STRICT
 | [EXTERNAL] SECURITY INVOKER
 | [EXTERNAL] SECURITY DEFINER
 | AUTHID DEFINER
 | AUTHID CURRENT_USER
 | PARALLEL { UNSAFE | RESTRICTED | SAFE }
 | COST <execution_cost>
 | ROWS <result_rows>
 | SET configuration_parameter
 { TO <value> | = <value> | FROM CURRENT }
 ...]
{ IS | AS }
 [PRAGMA AUTONOMOUS_TRANSACTION;]
 [<declarations>]
 BEGIN
 <statements>
 END [<name>];

Description

CREATE FUNCTION defines a new function. CREATE OR REPLACE FUNCTION either creates a new function or replaces an existing definition.

If you include a schema name, then the function is created in the specified schema. Otherwise it's created in the current schema. The name of the new function can't match any existing function with the
same input argument types in the same schema. However, functions of different input argument types can share a name. This is called overloading.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 683

Note

Overloading functions is an EDB Postgres Advanced Server feature. Overloading stored, standalone functions isn't compatible with Oracle databases.

To update the definition of an existing function, use CREATE OR REPLACE FUNCTION . You can't change the name or argument types of a function this way. (That syntax instead creates a new
function.) CREATE OR REPLACE FUNCTION also doesn't let you change the return type of an existing function. To do that, you must drop the function and create it again. Also, you can change the
types of any OUT parameters only by dropping the function first.

The user that creates the function becomes the owner of the function.

Parameters

name

The identifier of the function.

parameters

A list of formal parameters.

data_type

The data type of the value returned by the function’s RETURN statement.

declarations

Variable, cursor, type, or subprogram declarations. To include subprogram declarations, declare them after all other variable, cursor, and type declarations.

statements

SPL program statements. The BEGIN - END block can contain an EXCEPTION section.

IMMUTABLE

STABLE

VOLATILE

These attributes inform the query optimizer about the behavior of the function. You can specify only one of these attributes.

Use IMMUTABLE to indicate that the function can't modify the database and must always reach the same result when given the same argument values. This attribute doesn't perform database
lookups and uses only information present in its argument list. If you include this clause, you can immediately replace any call of the function with all-constant arguments with the function
value.

Use STABLE to indicate that the function can't modify the database and that, in a single table scan, it consistently returns the same result for the same argument values. However, its result
might change across SQL statements. Use this selection for functions that depend on database lookups, parameter variables (such as the current time zone), and so on.

Use VOLATILE (the default) to indicate that the function value can change even in a single table scan, so no optimizations can be made. Classify any function that has side effects as volatile,
even if its result is predictable. This setting prevent calls from being optimized away.

DETERMINISTIC

DETERMINISTIC is a synonym for IMMUTABLE . A DETERMINISTIC function can't modify the database and always reaches the same result when given the same argument values. It doesn't
perform database lookups and uses only information directly present in its argument list. If you include this clause, you can immediately replace any call of the function with all-constant arguments
with the function value.

[NOT] LEAKPROOF

A LEAKPROOF function has no side effects and reveals no information about the values used to call the function.

CALLED ON NULL INPUT

RETURNS NULL ON NULL INPUT

STRICT

Use CALLED ON NULL INPUT (the default) to call the procedure normally when some of its arguments are NULL . Check for NULL values, if necessary, and respond appropriately.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 684

Use RETURNS NULL ON NULL INPUT or STRICT to indicate that the procedure always returns NULL when any of its arguments are NULL . If you use these clauses, the procedure
doesn't execute when there are NULL arguments. Instead, a NULL result is assumed.

[EXTERNAL] SECURITY DEFINER

SECURITY DEFINER (the default) specifies for the function to execute with the privileges of the user that created it. The optional keyword EXTERNAL is allowed for SQL conformance.

[EXTERNAL] SECURITY INVOKER

Use the SECURITY INVOKER clause to execute the function with the privileges of the user that calls it. The optional keyword EXTERNAL is allowed for SQL conformance.

AUTHID DEFINER

AUTHID CURRENT_USER

The AUTHID DEFINER clause is a synonym for [EXTERNAL] SECURITY DEFINER . If you omit the AUTHID clause or specify AUTHID DEFINER , the rights of the function owner
determine access privileges to database objects.

The AUTHID CURRENT_USER clause is a synonym for [EXTERNAL] SECURITY INVOKER . If you specify AUTHID CURRENT_USER , the rights of the current user executing the function
determine access privileges.

PARALLEL { UNSAFE | RESTRICTED | SAFE }

The PARALLEL clause enables the use of parallel sequential scans (parallel mode). A parallel sequential scan uses multiple workers to scan a relation in parallel during a query, in contrast to a serial
sequential scan.

When set to UNSAFE (the default), the function can't execute in parallel mode. The presence of such a function in a SQL statement forces a serial execution plan.

When set to RESTRICTED , the function can execute in parallel mode, but the execution is restricted to the parallel group leader. If the qualification for any particular relation has anything that
is parallel restricted, that relation isn't chosen for parallelism.

When set to SAFE , the function can execute in parallel mode with no restriction.

COST execution_cost

execution_cost is a positive number giving the estimated execution cost for the function, in units of cpu_operator_cost . If the function returns a set, this is the cost per returned row. Larger
values cause the planner to try to avoid evaluating the function more often than needed.

ROWS result_rows

result_rows is a positive number giving the estimated number of rows for the planner to expect the function to return. This option is allowed only when the function is declared to return a set. The
default assumption is 1000 rows.

SET configuration_parameter { TO value | = value | FROM CURRENT }

The SET clause causes the specified configuration parameter to be set to the specified value when the function is entered and then restored to its prior value when the function exits. SET FROM
CURRENT saves the session's current value of the parameter as the value to apply when the function is entered.

If a SET clause is attached to a function, then the effects of a SET LOCAL command executed inside the function for the same variable are restricted to the function. The configuration parameter's
prior value is restored at function exit. An ordinary SET command (without LOCAL) overrides the SET clause, similar to a previous SET LOCAL command. The effects of such a command persist
after procedure exit unless the current transaction is rolled back.

PRAGMA AUTONOMOUS_TRANSACTION

PRAGMA AUTONOMOUS_TRANSACTION is the directive that sets the function as an autonomous transaction.

Note

The STRICT , LEAKPROOF , PARALLEL , COST , ROWS and SET keywords provide extended functionality for EDB Postgres Advanced Server and aren't supported by Oracle.

Notes

EDB Postgres Advanced Server allows function overloading. That is, you can use the same name for several different functions. However, they must have discrete input (IN , IN OUT) argument data
types.

Examples

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 685

The function emp_comp takes two numbers as input and returns a computed value. The SELECT command shows the use of the function.

CREATE OR REPLACE FUNCTION emp_comp (
 p_sal NUMBER,
 p_comm NUMBER
) RETURN NUMBER
IS
BEGIN
 RETURN (p_sal + NVL(p_comm, 0)) * 24;
END;

SELECT ename "Name", sal "Salary", comm "Commission", emp_comp(sal, comm)
 "Total Compensation" FROM emp;

 Name | Salary | Commission | Total Compensation
--------+---------+------------+--------------------
 SMITH | 800.00 | | 19200.00
 ALLEN | 1600.00 | 300.00 | 45600.00
 WARD | 1250.00 | 500.00 | 42000.00
 JONES | 2975.00 | | 71400.00
 MARTIN | 1250.00 | 1400.00 | 63600.00
 BLAKE | 2850.00 | | 68400.00
 CLARK | 2450.00 | | 58800.00
 SCOTT | 3000.00 | | 72000.00
 KING | 5000.00 | | 120000.00
 TURNER | 1500.00 | 0.00 | 36000.00
 ADAMS | 1100.00 | | 26400.00
 JAMES | 950.00 | | 22800.00
 FORD | 3000.00 | | 72000.00
 MILLER | 1300.00 | | 31200.00
(14 rows)

The function sal_range returns a count of the number of employees whose salary falls in the specified range. The following anonymous block calls the function a number of times using the
argument's default values for the first two calls:

CREATE OR REPLACE FUNCTION sal_range (
 p_sal_min NUMBER DEFAULT 0,
 p_sal_max NUMBER DEFAULT 10000
) RETURN INTEGER
IS
 v_count INTEGER;
BEGIN
 SELECT COUNT(*) INTO v_count FROM emp
 WHERE sal BETWEEN p_sal_min AND p_sal_max;
 RETURN v_count;
END;

BEGIN
 DBMS_OUTPUT.PUT_LINE('Number of employees with a salary: ' ||
 sal_range);
 DBMS_OUTPUT.PUT_LINE('Number of employees with a salary of at least '
 || '$2000.00: ' || sal_range(2000.00));
 DBMS_OUTPUT.PUT_LINE('Number of employees with a salary between '
 || '$2000.00 and $3000.00: ' || sal_range(2000.00, 3000.00));

END;

Number of employees with a salary: 14
Number of employees with a salary of at least $2000.00: 6
Number of employees with a salary between $2000.00 and $3000.00: 5

This example uses the AUTHID CURRENT_USER clause and STRICT keyword in a function declaration:

CREATE OR REPLACE FUNCTION dept_salaries(dept_id int) RETURN NUMBER
 STRICT
 AUTHID CURRENT_USER
BEGIN
 RETURN QUERY (SELECT sum(salary) FROM emp WHERE deptno = id);
END;

Include the STRICT keyword to return NULL if any input parameter passed is NULL . If a NULL value is passed, the function doesn't execute.

The dept_salaries function executes with the privileges of the role that's calling the function. If the current user doesn't have privileges to perform the SELECT statement querying the emp
table (to display employee salaries), the function reports an error. To use the privileges associated with the role that defined the function, replace the AUTHID CURRENT_USER clause with the
AUTHID DEFINER clause.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 686

Other Pragmas (declared in a package specification)

PRAGMA RESTRICT_REFERENCES

EDB Postgres Advanced Server accepts but ignores syntax referencing PRAGMA RESTRICT_REFERENCES .

See also

DROP FUNCTION

20.24 CREATE INDEX

Name

CREATE INDEX — Define a new index.

Synopsis

CREATE [UNIQUE] INDEX <name> ON <table>
 ({ <column> | (<expression>) | <constant> })
 [TABLESPACE <tablespace>]
 ({ NOPARALLEL | PARALLEL [<integer>] })

Description

CREATE INDEX constructs an index, name , on the specified table. Indexes are primarily used to enhance database performance. However, inappropriate use results in slower performance.

The key fields for the index are specified as column names, constants, or as expressions written in parentheses. You can specify multiple fields to create multicolumn indexes.

An index field can be an expression computed from the values of one or more columns of the table row. You can use this feature to get fast access to data based on some transformation of the basic data.
For example, an index computed on UPPER(col) allows the clause WHERE UPPER(col) = 'JIM' to use an index.

EDB Postgres Advanced Server provides the B-tree index method. The B-tree index method is an implementation of Lehman-Yao high-concurrency B-trees.

By default, indexes aren't used for IS NULL clauses.

All functions and operators used in an index definition must be immutable. That is, their results must depend only on their arguments and never on any outside influence, such as the contents of
another table or the current time. This restriction ensures that the behavior of the index is well-defined. To use a user-defined function in an index expression, mark the function immutable when you
create it.

If you create an index on a partitioned table, the CREATE INDEX command propagates indexes to the table’s subpartitions.

The PARALLEL clause specifies the degree of parallelism used while creating an index. The NOPARALLEL clause resets the parallelism to the default value. reloptions shows the
parallel_workers parameter as 0 .

Note

If you use the CREATE INDEX... PARALLEL command to create an index on a table whose definition included the PARALLEL clause at creation, the server uses the PARALLEL clause
provided with the CREATE INDEX command when building a parallel index.

Parameters

UNIQUE

Causes the system to check for duplicate values in the table when the index is created, if data already exists, and each time data is added. Attempts to insert or update data that would result in duplicate
entries generates an error.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 687

name

The name of the index to create. You can't create a schema name here. The index is always created in the same schema as its parent table.

table

The name (possibly schema-qualified) of the table to index.

column

The name of a column in the table.

expression

An expression based on one or more columns of the table. Usually, you must write the expression surrounded by parentheses, as shown in the syntax. However, you can omit the parentheses if the
expression has the form of a function call.

constant

A constant value that you can use as an index key.

Normally, a row where all indexed columns are NULL isn't included in an index. That means that the optimizer can't use that index for certain queries. To overcome this limitation, you can add a
constant to the index, which forces the index to never contain a row where all index columns are NULL .

tablespace

The tablespace in which to create the index. If not specified, default_tablespace is used, or the database’s default tablespace if default_tablespace is an empty string.

PARALLEL

Specify PARALLEL to select a degree of parallelism. Set parallel_workers parameter equal to the degree of parallelism to create a parallelized index. Alternatively, if you specify PARALLEL
but don't list the degree of parallelism, an index accepts default parallelism.

NOPARALLEL

Specify NOPARALLEL for default execution.

integer

The integer indicates the degree of parallelism, which is a number of parallel_workers used in the parallel operation to perform a parallel scan on an index.

Notes

You can specify up to 32 fields in a multicolumn index.

Examples

To create a B-tree index on the column ename in the table emp :

CREATE INDEX name_idx ON emp (ename);

To create the same index but have it reside in the index_tblspc tablespace:

CREATE INDEX name_idx ON emp (ename) TABLESPACE index_tblspc;

You can include a constant value in the index definition (1) to create an index that never contains a row where all of the indexed columns are NULL :

CREATE INDEX emp_dob_idx on emp (emp_dob, 1);

To create an index on name_idx in the table emp with degree of parallelism set to 7:

CREATE UNIQUE INDEX name_idx ON emp (ename) PARALLEL 7;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 688

See also

ALTER INDEX, DROP INDEX

20.25 CREATE MATERIALIZED VIEW

Name

CREATE MATERIALIZED VIEW — Define a new materialized view.

Synopsis

CREATE MATERIALIZED VIEW <name>
 [<build_clause>][<create_mv_refresh>] AS subquery

 Where <build_clause> is:

 BUILD {IMMEDIATE | DEFERRED}

 Where <create_mv_refresh> is:

 REFRESH [COMPLETE] [ON DEMAND]

Description

CREATE MATERIALIZED VIEW defines a view of a query that isn't updated each time the view is referenced in a query. By default, the view is populated when the view is created. You can include
the BUILD DEFERRED keywords to delay populating the view.

A materialized view can be schema-qualified. If you specify a schema name when invoking the CREATE MATERIALIZED VIEW command, the view is created in the specified schema. The view name
must be different from the name of any other view, table, sequence, or index in the same schema.

Parameters

name

The name (optionally schema-qualified) of a view to create.

subquery

A SELECT statement that specifies the contents of the view.

build_clause

Include a build_clause to specify when to populate the view. Specify BUILD IMMEDIATE or BUILD DEFERRED :

BUILD IMMEDIATE (the default) populates the view immediately.
BUILD DEFERRED populates the view later, during a REFRESH operation.

create_mv_refresh

Include the create_mv_refresh clause to specify when to update the contents of a materialized view. The clause contains the REFRESH keyword followed by optional COMPLETE and ON
DEMAND keywords, where:

COMPLETE discards the current content and reloads the materialized view by executing the view's defining query when refreshing the materialized view.

ON DEMAND (the default) refreshes the materialized view on demand by calling the DBMS_MVIEW package or by calling the Postgres REFRESH MATERIALIZED VIEW statement.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 689

Notes

Materialized views are read-only. The server doesn't allow an INSERT , UPDATE , or DELETE on a view.

Permissions of the view owner determine access to tables referenced in the view. The user of a view must have permissions to call all functions the view uses.

For more information about the Postgres REFRESH MATERIALIZED VIEW command, see the PostgreSQL core documentation.

Examples

This statement creates a materialized view named dept_30 :

CREATE MATERIALIZED VIEW dept_30 BUILD IMMEDIATE AS SELECT * FROM emp WHERE deptno = 30;

The view contains information retrieved from the emp table about any employee that works in department 30 .

20.26 CREATE PACKAGE

Name

CREATE PACKAGE — Define a new package specification.

Synopsis

CREATE [OR REPLACE] PACKAGE <name>
[AUTHID { DEFINER | CURRENT_USER }]
{ IS | AS }
 [<declaration>;] [, ...]
 [{ PROCEDURE <proc_name>
 [(<argname> [IN | IN OUT | OUT] <argtype> [DEFAULT <value>]
 [, ...])];
 [PRAGMA RESTRICT_REFERENCES(<name>,
 { RNDS | RNPS | TRUST | WNDS | WNPS } [, ...]);]
 |
 FUNCTION <func_name>
 [(<argname> [IN | IN OUT | OUT] <argtype> [DEFAULT <value>]
 [, ...])]
 RETURN <rettype> [DETERMINISTIC];
 [PRAGMA RESTRICT_REFERENCES(<name>,
 { RNDS | RNPS | TRUST | WNDS | WNPS } [, ...]);]
 }
] [, ...]
 END [<name>]

Description

CREATE PACKAGE defines a new package specification. CREATE OR REPLACE PACKAGE either creates a new package specification or replaces an existing specification.

If you include a schema name, then the package is created in the specified schema. Otherwise it's created in the current schema. The name of the new package can't match any existing package in the
same schema unless you want to update the definition of an existing package. In that case, use CREATE OR REPLACE PACKAGE .

The user that creates the procedure becomes the owner of the package.

Parameters

name

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 690

https://www.postgresql.org/docs/current/static/sql-refreshmaterializedview.html

The name (optionally schema-qualified) of the package to create.

DEFINER | CURRENT_USER

Specifies whether to use the privileges of the package owner (DEFINER) or the privileges of the current user executing a program in the package (CURRENT_USER) to determine whether access is
allowed to database objects referenced in the package. DEFINER is the default.

declaration

A public variable, type, cursor, or REF CURSOR declaration.

proc_name

The name of a public procedure.

argname

The name of an argument.

IN | IN OUT | OUT

The argument mode.

argtype

The data types of the program’s arguments.

DEFAULT value

Default value of an input argument.

func_name

The name of a public function.

rettype

The return data type.

DETERMINISTIC

DETERMINISTIC is a synonym for IMMUTABLE . A DETERMINISTIC procedure can't modify the database and always reaches the same result when given the same argument values. It doesn't
perform database lookups and uses only information directly present in its argument list. If you include this clause, you can immediately replace any call of the procedure with all-constant arguments
with the procedure value.

RNDS | RNPS | TRUST | WNDS | WNPS

The keywords are accepted for compatibility and ignored.

Examples

The package specification empinfo contains three public components: a public variable, a public procedure, and a public function:

CREATE OR REPLACE PACKAGE empinfo
IS
 emp_name VARCHAR2(10);
 PROCEDURE get_name (
 p_empno NUMBER
);
 FUNCTION display_counter
 RETURN INTEGER;
END;

See also

DROP PACKAGE

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 691

20.27 CREATE PACKAGE BODY

Name

CREATE PACKAGE BODY — Define a new package body.

Synopsis

CREATE [OR REPLACE] PACKAGE BODY <name>
{ IS | AS }
 [declaration;] | [forward_declaration] [, ...]
 [{ PROCEDURE <proc_name>
 [(<argname> [IN | IN OUT | OUT] <argtype> [DEFAULT <value>] [, ...])]
 [STRICT]
 [LEAKPROOF]
 [PARALLEL { UNSAFE | RESTRICTED | SAFE }]
 [COST <execution_cost>]
 [ROWS <result_rows>]
 [SET <config_param> { TO <value> | = <value> | FROM CURRENT }]
 { IS | AS }
 <program_body>
 END [<proc_name>];
 |
 FUNCTION <func_name>
 [(<argname> [IN | IN OUT | OUT] <argtype> [DEFAULT <value>] [, ...])]
 RETURN <rettype> [DETERMINISTIC]
 [STRICT]
 [LEAKPROOF]
 [PARALLEL { UNSAFE | RESTRICTED | SAFE }]
 [COST <execution_cost>]
 [ROWS <result_rows>]
 [SET <config_param> { TO <value> | = <value> | FROM CURRENT }]
 { IS | AS }
 <program_body>
 END [<func_name>];
 }
] [, ...]
 [BEGIN
 <statement>; [, ...]]
 END [<name>]

Where forward_declaration:=

[{ PROCEDURE <proc_name>
 [(<argname> [IN | IN OUT | OUT] <argtype> [DEFAULT <value>] [, ...])
] ;]
|
[{ FUNCTION <func_name>
 [(<argname> [IN | IN OUT | OUT] <argtype> [DEFAULT <value>] [, ...])
]
 RETURN <rettype> [DETERMINISTIC];]

Description

CREATE PACKAGE BODY defines a new package body. CREATE OR REPLACE PACKAGE BODY either creates a new package body or replaces an existing body.

If you include a schema name, then the package body is created in the specified schema. Otherwise it's created in the current schema. The name of the new package body must match an existing
package specification in the same schema. The new package body name can't match any existing package body in the same schema unless you want to update the definition of an existing package body.
In that case, use CREATE OR REPLACE PACKAGE BODY .

Parameters

name

The name (optionally schema-qualified) of the package body to create.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 692

declaration

A private variable, type, cursor, or REF CURSOR declaration.

forward_declaration

The forward declaration of a procedure or function appears in a package body and is declared in advance of the actual body definition. In a block, you can create multiple subprograms. If they invoke
each other, each one requires a forward declaration. You must declare a subprogram before you can invoke it. You can use a forward declaration to declare a subprogram without defining it. The forward
declaration and its corresponding definition must reside in the same block.

proc_name

The name of a public or private procedure. If proc_name exists in the package specification with an identical signature, then it's public. Otherwise, it's private.

argname

The name of an argument.

IN | IN OUT | OUT

The argument mode.

argtype

The data types of the program’s arguments.

DEFAULT value

Default value of an input argument.

STRICT

Use the STRICT keyword to specify for the function not to execute if called with a NULL argument. Instead the function returns NULL .

LEAKPROOF

Use the LEAKPROOF keyword to specify for the function not to reveal any information about arguments other than through a return value.

PARALLEL { UNSAFE | RESTRICTED | SAFE }

The PARALLEL clause enables the use of parallel sequential scans (parallel mode). A parallel sequential scan uses multiple workers to scan a relation in parallel during a query, in contrast to a serial
sequential scan.

When set to UNSAFE (the default), the procedure or function can't execute in parallel mode. The presence of such a procedure or function forces a serial execution plan.

When set to RESTRICTED , the procedure or function can execute in parallel mode, but the execution is restricted to the parallel group leader. If the qualification for any particular relation has
anything that's parallel restricted, that relation isn't chosen for parallelism.

When set to SAFE , the procedure or function can execute in parallel mode with no restriction.

execution_cost

execution_cost specifies a positive number giving the estimated execution cost for the function, in units of cpu_operator_cost . If the function returns a set, this is the cost per returned row.
The default is 0.0025 .

result_rows

result_rows is the estimated number of rows for the query planner to expect the function to return. The default is 1000 .

SET

Use the SET clause to specify a parameter value for the duration of the function:

config_param specifies the parameter name.

value specifies the parameter value.

FROM CURRENT guarantees that the parameter value is restored when the function ends.

program_body

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 693

The pragma, declarations, and SPL statements that comprise the body of the function or procedure.

The pragma can be PRAGMA AUTONOMOUS_TRANSACTION to set the function or procedure as an autonomous transaction.

The declarations can include variable, type, REF CURSOR , or subprogram declarations. If you include subprogram declarations, declare them after all other variable, type, and REF CURSOR
declarations.

func_name

The name of a public or private function. If func_name exists in the package specification with an identical signature, then it's public. Otherwise it's private.

rettype

The return data type.

DETERMINISTIC

Include DETERMINISTIC to specify for the function to always return the same result when given the same argument values. A DETERMINISTIC function must not modify the database.

!!! Note The DETERMINISTIC keyword is equivalent to the PostgreSQL IMMUTABLE option. If you specify DETERMINISTIC for a public function in the package body, you must also specify it for
the function declaration in the package specification. For private functions, there's no function declaration in the package specification.

statement

An SPL program statement. Statements in the package initialization section execute once per session the first time the package is referenced.

Note

The STRICT , LEAKPROOF , PARALLEL , COST , ROWS and SET keywords provide extended functionality for EDB Postgres Advanced Server and aren't supported by Oracle.

Examples

The following is the package body for the empinfo package:

CREATE OR REPLACE PACKAGE BODY empinfo
IS
 v_counter INTEGER;
 PROCEDURE get_name (
 p_empno NUMBER
)
 IS
 BEGIN
 SELECT ename INTO emp_name FROM emp WHERE empno = p_empno;
 v_counter := v_counter + 1;
 END;
 FUNCTION display_counter
 RETURN INTEGER
 IS
 BEGIN
 RETURN v_counter;
 END;
BEGIN
 v_counter := 0;
 DBMS_OUTPUT.PUT_LINE('Initialized counter');
END;

The following two anonymous blocks execute the procedure and function in the empinfo package and display the public variable:

BEGIN
 empinfo.get_name(7369);
 DBMS_OUTPUT.PUT_LINE('Employee Name : ' || empinfo.emp_name);
 DBMS_OUTPUT.PUT_LINE('Number of queries: ' || empinfo.display_counter);
END;

Initialized counter
Employee Name : SMITH
Number of queries: 1

BEGIN
 empinfo.get_name(7900);
 DBMS_OUTPUT.PUT_LINE('Employee Name : ' || empinfo.emp_name);

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 694

 DBMS_OUTPUT.PUT_LINE('Number of queries: ' || empinfo.display_counter);
END;

Employee Name : JAMES
Number of queries: 2

This example uses a forward declaration in a package body. The example displays the name and number of employees whose salary falls in the specified range.

CREATE OR REPLACE PACKAGE empinfo IS
 FUNCTION emp_comp (p_sal_range INTEGER) RETURN INTEGER;
END empinfo;

CREATE OR REPLACE PACKAGE BODY empinfo IS
 FUNCTION sal_range (p_sal_range INTEGER) RETURN INTEGER;
 PROCEDURE list_emp (p_sal_range INTEGER);

 FUNCTION emp_comp (p_sal_range INTEGER) RETURN INTEGER IS
 BEGIN
 dbms_output.put_line ('Employee details');
 return sal_range(p_sal_range);
 END;

 FUNCTION sal_range (p_sal_range INTEGER) RETURN INTEGER IS
 emp_cnt INTEGER;
 BEGIN
 select count(*) into emp_cnt from emp where sal <= p_sal_range;
 dbms_output.put_line('Number of employees in the salary range ' ||
p_sal_range|| ' is :'|| emp_cnt);
 list_emp(p_sal_range);
 return emp_cnt;
 END;

 PROCEDURE list_emp (p_sal_range IN INTEGER) IS
 BEGIN
 FOR i IN select ename from emp where sal <= p_sal_range
 LOOP
 dbms_output.put_line (i);
 END LOOP;
 END;

END empinfo;

SELECT empinfo.emp_comp(1500);
Employee details
Number of employees in the salary range 1500 is :7
(SMITH)
(WARD)
(MARTIN)
(TURNER)
(ADAMS)
(JAMES)
(MILLER)
emp_comp

 7
(1 row)

See also

CREATE PACKAGE, DROP PACKAGE

20.28 CREATE PROCEDURE

Name

CREATE PROCEDURE — Define a new stored procedure.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 695

Synopsis

CREATE [OR REPLACE] PROCEDURE <name> [(<parameters>)]
 [
 IMMUTABLE
 | STABLE
 | VOLATILE
 | DETERMINISTIC
 | [NOT] LEAKPROOF
 | CALLED ON NULL INPUT
 | RETURNS NULL ON NULL INPUT
 | STRICT
 | [EXTERNAL] SECURITY INVOKER
 | [EXTERNAL] SECURITY DEFINER
 | AUTHID DEFINER
 | AUTHID CURRENT_USER
 | PARALLEL { UNSAFE | RESTRICTED | SAFE }
 | COST <execution_cost>
 | ROWS <result_rows>
 | SET <configuration_parameter>
 { TO <value> | = <value> | FROM CURRENT }
 ...]
{ IS | AS }
 [PRAGMA AUTONOMOUS_TRANSACTION;]
 [<declarations>]
 BEGIN
 <statements>
 END [<name>];

Description

CREATE PROCEDURE defines a new stored procedure. CREATE OR REPLACE PROCEDURE either creates a new procedure or replaces an existing definition.

If you include a schema name, then the procedure is created in the specified schema. Otherwise it's created in the current schema. The name of the new procedure can't match any existing procedure
with the same input argument types in the same schema. However, procedures of different input argument types can share a name. This is called overloading.

Note

Overloading procedures is an EDB Postgres Advanced Server feature. Overloading stored, standalone procedures isn't compatible with Oracle databases.

To update the definition of an existing procedure, use CREATE OR REPLACE PROCEDURE . You can't change the name or argument types of a procedure this way. That syntax creates a new, distinct
procedure. When using OUT parameters, you can't change the types of any OUT parameters except by dropping the procedure.

Parameters

name

The identifier of the procedure.

parameters

A list of formal parameters.

declarations

Variable, cursor, type, or subprogram declarations. If you include subprogram declarations, declare them after all other variable, cursor, and type declarations.

statements

SPL program statements. The BEGIN - END block can contain an EXCEPTION section.

IMMUTABLE

STABLE

VOLATILE

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 696

These attributes inform the query optimizer about the behavior of the procedure. You can specify only one of these attributes.

Use IMMUTABLE to indicate that the procedure can't modify the database and always reaches the same result when given the same argument values. It doesn't perform database lookups and
uses only information directly present in its argument list. If you include this clause, you can immediately replace any call of the procedure with all-constant arguments with the procedure value.

Use STABLE to indicate that the procedure can't modify the database and that, in a single table scan, it consistently returns the same result for the same argument values. However, its result
might change across SQL statements. Use this selection for procedures that depend on database lookups, parameter variables (such as the current time zone), and so on.

Use VOLATILE (the default) to indicate that the procedure value can change even in a single table scan, so no optimizations can be made. You must classify any function that has side effects as
volatile, even if its result is predictable, to prevent calls from being optimized away.

DETERMINISTIC

DETERMINISTIC is a synonym for IMMUTABLE . A DETERMINISTIC procedure can't modify the database and always reaches the same result when given the same argument values. It doesn't
perform database lookups and uses only information directly present in its argument list. If you include this clause, you can immediately replace any call of the procedure with all-constant arguments
with the procedure value.

[NOT] LEAKPROOF

A LEAKPROOF procedure has no side effects and reveals no information about the values used to call the procedure.

CALLED ON NULL INPUT

RETURNS NULL ON NULL INPUT

STRICT

Use CALLED ON NULL INPUT (the default) to call the procedure normally when some of its arguments are NULL . Check for NULL values, if needed, and respond appropriately.

Use RETURNS NULL ON NULL INPUT or STRICT to indicate that the procedure always returns NULL when any of its arguments are NULL . If you specify these clauses, the procedure
doesn't execute when there are NULL arguments. Instead a NULL result is assumed.

[EXTERNAL] SECURITY DEFINER

Use SECURITY DEFINER (the default) to specify that the procedure executes with the privileges of the user that created it. The keyword EXTERNAL is allowed for SQL conformance but is optional.

[EXTERNAL] SECURITY INVOKER

Use the SECURITY INVOKER clause to execute the procedure with the privileges of the user that calls it. The keyword EXTERNAL is allowed for SQL conformance but is optional.

AUTHID DEFINER

AUTHID CURRENT_USER

The AUTHID DEFINER clause is a synonym for [EXTERNAL] SECURITY DEFINER . If you omit the AUTHID clause or specify AUTHID DEFINER , the rights of the procedure owner
determine access privileges to database objects.

The AUTHID CURRENT_USER clause is a synonym for [EXTERNAL] SECURITY INVOKER . If you specify AUTHID CURRENT_USER , the rights of the current user executing the
procedure determine access privileges.

PARALLEL { UNSAFE | RESTRICTED | SAFE }

The PARALLEL clause enables the use of parallel sequential scans (parallel mode). A parallel sequential scan uses multiple workers to scan a relation in parallel during a query, in contrast to a serial
sequential scan.

When set to UNSAFE (the default), the procedure can't execute in parallel mode. The presence of such a procedure forces a serial execution plan.

When set to RESTRICTED , the procedure can execute in parallel mode, but the execution is restricted to the parallel group leader. If the qualification for any particular relation has anything
that is parallel restricted, that relation isn't chosen for parallelism.

When set to SAFE , the procedure can execute in parallel mode with no restriction.

COST execution_cost

execution_cost is a positive number giving the estimated execution cost for the procedure, in units of cpu_operator_cost . If the procedure returns a set, this is the cost per returned row.
Larger values cause the planner to try to avoid evaluating the function more often than necessary.

ROWS result_rows

result_rows is a positive number giving the estimated number of rows for the planner to expect the procedure to return. This option is allowed only when the procedure is declared to return a set.
The default is 1000 rows.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 697

SET configuration_parameter { TO value | = value | FROM CURRENT }

The SET clause sets the specified configuration parameter to the specified value when the procedure is entered and then restored to its prior value when the procedure exits. SET FROM CURRENT
saves the session's current value of the parameter as the value to apply when the procedure is entered.

If a SET clause is attached to a procedure, then the effects of a SET LOCAL command executed inside the procedure for the same variable are restricted to the procedure. The configuration
parameter's prior value is restored at procedure exit. An ordinary SET command (without LOCAL) overrides the SET clause, similar to a previous SET LOCAL command. The effects of such a
command persist after procedure exit, unless the current transaction is rolled back.

PRAGMA AUTONOMOUS_TRANSACTION

PRAGMA AUTONOMOUS_TRANSACTION is the directive that sets the procedure as an autonomous transaction.

Note

The STRICT , LEAKPROOF , PARALLEL , COST , ROWS and SET keywords provide extended functionality for EDB Postgres Advanced Server and aren't supported by Oracle.
The IMMUTABLE , STABLE , STRICT , LEAKPROOF , COST , ROWS and PARALLEL { UNSAFE | RESTRICTED | SAFE } attributes are supported only for EDB SPL
procedures.
By default, stored procedures are created as SECURITY DEFINERS . Stored procedures defined in plpgsql are created as SECURITY INVOKERS .

Examples

This procedure lists the employees in the emp table:

CREATE OR REPLACE PROCEDURE list_emp
IS
 v_empno NUMBER(4);
 v_ename VARCHAR2(10);
 CURSOR emp_cur IS
 SELECT empno, ename FROM emp ORDER BY empno;
BEGIN
 OPEN emp_cur;
 DBMS_OUTPUT.PUT_LINE('EMPNO ENAME');
 DBMS_OUTPUT.PUT_LINE('----- -------');
 LOOP
 FETCH emp_cur INTO v_empno, v_ename;
 EXIT WHEN emp_cur%NOTFOUND;
 DBMS_OUTPUT.PUT_LINE(v_empno || ' ' || v_ename);
 END LOOP;
 CLOSE emp_cur;
END;

EXEC list_emp;

EMPNO ENAME
----- -------
7369 SMITH
7499 ALLEN
7521 WARD
7566 JONES
7654 MARTIN
7698 BLAKE
7782 CLARK
7788 SCOTT
7839 KING
7844 TURNER
7876 ADAMS
7900 JAMES
7902 FORD
7934 MILLER

This procedure uses IN OUT and OUT arguments to return an employee’s number, name, and job based on a search using the given employee number. If that isn't found, then the search uses the
given name. An anonymous block calls the procedure.

CREATE OR REPLACE PROCEDURE emp_job (
 p_empno IN OUT emp.empno%TYPE,
 p_ename IN OUT emp.ename%TYPE,
 p_job OUT emp.job%TYPE
)
IS
 v_empno emp.empno%TYPE;
 v_ename emp.ename%TYPE;
 v_job emp.job%TYPE;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 698

BEGIN
 SELECT ename, job INTO v_ename, v_job FROM emp WHERE empno = p_empno;
 p_ename := v_ename;
 p_job := v_job;
 DBMS_OUTPUT.PUT_LINE('Found employee # ' || p_empno);
EXCEPTION
 WHEN NO_DATA_FOUND THEN
 BEGIN
 SELECT empno, job INTO v_empno, v_job FROM emp
 WHERE ename = p_ename;
 p_empno := v_empno;
 p_job := v_job;
 DBMS_OUTPUT.PUT_LINE('Found employee ' || p_ename);
 EXCEPTION
 WHEN NO_DATA_FOUND THEN
 DBMS_OUTPUT.PUT_LINE('Could not find an employee with ' ||
 'number, ' || p_empno || ' nor name, ' || p_ename);
 p_empno := NULL;
 p_ename := NULL;
 p_job := NULL;
 END;
END;

DECLARE
 v_empno emp.empno%TYPE;
 v_ename emp.ename%TYPE;
 v_job emp.job%TYPE;
BEGIN
 v_empno := 0;
 v_ename := 'CLARK';
 emp_job(v_empno, v_ename, v_job);
 DBMS_OUTPUT.PUT_LINE('Employee No: ' || v_empno);
 DBMS_OUTPUT.PUT_LINE('Name : ' || v_ename);
 DBMS_OUTPUT.PUT_LINE('Job : ' || v_job);
END;

Found employee CLARK
Employee No: 7782
Name : CLARK
Job : MANAGER

This example uses the AUTHID DEFINER and SET clauses in a procedure declaration. The update_salary procedure conveys the privileges of the role that defined the procedure to the role
that's calling the procedure while the procedure executes.

CREATE OR REPLACE PROCEDURE update_salary(id INT, new_salary NUMBER)
 SET SEARCH_PATH = 'public' SET WORK_MEM = '1MB'
 AUTHID DEFINER IS
BEGIN
 UPDATE emp SET salary = new_salary WHERE emp_id = id;
END;

Include the SET clause to set the procedure's search path to public and the work memory to 1MB . Other procedures, functions, and objects aren't affected by these settings.

In this example, the AUTHID DEFINER clause temporarily grants privileges to a role that otherwise might not be allowed to execute the statements in the procedure. To use the privileges associated
with the role invoking the procedure, replace the AUTHID DEFINER clause with the AUTHID CURRENT_USER clause.

See also

DROP PROCEDURE, ALTER PROCEDURE

20.29 CREATE PROFILE

Name

CREATE PROFILE — Create a profile.

Synopsis

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 699

CREATE PROFILE <profile_name>
 [LIMIT {<parameter value>} ...];

Description

CREATE PROFILE create a profile. Include the LIMIT clause and one or more space-delimited parameter/value pairs to specify the rules enforced by EDB Postgres Advanced Server.

EDB Postgres Advanced Server creates a default profile named DEFAULT . When you use the CREATE ROLE command to create a role, the new role is associated with the DEFAULT profile. If you
upgrade from a previous version of EDB Postgres Advanced Server to EDB Postgres Advanced Server 10, the upgrade process creates the roles in the upgraded version to the DEFAULT profile.

You must be a superuser to use CREATE PROFILE .

Include the LIMIT clause and one or more space-delimited parameter/value pairs to specify the rules enforced by EDB Postgres Advanced Server.

Parameters

profile_name

The name of the profile.

parameter

The password attribute for the rule to monitor.

value

The value the parameter must reach before an action is taken by the server.

EDB Postgres Advanced Server supports these values for each parameter:

FAILED_LOGIN_ATTEMPTS specifies the number of failed login attempts that a user can make before the server locks them out of their account for the length of time specified by
PASSWORD_LOCK_TIME . Supported values are:

An INTEGER value greater than 0 .
DEFAULT — The value of FAILED_LOGIN_ATTEMPTS specified in the DEFAULT profile.
UNLIMITED — The connecting user can make an unlimited number of failed login attempts.

PASSWORD_LOCK_TIME specifies the length of time that must pass before the server unlocks an account that was locked because of FAILED_LOGIN_ATTEMPTS . Supported values are:

A NUMERIC value of 0 or greater. To specify a fractional portion of a day, specify a decimal value. For example, use the value 4.5 to specify 4 days, 12 hours.
DEFAULT — The value of PASSWORD_LOCK_TIME specified in the DEFAULT profile.
UNLIMITED — The account is locked until manually unlocked by a database superuser.

PASSWORD_LIFE_TIME specifies the number of days that the current password can be used before the user is prompted to provide a new password. Include the PASSWORD_GRACE_TIME clause
when using the PASSWORD_LIFE_TIME clause to specify the number of days to pass after the password expires before connections by the role are rejected. If you don't specify
PASSWORD_GRACE_TIME , the password expires on the day specified by the default value of PASSWORD_GRACE_TIME , and the user isn't allowed to execute any command until a new password is

provided. Supported values are:

A NUMERIC value greater of 0 or greater. To specify a fractional portion of a day, specify a decimal value. For example, use the value 4.5 to specify 4 days, 12 hours.
DEFAULT — The value of PASSWORD_LIFE_TIME specified in the DEFAULT profile.
UNLIMITED — The password doesn't have an expiration date.

PASSWORD_GRACE_TIME specifies the length of the grace period after a password expires until the user is forced to change their password. When the grace period expires, a user is allowed to
connect but isn't allowed to execute any command until they update their expired password. Supported values are:

A NUMERIC value of 0 or greater. To specify a fractional portion of a day, specify a decimal value. For example, use the value 4.5 to specify 4 days, 12 hours.
DEFAULT — The value of PASSWORD_GRACE_TIME specified in the DEFAULT profile.
UNLIMITED — The grace period is infinite.

PASSWORD_REUSE_TIME specifies the number of days a user must wait before reusing a password. Use the PASSWORD_REUSE_TIME and PASSWORD_REUSE_MAX parameters together. If you
specify a finite value for one of these parameters while the other is UNLIMITED , old passwords can never be reused. If both parameters are set to UNLIMITED , there are no restrictions on password
reuse. Supported values are:

A NUMERIC value of 0 or greater. To specify a fractional portion of a day, specify a decimal value. For example, use the value 4.5 to specify 4 days, 12 hours.
DEFAULT — The value of PASSWORD_REUSE_TIME specified in the DEFAULT profile.
UNLIMITED — The password can be reused without restrictions.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 700

PASSWORD_REUSE_MAX specifies the number of password changes that must occur before a password can be reused. Use the PASSWORD_REUSE_TIME and PASSWORD_REUSE_MAX
parameters together. If you specify a finite value for one of these parameters while the other is UNLIMITED , old passwords can never be reused. If both parameters are set to UNLIMITED there are
no restrictions on password reuse. Supported values are:

An INTEGER value of 0 or greater.
DEFAULT — The value of PASSWORD_REUSE_MAX specified in the DEFAULT profile.
UNLIMITED — The password can be reused without restrictions.

PASSWORD_VERIFY_FUNCTION specifies password complexity. Supported values are:

The name of a PL/SQL function.
DEFAULT — The value of PASSWORD_VERIFY_FUNCTION specified in the DEFAULT profile.
NULL

PASSWORD_ALLOW_HASHED specifies whether an encrypted password is allowed for use. If you specify TRUE , the system allows a user to change the password by specifying a hash computed
encrypted password on the client side. However, if you specify FALSE , then a password must be specified in a plain-text form to be validated. Otherwise an error is thrown if a server receives an
encrypted password. Supported values are:

A BOOLEAN value TRUE/ON/YES/1 or FALSE/OFF/NO/0 .
DEFAULT — The value of PASSWORD_ALLOW_HASHED specified in the DEFAULT profile.

Note

The PASSWORD_ALLOW_HASHED isn't compatible with Oracle.

Notes

Use the DROP PROFILE command to remove the profile.

Examples

This command creates a profile named acctg . The profile specifies that if a user hasn't authenticated with the correct password in five attempts, the account is locked for one day:

CREATE PROFILE acctg LIMIT
 FAILED_LOGIN_ATTEMPTS 5
 PASSWORD_LOCK_TIME 1;

This command creates a profile named sales . The profile specifies that a user must change their password every 90 days:

CREATE PROFILE sales LIMIT
 PASSWORD_LIFE_TIME 90
 PASSWORD_GRACE_TIME 3;

If the user doesn't change their password before the 90 days specified in the profile passes, they are issued a warning at login. After a grace period of three days, their account isn't allowed to invoke any
commands until they change their password.

This command creates a profile named accts . The profile specifies that a user can't reuse a password within 180 days of the last use of the password and must change their password at least five
times before reusingit:

CREATE PROFILE accts LIMIT
 PASSWORD_REUSE_TIME 180
 PASSWORD_REUSE_MAX 5;

This command creates a profile named resources . The profile calls a user-defined function named password_rules that verifies that the password provided meets their standards for
complexity:

CREATE PROFILE resources LIMIT
 PASSWORD_VERIFY_FUNCTION password_rules;

See also

ALTER PROFILE, DROP PROFILE

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 701

20.30 CREATE QUEUE

EDB Postgres Advanced Server includes extra syntax not offered by Oracle with the CREATE QUEUE SQL command. You can use this syntax with DBMS_AQADM .

Name

CREATE QUEUE — Create a queue.

Synopsis

Use CREATE QUEUE to define a new queue:

CREATE QUEUE <name> QUEUE TABLE <queue_table_name> [({ <option_name option_value>} [, ...])]

Where possible values for option_name and the corresponding option_value are:

TYPE [normal_queue | exception_queue]
RETRIES [INTEGER]
RETRYDELAY [DOUBLE PRECISION]
RETENTION [DOUBLE PRECISION]

Description

The CREATE QUEUE command allows a database superuser or any user with the system-defined aq_administrator_role privilege to create a queue in the current database.

If the name of the queue is schema-qualified, the queue is created in the specified schema. If the CREATE QUEUE command doesn't include a schema, the queue is created in the current schema. You
can create a queue only in the schema where the queue table resides. The name of the queue must be unique among queues in the same schema.

Use DROP QUEUE to remove a queue.

Parameters

name

The name (optionally schema-qualified) of the queue to create.

queue_table_name

The name of the queue table with which this queue is associated.

option_name option_value

The name of any options to associate with the new queue and the corresponding value for the option. If the call to CREATE QUEUE includes duplicate option names, the server returns an error. The
following values are accepted:

TYPE — Specify normal_queue to indicate that the queue is a normal queue or exception_queue for an exception queue. An exception queue accepts only dequeue operations.
RETRIES — An integer value that specifies the maximum number of attempts to remove a message from a queue.
RETRYDELAY — A double-precision value that specifies the number of seconds after a rollback that the server waits before retrying a message.
RETENTION — A double-precision value that specifies the number of seconds to save a message in the queue table after dequeueing.

Examples

This command creates a queue named work_order that's associated with a queue table named work_order_table :

CREATE QUEUE work_order QUEUE TABLE work_order_table (RETRIES 5, RETRYDELAY 2);

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 702

The server allows 5 attempts to remove a message from the queue and enforces a retry delay of 2 seconds between attempts.

See also

ALTER QUEUE, DROP QUEUE

20.31 CREATE QUEUE TABLE

EDB Postgres Advanced Server includes extra syntax not offered by Oracle with the CREATE QUEUE TABLE SQL command. You can use this syntax with DBMS_AQADM .

Name

CREATE QUEUE TABLE — Create a queue table.

Synopsis

Use CREATE QUEUE TABLE to define a queue table:

CREATE QUEUE TABLE <name> OF <type_name> [({ <option_name option_value> } [, ...])]

Possible option_name and corresponding option_value values are:

SORT_LIST — Specify option_value as priority , enq_time .
MULTIPLE_CONSUMERS — Specify option_value as FALSE , TRUE .
MESSAGE_GROUPING — Specify option_value as NONE , TRANSACTIONAL .
STORAGE_CLAUSE — Specify option_value as TABLESPACE tablespace_name , PCTFREE integer , PCTUSED integer , INITRANS integer , MAXTRANS integer ,
STORAGE storage_option . Values for storage_option are one or more of the following: MINEXTENTS integer , MAXEXTENTS integer , PCTINCREASE integer ,
INITIAL size_clause , NEXT , FREELISTS integer , OPTIMAL size_clause , BUFFER_POOL {KEEP|RECYCLE|DEFAULT} .

Only the TABLESPACE option is enforced. All others are accepted for compatibility and ignored. Use the TABLESPACE clause to specify the name of a tablespace in which to create the table.

Description

CREATE QUEUE TABLE allows a superuser or a user with the aq_administrator_role privilege to create a queue table.

If the call to CREATE QUEUE TABLE includes a schema name, the queue table is created in the specified schema. If you don't provide a schema name, the queue table is created in the current
schema.

The name of the queue table must be unique among queue tables in the same schema.

Parameters

name

The name (optionally schema-qualified) of the new queue table.

type_name

The name of an existing type that describes the payload of each entry in the queue table. For information about defining a type, see CREATE TYPE.

option_name option_value

The name of any options that to associate with the new queue and the corresponding value for the option. If the call to CREATE QUEUE includes duplicate option names, the server returns an error.
The following values are accepted:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 703

SORT_LIST — Use the SORT_LIST option to control the dequeueing order of the queue. Specify the names of the columns to use, in ascending order, to sort the queue. The following
combinations of enq_time and priority are possible values:

enq_time. priority

priority. enq_time

priority

enq_time

MULTIPLE_CONSUMERS — A BOOLEAN value that indicates if a message can have more than one consumer (TRUE) or are limited to one consumer per message (FALSE).

MESSAGE_GROUPING — Specify none to dequeue each message individually or transactional to add messages to the queue as a result of one transaction and dequeue them as a group.

STORAGE_CLAUSE — Use STORAGE_CLAUSE to specify table attributes. Possible values are TABLESPACE tablespace_name , PCTFREE integer , PCTUSED integer ,
INITRANS integer , MAXTRANS integer , STORAGE storage_option . Possible values for storage_option are:

MINEXTENTS integer

MAXEXTENTS integer

PCTINCREASE integer

INITIAL size_clause

NEXT

FREELISTS integer

OPTIMAL size_clause

BUFFER_POOL {KEEP|RECYCLE|DEFAULT}

Only the TABLESPACE option is enforced. All others are accepted for compatibility and ignored. Use the TABLESPACE clause to specify the name of a tablespace in which to create the table.

Examples

You must create a user-defined type before creating a queue table. The type describes the columns and data types in the table. This command creates a type named work_order :

CREATE TYPE work_order AS (name VARCHAR2, project TEXT, completed BOOLEAN);

This command uses the work_order type to create a queue table named work_order_table :

CREATE QUEUE TABLE work_order_table OF work_order (sort_list (enq_time, priority));

See also

ALTER QUEUE TABLE, DROP QUEUE TABLE

20.32 CREATE ROLE

Name

CREATE ROLE — Define a new database role.

Synopsis

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 704

CREATE ROLE <name> [IDENTIFIED BY <password> [REPLACE old_password]]

Description

CREATE ROLE adds a role to the EDB Postgres Advanced Server database cluster. A role is an entity that can own database objects and have database privileges. A role can be considered a user, a
group, or both depending on how you use it. The new role doesn't have the LOGIN attribute, so you can't use it to start a session. (Use the ALTER ROLE command to give the role LOGIN rights.) You
must have CREATEROLE privilege or be a database superuser to use CREATE ROLE .

If you specify the IDENTIFIED BY clause, the CREATE ROLE command also creates a schema owned by and with the same name as the newly created role.

Note

The roles are defined at the database cluster level, making them valid in all databases in the cluster.

Parameters

name

The name of the new role.

IDENTIFIED BY password

Sets the role’s password. A password is needed only for roles having the LOGIN attribute, but you can stil define one for roles without it. If you don't plan to use password authentication, you can omit
this option.

Notes

Use ALTER ROLE to change the attributes of a role. Use DROP ROLE to remove a role. You can mmodify the attributes specified by CREATE ROLE using ALTER ROLE commands.

Use GRANT and REVOKE to add and remove members of roles that are being used as groups.

The maximum length limit for role name and password is 63 characters.

Examples

Create a role and a schema named admins with a password:

CREATE ROLE admins IDENTIFIED BY Rt498zb;

See also

ALTER ROLE, DROP ROLE, GRANT, REVOKE, SET ROLE

20.33 CREATE SCHEMA

Name

CREATE SCHEMA — Define a new schema.

Synopsis

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 705

CREATE SCHEMA AUTHORIZATION <username> <schema_element> [...]

Description

This variation of the CREATE SCHEMA command creates a schema owned by username and populated with one or more objects. Creating the schema and objects occurs in a single transaction, so
either all objects are created or none of them are, including the schema. If you're using an Oracle database, no new schema is created. username , and therefore the schema, must exist before you use
the command.

A schema is essentially a namespace. It contains named objects, such as tables and views, whose names might duplicate those of other objects existing in other schemas. You can access named objects
either by qualifying their names with the schema name as a prefix or by setting a search path that includes the desired schemas. Unqualified objects are created in the current schema. The current
scheme is the one at the front of the search path. Use the function CURRENT_SCHEMA to determine the value.

Note

The search path concept and the CURRENT_SCHEMA function aren't compatible with Oracle databases.

CREATE SCHEMA includes subcommands to create objects in the schema. The subcommands are treated the same as separate commands issued after creating the schema. All the created objects are
owned by the specified user.

Parameters

username

The name of the user to own the new schema. The schema also gets this name. Only superusers can create schemas owned by users other than themselves. In EDB Postgres Advanced Server, the role
username must already exist, but the schema must not exist. In Oracle, the user and schema must exist.

schema_element

A SQL statement defining an object to create in the schema. CREATE TABLE , CREATE VIEW , and GRANT are accepted as clauses in CREATE SCHEMA . You can create other kinds of objects in
separate commands after you create the schema.

Notes

Nonsuperusers creating the schema must have the CREATE privilege for the current database.

In EDB Postgres Advanced Server, other forms of the CREATE SCHEMA command aren't compatible with Oracle databases.

Examples

CREATE SCHEMA AUTHORIZATION enterprisedb
 CREATE TABLE empjobs (ename VARCHAR2(10), job VARCHAR2(9))
 CREATE VIEW managers AS SELECT ename FROM empjobs WHERE job = 'MANAGER'
 GRANT SELECT ON managers TO PUBLIC;

20.34 CREATE SEQUENCE

Name

CREATE SEQUENCE — Define a new sequence generator.

Synopsis

CREATE SEQUENCE <name> [INCREMENT BY <increment>]
 [{ NOMINVALUE | MINVALUE <minvalue> }]
 [{ NOMAXVALUE | MAXVALUE <maxvalue> }]

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 706

 [START WITH <start>] [CACHE <cache> | NOCACHE] [CYCLE]

Description

CREATE SEQUENCE creates a sequence number generator. This process involves creating and initializing a special single-row table with the specified name. The generator is owned by the user who
created it.

If you include a schema name, then the sequence is created in the specified schema. Otherwise it's created in the current schema. The sequence name differ from the name of any other sequence, table,
index, or view in the same schema.

After you create a sequence, use the functions NEXTVAL and CURRVAL to operate on it. These functions are documented in SQL reference.

Parameters

name

The name (optionally schema-qualified) of the sequence to create.

increment

The optional clause INCREMENT BY increment specifies the value to add to the current sequence value to create a new value. Use a positive value to create ascending sequence and a negative
value to create a descending sequence. The default value is 1 .

NOMINVALUE | MINVALUE minvalue

The optional clause MINVALUE minvalue determines the minimum value a sequence can generate. The defaults are 1 for ascending and -263-1 for descending sequences. You can use the keywords
NOMINVALUE to set this behavior to the default.

NOMAXVALUE | MAXVALUE maxvalue

The optional clause MAXVALUE maxvalue determines the maximum value for the sequence. The defaults are 263-1 for ascending and -1 for descending sequences. You can use the keywords
NOMAXVALUE to set this behavior to the default.

start

The optional clause START WITH start allows the sequence to begin anywhere. The default starting value is minvalue for ascending sequences and maxvalue for descending ones.

cache

The optional clause CACHE cache specifies how many sequence numbers to preallocate and store in memory for faster access. The minimum value is 1 , which is also the default. This setting
generates only one value at a time, that is, NOCACHE .

CYCLE

The CYCLE option allows the sequence to wrap around when the maxvalue or minvalue is reached by an ascending or descending sequence, respectively. If the limit is reached, the next number
generated is minvalue or maxvalue , respectively.

If you omit CYCLE , any calls to NEXTVAL after the sequence reaches its maximum value return an error. You can use the keywords NO CYCLE to use the default behavior. However, this term isn't
compatible with Oracle databases.

Notes

Sequences are based on big integer arithmetic, so the range can't exceed the range of an eight-byte integer (-9223372036854775808 to 9223372036854775807). Some older platforms might not have
compiler support for eight-byte integers. In this case, sequences use regular INTEGER arithmetic (range -2147483648 to +2147483647).

Unexpected results can occur if you use a cache setting greater than 1 for a sequence object to be used concurrently by multiple sessions. Each session allocates and caches successive sequence
values during one access to the sequence object and increases the sequence object’s last value accordingly. Then, the next cache-1 that uses NEXTVAL in that session returns the preallocated
values without touching the sequence object. So, any numbers allocated but not used in a session are lost when that session ends. "Holes" in the sequence result.

Furthermore, although multiple sessions are guaranteed to allocate distinct sequence values, the values might be generated out of sequence when all the sessions are considered. For example, with a
cache setting of 10 , session A might reserve values 1..10 and return NEXTVAL=1 . Then session B might reserve values 11..20 and return NEXTVAL=11 before session A generates NEXTVAL=2 .

Thus, with a cache setting of 1 , it's safe to assume that NEXTVAL values are generated sequentially. With a cache setting greater than 1 , assume only that the NEXTVAL values are all
distinct, not that they are generated sequentially. Also, the last value reflects the latest value reserved by any session, whether or not it was already returned by NEXTVAL .

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 707

Examples

Create an ascending sequence called serial , starting at 101:

CREATE SEQUENCE serial START WITH 101;

Select the next number from this sequence:

SELECT serial.NEXTVAL FROM DUAL;

 nextval

 101
(1 row)

Create a sequence called supplier_seq with the NOCACHE option:

CREATE SEQUENCE supplier_seq
 MINVALUE 1
 START WITH 1
 INCREMENT BY 1
 NOCACHE;

Select the next number from this sequence:

SELECT supplier_seq.NEXTVAL FROM DUAL;

 nextval

 1
(1 row)

See also

ALTER SEQUENCE, DROP SEQUENCE

20.35 CREATE SYNONYM

Name

CREATE SYNONYM — Define a new synonym.

Synopsis

CREATE [OR REPLACE] [PUBLIC] SYNONYM [<schema>.]<syn_name>
 FOR <object_schema>.<object_name>[@<dblink_name>];

Description

CREATE SYNONYM defines a synonym for certain types of database objects. EDB Postgres Advanced Server supports synonyms for:

Tables
Views
Materialized views
Sequences
Stored procedures
Stored functions
Types
Objects that are accessible through a database link
Other synonyms

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 708

Parameters

syn_name

The name of the synonym. A synonym name must be unique in a schema.

schema

The name of the schema where the synonym resides. If you don't specify a schema name, the synonym is created in the first existing schema in your search path.

object_name

The name of the object.

object_schema

The name of the schema where the referenced object resides.

dblink_name

The name of the database link through which you access an object.

Include the REPLACE clause to replace an existing synonym definition with a new synonym definition.

Include the PUBLIC clause to create the synonym in the public schema. The CREATE PUBLIC SYNONYM command, compatible with Oracle databases, creates a synonym that resides in the
public schema:

CREATE [OR REPLACE] PUBLIC SYNONYM <syn_name> FOR
<object_schema>.<object_name>;

This is a shorthand way to write:

CREATE [OR REPLACE] SYNONYM public.<syn_name> FOR
<object_schema>.<object_name>;

Notes

Access to the object referenced by the synonym is determined by the permissions of the current user of the synonym. The synonym user must have the appropriate permissions on the underlying
database object.

Examples

Create a synonym for the emp table in a schema named enterprisedb :

CREATE SYNONYM personnel FOR enterprisedb.emp;

See also

DROP SYNONYM

20.36 CREATE TABLE

Name

CREATE TABLE — Define a new table.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 709

Synopsis

CREATE [GLOBAL TEMPORARY | UNLOGGED] TABLE <table_name> (
 { <column_name> <data_type> [DEFAULT <default_expr>]
 [<column_constraint> [...]] | <table_constraint> } [, ...]
)
 [WITH (ROWIDS [= <value>])]
 [ON COMMIT { PRESERVE ROWS | DELETE ROWS }]
 [TABLESPACE <tablespace>]
 { NOPARALLEL | PARALLEL [<integer>] }

Where column_constraint is:

[CONSTRAINT <constraint_name>]
{ NOT NULL |
 NULL |
 UNIQUE [USING INDEX TABLESPACE <tablespace>] |
 PRIMARY KEY [USING INDEX TABLESPACE <tablespace>] |
 CHECK (<expression>) |
 REFERENCES <reftable> [(<refcolumn>)]
 [ON DELETE <action>] }
[DEFERRABLE | NOT DEFERRABLE] [INITIALLY DEFERRED |
 INITIALLY IMMEDIATE]

Where table_constraint is:

[CONSTRAINT <constraint_name>]
{ UNIQUE (<column_name> [, ...])
 [USING INDEX [<create_index_statement>] TABLESPACE <tablespace>] |
 PRIMARY KEY (<column_name> [, ...])
 [USING INDEX [<create_index_statement>] TABLESPACE <tablespace>] |
 CHECK (<expression>) |
 FOREIGN KEY (<column_name> [, ...])
 REFERENCES <reftable> [(<refcolumn> [, ...])]
 [ON DELETE <action>] }
[DEFERRABLE | NOT DEFERRABLE]
[INITIALLY DEFERRED | INITIALLY IMMEDIATE]

Description

CREATE TABLE creates an empty table in the current database. The user who creates the table owns the table.

If you provide a schema name, then the table is created in the specified schema. Otherwise it's created in the current schema. Temporary tables exist in a special schema, so you can't provide a schema
name when creating a temporary table. The table name must differ from the name of any table, sequence, index, or view in the same schema.

CREATE TABLE also creates a data type that represents the composite type corresponding to one row of the table. Therefore, tables can't have the same name as any existing data type in the same
schema.

The PARALLEL clause sets the degree of parallelism for a table. If you don't specify the PARALLEL clause, the server determines a value based on the relation size.

The NOPARALLEL clause resets the parallelism for default execution, and reloptions shows the parallel_workers parameter as 0 .

A table can't have more than 1600 columns. In practice, the effective limit is lower because of tuple-length constraints.

The optional constraint clauses specify constraints or tests that new or updated rows must satisfy for an insert or update operation to succeed. A constraint is a SQL object that helps define the set of
valid values in the table in various ways.

You can define table constraints and column constraints. A column constraint is part of a column definition. A table constraint definition isn't tied to a particular column, and it can encompass more than
one column. You can also write every column constraint as a table constraint. A column constraint is a notational convenience only if the constraint affects only one column.

Note

EDB Postgres Advanced Server allows you to create rowids on a foreign table by specifying either the WITH (ROWIDS) or WITH (ROWIDS=true) option in the CREATE FOREIGN
TABLE syntax. Specifying the WITH (ROWIDS) or WITH (ROWIDS=true) option adds a rowid column to a foreign table. For information about CREATE FOREIGN TABLE , see the
PostgreSQL core documentation.

Parameters

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 710

https://www.postgresql.org/docs/current/sql-createforeigntable.html

GLOBAL TEMPORARY

Creates the table as a temporary table. Temporary tables are dropped at the end of a session or, optionally, at the end of the current transaction. (See the ON COMMIT parameter.) Existing permanent
tables with the same name aren't visible to the current session while the temporary table exists unless you reference them with schema-qualified names. In addition, temporary tables aren't visible
outside the session in which you created them. This aspect of global temporary tables isn't compatible with Oracle databases. Any indexes created on a temporary table are also temporary.

UNLOGGED

Creates the table as an unlogged table. The data written to unlogged tables isn't written to the write-ahead log (WAL), making them faster than an ordinary table. Indexes created on an unlogged table
are unlogged. The contents of an unlogged table aren't replicated to a standby server. The unlogged table is not crash-safe. It's truncated after a crash or shutdown.

table_name

The name (optionally schema-qualified) of the table to create.

column_name

The name of a column to create in the new table.

data_type

The data type of the column. This can include array specifiers. For more information on the data types included with EDB Postgres Advanced Server, see SQL reference.

DEFAULT default_expr

The DEFAULT clause assigns a default data value for the column whose column definition it appears in. The value is any variable-free expression. Subqueries and cross references to other columns in
the current table aren't allowed. The data type of the default expression must match the data type of the column.

The default expression is used in any insert operation that doesn't specify a value for the column. If you don't specify a default for a column, then the default is null .

CONSTRAINT constraint_name

An optional name for a column or table constraint. If you don't specify one, the system generates a name.

NOT NULL

The column can't contain null values.

NULL

The column can contain null values. This is the default.

This clause is available only for compatibility with nonstandard SQL databases. We don't recommend using it in new applications.

UNIQUE — Column constraint.

UNIQUE (column_name [, ...]) — Table constraint.

The UNIQUE constraint specifies that a group of one or more distinct columns of a table can contain only unique values. The behavior of the unique table constraint is the same as that for column
constraints. However, the unique table constraint can span multiple columns.

For the purpose of a unique constraint, null values aren't considered equal.

Each unique table constraint must name a set of columns that's different from the set of columns named by any other unique or primary key constraint defined for the table. Otherwise it's the same
constraint listed twice.

PRIMARY KEY — Column constraint.

PRIMARY KEY (column_name [, ...]) — Table constraint.

The primary key constraint specifies that any columns of a table can contain only unique, non-duplicated, non-null values. Technically, PRIMARY KEY is a combination of UNIQUE and NOT NULL .
However, identifying a set of columns as primary key also provides metadata about the design of the schema. A primary key implies that other tables might rely on this set of columns as a unique
identifier for rows.

You can specify only one primary key for a table, whether as a column constraint or a table constraint.

Use the primary key constraint to name a set of columns that's different from other sets of columns named by any unique constraint defined for the same table.

CHECK (expression)

The CHECK clause specifies an expression producing a Boolean result that new or updated rows must satisfy for an insert or update operation to succeed. Expressions evaluating to TRUE or

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 711

“unknown” succeed. If any row of an insert or update operation produces a FALSE result, an error exception is raised and the insert or update doesn't alter the database. A check constraint specified as
a column constraint must reference only that column’s value. An expression appearing in a table constraint can reference multiple columns.

Currently, CHECK expressions can't contain subqueries or refer to variables other than columns of the current row.

REFERENCES reftable [(refcolumn)] [ON DELETE action] — Column constraint.

FOREIGN KEY (column [, ...]) REFERENCES reftable [(refcolumn [, ...])] [ON DELETE action] — Table constraint.

These clauses specify a foreign-key constraint, which requires that a group of columns of the new table must contain only values that match values in the referenced columns of some row of the
referenced table. If you omit refcolumn , the primary key of the reftable is used. The referenced columns must be the columns of a unique or primary key constraint in the referenced table.

In addition, when the data in the referenced columns changes, certain actions are performed on the data in this table’s columns. The ON DELETE clause specifies the action to perform when a
referenced row in the referenced table is being deleted. You can't defer referential actions even if the constraint is deferrable. Here are the following possible actions for each clause:

CASCADE

Delete any rows referencing the deleted row, or update the value of the referencing column to the new value of the referenced column.

SET NULL

Set the referencing columns to NULL .

If the referenced columns change frequently, we recommend adding an index to the foreign key column so that referential actions associated with the foreign key column are performed more
efficiently.

DEFERRABLE

NOT DEFERRABLE

This parameter controls whether you can defer the constraint. A constraint that isn't deferrable is checked immediately after every command. You can postpone checking constraints that are deferrable
until the end of the transaction using the SET CONSTRAINTS command. NOT DEFERRABLE is the default. Only foreign key constraints currently accept this clause. All other constraint types aren't
deferrable.

INITIALLY IMMEDIATE

INITIALLY DEFERRED

If a constraint is deferrable, this clause specifies the default time to check the constraint. If the constraint is INITIALLY IMMEDIATE , it's checked after each statement. This is the default. If the
constraint is INITIALLY DEFERRED , it's checked only at the end of the transaction. You can alter the constraint check time with the SET CONSTRAINTS command.

WITH (ROWIDS [= value])

The ROWIDS option for a table includes value equals to TRUE/ON/1 or FALSE/OFF/0 . When set to TRUE/ON/1 , a ROWID column is created in the new table. ROWID is an auto-
incrementing value based on a sequence that starts with 1 and assigned to each row of a table. The default value is always TRUE .

By default, a unique index is created on a ROWID column. The ALTER and DROP operations are restricted on a ROWID column.

ON COMMIT

You can control the behavior of temporary tables at the end of a transaction block using ON COMMIT . The options are:

PRESERVE ROWS

No special action is taken at the ends of transactions. This is the default behavior. This aspect isn't compatible with Oracle databases. The Oracle default is DELETE ROWS .

DELETE ROWS

All rows in the temporary table are deleted at the end of each transaction block. Essentially, an automatic TRUNCATE is done at each commit.

TABLESPACE tablespace

The tablespace is the name of the tablespace where the new table is created. If not specified, default tablespace is used or the database’s default tablespace if default_tablespace is
an empty string.

USING INDEX [create_index_statement] TABLESPACE tablespace

This clause allows selection of the tablespace in which the index associated with a UNIQUE or PRIMARY KEY constraint is created. If not specified, default tablespace is used, or the
database’s default tablespace if default_tablespace is an empty string.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 712

If you specify the create_index_statement option, the database server creates an index enabling unique or primary key constraints. The columns specified in the constraint and the columns of an
index must be the same, but their order of appearance might differ.

PARALLEL

Include the PARALLEL clause to specify the degree of parallelism for the table. Set the parallel_workers parameter equal to the degree of parallelism to perform a parallel scan of a table.
Alternatively, if you specify PARALLEL but don't include a degree of parallelism, an index uses default parallelism.

NOPARALLEL

Specify NOPARALLEL for default execution.

integer

The integer indicates the degree of parallelism, which is a number of parallel_workers used in the parallel operation to perform a parallel scan on a table.

Notes

EDB Postgres Advanced Server creates an index for each unique constraint and primary key constraint to enforce the uniqueness. Thus, you don't need to create an explicit index for primary key
columns. For more information, see CREATE INDEX .

Examples

Create table dept and table emp :

CREATE TABLE dept (
 deptno NUMBER(2) NOT NULL CONSTRAINT dept_pk PRIMARY KEY,
 dname VARCHAR2(14),
 loc VARCHAR2(13)
);
CREATE TABLE emp (
 empno NUMBER(4) NOT NULL CONSTRAINT emp_pk PRIMARY KEY,
 ename VARCHAR2(10),
 job VARCHAR2(9),
 mgr NUMBER(4),
 hiredate DATE,
 sal NUMBER(7,2),
 comm NUMBER(7,2),
 deptno NUMBER(2) CONSTRAINT emp_ref_dept_fk
 REFERENCES dept(deptno)
);

Define a unique table constraint for the table dept . You can define unique table constraints on one or more columns of the table.

CREATE TABLE dept (
 deptno NUMBER(2) NOT NULL CONSTRAINT dept_pk PRIMARY KEY,
 dname VARCHAR2(14) CONSTRAINT dept_dname_uq UNIQUE,
 loc VARCHAR2(13)
);

Define a check column constraint:

CREATE TABLE emp (
 empno NUMBER(4) NOT NULL CONSTRAINT emp_pk PRIMARY KEY,
 ename VARCHAR2(10),
 job VARCHAR2(9),
 mgr NUMBER(4),
 hiredate DATE,
 sal NUMBER(7,2) CONSTRAINT emp_sal_ck CHECK (sal > 0),
 comm NUMBER(7,2),
 deptno NUMBER(2) CONSTRAINT emp_ref_dept_fk
 REFERENCES dept(deptno)
);

Define a check table constraint:

CREATE TABLE emp (

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 713

 empno NUMBER(4) NOT NULL CONSTRAINT emp_pk PRIMARY KEY,
 ename VARCHAR2(10),
 job VARCHAR2(9),
 mgr NUMBER(4),
 hiredate DATE,
 sal NUMBER(7,2),
 comm NUMBER(7,2),
 deptno NUMBER(2) CONSTRAINT emp_ref_dept_fk
 REFERENCES dept(deptno),
 CONSTRAINT new_emp_ck CHECK (ename IS NOT NULL AND empno > 7000)
);

Define a primary key table constraint for the table jobhist . You can define primary key table constraints on one or more columns of the table.

CREATE TABLE jobhist (
 empno NUMBER(4) NOT NULL,
 startdate DATE NOT NULL,
 enddate DATE,
 job VARCHAR2(9),
 sal NUMBER(7,2),
 comm NUMBER(7,2),
 deptno NUMBER(2),
 chgdesc VARCHAR2(80),
 CONSTRAINT jobhist_pk PRIMARY KEY (empno, startdate)
);

This example assigns a literal constant default value for the column job and makes the default value of hiredate the date when the row is inserted.

CREATE TABLE emp (
 empno NUMBER(4) NOT NULL CONSTRAINT emp_pk PRIMARY KEY,
 ename VARCHAR2(10),
 job VARCHAR2(9) DEFAULT 'SALESMAN',
 mgr NUMBER(4),
 hiredate DATE DEFAULT SYSDATE,
 sal NUMBER(7,2),
 comm NUMBER(7,2),
 deptno NUMBER(2) CONSTRAINT emp_ref_dept_fk
 REFERENCES dept(deptno)
);

Create table dept in tablespace diskvol1 :

CREATE TABLE dept (
 deptno NUMBER(2) NOT NULL CONSTRAINT dept_pk PRIMARY KEY,
 dname VARCHAR2(14),
 loc VARCHAR2(13)
) TABLESPACE diskvol1;

This PARALLEL example creates a table sales and sets a degree of parallelism to 6:

CREATE TABLE sales (deptno number) PARALLEL 6 WITH (FILLFACTOR=66);

This NOPARALLEL example creates a table sales_order and sets a degree of parallelism to 0:

CREATE TABLE sales_order (deptno number) NOPARALLEL WITH (FILLFACTOR=66);

This example creates a table named dept . The definition creates a unique key on the dname column. The constraint dept_dname_uq identifies the dname column as a unique key. The preceding
statement includes the USING_INDEX clause, which explicitly creates an index on a table dept with the index statement enabling the unique constraint.

CREATE TABLE dept (
 deptno NUMBER(2) NOT NULL,
 dname VARCHAR2(14),
 loc VARCHAR2(13),
 CONSTRAINT dept_dname_uq UNIQUE(dname)
 USING INDEX (CREATE UNIQUE INDEX idx_dept_dname_uq ON dept(dname))
);

This example creates a table named emp . The definition creates a primary key on the ename column. The emp_ename_pk constraint identifies the ename column as a primary key of the emp
table. The preceding statement includes the USING_INDEX clause, which explicitly creates an index on a table emp with the index statement enabling the primary constraint.

CREATE TABLE emp (
 empno NUMBER(4) NOT NULL,

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 714

 ename VARCHAR2(10),
 job VARCHAR2(9),
 sal NUMBER(7,2),
 deptno NUMBER(2),
 CONSTRAINT emp_ename_pk PRIMARY KEY (ename)
 USING INDEX (CREATE INDEX idx_emp_ename_pk ON emp (ename))
);

See also

ALTER TABLE, DROP TABLE

20.37 CREATE TABLE AS

Name

CREATE TABLE AS — Define a new table from the results of a query.

Synopsis

CREATE [GLOBAL TEMPORARY] TABLE <table_name>
 [(<column_name> [, ...])]
 [ON COMMIT { PRESERVE ROWS | DELETE ROWS }]
 [TABLESPACE tablespace]
 AS <query>

Description

CREATE TABLE AS creates a table and fills it with data computed by a SELECT command. The table columns have the names and data types associated with the output columns of the SELECT .
You can override the column names by providing an explicit list of new column names.

CREATE TABLE AS is similar to creating a view. However, it differs because it creates a table and evaluates the query once to fill the new table initially. The new table doesn't track later changes to
the source tables of the query. In contrast, a view reevaluates its defining SELECT statement whenever you query it.

Parameters

GLOBAL TEMPORARY

Specify to create the table as a temporary table. For details, see CREATE TABLE .

table_name

The name (optionally schema-qualified) of the table to create.

column_name

The name of a column in the new table. If you don't provide column names, the names are taken from the output column names of the query.

query

A query statement (a SELECT command). For a description of the allowed syntax, see SELECT .

20.38 CREATE TRIGGER

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 715

Name

CREATE TRIGGER — Define a simple trigger.

Synopsis

CREATE [OR REPLACE] TRIGGER <name>
 { BEFORE | AFTER | INSTEAD OF }
 { INSERT | UPDATE | DELETE | TRUNCATE }
 [OR { INSERT | UPDATE | DELETE | TRUNCATE}] [, ...]
 ON <table>
 [REFERENCING { OLD AS <old> | NEW AS <new> } ...]
 [FOR EACH ROW]
 [WHEN <condition>]
 [DECLARE
 [PRAGMA AUTONOMOUS_TRANSACTION;]
 <declaration>; [, ...]]
 BEGIN
 <statement>; [, ...]
 [EXCEPTION
 { WHEN <exception> [OR <exception>] [...] THEN
 <statement>; [, ...] } [, ...]
]
 END

Name

CREATE TRIGGER — Define a compound trigger.

Synopsis

CREATE [OR REPLACE] TRIGGER <name>
 FOR { INSERT | UPDATE | DELETE | TRUNCATE }
 [OR { INSERT | UPDATE | DELETE | TRUNCATE }] [, ...]
 ON <table>
 [REFERENCING { OLD AS <old> | NEW AS <new> } ...]
 [WHEN <condition>]
 COMPOUND TRIGGER
 [<private_declaration>;] ...
 [<procedure_or_function_definition>] ...
 <compound_trigger_definition>
 END

Where private_declaration is an identifier of a private variable that any procedure or function can access. There can be zero, one, or more private variables. private_declaration can be
any of the following:

Variable declaration
Record declaration
Collection declaration
REF CURSOR and cursor variable declaration
TYPE definitions for records, collections, and REF CURSOR cursors

Exception
Object variable declaration

Where procedure_or_function_definition :=

procedure_definition | function_definition

Where procedure_definition :=

PROCEDURE proc_name[argument_list]
 [options_list]
 { IS | AS }
 procedure_body
 END [proc_name];

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 716

Where procedure_body :=

[declaration;] [, ...]
BEGIN
 statement; [...]
[EXCEPTION
 { WHEN exception [OR exception] [...]] THEN statement; }
 [...]
]

Where function_definition :=

FUNCTION func_name [argument_list]
 RETURN rettype [DETERMINISTIC]
 [options_list]
 { IS | AS }
 function_body
 END [func_name] ;

Where function_body :=

[declaration;] [, ...]
BEGIN
 statement; [...]
[EXCEPTION
 { WHEN exception [OR exception] [...] THEN statement; }
 [...]
]

Where compound_trigger_definition :=

{ compound_trigger_event } { IS | AS }
 compound_trigger_body
END [compound_trigger_event] [...]

Where compound_trigger_event :=

[BEFORE STATEMENT | BEFORE EACH ROW | AFTER EACH ROW | AFTER STATEMENT | INSTEAD OF EACH ROW]

Where compound_trigger_body :=

[declaration;] [, ...]
BEGIN
 statement; [...]
[EXCEPTION
 { WHEN exception [OR exception] [...] THEN statement; }
 [...]
]

Description

CREATE TRIGGER defines a new trigger. CREATE OR REPLACE TRIGGER either creates a trigger or replaces an existing definition.

If you're using the CREATE TRIGGER keywords to create a new trigger, the name of the new trigger can't match any existing trigger defined on the same table. Triggers are created in the same
schema as the table where the triggering event is defined.

If you're updating the definition of an existing trigger, use the CREATE OR REPLACE TRIGGER keywords.

When you use syntax that's compatible with Oracle to create a trigger, the trigger runs as a SECURITY DEFINER function.

Parameters

name

The name of the trigger to create.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 717

BEFORE | AFTER

Determines whether the trigger is fired before or after the triggering event.

INSTEAD OF

Modifies an updatable view. The trigger executes to update the underlying tables appropriately. The INSTEAD OF trigger executes for each row of the view that's updated or modified.

INSERT | UPDATE | DELETE | TRUNCATE

Defines the triggering event.

table

The name of the table or view on which the triggering event occurs.

condition

A Boolean expression that determines if the trigger executes. If condition evaluates to TRUE , the trigger fires.

If the simple trigger definition includes the FOR EACH ROW keywords, the WHEN clause can refer to columns of the old or new row values by writing OLD.column_name or
NEW.column_name . INSERT triggers can't refer to OLD , and DELETE triggers can't refer to NEW .

If the compound trigger definition includes a statement-level trigger having a WHEN clause, then the trigger executes without evaluating the expression in the WHEN clause. Similarly, if a
compound trigger definition includes a row-level trigger having a WHEN clause, then the trigger executes if the expression evaluates to TRUE .

If the trigger includes the INSTEAD OF keywords, it can't include a WHEN clause. A WHEN clause can't contain subqueries.

REFERENCING { OLD AS old | NEW AS new } ...

REFERENCING clause to reference old rows and new rows. This clause is restricted in that you can replace old only with an identifier named old or any equivalent that's saved in all lowercase.
Examples include REFERENCING OLD AS old , REFERENCING OLD AS OLD , and REFERENCING OLD AS "old" . Also, you can replace new only with an identifier named new or any
equivalent that's saved in all lowercase. Examples include REFERENCING NEW AS new , REFERENCING NEW AS NEW , and REFERENCING NEW AS "new" .

You can specify one or both phrases OLD AS old and NEW AS new in the REFERENCING clause, such as REFERENCING NEW AS New OLD AS Old .

This clause isn't compatible with Oracle databases in that you can't use identifiers other than old or new .

FOR EACH ROW

Determines whether to fire the trigger once for every row affected by the triggering event or just once per SQL statement. If you specify this parameter, the trigger is fired once for every affected row
(row-level trigger). Otherwise the trigger is a statement-level trigger.

PRAGMA AUTONOMOUS_TRANSACTION

PRAGMA AUTONOMOUS_TRANSACTION is the directive that sets the trigger as an autonomous transaction.

declaration

A variable, type, REF CURSOR , or subprogram declaration. If you include subprogram declarations, declare them after all other variable, type, and REF CURSOR declarations.

statement

An SPL program statement. A DECLARE - BEGIN - END block is considered an SPL statement. Thus, the trigger body can contain nested blocks.

exception

An exception condition name, such as NO_DATA_FOUND and OTHERS .

Examples

This example shows a statement-level trigger that fires after the triggering statement (insert, update, or delete on table emp) executes.

CREATE OR REPLACE TRIGGER user_audit_trig
 AFTER INSERT OR UPDATE OR DELETE ON emp
DECLARE
 v_action VARCHAR2(24);

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 718

BEGIN
 IF INSERTING THEN
 v_action := ' added employee(s) on ';
 ELSIF UPDATING THEN
 v_action := ' updated employee(s) on ';
 ELSIF DELETING THEN
 v_action := ' deleted employee(s) on ';
 END IF;
 DBMS_OUTPUT.PUT_LINE('User ' || USER || v_action ||
 TO_CHAR(SYSDATE,'YYYY-MM-DD'));
END;

This example is a row-level trigger that fires before each row is either inserted, updated, or deleted on table emp .

CREATE OR REPLACE TRIGGER emp_sal_trig
 BEFORE DELETE OR INSERT OR UPDATE ON emp
 FOR EACH ROW
DECLARE
 sal_diff NUMBER;
BEGIN
 IF INSERTING THEN
 DBMS_OUTPUT.PUT_LINE('Inserting employee ' || :NEW.empno);
 DBMS_OUTPUT.PUT_LINE('..New salary: ' || :NEW.sal);
 END IF;
 IF UPDATING THEN
 sal_diff := :NEW.sal - :OLD.sal;
 DBMS_OUTPUT.PUT_LINE('Updating employee ' || :OLD.empno);
 DBMS_OUTPUT.PUT_LINE('..Old salary: ' || :OLD.sal);
 DBMS_OUTPUT.PUT_LINE('..New salary: ' || :NEW.sal);
 DBMS_OUTPUT.PUT_LINE('..Raise : ' || sal_diff);
 END IF;
 IF DELETING THEN
 DBMS_OUTPUT.PUT_LINE('Deleting employee ' || :OLD.empno);
 DBMS_OUTPUT.PUT_LINE('..Old salary: ' || :OLD.sal);
 END IF;
END;

This example shows a compound trigger that records a change to the employee salary by defining a compound trigger hr_trigger on table emp .

Create a table named emp :

CREATE TABLE emp(EMPNO INT, ENAME TEXT, SAL INT, DEPTNO INT);
CREATE TABLE

Create a compound trigger named hr_trigger . The trigger uses each of the four timing-points to modify the salary with an INSERT , UPDATE , or DELETE statement. In the global declaration
section, the initial salary is declared as 10,000 .

CREATE OR REPLACE TRIGGER hr_trigger
 FOR INSERT OR UPDATE OR DELETE ON emp
 COMPOUND TRIGGER
 -- Global declaration.
 var_sal NUMBER := 10000;

 BEFORE STATEMENT IS
 BEGIN
 var_sal := var_sal + 1000;
 DBMS_OUTPUT.PUT_LINE('Before Statement: ' || var_sal);
 END BEFORE STATEMENT;

 BEFORE EACH ROW IS
 BEGIN
 var_sal := var_sal + 1000;
 DBMS_OUTPUT.PUT_LINE('Before Each Row: ' || var_sal);
 END BEFORE EACH ROW;

 AFTER EACH ROW IS
 BEGIN
 var_sal := var_sal + 1000;
 DBMS_OUTPUT.PUT_LINE('After Each Row: ' || var_sal);
 END AFTER EACH ROW;

 AFTER STATEMENT IS
 BEGIN
 var_sal := var_sal + 1000;
 DBMS_OUTPUT.PUT_LINE('After Statement: ' || var_sal);
 END AFTER STATEMENT;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 719

END hr_trigger;

Output: Trigger created.

INSERT the record into table emp .

INSERT INTO emp (EMPNO, ENAME, SAL, DEPTNO) VALUES(1111,'SMITH', 10000, 20);

The INSERT statement produces the following output:

Before Statement: 11000
Before each row: 12000
After each row: 13000
After statement: 14000
INSERT 0 1

The UPDATE statement updates the employee salary record, setting the salary to 15000 for a specific employee number:

UPDATE emp SET SAL = 15000 where EMPNO = 1111;

The UPDATE statement produces the following output:

Before Statement: 11000
Before each row: 12000
After each row: 13000
After statement: 14000
UPDATE 1

SELECT * FROM emp;
 EMPNO | ENAME | SAL | DEPTNO
-------+-------+-------+--------
 1111 | SMITH | 15000 | 20
(1 row)

The DELETE statement deletes the employee salary record:

DELETE from emp where EMPNO = 1111;

The DELETE statement produces the following output:

Before Statement: 11000
Before each row: 12000
After each row: 13000
After statement: 14000
DELETE 1

SELECT * FROM emp;
 EMPNO | ENAME | SAL | DEPTNO
-------+-------+-----+--------
(0 rows)

The TRUNCATE statement removes all the records from the emp table:

CREATE OR REPLACE TRIGGER hr_trigger
 FOR TRUNCATE ON emp
 COMPOUND TRIGGER
 -- Global declaration.
 var_sal NUMBER := 10000;
 BEFORE STATEMENT IS
 BEGIN
 var_sal := var_sal + 1000;
 DBMS_OUTPUT.PUT_LINE('Before Statement: ' || var_sal);
 END BEFORE STATEMENT;

 AFTER STATEMENT IS
 BEGIN
 var_sal := var_sal + 1000;
 DBMS_OUTPUT.PUT_LINE('After Statement: ' || var_sal);
 END AFTER STATEMENT;

END hr_trigger;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 720

Output: Trigger created.

The TRUNCATE statement produces the following output:

TRUNCATE emp;
Before Statement: 11000
After statement: 12000
TRUNCATE TABLE

Note

You can use the TRUNCATE statement only at a BEFORE STATEMENT or AFTER STATEMENT timing point.

This example creates a compound trigger named hr_trigger on the emp table. It is a WHEN condition that checks and prints employee salary whenever an INSERT , UPDATE , or DELETE
statement affects the emp table. The database evaluates the WHEN condition for a row-level trigger, and the trigger executes once per row if the WHEN condition evaluates to TRUE . The statement-
level trigger executes regardless of the WHEN condition.

CREATE OR REPLACE TRIGGER hr_trigger
 FOR INSERT OR UPDATE OR DELETE ON emp
 REFERENCING NEW AS new OLD AS old
 WHEN (old.sal > 5000 OR new.sal < 8000)
 COMPOUND TRIGGER

 BEFORE STATEMENT IS
 BEGIN
 DBMS_OUTPUT.PUT_LINE('Before Statement');
 END BEFORE STATEMENT;

 BEFORE EACH ROW IS
 BEGIN
 DBMS_OUTPUT.PUT_LINE('Before Each Row: ' || :OLD.sal ||' ' || :NEW.sal);
 END BEFORE EACH ROW;

 AFTER EACH ROW IS
 BEGIN
 DBMS_OUTPUT.PUT_LINE('After Each Row: ' || :OLD.sal ||' ' || :NEW.sal);
 END AFTER EACH ROW;

 AFTER STATEMENT IS
 BEGIN
 DBMS_OUTPUT.PUT_LINE('After Statement');
 END AFTER STATEMENT;

END hr_trigger;

Insert the record into table emp :

INSERT INTO emp(EMPNO, ENAME, SAL, DEPTNO) VALUES(1111, 'SMITH', 1600, 20);

The INSERT statement produces the following output:

Before Statement
Before Each Row: 1600
After Each Row: 1600
After Statement
INSERT 0 1

The UPDATE statement updates the employee salary record, setting the salary to 7500 :

UPDATE emp SET SAL = 7500 where EMPNO = 1111;

The UPDATE statement produces the following output:

Before Statement
Before Each Row: 1600 7500
After Each Row: 1600 7500
After Statement
UPDATE 1

SELECT * from emp;
 empno | ename | sal | deptno

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 721

-------+-------+------+--------
 1111 | SMITH | 7500 | 20
(1 row)

The DELETE statement deletes the employee salary record:

DELETE from emp where EMPNO = 1111;

The DELETE statement produces the following output:

Before Statement
Before Each Row: 7500
After Each Row: 7500
After Statement
DELETE 1

SELECT * from emp;
 empno | ename | sal | deptno
-------+-------+-----+--------
(0 rows)

See also

ALTER TRIGGER, DROP TRIGGER

20.39 CREATE TYPE

Name

CREATE TYPE — Define a new user-defined type, The new type can be an object type, a collection type (a nested table type or a varray type), or a composite type.

Synopsis

Object Type

CREATE [OR REPLACE] TYPE <name>
 [AUTHID { DEFINER | CURRENT_USER }]
 { IS | AS } OBJECT
({ <attribute> { <datatype> | <objtype> | <collecttype> } }
 [, ...]
 [<method_spec>] [, ...]
) [[NOT] { FINAL | INSTANTIABLE }] ...

Where method_spec is:

[[NOT] { FINAL | INSTANTIABLE }] ...
[OVERRIDING]
 <subprogram_spec>

Where subprogram_spec is:

{ MEMBER | STATIC }
{ PROCEDURE <proc_name>
 [([SELF [IN | IN OUT] <name>]
 [, <argname> [IN | IN OUT | OUT] <argtype>
 [DEFAULT <value>]
] ...)
]
|
 FUNCTION <func_name>
 [([SELF [IN | IN OUT] <name>]
 [, <argname> [IN | IN OUT | OUT] <argtype>

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 722

 [DEFAULT <value>]
] ...)
]
 RETURN <rettype>
}

Nested table type

CREATE [OR REPLACE] TYPE <name> { IS | AS } TABLE OF
 { <datatype> | <objtype> | <collecttype> }

Varray type

CREATE [OR REPLACE] TYPE <name> { IS | AS }
 { VARRAY | VARYING ARRAY } (<maxsize>) OF { <datatype> | <objtype> }

Composite type

CREATE [OR REPLACE] TYPE <name> { IS | AS }
([attribute <datatype>][, ...]
)

Description

CREATE TYPE defines a new data type. The types that you can create are an object type, a nested table type, a varray type, or a composite type. Nested table and varray types belong to the category
of types known as collections.

Composite types aren't compatible with Oracle databases. However, SPL programs can access composite types along with other types.

Parameters

name

The name (optionally schema-qualified) of the type to create.

DEFINER | CURRENT_USER

Specifies whether to use the privileges of the object type owner (DEFINER) or of the current user executing a method in the object type (CURRENT_USER) to determine whether access is allowed to
database objects referenced in the object type. DEFINER is the default.

attribute

The name of an attribute in the object type or composite type.

datatype

The data type that defines an attribute of the object type or composite type, or the elements of the collection type that's being created.

objtype

The name of an object type that defines an attribute of the object type or the elements of the collection type that's being created.

collecttype

The name of a collection type that defines an attribute of the object type or the elements of the collection type that's being created.

FINAL

NOT FINAL

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 723

For an object type, specifies whether you can derive a subtype from the object type. FINAL (you can't derive a subtype from the object type) is the default.

For method_spec , specifies whether you can override the method in a subtype. NOT FINAL (you can override the method in a subtype) is the default.

INSTANTIABLE

NOT INSTANTIABLE

For an object type, specifies whether you can create an object instance of this object type. INSTANTIABLE (you can create an instance of this object type) is the default. If you specify NOT
INSTANTIABLE , then you must specify NOT FINAL as well. If method_spec for any method in the object type contains the NOT INSTANTIABLE qualifier, then the object type must be defined
with NOT INSTANTIABLE and NOT FINAL following the closing parenthesis of the object type specification.

For method_spec , specifies whether the object type definition provides an implementation for the method. INSTANTIABLE (the CREATE TYPE BODY command for the object type provides the
implementation of the method) is the default. If you specify NOT INSTANTIABLE , then the CREATE TYPE BODY command for the object type can't contain the implementation of the method.

OVERRIDING

If you spcify OVERRIDING , method_spec overrides an identically named method with the same number of identically named method arguments with the same data types, in the same order, and
the same return type (if the method is a function) as defined in a supertype.

MEMBER

STATIC

Specify MEMBER if the subprogram operates on an object instance. Specify STATIC if the subprogram operates independently of any particular object instance.

proc_name

The name of the procedure to create.

SELF [IN | IN OUT] name

For a member method, there is an implicit, built-in parameter named SELF whose data type is that of the object type being defined. SELF refers to the object instance that's currently invoking the
method. You can explicitly declare SELF as an IN or IN OUT parameter in the parameter list. If explicitly declared, SELF must be the first parameter in the parameter list. If you don't explicitly
declare SELF , its parameter mode defaults to IN OUT for member procedures and IN for member functions.

argname

The name of an argument. The argument is referenced by this name in the method body.

argtype

The data types of the method’s arguments. The argument types can be a base data type or a user-defined type such as a nested table or an object type. Don't specify a length for any base type. For
example, specify VARCHAR2 , not VARCHAR2(10) .

DEFAULT value

Supplies a default value for an input argument if you don't supply one in the method call. You can't specify DEFAULT for arguments with modes IN OUT or OUT .

func_name

The name of the function to create.

rettype

The return data type, which can be any of the types listed for argtype . Don't specify a length for rettype .

maxsize

The maximum number of elements permitted in the varray.

Examples

Creating an object type

Create object type addr_obj_typ :

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 724

CREATE OR REPLACE TYPE addr_obj_typ AS OBJECT (
 street VARCHAR2(30),
 city VARCHAR2(20),
 state CHAR(2),
 zip NUMBER(5)
);

Create object type emp_obj_typ that includes a member method display_emp :

CREATE OR REPLACE TYPE emp_obj_typ AS OBJECT (
 empno NUMBER(4),
 ename VARCHAR2(20),
 addr ADDR_OBJ_TYP,
 MEMBER PROCEDURE display_emp (SELF IN OUT emp_obj_typ)
);

Create object type dept_obj_typ that includes a static method get_dname :

CREATE OR REPLACE TYPE dept_obj_typ AS OBJECT (
 deptno NUMBER(2),
 STATIC FUNCTION get_dname (p_deptno IN NUMBER) RETURN VARCHAR2,
 MEMBER PROCEDURE display_dept
);

Creating a collection type

Create a nested table type budget_tbl_typ of data type NUMBER(8,2) :

CREATE OR REPLACE TYPE budget_tbl_typ IS TABLE OF NUMBER(8,2);

Creating and using a composite type

This example uses a composite type accessed from an anonymous block.

This example creates the composite type:

CREATE OR REPLACE TYPE emphist_typ AS (
 empno NUMBER(4),
 ename VARCHAR2(10),
 hiredate DATE,
 job VARCHAR2(9),
 sal NUMBER(7,2)
);

This code shows the anonymous block that accesses the composite type:

DECLARE
 v_emphist EMPHIST_TYP;
BEGIN
 v_emphist.empno := 9001;
 v_emphist.ename := 'SMITH';
 v_emphist.hiredate := '01-AUG-17';
 v_emphist.job := 'SALESMAN';
 v_emphist.sal := 8000.00;
 DBMS_OUTPUT.PUT_LINE(' EMPNO: ' || v_emphist.empno);
 DBMS_OUTPUT.PUT_LINE(' ENAME: ' || v_emphist.ename);
 DBMS_OUTPUT.PUT_LINE('HIREDATE: ' || v_emphist.hiredate);
 DBMS_OUTPUT.PUT_LINE(' JOB: ' || v_emphist.job);
 DBMS_OUTPUT.PUT_LINE(' SAL: ' || v_emphist.sal);
END;

 EMPNO: 9001
 ENAME: SMITH
HIREDATE: 01-AUG-17 00:00:00
 JOB: SALESMAN
 SAL: 8000.00

This example uses a composite type accessed from a user-defined record type declared in a package body.

The following creates the composite type:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 725

CREATE OR REPLACE TYPE salhist_typ AS (
 startdate DATE,
 job VARCHAR2(9),
 sal NUMBER(7,2)
);

The following defines the package specification:

CREATE OR REPLACE PACKAGE emp_salhist
IS
 PROCEDURE fetch_emp (
 p_empno IN NUMBER
);
END;

The following defines the package body:

CREATE OR REPLACE PACKAGE BODY emp_salhist
IS
 TYPE emprec_typ IS RECORD (
 empno NUMBER(4),
 ename VARCHAR(10),
 salhist SALHIST_TYP
);
 TYPE emp_arr_typ IS TABLE OF emprec_typ INDEX BY BINARY_INTEGER;
 emp_arr emp_arr_typ;

 PROCEDURE fetch_emp (
 p_empno IN NUMBER
)
 IS
 CURSOR emp_cur IS SELECT e.empno, e.ename, h.startdate, h.job, h.sal
 FROM emp e, jobhist h
 WHERE e.empno = p_empno
 AND e.empno = h.empno;

 i INTEGER := 0;
 BEGIN
 DBMS_OUTPUT.PUT_LINE('EMPNO ENAME STARTDATE JOB ' ||
 'SAL ');
 DBMS_OUTPUT.PUT_LINE('----- ------- --------- --------- ' ||
 '---------');

 FOR r_emp IN emp_cur LOOP
 i := i + 1;
 emp_arr(i) := (r_emp.empno, r_emp.ename,
 (r_emp.startdate, r_emp.job, r_emp.sal));
 END LOOP;

 FOR i IN 1 .. emp_arr.COUNT LOOP
 DBMS_OUTPUT.PUT_LINE(emp_arr(i).empno || ' ' ||
 RPAD(emp_arr(i).ename,8) || ' ' ||
 TO_CHAR(emp_arr(i).salhist.startdate,'DD-MON-YY') || ' ' ||
 RPAD(emp_arr(i).salhist.job,10) || ' ' ||
 TO_CHAR(emp_arr(i).salhist.sal,'99,999.99'));
 END LOOP;
 END;
END;

In the declaration of the TYPE emprec_typ IS RECORD data structure in the package body, the salhist field is defined with the SALHIST_TYP composite type created by the CREATE
TYPE salhist_typ statement.

The associative array definition TYPE emp_arr_typ IS TABLE OF emprec_typ references the record type data structure emprec_typ that includes the field salhist defined with the
SALHIST_TYP composite type.

This example invokes the package procedure that loads the array from a join of the emp and jobhist tables and then displays the array content:

EXEC emp_salhist.fetch_emp(7788);

EMPNO ENAME STARTDATE JOB SAL
----- ------- --------- --------- ---------
7788 SCOTT 19-APR-87 CLERK 1,000.00
7788 SCOTT 13-APR-88 CLERK 1,040.00
7788 SCOTT 05-MAY-90 ANALYST 3,000.00

EDB-SPL Procedure successfully completed

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 726

Notes

For packages only, you can include a composite type in a user-defined record type declared with the TYPE IS RECORD statement in the package specification or package body. This nested structure
isn't permitted in other SPL programs such as functions, procedures, and triggers.

In the CREATE TYPE command, if you include a schema name, then the type is created in the specified schema. Otherwise it's created in the current schema. The name of the new type can't match
any existing type in the same schema unless you want to update the definition of an existing type. In that case, use CREATE OR REPLACE TYPE .

You can't use the OR REPLACE option to add, delete, or modify the attributes of an existing object type. Use the DROP TYPE command to first delete the existing object type. You can use the OR
REPLACE option to add, delete, or modify the methods in an existing object type.

You can use the PostgreSQL form of the ALTER TYPE ALTER ATTRIBUTE command to change the data type of an attribute in an existing object type. However, the ALTER TYPE command can't
add or delete attributes in the object type.

The user that creates the type becomes the owner of the type.

See also

CREATE TYPE BODY, DROP TYPE

20.40 CREATE TYPE BODY

Name

CREATE TYPE BODY — Define a new object type body.

Synopsis

CREATE [OR REPLACE] TYPE BODY <name>
 { IS | AS }
 <method_spec> [...]
END

Where method_spec is:

subprogram_spec

Where subprogram_spec is:

{ MEMBER | STATIC }
{ PROCEDURE <proc_name>
 [([SELF [IN | IN OUT] <name>]
 [, <argname> [IN | IN OUT | OUT] <argtype>
 [DEFAULT <value>]
] ...)
]
{ IS | AS }
 <program_body>
 END;
|
 FUNCTION <func_name>
 [([SELF [IN | IN OUT] <name>]
 [, <argname> [IN | IN OUT | OUT] <argtype>
 [DEFAULT <value>]
] ...)
]
 RETURN <rettype>
{ IS |AS }
 <program_body>
 END;
}

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 727

Description

CREATE TYPE BODY defines a new object type body. CREATE OR REPLACE TYPE BODY either creates a new object type body or replaces an existing body.

If you include a schema name, then the object type body is created in the specified schema. Otherwise it's created in the current schema. The name of the new object type body must match an existing
object type specification in the same schema. The new object type body name can't match any existing object type body in the same schema unless you want to update the definition of an existing object
type body. In that case, use CREATE OR REPLACE TYPE BODY .

Parameters

name

The name (optionally schema-qualified) of the object type for which to create a body.

MEMBER

STATIC

Specify MEMBER if the subprogram operates on an object instance. Specify STATIC if the subprogram operates independently of any particular object instance.

proc_name

The name of the procedure to create.

SELF [IN | IN OUT] name

A member method has an implicit, built-in parameter named SELF whose data type is the same as the object type being defined. SELF refers to the object instance that's currently invoking the
method. You can explicitly declare SELF as an IN or IN OUT parameter in the parameter list. If you explicitly declare it, SELF must be the first parameter in the parameter list. If you don't
explicitly declare SELF , its parameter mode defaults to IN OUT for member procedures and IN for member functions.

argname

The name of an argument. The argument is referenced by this name in the method body.

argtype

The data types of the method’s arguments. The argument types can be a base data type or a user-defined type such as a nested table or an object type. Don't specify a length for any base type. For
example, specify VARCHAR2 , not VARCHAR2(10) .

DEFAULT value

Supplies a default value for an input argument if one isn't supplied in the method call. You can't specify DEFAULT for arguments with modes IN OUT or OUT .

program_body

The pragma, declarations, and SPL statements that make up the body of the function or procedure. Use the pragma PRAGMA AUTONOMOUS_TRANSACTION to set the function or procedure as an
autonomous transaction.

func_name

The name of the function to create.

rettype

The return data type, which can be any of the types listed for argtype . Don't specify a length for rettype .

Examples

Create the object type body for object type emp_obj_typ :

CREATE OR REPLACE TYPE BODY emp_obj_typ AS
 MEMBER PROCEDURE display_emp (SELF IN OUT emp_obj_typ)
 IS
 BEGIN
 DBMS_OUTPUT.PUT_LINE('Employee No : ' || empno);

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 728

 DBMS_OUTPUT.PUT_LINE('Name : ' || ename);
 DBMS_OUTPUT.PUT_LINE('Street : ' || addr.street);
 DBMS_OUTPUT.PUT_LINE('City/State/Zip: ' || addr.city || ', ' ||
 addr.state || ' ' || LPAD(addr.zip,5,'0'));
 END;
END;

Create the object type body for object type dept_obj_typ :

CREATE OR REPLACE TYPE BODY dept_obj_typ AS
 STATIC FUNCTION get_dname (p_deptno IN NUMBER) RETURN VARCHAR2
 IS
 v_dname VARCHAR2(14);
 BEGIN
 CASE p_deptno
 WHEN 10 THEN v_dname := 'ACCOUNING';
 WHEN 20 THEN v_dname := 'RESEARCH';
 WHEN 30 THEN v_dname := 'SALES';
 WHEN 40 THEN v_dname := 'OPERATIONS';
 ELSE v_dname := 'UNKNOWN';
 END CASE;
 RETURN v_dname;
 END;
 MEMBER PROCEDURE display_dept
 IS
 BEGIN
 DBMS_OUTPUT.PUT_LINE('Dept No : ' || SELF.deptno);
 DBMS_OUTPUT.PUT_LINE('Dept Name : ' ||
 dept_obj_typ.get_dname(SELF.deptno));
 END;
END;

See also

CREATE TYPE, DROP TYPE

20.41 CREATE USER

Name

CREATE USER — Define a new database user account.

Synopsis

CREATE USER <name> [IDENTIFIED BY <password>]

Description

CREATE USER adds a user to an EDB Postgres Advanced Server database cluster. You must be a database superuser to use this command.

When you invoke the CREATE USER command, a schema is created with the same name as the new user. The new schema is owned by the new user. Objects with unqualified names that this user
creates are created in this schema.

Parameters

name

The name of the user.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 729

password

The user’s password. You can change the password later using ALTER USER .

Notes

The maximum length allowed for the user name and password is 63 characters.

Examples

Create a user named john :

CREATE USER john IDENTIFIED BY abc;

See also

DROP USER

20.42 CREATE USER|ROLE… PROFILE MANAGEMENT CLAUSES

Name

CREATE USER|ROLE — Create a user or role.

Synopsis

CREATE USER|ROLE <name> [[WITH] option […]]

Where option is any of the following compatible clauses:

 PROFILE <profile_name>
| ACCOUNT {LOCK|UNLOCK}
| PASSWORD EXPIRE [AT '<timestamp>']

Alternatively, option can be any of the following non-compatible clauses:

| LOCK TIME '<timestamp>'

For information about the administrative clauses of the CREATE USER or CREATE ROLE commands that are supported by EDB Postgres Advanced Server, see the PostgreSQL core documentation.

Description

CREATE ROLE|USER… PROFILE adds a role with an associated profile to an EDB Postgres Advanced Server database cluster.

By default, roles created with the CREATE USER command are login roles and roles created with the CREATE ROLE command aren't login roles. To create a login account with the CREATE ROLE
command, you must include the LOGIN keyword.

Only a database superuser can use the CREATE USER|ROLE clauses that enforce profile management. These clauses enforce the following behaviors:

Include the PROFILE clause and a profile_name to associate a predefined profile with a role or to change the predefined profile associated with a user.

Include the ACCOUNT clause and the LOCK or UNLOCK keyword to place the user account in a locked or unlocked state.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 730

https://www.postgresql.org/docs/current/static/sql-commands.html

Include the LOCK TIME 'timestamp' clause and a date and time value to lock the role at the specified time. Unlock the role at the time indicated by the PASSWORD_LOCK_TIME
parameter of the profile assigned to this role. If you use LOCK TIME with the ACCOUNT LOCK clause, only a database superuser can unlock the role by using the ACCOUNT UNLOCK clause.

Include the PASSWORD EXPIRE clause with the optional AT 'timestamp' keywords to specify a date and time when the password associated with the role expires. If you omit the AT
'timestamp' keywords, the password expires immediately.

Each login role can have only one profile. To find the profile that's currently associated with a login role, query the profile column of the DBA_USERS view.

Parameters

name

The name of the role.

profile_name

The name of the profile associated with the role.

timestamp

The date and time when the clause is enforced. When specifying a value for timestamp , enclose the value in single quotes.

Examples

This example uses CREATE USER to create a login role named john that is associated with the acctg_profile profile:

CREATE USER john PROFILE acctg_profile IDENTIFIED BY “1safepwd”;

john can log in to the server, using the password 1safepwd .

This example uses CREATE ROLE to create a login role named john that is associated with the acctg_profile profile:

CREATE ROLE john PROFILE acctg_profile LOGIN PASSWORD “1safepwd”;

john can log in to the server, using the password 1safepwd .

See also

ALTER USER|ROLE… PROFILE MANAGEMENT CLAUSES

20.43 CREATE VIEW

Name

CREATE VIEW — Define a new view.

Synopsis

CREATE [OR REPLACE] VIEW <name> [(<column_name> [, ...])]
 AS <query>

Description

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 731

CREATE VIEW defines a view of a query. The view isn't physically materialized. Instead, the query runs every time a query references the view.

CREATE OR REPLACE VIEW is similar. However, if a view of the same name exists, the command replaces it.

If you provide a schema name, then the view is created in the specified schema. Otherwise it's created in the current schema. The view name must differ from the name of any other view, table,
sequence, or index in the same schema.

Parameters

name

The name (optionally schema-qualified) of a view to create.

column_name

An optional list of names to use for columns of the view. If not given, the column names are deduced from the query.

query

A query (that is, a SELECT statement) that provides the columns and rows of the view. See SELECT for information about valid queries.

Notes

Currently, views are read-only. The system doesn't allow an insert, update, or delete on a view. You can get the effect of an updatable view by creating rules that rewrite inserts and the other commands
on the view into appropriate actions on other tables.

Permissions of the view owner determine access to tables referenced in the view. However, functions called in the view are treated the same as if they were called directly from the query using the view.
Therefore, the user of a view must have permissions to call all functions the view uses.

Examples

Create a view consisting of all employees in department 30:

CREATE VIEW dept_30 AS SELECT * FROM emp WHERE deptno = 30;

See also

DROP VIEW

20.44 DELETE

Name

DELETE — Delete rows of a table.

Synopsis

DELETE [<optimizer_hint>] [FROM] <table>[@<dblink>]
 [WHERE <condition>]
 [RETURNING <return_expression> [, ...]
 { INTO { <record> | <variable> [, ...] }
 | BULK COLLECT INTO <collection> [, ...] }]

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 732

Description

DELETE deletes rows that satisfy the WHERE clause from the specified table. Omitting the WHERE clause deletes all rows in the table, leaving an empty table. You need the DELETE privilege on the
table to delete from it. You also need the SELECT privilege for any table whose values are read in the condition.

The FROM keyword is optional if EDB Postgres Advanced Server is installed in Oracle-compatible mode. It's required if EDB Postgres Advanced Server is installed in Postgres mode.

Note

The TRUNCATE command is a faster way to remove all rows from a table.

You can specify the RETURNING INTO { record | variable [, ...] } clause only if you use the DELETE command in an SPL program. The result set of the DELETE command can't
include more than one row. If it does, an error occurs. If the result set is empty, then the contents of the target record or variables are set to null.

You can specify the RETURNING BULK COLLECT INTO collection [, ...] clause only if you use the DELETE command in an SPL program. If you specify more than one collection as
the target of the BULK COLLECT INTO clause, then each collection must consist of a single, scalar field. That is, collection can't be a record.

The result set of the DELETE command can contain zero, one, or more rows. The return_expression evaluated for each row of the result set becomes an element in collection , starting with
the first element. Any existing rows in collection are deleted. If the result set is empty, then collection is empty.

Parameters

optimizer_hint

Comment-embedded hints to the optimizer for selecting an execution plan.

table

The name (optionally schema-qualified) of an existing table.

dblink

Database link name identifying a remote database. For more information, see CREATE DATABASE LINK .

condition

A value expression that returns a value of type BOOLEAN that determines the rows to delete.

return_expression

An expression that can include one or more columns from table . If you specify a column name from table in return_expression , the value substituted for the column when
return_expression is evaluated is the value from the deleted row.

record

A record whose field to assign the evaluated return_expression . The first return_expression is assigned to the first field in record , the second return_expression is assigned to
the second field in record , and so on. The number of fields in record must exactly match the number of expressions, and the fields must be type-compatible with their assigned expressions.

variable

A variable to which to assign the evaluated return_expression . If you specify more than one return_expression and variable , the first return_expression is assigned to the
first variable , the second return_expression is assigned to the second variable , and so on. The number of variables specified following the INTO keyword must exactly match the
number of expressions following the RETURNING keyword, and the variables must be type-compatible with their assigned expressions.

collection

A collection in which an element is created from the evaluated return_expression . You can have a single collection, which can be a collection of a single field or a collection of a record type.
Alternatively, you can have more than one collection. In that case, each collection must consist of a single field. The number of return expressions must match in number and order the number of fields
in all specified collections. Each corresponding return_expression and collection field must be type-compatible.

Examples

Delete all rows for employee 7900 from the jobhist table:

DELETE FROM jobhist WHERE empno = 7900;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 733

Clear the table jobhist :

DELETE FROM jobhist;

See also

TRUNCATE

20.45 DROP DATABASE LINK

Name

DROP DATABASE LINK — Remove a database link.

Synopsis

DROP [PUBLIC] DATABASE LINK <name>

Description

DROP DATABASE LINK drops existing database links. To execute this command, you must be a superuser or the owner of the database link.

Parameters

name

The name of a database link to remove.

PUBLIC

Indicates that name is a public database link.

Examples

Remove the public database link named oralink :

DROP PUBLIC DATABASE LINK oralink;

Remove the private database link named edblink :

DROP DATABASE LINK edblink;

See also

CREATE PUBLIC DATABASE LINK

20.46 DROP DIRECTORY

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 734

Name

DROP DIRECTORY — Remove a directory alias for a file system directory path.

Synopsis

DROP DIRECTORY <name>

Description

DROP DIRECTORY drops an existing alias for a file system directory path that was created with the CREATE DIRECTORY command. To execute this command, you must be a superuser.

When you delete a directory alias, the corresponding physical file system directory isn't affected. To delete the file system directory, use operating system commands.

Parameters

name

The name of a directory alias to remove.

Examples

Remove the directory alias empdir :

DROP DIRECTORY empdir;

See also

CREATE DIRECTORY, ALTER DIRECTORY

20.47 DROP FUNCTION

Name

DROP FUNCTION — Remove a function.

Synopsis

DROP FUNCTION [IF EXISTS] <name>
 [([[<argmode>] [<argname>] <argtype>] [, ...])]
 [CASCADE | RESTRICT]

Description

DROP FUNCTION removes the definition of an existing function. To execute this command, you must be a superuser or the owner of the function. If this is an overloaded function, you must specify all
input (IN , IN OUT) argument data types to the function.

Note

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 735

This requirement isn't compatible with Oracle databases. In Oracle, you specify only the function name. EDB Postgres Advanced Server allows you to overload function names. Therefore, the
function signature given by the input argument data types is required in the EDB Postgres Advanced Server DROP FUNCTION command of an overloaded function.

The IF EXISTS , CASCADE , and RESTRICT parameters aren't compatible with Oracle databases. Only EDB Postgres Advanced Server uses them.

Parameters

IF EXISTS

Specifies not to throw an error if the function doesn't exist. A notice is issued instead.

name

The name (optionally schema-qualified) of an existing function.

argmode

The mode of an argument: IN , IN OUT , or OUT . If omitted, the default is IN . DROP FUNCTION ignores OUT arguments, since only the input arguments are needed to determine the function’s
identity. You need to list only the IN and IN OUT arguments.

!!! Note Specifying argmode isn't compatible with Oracle databases. It applies only to EDB Postgres Advanced Server.

argname

The name of an argument. DROP FUNCTION ignores argument names, since only the argument data types are needed to determine the function’s identity.

!!! Note Specifying argname isn't compatible with Oracle databases. It applies only to EDB Postgres Advanced Server.

argtype

The data type of an argument of the function.

!!! Note Specifying argtype isn't compatible with Oracle databases. It applies only to EDB Postgres Advanced Server.

CASCADE

Drop objects that depend on the function, such as operators or triggers, and objects that depend on those objects.

RESTRICT

Prevent dropping the function if any objects depend on it. This is the default.

Examples

This example removes the emp_comp function:

DROP FUNCTION emp_comp(NUMBER, NUMBER);

See also

CREATE FUNCTION

20.48 DROP INDEX

Name

DROP INDEX — Remove an index.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 736

Synopsis

DROP INDEX <name>

Description

DROP INDEX drops an existing index from the database system. To execute this command, you must be a superuser or the owner of the index. If any objects depend on the index, an error occurs, and
the index isn't dropped.

Parameters

name

The name (optionally schema-qualified) of an index to remove.

Examples

This example removes the index name_idx :

DROP INDEX name_idx;

See also

CREATE INDEX, ALTER INDEX

20.49 DROP PACKAGE

Name

DROP PACKAGE — Remove a package.

Synopsis

DROP PACKAGE [BODY] <name>

Description

DROP PACKAGE drops an existing package. To execute this command, you must be a superuser or the owner of the package. Specify BODY to remove only the package body without dropping the
package specification. Omit BODY to remove both the package specification and body.

Parameters

name

The name (optionally schema-qualified) of a package to remove.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 737

Examples

This example removes the emp_admin package:

DROP PACKAGE emp_admin;

See also

CREATE PACKAGE, CREATE PACKAGE BODY

20.50 DROP PROCEDURE

Name

DROP PROCEDURE — Remove a procedure.

Synopsis

DROP PROCEDURE [IF EXISTS] <name>
 [([[<argmode>] [<argname>] <argtype>] [, ...])]
 [CASCADE | RESTRICT]

Description

DROP PROCEDURE removes the definition of an existing procedure. To execute this command, you must be a superuser or the owner of the procedure. For an overloaded procedure, you must specify
all input (IN , IN OUT) argument data types to the procedure.

Note

This requirement isn't compatible with Oracle databases. In Oracle, specify only the procedure name. EDB Postgres Advanced Server allows overloading of procedure names. Therefore the
procedure signature given by the input argument data types is required in the EDB Postgres Advanced Server DROP PROCEDURE command for an overloaded procedure.

The IF EXISTS , CASCADE , and RESTRICT parameters aren't compatible with Oracle databases. Only EDB Postgres Advanced Server uses them.

Parameters

IF EXISTS

Specifies not to throw an error if the procedure doesn't exist. A notice is issued instead.

name

The name (optionally schema-qualified) of an existing procedure.

argmode

The mode of an argument: IN , IN OUT , or OUT . The default is IN . DROP PROCEDURE ignores OUT arguments, since only the input arguments are needed to determine the procedure’s identity.
List only the IN and IN OUT arguments.

!!! Note Specifying argmode isn't compatible with Oracle databases. It applies only to EDB Postgres Advanced Server.

argname

The name of an argument. DROP PROCEDURE ignores argument names, since only the argument data types are needed to determine the procedure’s identity.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 738

!!! Note Specifying argname isn't compatible with Oracle databases. It applies only to EDB Postgres Advanced Server.

argtype

The data type of an argument of the procedure.

!!! Note Specifying argtype isn't compatible with Oracle databases. It applies only to EDB Postgres Advanced Server.

CASCADE

Drop objects that depend on the procedure and all objects that depend on those objects.

RESTRICT

Prevent dropping the procedure if any objects depend on it. This is the default.

Examples

This example removes the select_emp procedure:

DROP PROCEDURE select_emp;

See also

CREATE PROCEDURE, ALTER PROCEDURE

20.51 DROP PROFILE

Name

DROP PROFILE — Drop a user-defined profile.

Synopsis

DROP PROFILE [IF EXISTS] <profile_name> [CASCADE | RESTRICT];

Description

Include the IF EXISTS clause to prevent an error if the specified profile doesn't exist. Instead, issue a notice.

Include the optional CASCADE clause to reassign any users that are currently associated with the profile to the default profile and then drop the profile. Include the optional RESTRICT clause to
prevent dropping any profile that's associated with a role. This is the default behavior.

Parameters

profile_name

The name of the profile to drop.

Examples

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 739

This example drops a profile named acctg_profile . The command first associates any roles associated with the acctg_profile profile with the default profile and then drops the
acctg_profile profile.

DROP PROFILE acctg_profile CASCADE;

This example drops a profile named acctg_profile . The RESTRICT clause prevents dropping acctg_profile if any roles are associated with the profile.

DROP PROFILE acctg_profile RESTRICT;

See also

CREATE PROFILE, ALTER PROFILE

20.52 DROP QUEUE

EDB Postgres Advanced Server includes syntax not offered by Oracle with the DROP QUEUE SQL command. You can use this syntax with DBMS_AQADM .

Name

DROP QUEUE — Drop an existing queue.

Synopsis

Use DROP QUEUE to drop an existing queue:

DROP QUEUE [IF EXISTS] <name>

Description

DROP QUEUE allows a superuser or a user with the aq_administrator_role privilege to drop an existing queue.

Parameters

name

The name (possibly schema-qualified) of the queue that's being dropped.

IF EXISTS

Include the IF EXISTS clause if you don't want to return an error if the queue doesn't exist. Instead, issue a notice.

Examples

This example drops a queue named work_order :

DROP QUEUE work_order;

See also

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 740

CREATE QUEUE, ALTER QUEUE

20.53 DROP QUEUE TABLE

EDB Postgres Advanced Server includes syntax not offered by Oracle with the DROP QUEUE TABLE SQL command. You can use this syntax with DBMS_AQADM .

Name

DROP QUEUE TABLE — Drop a queue table.

Synopsis

Use DROP QUEUE TABLE to delete a queue table:

DROP QUEUE TABLE [IF EXISTS] <name> [, ...]
[CASCADE | RESTRICT]

Description

DROP QUEUE TABLE allows a superuser or a user with the aq_administrator_role privilege to delete a queue table.

Parameters

name

The name (possibly schema-qualified) of the queue table to delete.

IF EXISTS

Include the IF EXISTS clause if you don't want to return an error if the queue table doesn't exist. Instead, issue a notice.

CASCADE

Include the CASCADE keyword to delete objects that depend on the queue table.

RESTRICT

Include the RESTRICT keyword to prevent deleting the queue table if any objects depend on it. This is the default.

Examples

This example deletes a queue table named work_order_table and any objects that depend on it:

DROP QUEUE TABLE work_order_table CASCADE;

See also

CREATE QUEUE TABLE, ALTER QUEUE TABLE

20.54 DROP SYNONYM

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 741

Name

DROP SYNONYM — Remove a synonym.

Synopsis

DROP [PUBLIC] SYNONYM [<schema>.]<syn_name>

Description

DROP SYNONYM deletes existing synonyms. To execute this command, you must be a superuser or the owner of the synonym and have USAGE privileges on the schema in which the synonym resides.

Parameters

syn_name

The name of the synonym. A synonym name must be unique in a schema.

schema

The name of the schema where the synonym resides.

Like any other object that can be schema qualified, you can have two synonyms with the same name in your search path. To specify the name of the synonym that you're dropping, include a schema
name. Unless a synonym is schema qualified in the DROP SYNONYM command, EDB Postgres Advanced Server deletes the first instance of the synonym it finds in your search path.

You can optionally include the PUBLIC clause to drop a synonym that resides in the public schema. The DROP PUBLIC SYNONYM command, compatible with Oracle databases, drops a synonym
that resides in the public schema:

DROP PUBLIC SYNONYM syn_name;

Examples

This example drops the synonym personnel :

DROP SYNONYM personnel;

See also

CREATE SYNONYM

20.55 DROP ROLE

Name

DROP ROLE — Remove a database role.

Synopsis

DROP ROLE <name> [CASCADE]

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 742

Description

DROP ROLE removes the specified role. To drop a superuser role, you must be a superuser. To drop non-superuser roles, you must have the CREATEROLE privilege.

Before dropping the role, you must drop all the objects it owns or reassign their ownership and revoke any privileges the role was granted. You can't remove a role if any database of the cluster
references it.

You don't need to remove role memberships involving the role. DROP ROLE revokes any memberships of the target role in other roles and of other roles in the target role. The other roles aren't
dropped or otherwise affected.

Alternatively, if the only objects owned by the role belong in a schema that's owned by the role and has the same name as the role, you can specify the CASCADE option. In this case, the issuer of the
DROP ROLE name CASCADE command must be a superuser. The named role, the schema, and all objects in the schema are deleted.

Parameters

name

The name of the role to remove.

CASCADE

Drops the schema owned by and with the same name as the role as long as there are no other dependencies on the role or the schema. All objects owned by the role belonging to the schema are also
dropped.

Examples

This example drops a role:

DROP ROLE admins;

See also

CREATE ROLE, SET ROLE, GRANT, REVOKE

20.56 DROP SEQUENCE

Name

DROP SEQUENCE — Remove a sequence.

Synopsis

DROP SEQUENCE <name> [, ...]

Description

DROP SEQUENCE removes sequence number generators. To execute this command, you must be a superuser or the owner of the sequence.

Parameters

name

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 743

The name (optionally schema-qualified) of a sequence.

Examples

Remove the sequence serial :

DROP SEQUENCE serial;

See also

ALTER SEQUENCE, CREATE SEQUENCE

20.57 DROP TABLE

Name

DROP TABLE — Remove a table.

Synopsis

DROP TABLE <name> [CASCADE | RESTRICT | CASCADE CONSTRAINTS]

Description

DROP TABLE removes tables from the database. Only the owner can remove a table. To empty a table of rows without removing the table, use DELETE . DROP TABLE removes any of the target
table's indexes, rules, triggers, and constraints.

Parameters

name

The name (optionally schema-qualified) of the table to drop.

RESTRICT

Include the RESTRICT keyword to prevent dropping the table if any objects depend on it. This is the default behavior. The DROP TABLE command reports an error if any objects depend on the table.

CASCADE

Include the CASCADE clause to drop any objects that depend on the table.

CASCADE CONSTRAINTS

Include the CASCADE CONSTRAINTS clause to drop any dependent constraints on the specified table, excluding other object types.

Examples

This example drops a table named emp that has no dependencies:

DROP TABLE emp;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 744

The outcome of a DROP TABLE command varies depending on whether the table has any dependencies. You can control the outcome by specifying a drop behavior. For example, suppose you create
two tables, orders and items , where the items table depends on the orders table:

CREATE TABLE orders
 (order_id int PRIMARY KEY, order_date date, …);
CREATE TABLE items
 (order_id REFERENCES orders, quantity int, …);

EDB Postgres Advanced Server performs one of the following actions when dropping the orders table, depending on the drop behavior that you specify:

If you specify DROP TABLE orders RESTRICT , EDB Postgres Advanced Server reports an error.
If you specify DROP TABLE orders CASCADE , EDB Postgres Advanced Server drops the orders table and the items table.
If you specify DROP TABLE orders CASCADE CONSTRAINTS , EDB Postgres Advanced Server drops the orders table and removes the foreign key specification from the items table.
It doesn't drop the items table.

See also

CREATE TABLE, ALTER TABLE

20.58 DROP TABLESPACE

Name

DROP TABLESPACE — Remove a tablespace.

Synopsis

DROP TABLESPACE <tablespacename>

Description

DROP TABLESPACE removes a tablespace from the system.

Only a superuser or the tablespace owner can drop a tablespace. The tablespace must be empty of all database objects before you drop it. Objects in other databases might still reside in the tablespace
even if no objects in the current database are using the tablespace.

Parameters

tablespacename

The name of a tablespace.

Examples

This example removes the tablespace employee_space from the system:

DROP TABLESPACE employee_space;

See also

ALTER TABLESPACE

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 745

20.59 DROP TRIGGER

Name

DROP TRIGGER — Remove a trigger.

Synopsis

DROP TRIGGER <name>

Description

DROP TRIGGER removes a trigger from its associated table. A superuser or the owner of the associated table can run the command.

Parameters

name

The name of a trigger to remove.

Examples

Remove a trigger named emp_salary_trig :

DROP TRIGGER emp_salary_trig;

See also

CREATE TRIGGER, ALTER TRIGGER

20.60 DROP TYPE

Name

DROP TYPE — Remove a type definition.

Synopsis

DROP TYPE [BODY] <name>

Description

DROP TYPE removes the type definition. To execute this command, you must be a superuser or the owner of the type.

The optional BODY qualifier applies only to object type definitions, not to collection types or to composite types. If you specify BODY , only the object type body is removed and not the object type

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 746

specification. If you omit BODY , both the object type specification and body are removed.

The type isn't deleted if other database objects depend on the named type.

Parameters

name

The name of a type definition to remove.

Examples

Drop the object type named addr_obj_typ :

DROP TYPE addr_obj_typ;

Drop the nested table type named budget_tbl_typ :

DROP TYPE budget_tbl_typ;

See also

CREATE TYPE, CREATE TYPE BODY

20.61 DROP USER

Name

DROP USER — Remove a database user account.

Synopsis

DROP USER <name> [CASCADE]

Description

DROP USER removes the specified user. You must be a superuser to drop a superuser. To drop non-superusers, you need the CREATEROLE privilege.

You can't remove a user if any database of the cluster references it. Before dropping the user, you must drop all the objects it owns or reassign their ownership and revoke any privileges the user was
granted.

However, you don't need to remove role memberships involving the user. DROP USER revokes any memberships of the target user in other roles and of other roles in the target user. The other roles
aren't dropped or otherwise affected.

Alternatively, if the only objects owned by the user belong in a schema that's owned by the user and has the same name as the user, you can specify the CASCADE option. In this case, the issuer of the
DROP USER name CASCADE command must be a superuser. The named user, the schema, and all objects in the schema are deleted.

Parameters

name

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 747

The name of the user to remove.

CASCADE

If specified, drops the schema owned by and with the same name as the user as long as there are no other dependencies on the user or the schema. It also drops all objects owned by the user belonging
to the schema.

Examples

Drop a user account named john that owns no objects and doesn't have privileges on any other objects:

DROP USER john;

Drop the user account john that doesn't have privileges on any objects. The account also doesn't own any objects outside of a schema named john that's owned by the user john :

DROP USER john CASCADE;

See also

CREATE USER, ALTER USER

20.62 DROP VIEW

Name

DROP VIEW — Remove a view.

Synopsis

DROP VIEW <name>

Description

DROP VIEW drops an existing view. To execute this command, you must be a database superuser or the owner of the view. The named view isn't deleted if other objects depend on this view, such as a
view of a view.

The form of the DROP VIEW command compatible with Oracle doesn't support a CASCADE clause. To drop a view and its dependencies, use the PostgreSQL-compatible form of the DROP VIEW
command. For more information, see the PostgreSQL core documentation.

Parameters

name

The name (optionally schema-qualified) of the view to remove.

Examples

This example removes the view named dept_30 :

DROP VIEW dept_30;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 748

https://www.postgresql.org/docs/current/static/sql-dropview.html

See also

CREATE VIEW

20.63 EXEC

Name

EXEC — Execute a function.

Synopsis

EXEC function_name ['('[<argument_list>]')']

Description

EXECUTE

Parameters

procedure_name

The (optionally schema-qualified) function name.

argument_list

A comma-separated list of arguments required by the function. Each member of argument_list corresponds to a formal argument expected by the function. Each formal argument can be an IN
parameter, an OUT parameter, or an INOUT parameter.

Examples

The EXEC statement can take one of several forms, depending on the arguments required by the function:

EXEC update_balance;
EXEC update_balance();
EXEC update_balance(1,2,3);

20.64 GRANT

Name

GRANT — Define access privileges.

Synopsis

GRANT { { SELECT | INSERT | UPDATE | DELETE | REFERENCES }
 [,...] | ALL [PRIVILEGES] }
 ON tablename
 TO { username | groupname | PUBLIC } [, ...]

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 749

 [WITH GRANT OPTION]

GRANT { { INSERT | UPDATE | REFERENCES } (column [, ...]) }
 [, ...]
 ON tablename
 TO { username | groupname | PUBLIC } [, ...]
 [WITH GRANT OPTION]

GRANT { SELECT | ALL [PRIVILEGES] }
 ON sequencename
 TO { username | groupname | PUBLIC } [, ...]
 [WITH GRANT OPTION]

GRANT { EXECUTE | ALL [PRIVILEGES] }
 ON FUNCTION progname
 ([[argmode] [argname] argtype] [, ...])
 TO { username | groupname | PUBLIC } [, ...]
 [WITH GRANT OPTION]

GRANT { EXECUTE | ALL [PRIVILEGES] }
 ON PROCEDURE progname
 [([[argmode] [argname] argtype] [, ...])]
 TO { username | groupname | PUBLIC } [, ...]
 [WITH GRANT OPTION]

GRANT { EXECUTE | ALL [PRIVILEGES] }
 ON PACKAGE packagename
 TO { username | groupname | PUBLIC } [, ...]
 [WITH GRANT OPTION]

GRANT role [, ...]
 TO { username | groupname | PUBLIC } [, ...]
 [WITH ADMIN OPTION]

GRANT { CONNECT | RESOURCE | DBA } [, ...]
 TO { username | groupname } [, ...]
 [WITH ADMIN OPTION]

GRANT CREATE [PUBLIC] DATABASE LINK
 TO { username | groupname }

GRANT DROP PUBLIC DATABASE LINK
 TO { username | groupname }

GRANT EXEMPT ACCESS POLICY
 TO { username | groupname }

Description

The GRANT command has three basic variants:

One that grants privileges on a database object (table, view, sequence, or program)
One that grants membership in a role
One that grants system privileges

In EDB Postgres Advanced Server, the concept of users and groups was unified into a single type of entity called a role. In this context, a user is a role that has the LOGIN attribute. The role can be used
to create a session and connect to an application. A group is a role that doesn't have the LOGIN attribute. You can't use the role to create a session or connect to an application.

A role can be a member of one or more other roles, so the traditional concept of users belonging to groups is still valid. However, with the generalization of users and groups, users can “belong” to users,
groups can “belong” to groups, and groups can “belong” to users, forming a general multi-level hierarchy of roles. User names and group names share the same namespace. Therefore, you don't need to
specify whether a grantee is a user or a group in the GRANT command.

GRANT on database objects

This variant of the GRANT command gives specific privileges on a database object to a role. These privileges are added to those already granted, if any.

The keyword PUBLIC grants the privileges to all roles, including those that you create later. PUBLIC is an implicitly defined group that always includes all roles. Any role has the sum of privileges
granted directly to it, privileges granted to any role it is a member of, and privileges granted to PUBLIC .

If you specify the WITH GRANT OPTION , the recipient of the privilege can grant it to others. Grant options aren't granted to PUBLIC .

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 750

You don't need to grant privileges to the owner of an object (usually the user that created it), as the owner has all privileges by default. The owner can, however, revoke some of their own privileges for
safety. The right to drop an object or to alter its definition isn't described by a grantable privilege. It's inherent in the owner and can't be granted or revoked. The owner implicitly has all grant options for
the object as well.

Depending on the type of object, the initial default privileges can include granting some privileges to PUBLIC . The default is no public access for tables and EXECUTE privilege for functions,
procedures, and packages. The object owner can revoke these privileges.

Note

For maximum security, issue the REVOKE in the same transaction that creates the object. This approach prevents a window from occurring in which another user can use the object.

The possible privileges are:

SELECT

Allows SELECT from any column of the specified table, view, or sequence. For sequences, this privilege also allows the use of the currval function.

INSERT

Allows you to insert a new row into the specified table.

UPDATE

Allows UPDATE of a column of the specified table. SELECT ... FOR UPDATE also requires this privilege in addition to the SELECT privilege.

DELETE

Allows you to delete a row from the specified table.

REFERENCES

To create a foreign key constraint, you need this privilege on both the referencing and referenced tables.

EXECUTE

Allows the use of the specified package, procedure, or function. When applied to a package, allows the use of all of the package’s public procedures, public functions, public variables, records, cursors,
and other public objects and object types. This is the only type of privilege that applies to functions, procedures, and packages.

The EDB Postgres Advanced Server syntax for granting the EXECUTE privilege isn't fully compatible with Oracle databases. EDB Postgres Advanced Server requires that you qualify the program name
with one of the keywords FUNCTION , PROCEDURE , or PACKAGE . You must omit these keywords in Oracle.

For functions, EDB Postgres Advanced Server requires all input (IN , IN OUT) argument data types after the function name, including an empty parenthesis if there are no function arguments. For
procedures, you must specify all input argument data types if the procedure has any input arguments. In Oracle, omit function and procedure signatures. All programs share the same namespace in
Oracle, whereas functions, procedures, and packages have their own namespaces in EDB Postgres Advanced Server to allow program name overloading to a certain extent.

ALL PRIVILEGES

Grants all of the available privileges at once.

GRANT on roles

This variant of the GRANT command grants membership in a role to one or more other roles. Membership in a role is significant because it conveys the privileges granted to a role to each of its
members.

If you specify the WITH ADMIN OPTION , the member can grant membership in the role to others and revoke membership in the role.

Database superusers can grant or revoke membership in any role to anyone. Roles having the CREATEROLE privilege can grant or revoke membership in any role that isn't a superuser.

There are three predefined roles.

CONNECT

Granting the CONNECT role is equivalent to giving the grantee the LOGIN privilege. The grantor must have the CREATEROLE privilege.

RESOURCE

Granting the RESOURCE role is equivalent to granting the CREATE and USAGE privileges on a schema that has the same name as the grantee. This schema must exist before you give the grant. The
grantor must have the privilege to grant CREATE or USAGE privileges on this schema to the grantee.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 751

DBA

Granting the DBA role is equivalent to making the grantee a superuser. The grantor must be a superuser.

Notes

Use the REVOKE command to revoke access privileges.

When a non-owner of an object attempts to grant privileges on the object, the command fails if the user has no privileges on the object. As long as a privilege is available, the command proceeds, but it
grants only those privileges for which the user has grant options. The GRANT ALL PRIVILEGES forms issue a warning if no grant options are held, while the other forms issue a warning if grant
options for any of the privileges named in the command aren't held. In principle, these statements apply to the object owner as well. However, since the owner is always treated as holding all grant
options, the cases can never occur.

Database superusers can access all objects regardless of object privilege settings. This is comparable to the rights of root in a Unix system. As with root , only operate as a superuser when you
have to.

If a superuser issues a GRANT or REVOKE command, the command is performed as though it were issued by the owner of the affected object. In particular, privileges granted by such a command
appear as if granted by the object owner. (For role membership, the membership appears as if granted by the containing role.)

GRANT and REVOKE can also be done by:

A role that isn't the owner of the affected object but is a member of the role that owns the object.
A role that is a member of a role that holds privileges WITH GRANT OPTION on the object. In this case, the privileges are recorded as having been granted by the role that owns the object or
holds the privileges WITH GRANT OPTION .

For example, if table t1 is owned by role g1 , of which role u1 is a member, then u1 can grant privileges on t1 to u2 . However, those privileges appear as if granted directly by g1 . Any other
member of role g1 can revoke them later.

If the role executing GRANT holds the required privileges indirectly by way of more than one role membership path, the containing role recorded as having done the grant is unspecified. In such cases,
best practice is to use SET ROLE to become the specific role you want to do the GRANT as.

Currently, EDB Postgres Advanced Server doesn't support granting or revoking privileges for individual columns of a table. One workaround is to create a view having just the desired columns and then
grant privileges to that view.

Examples

Grant insert privilege to all users on table emp :

GRANT INSERT ON emp TO PUBLIC;

Grant all available privileges to user mary on view salesemp :

GRANT ALL PRIVILEGES ON salesemp TO mary;

While this example does grant all privileges if executed by a superuser or the owner of emp , when executed by someone else it grants only those permissions for which that user has grant options.

Grant membership in role admins to user joe :

GRANT admins TO joe;

Grant CONNECT privilege to user joe :

GRANT CONNECT TO joe;

See also

REVOKE, SET ROLE

GRANT on system privileges

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 752

This variant of the GRANT command gives a role the ability to perform certain system operations in a database. System privileges relate to the ability to create or delete certain database objects that
aren't necessarily in the confines of one schema. Only database superusers can grant system privileges.

CREATE [PUBLIC] DATABASE LINK

The CREATE [PUBLIC] DATABASE LINK privilege allows the specified role to create a database link. Include the PUBLIC keyword to allow the role to create public database links. Omit the
PUBLIC keyword to allow the specified role to create private database links.

DROP PUBLIC DATABASE LINK

The DROP PUBLIC DATABASE LINK privilege allows a role to drop a public database link. You don't need system privileges to drop a private database link. The link owner or a database superuser
can drop a private database link.

EXEMPT ACCESS POLICY

The EXEMPT ACCESS POLICY privilege allows a role to execute a SQL command without invoking any policy function that's associated with the target database object. The role is exempt from all
security policies in the database.

The EXEMPT ACCESS POLICY privilege can't be inherited by membership to a role that has the EXEMPT ACCESS POLICY privilege. For example, the following sequence of GRANT commands
doesn't result in user joe obtaining the EXEMPT ACCESS POLICY privilege. This is true even though joe is granted membership to the enterprisedb role, which was granted the EXEMPT
ACCESS POLICY privilege:

GRANT EXEMPT ACCESS POLICY TO enterprisedb;
GRANT enterprisedb TO joe;

The rolpolicyexempt column of the system catalog table pg_authid is set to true if a role has the EXEMPT ACCESS POLICY privilege.

Examples

Grant CREATE PUBLIC DATABASE LINK privilege to user joe :

GRANT CREATE PUBLIC DATABASE LINK TO joe;

Grant DROP PUBLIC DATABASE LINK privilege to user joe :

GRANT DROP PUBLIC DATABASE LINK TO joe;

Grant the EXEMPT ACCESS POLICY privilege to user joe :

GRANT EXEMPT ACCESS POLICY TO joe;

Using the ALTER ROLE command to assign system privileges

The EDB Postgres Advanced Server ALTER ROLE command also supports syntax that you can use to assign:

The privilege required to create a public or private database link.
The privilege required to drop a public database link.
The EXEMPT ACCESS POLICY privilege.

The ALTER ROLE syntax is equivalent to the respective commands compatible with Oracle databases.

See also

REVOKE, ALTER ROLE

20.65 INSERT

Name

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 753

INSERT — Create rows in a table.

Synopsis

INSERT INTO <table>[@<dblink> | [AS] <alias>] [(<column> [, ...])]
 { VALUES ({ <expression> | DEFAULT } [, ...])
 [RETURNING <return_expression> [, ...]
 { INTO { <record> | <variable> [, ...] }
 | BULK COLLECT INTO <collection> [, ...] }]
 | <query> }

Description

INSERT allows you to insert new rows into a table. You can insert a single row or several rows as a result of a query.

You can list the columns in the target list in any order. Each column not present in the target list is inserted using a default value, either its declared default value or null.

If the expression for each column doesn't have the correct data type, type conversion is attempted.

You can specify the RETURNING INTO { record | variable [, ...] } clause only when the INSERT command is used in an SPL program and only when the VALUES clause is used.

You can specify the RETURNING BULK COLLECT INTO collection [, ...] clause only if the INSERT command is used in an SPL program. If you specify more than one collection as
the target of the BULK COLLECT INTO clause, then each collection must consist of a single, scalar field. That is, collection can't be a record. The return_expression evaluated for
each inserted row becomes an element in collection , starting with the first element. Any existing rows in collection are deleted. If the result set is empty, then collection is empty.

You need INSERT privilege to a table to insert into it. If you use the query clause to insert rows from a query, you also need SELECT privilege on any table used in the query.

Parameters

table

The name (optionally schema-qualified) of an existing table.

alias

A substitute name, which is an alias for the table, view, materialized view, or a subquery to reference in a statement during query execution.

dblink

Database link name identifying a remote database. See CREATE DATABASE LINK for information on database links.

column

The name of a column in table .

expression

An expression or value to assign to column .

DEFAULT

This column is filled with its default value.

query

A query (SELECT statement) that supplies the rows to insert. See SELECT for a description of the syntax.

return_expression

An expression that can include one or more columns from table . If you specify a column name from table in return_expression , the value substituted for the column when
return_expression is evaluated is determined as follows:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 754

If the column specified in return_expression is assigned a value in the INSERT command, then the assigned value is used in the evaluation of return_expression .

If the column specified in return_expression isn't assigned a value in the INSERT command, and there's no default value for the column in the table’s column definition, then null is used
in the evaluation of return_expression .

If the column specified in return_expression isn't assigned a value in the INSERT command, and there's a default value for the column in the table’s column definition, then the default
value is used in the evaluation of return_expression .

record

A record whose field to assign the evaluated return_expression . The first return_expression is assigned to the first field in record , the second return_expression is assigned to
the second field in record , and so on. The number of fields in record must exactly match the number of expressions, and the fields must be type-compatible with their assigned expressions.

variable

A variable to which to assign the evaluated return_expression . If you specify more than one return_expression and variable , the first return_expression is assigned to the first
variable , the second return_expression is assigned to the second variable , and so on. The number of variables specified following the INTO keyword must exactly match the number of

expressions following the RETURNING keyword. The variables must be type-compatible with their assigned expressions.

collection

A collection in which an element is created from the evaluated return_expression . There can be either:

A single collection, which can be a collection of a single field or a collection of a record type.

More than one collection, in which case each collection must consist of a single field.

The number of return expressions must match in number and order the number of fields in all specified collections. Each corresponding return_expression and collection field must
be type-compatible.

Examples

Insert a single row into table emp :

INSERT INTO emp VALUES (8021,'JOHN','SALESMAN',7698,'22-FEB-07',1250,500,30);

This example omits the column comm , which means it uses the default value of null:

INSERT INTO emp (empno, ename, job, mgr, hiredate, sal, deptno)
 VALUES (8022,'PETERS','CLERK',7698,'03-DEC-06',950,30);

This example uses the DEFAULT clause for the hiredate and comm columns rather than specifying a value:

INSERT INTO emp VALUES (8023,'FORD','ANALYST',7566,NULL,3000,NULL,20);

This example creates a table for the department names and then inserts into the table by selecting from the dname column of the dept table:

CREATE TABLE deptnames (
 deptname VARCHAR2(14)
);
INSERT INTO deptnames SELECT dname FROM dept;

This example creates an alias enm for the table emp and inserts rows into a table:

INSERT INTO emp AS enm (enm.empno, enm.ename, enm.job, enm.mgr, enm.hiredate, enm.sal, enm.deptno)
 VALUES (7499, 'SMITH', 'ANALYST', 7902, '03-DEC-06', 2500, 20);

20.66 LOCK

Name

LOCK — Lock a table.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 755

Synopsis

LOCK TABLE <name> [, ...] IN <lockmode> MODE [NOWAIT]

Where lockmode is one of:

ROW SHARE | ROW EXCLUSIVE | SHARE | SHARE ROW EXCLUSIVE | EXCLUSIVE

Description

LOCK TABLE obtains a table-level lock, waiting if necessary for any conflicting locks to be released. If you specify NOWAIT , LOCK TABLE doesn't wait to acquire the desired lock. If the lock can't
be acquired immediately, the command is aborted and an error occurs. Once obtained, the lock is held for the remainder of the current transaction. There's no UNLOCK TABLE command; locks are
always released at transaction end.

When acquiring locks for commands that reference tables, EDB Postgres Advanced Server always uses the least restrictive lock mode possible. LOCK TABLE provides for cases when you might need
more restrictive locking. For example, suppose an application runs a transaction at the isolation level read committed and needs to ensure that data in a table remains stable for the rest of the
transaction. To achieve this, you can obtain SHARE lock mode over the table before querying. This approach prevents concurrent data changes and ensures subsequent reads of the table see a stable
view of committed data. That's because SHARE lock mode conflicts with the ROW EXCLUSIVE lock acquired by writers, and your LOCK TABLE name IN SHARE MODE statement waits until any
concurrent holders of ROW EXCLUSIVE mode locks commit or roll back. Thus, once you obtain the lock, there are no uncommitted writes outstanding, and none can begin until you release the lock.

To achieve a similar effect when running a transaction at the isolation level serializable, you have to execute the LOCK TABLE statement before executing any data modification statement. A
serializable transaction’s view of data is frozen when its first data modification statement begins. A later LOCK TABLE still prevents concurrent writes, but it won’t ensure that what the transaction
reads corresponds to the latest committed values.

If a transaction of this sort changes the data in the table, then use SHARE ROW EXCLUSIVE lock mode instead of SHARE mode.

This approach ensures that only one transaction of this type runs at a time. Without this, a deadlock is possible: two transactions might both acquire SHARE mode and then be unable to also acquire
ROW EXCLUSIVE mode to perform their updates. A transaction’s own locks never conflict, so a transaction can acquire ROW EXCLUSIVE mode when it holds SHARE mode but not if anyone else

holds SHARE mode.

To avoid deadlocks, make sure all transactions acquire locks on the same objects in the same order. If multiple lock modes are involved for a single object, then always have transactions acquire the
most restrictive mode first.

Parameters

name

The name (optionally schema-qualified) of an existing table to lock.

The command LOCK TABLE a, b; is equivalent to LOCK TABLE a; LOCK TABLE b . The tables are locked one by one in the order specified in the LOCK TABLE command.

lockmode

Specifies the locks this lock conflicts with.

If you don't specify a lock mode, then the server uses the most restrictive mode: ACCESS EXCLUSIVE . ACCESS EXCLUSIVE isn't compatible with Oracle databases. In EDB Postgres Advanced
Server, this configuration mode ensures that no other transaction can access the locked table.

NOWAIT

Specifies for LOCK TABLE not to wait for any conflicting locks to be released. If you can't immediately acquire the specified lock without waiting, the transaction is aborted.

Notes

All forms of LOCK require UPDATE or DELETE privileges.

LOCK TABLE is useful only inside a transaction block since the lock is dropped as soon as the transaction ends. A LOCK TABLE command appearing outside any transaction block forms a self-
contained transaction, so the lock is dropped as soon as you obtain it.

LOCK TABLE deals only with table-level locks, and so the mode names involving ROW are all misnomers. These mode names are generally read as indicating the intention of the user to acquire row-
level locks in the locked table. Also, ROW EXCLUSIVE mode is a sharable table lock. Keep in mind that all the lock modes have identical semantics as far as LOCK TABLE is concerned, differing
only in the rules about the modes that conflict with each other.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 756

20.67 REVOKE

Name

REVOKE — Remove access privileges.

Synopsis

REVOKE { { SELECT | INSERT | UPDATE | DELETE | REFERENCES }
 [,...] | ALL [PRIVILEGES] }
 ON tablename
 FROM { username | groupname | PUBLIC } [, ...]
 [CASCADE | RESTRICT]

REVOKE { SELECT | ALL [PRIVILEGES] }
 ON sequencename
 FROM { username | groupname | PUBLIC } [, ...]
 [CASCADE | RESTRICT]

REVOKE { EXECUTE | ALL [PRIVILEGES] }
 ON FUNCTION progname
 ([[argmode] [argname] argtype] [, ...])
 FROM { username | groupname | PUBLIC } [, ...]
 [CASCADE | RESTRICT]

REVOKE { EXECUTE | ALL [PRIVILEGES] }
 ON PROCEDURE progname
 [([[argmode] [argname] argtype] [, ...])]
 FROM { username | groupname | PUBLIC } [, ...]
 [CASCADE | RESTRICT]

REVOKE { EXECUTE | ALL [PRIVILEGES] }
 ON PACKAGE packagename
 FROM { username | groupname | PUBLIC } [, ...]
 [CASCADE | RESTRICT]

REVOKE role [, ...] FROM { username | groupname | PUBLIC }
 [, ...]
 [CASCADE | RESTRICT]

REVOKE { CONNECT | RESOURCE | DBA } [, ...]
 FROM { username | groupname } [, ...]

REVOKE CREATE [PUBLIC] DATABASE LINK
 FROM { username | groupname }

REVOKE DROP PUBLIC DATABASE LINK
 FROM { username | groupname }

REVOKE EXEMPT ACCESS POLICY
 FROM { username | groupname }

Description

The REVOKE command revokes privileges that were granted to one or more roles. The key word PUBLIC refers to the implicitly defined group of all roles.

See GRANT for the meaning of the privilege types.

A role has the sum of:

Privileges granted directly to it
Privileges granted to any role it is presently a member of
Privileges granted to PUBLIC

Thus, for example, revoking the SELECT privilege from PUBLIC doesn't necessarily mean that all roles lose SELECT privilege on the object. Roles that were granted the privilege directly or from
another role still have it.

If the privilege was granted with the grant option, the grant option for the privilege is revoked along with the privilege.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 757

If a user holds a privilege with grant option and granted it to other users, then the privileges held by those other users are called dependent privileges. If the privilege or the grant option held by the first
user is revoked, any dependent privileges are also revoked if CASCADE is specified. Without the CASCADE option, the revoke action fails. This recursive revocation affects only privileges that were
granted through a chain of users that's traceable to the subject of this REVOKE command. The affected users can keep the privilege if it was also granted through other users.

Note

The CASCADE option isn't compatible with Oracle databases. By default, Oracle always cascades dependent privileges. EDB Postgres Advanced Server requires the CASCADE keyword for
the REVOKE command to succeed.

When revoking membership in a role, GRANT OPTION is called ADMIN OPTION . The behavior is similar.

Notes

A user can revoke only the privileges that were granted directly by that user. If, for example, user A granted a privilege with grant option to user B, and user B granted it to user C, then user A can't
revoke the privilege directly from C. Instead, user A can revoke the grant option from user B and use the CASCADE option to revoke the privilege from user C. For another example, if both A and B
granted the same privilege to C , A can revoke their own grant but not B’s grant. C still has the privilege.

When a non-owner of an object attempts to revoke privileges on the object, the command fails if the user doesn't have privileges on the object. As long as some privilege is available, the command
proceeds, but it revokes only those privileges for which the user has grant options. The REVOKE ALL PRIVILEGES forms issue a warning message if no grant options are held. The other forms issue
a warning if grant options for any of the privileges named in the command aren't held. In principle, these statements apply to the object owner as well. However, since the owner is always treated as
holding all grant options, the cases can never occur.

If a superuser issues a GRANT or REVOKE command, the command is performed as though it were issued by the owner of the affected object. Since all privileges ultimately come from the object
owner (possibly indirectly by way of chains of grant options), a superuser can revoke all privileges. This might require use of CASCADE .

A role that is not the owner of the affected object can also use REVOKE . That role must be a member of the role that owns the object or a member of a role that holds privileges WITH GRANT
OPTION on the object. In this case, the command is performed as if issued by the containing role that owns the object or holds the privileges WITH GRANT OPTION . For example, if table t1 is owned
by role g1, of which role u1 is a member, then u1 can revoke privileges on t1 that are recorded as being granted by g1. This includes grants made by u1 as well as by other members of role g1.

If the role executing REVOKE holds privileges indirectly by more than one role membership path, the containing role that performs the command is unspecified. In such cases, best practice is to use
SET ROLE to become the specific role you want to do the REVOKE as. Otherwise, you might revoke privileges other than the ones you intended or not revoke anything at all.

Note

The EDB Postgres Advanced Server ALTER ROLE command also supports syntax that revokes the system privileges required to create a public or private database link or exemptions from
fine-grained access control policies (DBMS_RLS). The ALTER ROLE syntax is functionally equivalent to the respective REVOKE command, compatible with Oracle databases.

Examples

Revoke insert privilege for the public on table emp :

REVOKE INSERT ON emp FROM PUBLIC;

Revoke all privileges from user mary on view salesemp . This actually means “revoke all privileges that I granted.”

REVOKE ALL PRIVILEGES ON salesemp FROM mary;

Revoke membership in role admins from user joe :

REVOKE admins FROM joe;

Revoke CONNECT privilege from user joe :

REVOKE CONNECT FROM joe;

Revoke CREATE DATABASE LINK privilege from user joe :

REVOKE CREATE DATABASE LINK FROM joe;

Revoke the EXEMPT ACCESS POLICY privilege from user joe :

REVOKE EXEMPT ACCESS POLICY FROM joe;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 758

See also

GRANT, SET ROLE

20.68 ROLLBACK

Name

ROLLBACK — Abort the current transaction.

Synopsis

ROLLBACK [WORK]

Description

ROLLBACK rolls back the current transaction and discards all the updates made by the transaction.

Parameters

WORK

Optional keyword that has no effect.

Notes

Use COMMIT to successfully terminate a transaction.

Issuing ROLLBACK when not inside a transaction does no harm.

Note

Executing a ROLLBACK in a plpgsql procedure throws an error if there's an Oracle-style SPL procedure on the runtime stack.

Examples

Abort all changes:

ROLLBACK;

See also

COMMIT, ROLLBACK TO SAVEPOINT, SAVEPOINT

20.69 ROLLBACK TO SAVEPOINT

Name

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 759

ROLLBACK TO SAVEPOINT — Roll back to a savepoint.

Synopsis

ROLLBACK [WORK] TO [SAVEPOINT] <savepoint_name>

Description

Roll back all commands that were executed after the savepoint was set. The savepoint remains valid and you can roll back to it again if you need to.

ROLLBACK TO SAVEPOINT destroys all savepoints that were established after the named savepoint.

Parameters

savepoint_name

The savepoint to which to roll back.

Notes

Specifying a savepoint name that wasn't established is an error.

ROLLBACK TO SAVEPOINT isn't supported in SPL programs.

Examples

Undo the effects of the commands executed from the point when savepoint depts was established:

\set AUTOCOMMIT off
INSERT INTO dept VALUES (50, 'HR', 'NEW YORK');
SAVEPOINT depts;
INSERT INTO emp (empno, ename, deptno) VALUES (9001, 'JONES', 50);
INSERT INTO emp (empno, ename, deptno) VALUES (9002, 'ALICE', 50);
ROLLBACK TO SAVEPOINT depts;

See also

COMMIT, ROLLBACK, SAVEPOINT

20.70 SAVEPOINT

Name

SAVEPOINT — Define a new savepoint in the current transaction.

Synopsis

SAVEPOINT <savepoint_name>

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 760

Description

SAVEPOINT establishes a new savepoint in the current transaction.

A savepoint is a mark inside a transaction that allows all commands that are executed after it to be rolled back. This restores the transaction state to what it was at the savepoint.

Parameters

savepoint_name

The name ofo the savepoint.

Notes

Use ROLLBACK TO SAVEPOINT to roll back to a savepoint.

You can establish savepoints only when inside a transaction block. You can define multiple savepoints in a transaction.

When another savepoint is established with the same name as a previous savepoint, the old savepoint is kept. However, only the more recent one is used when rolling back.

SAVEPOINT isn't supported in SPL programs.

Examples

Establish a savepoint and then undo the effects of all commands executed after it:

\set AUTOCOMMIT off
INSERT INTO dept VALUES (50, 'HR', 'NEW YORK');
SAVEPOINT depts;
INSERT INTO emp (empno, ename, deptno) VALUES (9001, 'JONES', 50);
INSERT INTO emp (empno, ename, deptno) VALUES (9002, 'ALICE', 50);
SAVEPOINT emps;
INSERT INTO jobhist VALUES (9001,'17-SEP-07',NULL,'CLERK',800,NULL,50,'New Hire');
INSERT INTO jobhist VALUES (9002,'20-SEP-07',NULL,'CLERK',700,NULL,50,'New Hire');
ROLLBACK TO depts;
COMMIT;

This transaction commits a row into the dept table. The inserts into the emp and jobhist tables are rolled back.

See also

COMMIT, ROLLBACK, ROLLBACK TO SAVEPOINT

20.71 SELECT

Name

SELECT — Retrieve rows from a table or view.

Synopsis

SELECT [optimizer_hint] [ALL | DISTINCT | UNIQUE]
 * | expression [AS output_name] [, ...]
 FROM from_item [, ...]

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 761

 [WHERE condition]
 [[START WITH start_expression]
 CONNECT BY { PRIOR parent_expr = child_expr |
 child_expr = PRIOR parent_expr }
 [ORDER SIBLINGS BY expression [ASC | DESC] [, ...]]]
 [GROUP BY { expression | ROLLUP (expr_list) |
 CUBE (expr_list) | GROUPING SETS (expr_list) } [, ...]
 [LEVEL]]
 [HAVING condition [, ...]]
 [{ UNION [ALL] | INTERSECT | MINUS } select]
 [ORDER BY expression [ASC | DESC] [, ...]]
 [FOR UPDATE [WAIT n|NOWAIT|SKIP LOCKED]]

Where from_item can be one of:

table_name[@dblink] [alias]
(select) alias
from_item [NATURAL] join_type from_item
 [ON join_condition | USING (join_column [, ...])]

Description

SELECT retrieves rows from one or more tables. The general processing of SELECT is as follows:

1. All elements in the FROM list are computed. (Each element in the FROM list is a real or virtual table.) If you specify more than one element in the FROM list, they are cross joined. See FROM
clause.

2. If you specify the WHERE clause, all rows that don't satisfy the condition are eliminated from the output. See WHERE clause.
3. If you specify the GROUP BY clause, the output is divided into groups of rows that match one or more values. The HAVING clause eliminates groups that don't satisfy the given condition. See

GROUP BY clause and HAVING clause.
4. Using the operators UNION , INTERSECT , and MINUS , you can combine the output of more than one SELECT statement to form a single result set. The UNION operator returns all rows

that are in one or both of the result sets. The INTERSECT operator returns all rows that are strictly in both result sets. The MINUS operator returns the rows that are in the first result set but
not in the second. In all three cases, duplicate rows are eliminated. In the case of the UNION operator, if you specify ALL , then duplicates aren't eliminated. See UNION clause, INTERSECT
clause, and MINUS clause.

5. The actual output rows are computed using the SELECT output expressions for each selected row. See SELECT list.
6. The CONNECT BY clause is used to select data that has a hierarchical relationship. Such data has a parent-child relationship between rows. See CONNECT BY clause.
7. If you specify the ORDER BY clause, the returned rows are sorted in the specified order. Otherwise, the rows are returned in the order the system finds fastest to produce. See ORDER BY

clause.
8. DISTINCT | UNIQUE eliminates duplicate rows from the result. ALL (the default) returns all candidate rows, including duplicates. See DISTINCT | UNIQUE clause.
9. The FOR UPDATE clause causes the SELECT statement to lock the selected rows against concurrent updates. See FOR UPDATE clause.

You must have SELECT privilege on a table to read its values. The use of FOR UPDATE requires UPDATE privilege as well.

Parameters

optimizer_hint

Comment-embedded hints to the optimizer for selecting an execution plan. See Database compatibility for Oracle developers for information about optimizer hints.

FROM clause

The FROM clause specifies one or more source tables for a SELECT statement. The syntax is:

FROM source [, ...]

Where source can be one of following elements:

table_name[@dblink]

The name (optionally schema-qualified) of an existing table or view. dblink is a database link name identifying a remote database. See the CREATE DATABASE LINK command for information on
database links.

alias

A substitute name for the FROM item containing the alias. Use an alias for brevity or to eliminate ambiguity for self-joins where the same table is scanned multiple times. Providing an alias completely
hides the name of the table or function. For example, given FROM foo AS f , the remainder of the SELECT must refer to this FROM item as f , not foo .

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 762

select

A sub- SELECT can appear in the FROM clause. This acts as though its output were created as a temporary table for the duration of this single SELECT command. Surround the sub- SELECT with
parentheses, and provide an alias for it.

join_type

One of the following:

[INNER] JOIN

LEFT [OUTER] JOIN

RIGHT [OUTER] JOIN

FULL [OUTER] JOIN

CROSS JOIN

For the INNER and OUTER join types, you must specify a join condition, namely one of NATURAL , ON join_condition , or USING (join_column [, ...]) . For CROSS JOIN , you
can't use any of these clauses.

A JOIN clause combines two FROM items. Use parentheses to determine the order of nesting. Without parentheses, JOINs nest left-to-right. In any case JOIN binds more tightly than the
commas separating FROM items.

CROSS JOIN and INNER JOIN produce a simple Cartesian product, the same result that you get from listing the two items at the top level of FROM but restricted by any join condition. CROSS
JOIN is equivalent to INNER JOIN ON (TRUE) , that is, no rows are removed by qualification. These join types are a notational convenience, since you can accomplish the same thing using FROM
and WHERE .

LEFT OUTER JOIN returns all rows in the qualified Cartesian product, that is, all combined rows that pass its join condition. It also returns one copy of each row in the left-hand table for which there
was no right-hand row that passed the join condition. This left-hand row is extended to the full width of the joined table by inserting null values for the right-hand columns. Only the JOIN clause’s own
condition is considered while deciding which rows have matches. Outer conditions are applied afterwards.

Conversely, RIGHT OUTER JOIN returns all the joined rows plus one row for each unmatched right-hand row extended with nulls on the left. This is a notational convenience, since you can convert
it to a LEFT OUTER JOIN by switching the left and right inputs.

FULL OUTER JOIN returns all the joined rows, one row for each unmatched left-hand row extended with nulls on the right, and one row for each unmatched right-hand row extended with nulls on
the left.

ON join_condition

join_condition is an expression resulting in a value of type BOOLEAN (similar to a WHERE clause) that specifies the rows in a join that are considered to match.

USING (join_column [, ...])

A clause of the form USING (a, b, ...) is shorthand for ON left_table.a = right_table.a AND left_table.b = right_table.b Also, USING implies that only one
of each pair of equivalent columns is included in the join output, not both.

NATURAL

NATURAL is shorthand for a USING list that mentions all columns in the two tables that have the same names.

If you specify multiple sources, the result is the Cartesian product (cross join) of all the sources. Usually qualification conditions are added to restrict the returned rows to a small subset of the Cartesian
product.

Example

This example selects all of the entries from the dept table:

SELECT * FROM dept;
deptno | dname | loc
-------+-------------+-----------
 10 | ACCOUNTING | NEW YORK
 20 | RESEARCH | DALLAS
 30 | SALES | CHICAGO
 40 | OPERATIONS | BOSTON
 (4 rows)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 763

WHERE clause

The optional WHERE clause has the form:

WHERE condition

where condition is any expression that evaluates to a result of type BOOLEAN . Any row that doesn't satisfy this condition is eliminated from the output. A row satisfies the condition if it returns
TRUE when the actual row values are substituted for any variable references.

Example

This example joins the contents of the emp and dept tables. The value of the deptno column in the emp table is equal to the value of the deptno column in the deptno table.

SELECT d.deptno, d.dname, e.empno, e.ename, e.mgr, e.hiredate
 FROM emp e, dept d
 WHERE d.deptno = e.deptno;

 deptno | dname | empno | ename | mgr | hiredate
--------+------------+-------+--------+------+--------------------
 10 | ACCOUNTING | 7934 | MILLER | 7782 | 23-JAN-82 00:00:00
 10 | ACCOUNTING | 7782 | CLARK | 7839 | 09-JUN-81 00:00:00
 10 | ACCOUNTING | 7839 | KING | | 17-NOV-81 00:00:00
 20 | RESEARCH | 7788 | SCOTT | 7566 | 19-APR-87 00:00:00
 20 | RESEARCH | 7566 | JONES | 7839 | 02-APR-81 00:00:00
 20 | RESEARCH | 7369 | SMITH | 7902 | 17-DEC-80 00:00:00
 20 | RESEARCH | 7876 | ADAMS | 7788 | 23-MAY-87 00:00:00
 20 | RESEARCH | 7902 | FORD | 7566 | 03-DEC-81 00:00:00
 30 | SALES | 7521 | WARD | 7698 | 22-FEB-81 00:00:00
 30 | SALES | 7844 | TURNER | 7698 | 08-SEP-81 00:00:00
 30 | SALES | 7499 | ALLEN | 7698 | 20-FEB-81 00:00:00
 30 | SALES | 7698 | BLAKE | 7839 | 01-MAY-81 00:00:00
 30 | SALES | 7654 | MARTIN | 7698 | 28-SEP-81 00:00:00
 30 | SALES | 7900 | JAMES | 7698 | 03-DEC-81 00:00:00
(14 rows)

GROUP BY clause

The optional GROUP BY clause has the form:

GROUP BY { expression | ROLLUP (expr_list) |
 CUBE (expr_list) | GROUPING SETS (expr_list) } [, ...]

GROUP BY condenses all selected rows that share the same values for the grouped expressions into a single row. expression can be an input column name or the name or ordinal number of an
output column (SELECT list item). Or it can be an arbitrary expression formed from input-column values. In case of ambiguity, a GROUP BY name is interpreted as an input-column name rather than
an output column name.

ROLLUP , CUBE , and GROUPING SETS are extensions to the GROUP BY clause for supporting multidimensional analysis.

Aggregate functions, if any are used, are computed across all rows making up each group, producing a separate value for each group. Without GROUP BY , an aggregate produces a single value
computed across all the selected rows. When GROUP BY is present, it isn't valid for the SELECT list expressions to refer to ungrouped columns except in aggregate functions, since there is more than
one possible value to return for an ungrouped column.

Example

This example computes the sum of the sal column in the emp table, grouping the results by department number:

SELECT deptno, SUM(sal) AS total
 FROM emp
 GROUP BY deptno;

 deptno | total
--------+----------
 10 | 8750.00
 20 | 10875.00
 30 | 9400.00
(3 rows)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 764

HAVING clause

The optional HAVING clause has the form:

HAVING condition

Where condition is the same as specified for the WHERE clause.

HAVING eliminates group rows that don't satisfy the specified condition. HAVING is different from WHERE . WHERE filters individual rows before applying GROUP BY , while HAVING filters
group rows created by GROUP BY . Each column referenced in condition must unambiguously reference a grouping column, unless the reference appears in an aggregate function.

Example

Sum the column sal of all employees, group the results by department number, and show those group totals that are less than 10000:

SELECT deptno, SUM(sal) AS total
 FROM emp
 GROUP BY deptno
 HAVING SUM(sal) < 10000;

 deptno | total
--------+---------
 10 | 8750.00
 30 | 9400.00
(2 rows)

SELECT List

The SELECT list (between the keywords SELECT and FROM) specifies expressions that form the output rows of the SELECT statement. The expressions can refer to columns computed in the
FROM clause, and they usually do. Using the clause AS output_name , you can specify another name for an output column. This name is primarily used to label the column for display. You can also

use it to refer to the column’s value in ORDER BY and GROUP BY clauses but not in the WHERE or HAVING clauses. In those clauses, you must write out the expression.

Instead of an expression, you can write * in the output list as a shorthand for all the columns of the selected rows.

Example

The SELECT list in this example specifies for the result set to include the empno column, the ename column, the mgr column, and the hiredate column:

SELECT empno, ename, mgr, hiredate FROM emp;

 empno | ename | mgr | hiredate
-------+--------+------+--------------------
 7934 | MILLER | 7782 | 23-JAN-82 00:00:00
 7782 | CLARK | 7839 | 09-JUN-81 00:00:00
 7839 | KING | | 17-NOV-81 00:00:00
 7788 | SCOTT | 7566 | 19-APR-87 00:00:00
 7566 | JONES | 7839 | 02-APR-81 00:00:00
 7369 | SMITH | 7902 | 17-DEC-80 00:00:00
 7876 | ADAMS | 7788 | 23-MAY-87 00:00:00
 7902 | FORD | 7566 | 03-DEC-81 00:00:00
 7521 | WARD | 7698 | 22-FEB-81 00:00:00
 7844 | TURNER | 7698 | 08-SEP-81 00:00:00
 7499 | ALLEN | 7698 | 20-FEB-81 00:00:00
 7698 | BLAKE | 7839 | 01-MAY-81 00:00:00
 7654 | MARTIN | 7698 | 28-SEP-81 00:00:00
 7900 | JAMES | 7698 | 03-DEC-81 00:00:00
(14 rows)

UNION clause

The UNION clause has the form:

select_statement UNION [ALL] select_statement

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 765

Where select_statement is any SELECT statement without an ORDER BY or FOR UPDATE clause. You can attach ORDER BY to a sub-expression if you enclose it in parentheses. Without
parentheses, these clauses apply to the result of the UNION , not to its right-hand input expression.

The UNION operator computes the set union of the rows returned by the involved SELECT statements. A row is in the set union of two result sets if it appears in at least one of the result sets. The two
SELECT statements that represent the direct operands of the UNION must produce the same number of columns, and corresponding columns must have compatible data types.

The result of UNION doesn't contain any duplicate rows unless you specify the ALL option. ALL prevents eliminating duplicates.

Without parentheses, multiple UNION operators in the same SELECT statement are evaluated left to right.

Currently, you can't specify FOR UPDATE either for a UNION result or for any input of a UNION .

INTERSECT clause

The INTERSECT clause has the form:

select_statement INTERSECT select_statement

Where select_statement is any SELECT statement without an ORDER BY or FOR UPDATE clause.

The INTERSECT operator computes the set intersection of the rows returned by the involved SELECT statements. A row is in the intersection of two result sets if it appears in both result sets.

The result of INTERSECT doesn't contain any duplicate rows.

Without parentheses, multiple INTERSECT operators in the same SELECT statement are evaluated left to right. INTERSECT binds more tightly than UNION . That is, A UNION B INTERSECT
C is read as A UNION (B INTERSECT C) .

MINUS clause

The MINUS clause has this general form:

select_statement MINUS select_statement

Where select_statement is any SELECT statement without an ORDER BY or FOR UPDATE clause.

The MINUS operator computes the set of rows that are in the result of the left SELECT statement but not in the result of the right one.

The result of MINUS doesn't contain any duplicate rows.

Without parentheses, multiple MINUS operators in the same SELECT statement are evaluated left to right. MINUS binds at the same level as UNION .

CONNECT BY clause

The CONNECT BY clause determines the parent-child relationship of rows when performing a hierarchical query. It has the general form:

CONNECT BY { PRIOR parent_expr = child_expr |
 child_expr = PRIOR parent_expr }

Where parent_expr is evaluated on a candidate parent row. If parent_expr = child_expr results in TRUE for a row returned by the FROM clause, then this row is considered a child of the
parent.

You can specify the following optional clauses with the CONNECT BY clause.

START WITH start_expression

The rows returned by the FROM clause on which start_expression evaluates to TRUE become the root nodes of the hierarchy.

ORDER SIBLINGS BY expression [ASC | DESC] [, ...]

Sibling rows of the hierarchy are ordered by expression in the result set.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 766

Note

EDB Postgres Advanced Server doesn't support the use of AND or other operators in the CONNECT BY clause.

ORDER BY clause

The optional ORDER BY clause has the form:

ORDER BY expression [ASC | DESC] [, ...]

Where expression can be the name or ordinal number of an output column (SELECT list item), or it can be an arbitrary expression formed from input-column values.

The ORDER BY clause sorts the result rows according to the specified expressions. If two rows are equal according to the left-most expression, they are compared according to the next expression, and
so on. If they are equal according to all specified expressions, they are returned in an implementation-dependent order.

The ordinal number refers to the ordinal (left-to-right) position of the result column. This feature makes it possible to define an ordering on the basis of a column that doesn't have a unique name. This is
never required because you can always assign a name to a result column using the AS clause.

You also can use arbitrary expressions in the ORDER BY clause, including columns that don't appear in the SELECT result list. Thus the following statement is valid:

SELECT ename FROM emp ORDER BY empno;

A limitation of this feature is that an ORDER BY clause applying to the result of a UNION , INTERSECT , or MINUS clause can specify only an output column name or number, not an expression.

If an ORDER BY expression is a simple name that matches both a result column name and an input column name, ORDER BY interprets it as the result column name. This behavior is the opposite of
the choice that GROUP BY makes in the same situation. This inconsistency is compatible with the SQL standard.

Optionally, you can add the key word ASC (ascending) or DESC (descending) after any expression in the ORDER BY clause. ASC is the default.

The null value sorts higher than any other value. In other words, with ascending sort order, null values sort at the end. With descending sort order, null values sort at the beginning.

Character-string data is sorted according to the locale-specific collation order that was established when the database cluster was initialized.

Note

If you specify SELECT DISTINCT or if a SELECT statement includes the SELECT DISTINCT ...ORDER BY clause, then all the expressions in ORDER BY must be present in the
select list of the SELECT DISTINCT query.

Examples

These examples sort the individual results according to the contents of the second column (dname):

SELECT * FROM dept ORDER BY dname;

 deptno | dname | loc
--------+------------+----------
 10 | ACCOUNTING | NEW YORK
 40 | OPERATIONS | BOSTON
 20 | RESEARCH | DALLAS
 30 | SALES | CHICAGO
(4 rows)

SELECT * FROM dept ORDER BY 2;

 deptno | dname | loc
--------+------------+----------
 10 | ACCOUNTING | NEW YORK
 40 | OPERATIONS | BOSTON
 20 | RESEARCH | DALLAS
 30 | SALES | CHICAGO
(4 rows)

This example uses the SELECT DISTINCT ...ORDER BY clause to fetch the job and deptno from table emp :

CREATE TABLE EMP(EMPNO NUMBER(4) NOT NULL,
ENAME VARCHAR2(10),

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 767

JOB VARCHAR2(9),
DEPTNO NUMBER(2));

INSERT INTO EMP VALUES (7369, 'SMITH', 'CLERK', 20);
INSERT 0 1
INSERT INTO EMP VALUES (7499, 'ALLEN', 'SALESMAN', 30);
INSERT 0 1
INSERT INTO EMP VALUES (7521, 'WARD', 'SALESMAN', 30);
INSERT 0 1
INSERT INTO EMP VALUES (7566, 'JONES', 'MANAGER', 20);
INSERT 0 1

SELECT DISTINCT e.job, e.deptno FROM emp e ORDER BY e.job, e.deptno;
 job | deptno
----------+--------
 CLERK | 20
 MANAGER | 20
 SALESMAN | 30
(3 rows)

DISTINCT | UNIQUE clause

If a SELECT statement specifies DISTINCT or UNIQUE , all duplicate rows are removed from the result set. One row is kept from each group of duplicates. The DISTINCT or UNIQUE clauses are
synonymous when used with a SELECT statement. The ALL keyword specifies the opposite, which is that all rows are kept (the default).

Error messages resulting from the improper use of a SELECT statement that includes the DISTINCT or UNIQUE keywords include both the DISTINCT | UNIQUE keywords:

psql: ERROR: FOR UPDATE is not allowed with DISTINCT/UNIQUE clause

FOR UPDATE clause

The FOR UPDATE clause takes the form:

FOR UPDATE [WAIT n|NOWAIT|SKIP LOCKED]

FOR UPDATE causes the rows retrieved by the SELECT statement to be locked as though for update. This prevents a row from being modified or deleted by other transactions until the current
transaction ends. Any transaction that attempts to UPDATE , DELETE , or SELECT FOR UPDATE a selected row is blocked until the current transaction ends. If an UPDATE , DELETE , or SELECT
FOR UPDATE from another transaction has already locked a selected row or rows, SELECT FOR UPDATE waits for the first transaction to complete. It then locks and returns the updated row, or it
returns no row if the row was deleted.

You can't use FOR UPDATE in contexts where you can't clearly identify returned rows with individual table rows, for example, with aggregation.

Use FOR UPDATE options to specify locking preferences:

Include the WAIT n keywords to specify the number of seconds or fractional seconds for the SELECT statement to wait for a row locked by another session. Use a decimal form to specify
fractional seconds. For example, WAIT 1.5 waits one and a half seconds. Specify up to four digits to the right of the decimal.
Include the NOWAIT keyword to report an error immediately if the current session can't lock a row.
Include SKIP LOCKED to lock rows, if possible, and skip rows that are already locked by another session.

20.72 SET CONSTRAINTS

Name

SET CONSTRAINTS — Set constraint-checking modes for the current transaction.

Synopsis

SET CONSTRAINTS { ALL | name [, ...] } { DEFERRED | IMMEDIATE }

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 768

Description

SET CONSTRAINTS sets the behavior of constraint checking in the current transaction. IMMEDIATE constraints are checked at the end of each statement. DEFERRED constraints are checked
when the transaction commits. Each constraint has its own IMMEDIATE or DEFERRED mode.

When you create a constraint, you give it one of three characteristics: DEFERRABLE INITIALLY DEFERRED , DEFERRABLE INITIALLY IMMEDIATE , or NOT DEFERRABLE . The third class is
always IMMEDIATE and isn't affected by the SET CONSTRAINTS command. The first two classes start every transaction in the indicated mode, but you can change their behavior in a transaction by
using SET CONSTRAINTS .

SET CONSTRAINTS with a list of constraint names changes the mode of just those constraints. Those constraints must all be deferrable. If multiple constraints match any given name, all are
affected. SET CONSTRAINTS ALL changes the mode of all deferrable constraints.

When SET CONSTRAINTS changes the mode of a constraint from DEFERRED to IMMEDIATE , the new mode takes effect retroactively. Any outstanding data modifications that normally are
checked at the end of the transaction are instead checked while SET CONSTRAINTS executes. If any such constraint is violated, the SET CONSTRAINTS fails and doesn't change the constraint
mode. Thus, you can use SET CONSTRAINTS to force constraint checking to occur at a specific point in a transaction.

Currently, only foreign key constraints are affected by this setting. Check and unique constraints are never deferrable.

Notes

This command alters only the behavior of constraints in the current transaction. If you execute this command outside of a transaction block, it doesn't have any effect.

20.73 SET ROLE

Name

SET ROLE — Set the current user identifier of the current session.

Synopsis

SET ROLE { <rolename> | NONE }

Description

This command sets the current user identifier of the current SQL session context to <rolename> . After SET ROLE , permissions checking for SQL commands is carried out as though the named role
is the one that logged in originally.

The specified role name must be a role that the current session user is a member of. A superuser can select any role.

NONE resets the current user identifier to the current session user identifier. Any user can execute these forms.

Notes

You can use this command to add or restrict privileges. If the session user role has the INHERITS attribute, then it automatically has all the privileges of every role that it can set the role to. In this
case, SET ROLE drops all the privileges assigned directly to the session user and to the other roles it is a member of, which leaves only the privileges available to the named role. If the session user
role has the NOINHERITS attribute, SET ROLE drops the privileges assigned directly to the session user and instead acquires the privileges available to the named role. When a superuser chooses
to set a role to a non-superuser role, they lose their superuser privileges.

Examples

User mary takes on the identity of role admins :

SET ROLE admins;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 769

User mary reverts back to their own identity:

SET ROLE NONE;

20.74 SET TRANSACTION

Name

SET TRANSACTION — Set the characteristics of the current transaction.

Synopsis

SET TRANSACTION transaction_mode

Where transaction_mode is one of:

ISOLATION LEVEL { SERIALIZABLE | READ COMMITTED }
READ WRITE | READ ONLY

Description

The SET TRANSACTION command sets the characteristics of the current transaction. It has no effect on any later transactions. The available transaction characteristics are the transaction isolation
level and the transaction access mode (read/write or read-only). The isolation level of a transaction determines the data the transaction can see when other transactions are running concurrently.

READ COMMITTED

A statement can see only rows committed before it began. This is the default.

SERIALIZABLE

All statements of the current transaction can see only rows committed before the first query or data-modification statement was executed in this transaction.

You can't change the transaction isolation level after the first query or data-modification statement (SELECT , INSERT , DELETE , UPDATE , or FETCH) of a transaction is executed. The transaction
access mode determines whether the transaction is read/write or read-only. Read/write is the default.

When a transaction is read-only, the following SQL commands aren't allowed:

INSERT , UPDATE , and DELETE if the table they write to isn't a temporary table
All CREATE , ALTER , and DROP commands
COMMENT , GRANT , REVOKE , TRUNCATE
EXECUTE if the command it executes is among those listed.

This is a high-level notion of read-only that doesn't prevent all writes to disk.

20.75 TRUNCATE

Name

TRUNCATE — Empty a table.

Synopsis

TRUNCATE TABLE <name> [DROP STORAGE]

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 770

Description

TRUNCATE removes all rows from a table. It has the same effect as an unqualified DELETE . However, since it doesn't scan the table, it's faster. TRUNCATE is most useful on large tables.

The DROP STORAGE clause is accepted for compatibility but is ignored.

Parameters

name

The name (optionally schema-qualified) of the table to truncate.

Notes

You can't use TRUNCATE if there are foreign-key references to the table from other tables. Checking validity in such cases requires table scans, which TRUNCATE aims to avoid.

TRUNCATE doesn't run any user-defined ON DELETE triggers for the table.

Examples

This command truncates a table named accounts :

TRUNCATE TABLE accounts;

See also

DROP VIEW, DELETE

20.76 UPDATE

Name

UPDATE — Update rows of a table.

Synopsis

UPDATE [<optimizer_hint>] <table>[@<dblink>]
 SET <column> = { <expression> | DEFAULT } [, ...]
 [WHERE <condition>]
 [RETURNING <return_expression> [, ...]
 { INTO { <record> | <variable> [, ...] }
 | BULK COLLECT INTO <collection> [, ...] }]

Description

UPDATE changes the values of the specified columns in all rows that satisfy the condition. You need to mention only the columns you want to modify in the SET clause. Columns not explicitly
modified retain their values.

You can specify the RETURNING INTO { record | variable [, ...] } clause only in an SPL program. In addition, the result set of the UPDATE command must not return more than one
row. Otherwise an exception is thrown. If the result set is empty, then the contents of the target record or variables are set to null.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 771

In an SPL program, you can specify the RETURNING BULK COLLECT INTO collection [, ...] clause only if you use the UPDATE command. If you specify more than one collection as the
target of the BULK COLLECT INTO clause, then each collection must consist of a single scalar field. That is, collection can't be a record. The result set of the UPDATE command can contain
zero or more rows. return_expression evaluated for each row of the result set becomes an element in collection starting with the first element. Any existing rows in collection are
deleted. If the result set is empty, then collection is empty.

You need the UPDATE privilege on the table to update it. You also need the SELECT privilege to any table whose values are read in expression or condition .

Parameters

optimizer_hint

Comment-embedded hints to the optimizer for selecting an execution plan.

table

The name (optionally schema-qualified) of the table to update.

dblink

Database link name identifying a remote database. See the CREATE DATABASE LINK command for information on database links.

column

The name of a column in the table.

expression

An expression to assign to the column. The expression can use the old values of this and other columns in the table.

DEFAULT

Set the column to its default value, which is null if you don't assign a default expression to it.

condition

An expression that returns a value of type BOOLEAN . Update only rows for which this expression returns true.

return_expression

An expression that can include one or more columns from the table. If a column name from the table is specified in return_expression , the value substituted for the column when
return_expression is evaluated is determined as follows:

If the column specified in return_expression is assigned a value in the UPDATE command, then the assigned value is used when evaluating return_expression .

If the column specified in return_expression isn't assigned a value in the UPDATE command, then the column’s current value in the affected row is used when evaluating
return_expression .

record

A record whose field to assign the evaluated return_expression . The first return_expression is assigned to the first field in record , the second return_expression is assigned to
the second field in record , and so on. The number of fields in record must exactly match the number of expressions, and the fields must be type-compatible with their assigned expressions.

variable

A variable to which to assign the evaluated return_expression . If more than one return_expression and variable are specified, the first return_expression is assigned to the
first variable , the second return_expression is assigned to the second variable , and so on. The number of variables specified following the INTO keyword must exactly match the
number of expressions following the RETURNING keyword, and the variables must be type-compatible with their assigned expressions.

collection

A collection in which an element is created from the evaluated return_expression . There can be either:

A single collection, which can be a collection of a single field or a collection of a record type

More than one collection, in which case each collection must consist of a single field

The number of return expressions must match in number and order the number of fields in all specified collections. Each corresponding return_expression and collection field must
be type-compatible.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 772

Examples

Change the location to AUSTIN for department 20 in the dept table:

UPDATE dept SET loc = 'AUSTIN' WHERE deptno = 20;

For all employees with job = SALESMAN in the emp table, update the salary by 10%, and increase the commission by 500:

UPDATE emp SET sal = sal * 1.1, comm = comm + 500 WHERE job = 'SALESMAN';

21 Database Compatibility: Table Partitioning

In a partitioned table, one logically large table is broken into smaller physical pieces. Partitioning can provide several benefits:

Query performance can improve dramatically, particularly when most of the heavily accessed rows of the table are in a single partition or a small number of partitions. Partitioning allows you to
omit the partition column from the front of an index. This approach reduces index size and makes it more likely that the heavily used parts of the index fit in memory.
When a query or update accesses a large percentage of a single partition, performance might improve. This improvement happens because the server performs a sequential scan of the partition
instead of using an index and random-access reads scattered across the whole table.
If you plan the requirement into the partitioning design, you can implement a bulk load or unload by adding or removing partitions. ALTER TABLE is far faster than a bulk operation. It also
avoids the VACUUM overhead caused by a bulk DELETE .
You can migrate seldom-used data to less-expensive or slower storage media.

Table partitioning is worthwhile when a table is becoming very large. The exact point at which a table benefits from partitioning depends on the application. A good guideline is for the size of the table
not to exceed the physical memory of the database server.

EDB Postgres Advanced Server supports aspects of table partitioning that are compatible with Oracle databases.

Note

The declarative partitioning feature, introduced with PostgreSQL version 10, is not covered here. However, PostgreSQL declarative partitioning is supported in EDB Postgres Advanced Server
10 in addition to the table partitioning compatible with Oracle databases described here. For information about declarative partitioning, see the PostgreSQL core documentation.

The PostgreSQL INSERT... ON CONFLICT DO NOTHING/UPDATE clause, commonly known as UPSERT , isn't supported on Oracle-styled partitioned tables. If you include the ON CONFLICT
DO NOTHING/UPDATE clause when invoking the INSERT command to add data to a partitioned table, an error occurs.

Note

EDB Postgres Advanced Server doesn't support global indexes, so the index isn't inherited when you define a primary key on the partitioned table that doesn't include partition key columns.
However, all partitions defined in CREATE TABLE have an independent primary index on the column. You can re-create the primary key on all newly added partitions by using ALTER
TABLE ... ADD CONSTRAINT . This primary index enforces uniqueness in each partition but not across the entire partition hierarchy. In other words, you can have the same value
repeated for the primary index column in two or more partitions.

21.1 Selecting a partition type

When you create a partitioned table, you specify LIST , RANGE , or HASH partitioning rules. The partitioning rules provide a set of constraints that define the data that's stored in each partition. As
you add rows to the partitioned table, the server uses the partitioning rules to decide which partition contains each row.

EDB Postgres Advanced Server can also use the partitioning rules to enforce partition pruning, which improves performance when responding to user queries. When selecting a partitioning type and
partitioning keys for a table, consider how the data that's stored in a table is queried, and include often-queried columns in the partitioning rules.

List partitioning

When you create a list-partitioned table, you specify a single partitioning key column. When adding a row to the table, the server compares the key values specified in the partitioning rule to the
corresponding column in the row. If the column value matches a value in the partitioning rule, the row is stored in the partition named in the rule.

Note

List partitioning doesn't support multi-column list partitioning.

Range partitioning

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 773

https://www.postgresql.org/docs/current/static/ddl-partitioning.html

When you create a range-partitioned table, you specify one or more partitioning key columns. When you add a row to the table, the server compares the value of the partitioning keys to the
corresponding columns in a table entry. If the column values satisfy the conditions specified in the partitioning rule, the row is stored in the partition named in the rule.

Hash partitioning

When you create a hash-partitioned table, you specify one or more partitioning key columns. Data is divided into approximately equal-sized partitions among the specified partitions. When you add a row
to a hash-partitioned table, the server computes a hash value for the data in the specified columns and stores the row in a partition according to the hash value.

Note

When upgrading EDB Postgres Advanced Server, you must rebuild each hash-partitioned table on the upgraded version server.

Subpartitioning

Subpartitioning breaks a partitioned table into smaller subsets. You must store all subsets in the same database server cluster. A table is typically subpartitioned by a different set of columns. It can
have a different subpartitioning type from the parent partition. If you subpartition one partition, then each partition has at least one subpartition.

If you subpartition a table, no data is stored in any of the partition tables. Instead, the data is stored in the corresponding subpartitions.

21.1.1 Interval range partitioning

Interval range partitioning is an extension to range partitioning that allows a database to create a partition when the inserted data exceeds the range of an existing partition. To implement interval range
partitioning, include the INTERVAL clause, and specify the range size for a new partition.

The high value of a range partition, also known as the transition point, is determined by the range partitioning key value. The database creates partitions for inserted data with values that are beyond
that high value.

Suppose an interval is set to one month. If data is inserted for two months after the current transition point, only the partition for the second month is created and not the intervening partition. For
example, you can create an interval-range-partitioned table with a monthly interval and a current transition point of February 15, 2019. If you try to insert data for May 10, 2019, then the required
partition for April 15 to May 15, 2019 is created and data is inserted into that partition. The partition for February 15, 2019 to March 15, 2019 and March 15, 2019 to April 15, 2019 is skipped.

For information about interval range partitioning syntax, see CREATE TABLE...PARTITION BY.

Restrictions on interval range partitioning

The following restrictions apply to the INTERVAL clause:

Interval range partitioning is restricted to a single partition key. That key must be a numerical or date range.
You must define at least one range partition.
The INTERVAL clause isn't supported for index-organized tables.
You can't create a domain index on an interval-range-partitioned table.
In composite partitioning, the interval range partitioning can be useful as a primary partitioning mechanism but isn't supported at the subpartition level.
You can't define DEFAULT and MAXVALUE for an interval-range-partitioned table.
You can't specify NULL , Not-a-Number , and Infinity values in the partitioning key column.
Interval range partitioning expression must yield constant value and can't be a negative value.
You must create the partitions for an interval-range-partitioned table in increasing order.

21.1.2 Automatic list partitioning

Automatic list partitioning is an extension to LIST partitioning that allows a database to create a partition for any new distinct value of the list partitioning key. A new partition is created when data is
inserted into the LIST partitioned table and the inserted value doesn't match any of the existing table partition. Use the AUTOMATIC clause to implement automatic list partitioning.

For example, consider a table named sales with a sales_state column that contains the existing partition values CALIFORNIA and FLORIDA . Each of the sales_state values increases
with a rise in the statewise sales. A sale in a new state, for example, INDIANA and OHIO , requires creating new partitions. If you implement automatic list partitioning, the new partitions INDIANA
and OHIO are automatically created, and data is entered into the sales table.

For information about automatic list partitioning syntax, see CREATE TABLE...PARTITION BY.

Restrictions on automatic list partitioning

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 774

The following restrictions apply to the AUTOMATIC clause:

A table that enables automatic list partitioning can't have a DEFAULT partition.
Automatic list partitioning doesn't support multi-column list partitioning.
In composite partitioning, the automatic list partitioning can be useful as a primary partitioning mechanism but isn't supported at the subpartition level.

21.2 Using partition pruning

EDB Postgres Advanced Server's query planner uses partition pruning to compute an efficient plan to locate any rows that match the conditions specified in the WHERE clause of a SELECT
statement. To successfully prune partitions from an execution plan, the WHERE clause must constrain the information that's compared to the partitioning key column specified when creating the
partitioned table.

When querying a... Partition pruning is effective when...

List-partitioned table The WHERE clause compares a literal value to the partitioning key using operators like equal (=) or AND .

Range-partitioned table The WHERE clause compares a literal value to a partitioning key using operators such as equal (=), less than (<), or greater than (>).

Hash-partitioned table The WHERE clause compares a literal value to the partitioning key using an operator such as equal (=).

The partition pruning mechanism uses two optimization techniques:

Fast pruning
Constraint exclusion

Partition pruning techniques limit the search for data only to those partitions where the values you're searching for might reside. Both pruning techniques remove partitions from a query's execution
plan, improving performance.

The difference between the fast pruning and constraint exclusion is that fast pruning understands the relationship between the partitions in an Oracle-partitioned table. Constraint exclusion doesn't. For
example, when a query searches for a specific value in a list-partitioned table, fast pruning can reason that only a specific partition can hold that value. Constraint exclusion must examine the
constraints defined for each partition. Fast pruning occurs early in the planning process to reduce the number of partitions that the planner must consider. Constraint exclusion occurs late in the
planning process.

Using constraint exclusion

The constraint_exclusion parameter controls constraint exclusion. The constraint_exclusion parameter can have a value of on , off , or partition . To enable constraint
exclusion, you must set the parameter to either partition or on . By default, the parameter is set to partition .

For more information about constraint exclusion, see the PostgreSQL documentation.

When constraint exclusion is enabled, the server examines the constraints defined for each partition to determine if that partition can satisfy a query.

When you execute a SELECT statement that doesn't contain a WHERE clause, the query planner must recommend an execution plan that searches the entire table. When you execute a SELECT
statement that contains a WHERE clause, the query planner:

Determines the partition to store the row
Sends query fragments to that partition
Prunes the partitions that can't contain that row from the execution plan

If you aren't using partitioned tables, disabling constraint exclusion might improve performance.

Fast pruning

Like constraint exclusion, fast pruning can optimize only queries that include a WHERE or join clause. However, the qualifiers in the WHERE clause must match a certain form. In both cases, the query
planner avoids searching for data in partitions that can't hold the data required by the query.

Fast pruning is controlled by a Boolean configuration parameter named edb_enable_pruning . Set edb_enable_pruning to ON to enable fast pruning of certain queries. Set
edb_enable_pruning to OFF to disable fast pruning.

Note

Fast pruning can optimize queries against subpartitioned tables or optimize queries against range-partitioned tables only for tables that are partitioned on one column.

For LIST-partitioned tables, EDB Postgres Advanced Server can fast prune queries that contain a WHERE clause that constrains a partitioning column to a literal value. For example, given a LIST-
partitioned table such as:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 775

https://www.postgresql.org/docs/current/static/ddl-partitioning.html

CREATE TABLE sales_hist(..., country text, ...)
PARTITION BY LIST(country)
(
 PARTITION americas VALUES('US', 'CA', 'MX'),
 PARTITION europe VALUES('BE', 'NL', 'FR'),
 PARTITION asia VALUES('JP', 'PK', 'CN'),
 PARTITION others VALUES(DEFAULT)
)

Fast pruning can reason about WHERE clauses such as:

WHERE country = 'US'

WHERE country IS NULL;

With the first WHERE clause, fast pruning eliminates partitions europe , asia , and others because those partitions can't hold rows that satisfy the qualifier WHERE country = 'US' .

With the second WHERE clause, fast pruning eliminates partitions americas , europe , and asia because those partitions can't hold rows where country IS NULL .

The operator specified in the WHERE clause must be an equals sign (=) or the equality operator appropriate for the data type of the partitioning column.

For range-partitioned tables, EDB Postgres Advanced Server can fast prune queries that contain a WHERE clause that constrains a partitioning column to a literal value. However, the operator can be
any of the following:

>

>=

=

<=

<

Fast pruning also reasons about more complex expressions involving AND and BETWEEN operators, such as:

WHERE size > 100 AND size <= 200
WHERE size BETWEEN 100 AND 200

Fast pruning can't prune based on expressions involving OR or IN . For example, when querying a RANGE-partitioned table, such as:

CREATE TABLE boxes(id int, size int, color text)
 PARTITION BY RANGE(size)
(
 PARTITION small VALUES LESS THAN(100),
 PARTITION medium VALUES LESS THAN(200),
 PARTITION large VALUES LESS THAN(300)
)

Fast pruning can reason about WHERE clauses such as:

WHERE size > 100 -- scan partitions 'medium' and 'large'

WHERE size >= 100 -- scan partitions 'medium' and 'large'

WHERE size = 100 -- scan partition 'medium'

WHERE size <= 100 -- scan partitions 'small' and 'medium'

WHERE size < 100 -- scan partition 'small'

WHERE size > 100 AND size < 199 -- scan partition 'medium'

WHERE size BETWEEN 100 AND 199 -- scan partition 'medium'

WHERE color = 'red' AND size = 100 -- scan 'medium'

WHERE color = 'red' AND (size > 100 AND size < 199) -- scan 'medium'

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 776

In each case, fast pruning requires that the qualifier refer to a partitioning column and literal value (or IS NULL/IS NOT NULL).

Note

Fast pruning can also optimize DELETE and UPDATE statements containing these WHERE clauses.

21.2.1 Example: Partition pruning

The EXPLAIN statement displays the execution plan of a statement. You can use the EXPLAIN statement to confirm that EDB Postgres Advanced Server is pruning partitions from the execution plan
of a query.

This example shows the efficiency of partition pruning. Create a simple table:

CREATE TABLE sales
(
 dept_no number,
 part_no varchar2,
 country varchar2(20),
 date date,
 amount number
)
PARTITION BY LIST(country)
(
 PARTITION europe VALUES('FRANCE', 'ITALY'),
 PARTITION asia VALUES('INDIA', 'PAKISTAN'),
 PARTITION americas VALUES('US', 'CANADA')
);

Perform a constrained query that includes the EXPLAIN statement:

EXPLAIN (COSTS OFF) SELECT * FROM sales WHERE country = 'INDIA';

The resulting query plan shows that the server scans only the sales_asia table. That's the table in which a row with a country value of INDIA is stored.

edb=# EXPLAIN (COSTS OFF) SELECT * FROM sales WHERE country = 'INDIA';
 QUERY PLAN

 Append
 -> Seq Scan on sales_asia
 Filter: ((country)::text = 'INDIA'::text)
(3 rows)

Suppose you perform a query that searches for a row that matches a value not included in the partitioning key:

EXPLAIN (COSTS OFF) SELECT * FROM sales WHERE dept_no = '30';

The resulting query plan shows that the server must look in all of the partitions to locate the rows that satisfy the query:

edb=# EXPLAIN (COSTS OFF) SELECT * FROM sales WHERE dept_no = '30';
 QUERY PLAN

 Append
 -> Seq Scan on sales_americas
 Filter: (dept_no = '30'::numeric)
 -> Seq Scan on sales_europe
 Filter: (dept_no = '30'::numeric)
 -> Seq Scan on sales_asia
 Filter: (dept_no = '30'::numeric)
(7 rows)

Constraint exclusion also applies when querying subpartitioned tables:

CREATE TABLE sales
(
 dept_no number,
 part_no varchar2,
 country varchar2(20),
 date date,
 amount number
)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 777

PARTITION BY RANGE(date) SUBPARTITION BY LIST (country)
(
 PARTITION "2011" VALUES LESS THAN('01-JAN-2012')
 (
 SUBPARTITION europe_2011 VALUES ('ITALY', 'FRANCE'),
 SUBPARTITION asia_2011 VALUES ('PAKISTAN', 'INDIA'),
 SUBPARTITION americas_2011 VALUES ('US', 'CANADA')
),
 PARTITION "2012" VALUES LESS THAN('01-JAN-2013')
 (
 SUBPARTITION europe_2012 VALUES ('ITALY', 'FRANCE'),
 SUBPARTITION asia_2012 VALUES ('PAKISTAN', 'INDIA'),
 SUBPARTITION americas_2012 VALUES ('US', 'CANADA')
),
 PARTITION "2013" VALUES LESS THAN('01-JAN-2015')
 (
 SUBPARTITION europe_2013 VALUES ('ITALY', 'FRANCE'),
 SUBPARTITION asia_2013 VALUES ('PAKISTAN', 'INDIA'),
 SUBPARTITION americas_2013 VALUES ('US', 'CANADA')
)
);

When you query the table, the query planner prunes any partitions or subpartitions from the search path that can't contain the desired result set:

edb=# EXPLAIN (COSTS OFF) SELECT * FROM sales WHERE country = 'US' AND date = 'Dec 12, 2012';
 QUERY PLAN

 Append
 -> Seq Scan on sales_americas_2012
 Filter: (((country)::text = 'US'::text) AND (date = '12-DEC-12
 00:00:00'::timestamp without time zone))
(3 rows)

21.3 Partitioning commands compatible with Oracle Databases

EDB Postgres Advanced Server supports using table partitioning syntaxes that are compatible with Oracle databases.

21.3.1 CREATE TABLE...PARTITION BY

Use the PARTITION BY clause of the CREATE TABLE command to create a partitioned table with data distributed among one or more partitions and subpartitions. The syntax can take several
forms.

List partitioning syntax

Use this form to create a list-partitioned table:

CREATE TABLE [schema.]<table_name>
 <table_definition>
 PARTITION BY LIST(<column>) [AUTOMATIC]
 [SUBPARTITION BY {RANGE|LIST|HASH} (<column>[, <column>]...)
 [SUBPARTITION TEMPLATE (<subpartition_template_description>)]]
 (<list_partition_definition>[, <list_partition_definition>]...)
 [ENABLE ROW MOVEMENT];

Where `list_partition_definition` is:

 PARTITION [<partition_name>]
 VALUES (<value>[, <value>]...)
 [TABLESPACE <tablespace_name>]
 [(<subpartition>, ...)]

Where `subpartition_template_description` is:

 SUBPARTITION [<subpartition_name>]
 VALUES (<value>[, <value>]...)
 [TABLESPACE <tablespace_name>], ...

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 778

Range partitioning syntax

Use this form to create a range-partitioned table:

CREATE TABLE [schema.]<table_name>
 <table_definition>
 PARTITION BY RANGE(<column>[, <column>]...)
 [INTERVAL (<constant> | <expression>)]
 [SUBPARTITION BY {RANGE|LIST|HASH} (<column>[, <column>]...)
 [SUBPARTITION TEMPLATE (<subpartition_template_description>)]]
 (<range_partition_definition>[, <range_partition_definition>]...)
 [ENABLE ROW MOVEMENT];

Where `range_partition_definition` is:

 PARTITION [<partition_name>]
 VALUES LESS THAN (<value>[, <value>]...)
 [TABLESPACE <tablespace_name>]
 [(<subpartition>, ...)]

Where `subpartition_template_description` is:

 SUBPARTITION [<subpartition_name>]
 VALUES LESS THAN (<value>[, <value>]...)
 [TABLESPACE <tablespace_name>], ...

Hash partitioning syntax

Use this form to create a hash-partitioned table:

CREATE TABLE [schema.]<table_name>
 <table_definition>
 PARTITION BY HASH(<column>[, <column>]...)
 [SUBPARTITION BY {RANGE|LIST|HASH} (<column>[, <column>]...)
 [SUBPARTITION TEMPLATE (<subpartition_template_description>)]]
 [SUBPARTITIONS <num>] [STORE IN (<tablespace_name> [, <tablespace_name>]...)]]
 [PARTITIONS <num>] [STORE IN (<tablespace_name> [, <tablespace_name>]...)] |
 (<hash_partition_definition>[, <hash_partition_definition>]...)
 [ENABLE ROW MOVEMENT];

Where `hash_partition_definition` is:

 PARTITION [<partition_name>]
 [TABLESPACE <tablespace_name>]
 [(<subpartition>, ...)]

Where `subpartition_template_description` is:

 SUBPARTITION [<subpartition_name>]
 [TABLESPACE <tablespace_name>], ...

Subpartitioning syntax

subpartition can be one of the following:

{<list_subpartition> | <range_subpartition> | <hash_subpartition>}

Where `list_subpartition` is:

 SUBPARTITION [<subpartition_name>]
 VALUES (<value>[, <value>]...)
 [TABLESPACE <tablespace_name>]

Where `range_subpartition` is:

 SUBPARTITION [<subpartition_name>]
 VALUES LESS THAN (<value>[, <value>]...)
 [TABLESPACE <tablespace_name>]

Where `hash_subpartition` is:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 779

 SUBPARTITION [<subpartition_name>]
 [TABLESPACE <tablespace_name>] |
 SUBPARTITIONS <num> [STORE IN (<tablespace_name> [, <tablespace_name>]...)]

Description

The CREATE TABLE… PARTITION BY command creates a table with one or more partitions. Each partition can have one or more subpartitions. There's no upper limit to the number of defined
partitions. However, if you include the PARTITION BY clause, you must specify at least one partitioning rule. The resulting table is owned by the user that creates it.

PARTITION BY LIST clause

Use the PARTITION BY LIST clause to divide a table into partitions based on the values entered in a specified column. Each partitioning rule must specify at least one literal value. However, there's
no upper limit placed on the number of values you can specify. Include a rule that specifies a matching value of DEFAULT to direct any unqualified rows to the given partition.

For more information about using the DEFAULT keyword, see Handling stray values in a LIST or RANGE partitioned table.

AUTOMATIC clause

Use the AUTOMATIC clause to specify for the table to use automatic list partitioning. By specifying the AUTOMATIC clause, the database creates partitions when new data is inserted into a table that
doesn't correspond to any value declared for an existing partition.

For more information about AUTOMATIC LIST PARTITIONING , see Automatic list partitioning.

PARTITION BY RANGE clause

Use the PARTITION BY RANGE clause to specify boundary rules by which to create partitions. Each partitioning rule must contain at least one column of a data type that has two operators (that is, a
greater-than or equal-to operator, and a less-than operator). Range boundaries are evaluated against a LESS THAN clause and are non-inclusive. For example, a date boundary of January 1, 2013
includes only date values that fall on or before December 31, 2012.

Specify range partition rules in ascending order. INSERT commands that store rows with values that exceed the top boundary of a range-partitioned table fail unless the partitioning rules include a
boundary rule that specifies a value of MAXVALUE . If you don't include a MAXVALUE partitioning rule, any row that exceeds the maximum limit specified by the boundary rules results in an error.

For more information about using the MAXVALUE keyword, see Handling stray values in a LIST or RANGE partitioned table.

INTERVAL clause

Use the INTERVAL clause to specify an interval range-partitioned table. With an INTERVAL clause, the database extends the range partitioning to create partitions of a specified interval when data
is inserted into a table that exceeds an existing range partition.

For more information about INTERVAL RANGE PARTITION , see Interval range partitioning.

PARTITION BY HASH clause

Use the PARTITION BY HASH clause to create a hash-partitioned table. In a HASH partitioned table, data is divided among equal-sized partitions based on the hash value of the column specified in
the partitioning syntax. When specifying a HASH partition, choose a column or combination of columns that's as close to unique as possible. This technique helps to ensure that data is evenly
distributed among the partitions. When selecting a partitioning column (or combination of columns), for best performance, select columns that you frequently search for exact matches.

STORE IN clause

Use the STORE IN clause to specify the tablespace list across which the autogenerated partitions or subpartitions are stored.

Note

If you're upgrading EDB Postgres Advanced Server, you must rebuild the hash-partitioned table on the upgraded version server.

TABLESPACE keyword

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 780

Use the TABLESPACE keyword to specify the name of a tablespace on which a partition or subpartition resides. if you don't specify a tablespace, the partition or subpartition resides in the default
tablespace.

SUBPARTITION BY clause

If a table definition includes the SUBPARTITION BY clause, each partition in that table must have at least one subpartition. You can explicitly define each subpartition, or it can be system defined.

If the subpartition is system defined, the server-generated subpartition resides in the default tablespace, and the name of the subpartition is assigned by the server. The server creates:

A DEFAULT subpartition if the SUBPARTITION BY clause specifies LIST .
A MAXVALUE subpartition if the SUBPARTITION BY clause specifies RANGE .

The server generates a subpartition name that's a combination of the partition table name and a unique identifier. You can query the ALL_TAB_SUBPARTITIONS table to review a complete list of
subpartition names.

SUBPARTITION TEMPLATE

Use the SUBPARTITION TEMPLATE with list, range, or hash subpartitioning to create default subpartitions for each table partition for which you don't explicitly define subpartitions. For more
information about setting subpartition template, see ALTER TABLE...SET SUBPARTITION TEMPLATE.

ENABLE ROW MOVEMENT

Use ENABLE ROW MOVEMENT with a list, range, or hash-partition tables to support migrating tables with similar syntax from Oracle databases. However it doesn't enable the actual row movement.
Also, this syntax isn't supported with ALTER TABLE command.

Parameters

table_name

The name (optionally schema-qualified) of the table to create.

table_definition

The column names, data types, and constraint information as described in the PostgreSQL core documentation for the CREATE TABLE statement.

partition_name

The name of the partition to create. Partition names must be unique among all partitions and subpartitions and must follow the naming conventions for object identifiers.

subpartition_name

The name of the subpartition to create. Subpartition names must be unique among all partitions and subpartitions and must follow the naming conventions for object identifiers.

num

You can use the PARTITIONS num clause to specify the number of HASH partitions to create. Alternatively, you can use the partition definition to specify individual partitions and their tablespaces.

!!! Note You can use either PARTITIONS or PARTITION DEFINITION when creating a table.

The SUBPARTITIONS num clause is supported only for HASH partitions. You can use it to specify the number of hash subpartitions to create. Alternatively, you can use the subpartition definition to
specify individual subpartitions and their tablespaces. If you don't specify SUBPARTITIONS or SUBPARTITION DEFINITION , then the partition creates a subpartition based on the
SUBPARTITION TEMPLATE .

subpartition_template_description

The list of subpartition details with subpartition name, subpartition bound, and tablespace name.

column

The name of a column on which the partitioning rules are based. Each row is stored in a partition that corresponds to the value of the specified columns.

constant | expression

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 781

https://www.postgresql.org/docs/current/static/sql-createtable.html

The constant and expression specifies a NUMERIC , DATE , or TIME value.

(value[, value]...)

Use value to specify a quoted literal value or comma-delimited list of literal values by which table entries are grouped into partitions. Each partitioning rule must specify at least one value. However,
there's no limit on the number of values specified in a rule. value can be NULL , DEFAULT if specifying a LIST partition, or MAXVALUE if specifying a RANGE partition.

When specifying rules for a list-partitioned table, include the DEFAULT keyword in the last partition rule to direct any unmatched rows to the given partition. If you don't include a rule that includes a
value of DEFAULT , any INSERT statement that attempts to add a row that doesn't match the specified rules of at least one partition fails and returns an error.

When specifying rules for a list-partitioned table, include the MAXVALUE keyword in the last partition rule to direct any uncategorized rows to the given partition. If you don't include a MAXVALUE
partition, any INSERT statement that attempts to add a row where the partitioning key is greater than the highest value specified fails and returns an error.

tablespace_name

The name of the tablespace in which the partition or subpartition resides.

21.3.1.1 Example: PARTITION BY LIST

This example creates a partitioned table sales using the PARTITION BY LIST clause. The sales table stores information in three partitions: europe , asia , and americas .

CREATE TABLE sales
(
 dept_no number,
 part_no varchar2,
 country varchar2(20),
 date date,
 amount number
)
PARTITION BY LIST(country)
(
 PARTITION europe VALUES('FRANCE', 'ITALY'),
 PARTITION asia VALUES('INDIA', 'PAKISTAN'),
 PARTITION americas VALUES('US', 'CANADA')
);

The resulting table is partitioned by the value specified in the country column:

edb=# SELECT partition_name, high_value from ALL_TAB_PARTITIONS;
 partition_name | high_value
----------------+---------------------
 EUROPE | 'FRANCE', 'ITALY'
 ASIA | 'INDIA', 'PAKISTAN'
 AMERICAS | 'US', 'CANADA'
(3 rows)

Rows with a value of FRANCE or ITALY in the country column are stored in the europe partition.
Rows with a value of INDIA or PAKISTAN in the country column are stored in the asia partition.
Rows with a value of US or CANADA in the country column are stored in the americas partition.

The server evaluates the following statement against the partitioning rules and stores the row in the europe partition:

INSERT INTO sales VALUES (10, '9519a', 'FRANCE', '18-Aug-2012', '650000');

21.3.1.2 Example: AUTOMATIC LIST PARTITION

This example shows a sales table that uses an AUTOMATIC clause to create an automatic list partitioned table on the sales_state column. The database creates a partition and adds data to a
table.

CREATE TABLE sales
(
 dept_no number,
 part_no varchar2,
 sales_state varchar2(20),
 date date,
 amount number
)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 782

PARTITION BY LIST(sales_state) AUTOMATIC
(
 PARTITION P_CAL VALUES('CALIFORNIA'),
 PARTITION P_FLO VALUES('FLORIDA')
);

Query the ALL_TAB_PARTITIONS view to see an existing partition that's successfully created:

edb=# SELECT table_name, partition_name, high_value from ALL_TAB_PARTITIONS;
 table_name | partition_name | high_value
------------+----------------+--------------
 SALES | P_CAL | 'CALIFORNIA'
 SALES | P_FLO | 'FLORIDA'
(2 rows)

Insert data into a sales table that can't fit into an existing partition. For the regular list partitioned table, you get an error. However, automatic list partitioning creates and inserts the data into a new
partition.

edb=# INSERT INTO sales VALUES (1, 'IND', 'INDIANA');
INSERT 0 1
edb=# INSERT INTO sales VALUES (2, 'OHI', 'OHIO');
INSERT 0 1

Query the ALL_TAB_PARTITIONS view again after the insert. The partition is created, and data is inserted to hold a new value. A system-generated name of the partition is created that varies for
each session.

edb=# SELECT table_name, partition_name, high_value from ALL_TAB_PARTITIONS;
 table_name | partition_name | high_value
------------+----------------+--------------
 SALES | P_CAL | 'CALIFORNIA'
 SALES | P_FLO | 'FLORIDA'
 SALES | SYS106900103 | 'INDIANA'
 SALES | SYS106900104 | 'OHIO'
(4 rows)

21.3.1.3 Example: PARTITION BY RANGE

This example creates a partitioned table sales using the PARTITION BY RANGE clause. The sales table stores information in four partitions: q1_2012 , q2_2012 , q3_2012 and
q4_2012 .

CREATE TABLE sales
(
 dept_no number,
 part_no varchar2,
 country varchar2(20),
 date date,
 amount number
)
PARTITION BY RANGE(date)
(
 PARTITION q1_2012
 VALUES LESS THAN('2012-Apr-01'),
 PARTITION q2_2012
 VALUES LESS THAN('2012-Jul-01'),
 PARTITION q3_2012
 VALUES LESS THAN('2012-Oct-01'),
 PARTITION q4_2012
 VALUES LESS THAN('2013-Jan-01')
);

The resulting table is partitioned by the value specified in the date column:

edb=# SELECT partition_name, high_value from ALL_TAB_PARTITIONS;
 partition_name | high_value
----------------+----------------------
 Q1_2012 | '01-APR-12 00:00:00'
 Q2_2012 | '01-JUL-12 00:00:00'
 Q3_2012 | '01-OCT-12 00:00:00'
 Q4_2012 | '01-JAN-13 00:00:00'
(4 rows)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 783

Any row with a value in the date column before April 1, 2012 is stored in a partition named q1_2012 .
Any row with a value in the date column before July 1, 2012 is stored in a partition named q2_2012 .
Any row with a value in the date column before October 1, 2012 is stored in a partition named q3_2012 .
Any row with a value in the date column before January 1, 2013 is stored in a partition named q4_2012 .

The server evaluates the following statement against the partitioning rules and stores the row in the q3_2012 partition:

INSERT INTO sales VALUES (10, '9519a', 'FRANCE', '18-Aug-2012', '650000');

21.3.1.4 Example: INTERVAL RANGE PARTITION

This example shows a sales table that's partitioned by interval on the sold_month column. The range partition is created to establish a transition point, and new partitions are created beyond that
transition point. The database creates a new interval range partition and adds data to a table.

CREATE TABLE sales
(
 prod_id int,
 prod_quantity int,
 sold_month date
)
PARTITION BY RANGE(sold_month)
INTERVAL(NUMTOYMINTERVAL(1, 'MONTH'))
(
 PARTITION p1
 VALUES LESS THAN('15-JAN-2019'),
 PARTITION p2
 VALUES LESS THAN('15-FEB-2019')
);

Query the ALL_TAB_PARTITIONS view before the database creates an interval range partition:

edb=# SELECT partition_name, high_value from ALL_TAB_PARTITIONS;
 partition_name | high_value
----------------+----------------------
 P1 | '15-JAN-19 00:00:00'
 P2 | '15-FEB-19 00:00:00'
(2 rows)

Insert data into a sales table that exceeds the high value of a range partition:

edb=# INSERT INTO sales VALUES (1,200,'10-MAY-2019');
INSERT 0 1

Query the ALL_TAB_PARTITIONS view again after the insert. The data is successfully inserted, and a system-generated name of the interval range partition is created. The name varies for each
session.

edb=# SELECT partition_name, high_value from ALL_TAB_PARTITIONS;
 partition_name | high_value
----------------+----------------------
 P1 | '15-JAN-19 00:00:00'
 P2 | '15-FEB-19 00:00:00'
 SYS916340103 | '15-MAY-19 00:00:00'
(3 rows)

21.3.1.5 Example: PARTITION BY HASH

This example creates a partitioned table sales using the PARTITION BY HASH clause. The sales table stores information in three partitions: p1 , p2 , and p3 .

CREATE TABLE sales
(
 dept_no number,
 part_no varchar2,
 country varchar2(20),
 date date,
 amount number
)
PARTITION BY HASH (part_no)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 784

(
 PARTITION p1,
 PARTITION p2,
 PARTITION p3
);

The table returns an empty string for the hash partition value specified in the part_no column:

edb=# SELECT partition_name, high_value from ALL_TAB_PARTITIONS;
 partition_name | high_value
----------------+------------
 P1 |
 P2 |
 P3 |
(3 rows)

Use the following command to view the hash value of the part_no column:

edb=# \d+ sales
 Partitioned table "public.sales"
 Column | Type |Collation|Nullable|Default|Storage |
---------+----------------------------+----------+--------+------+---------+-
 dept_no | numeric | | | | main |
 part_no | character varying | | | | extended|
 country | character varying(20) | | | | extended|
 date | timestamp without time zone| | | | plain |
 amount | numeric | | | | main |
Partition key: HASH (part_no)
Partitions: sales_p1 FOR VALUES WITH (modulus 3, remainder 0),
 sales_p2 FOR VALUES WITH (modulus 3, remainder 1),
 sales_p3 FOR VALUES WITH (modulus 3, remainder 2)

The table is partitioned by the hash value of the values specified in the part_no column:

edb=# SELECT partition_name, partition_position from ALL_TAB_PARTITIONS;
 partition_name | partition_position
----------------+--------------------
 P1 | 1
 P2 | 2
 P3 | 3
(3 rows)

The server evaluates the hash value of the part_no column and distributes the rows into approximately equal partitions.

21.3.1.6 Example: PARTITION BY HASH...PARTITIONS num...

This example creates a hash-partitioned table sales using the PARTITION BY HASH clause. The partitioning column is part_no . The example specifies the number of partitions to create.

CREATE TABLE sales
(
 dept_no number,
 part_no varchar2,
 country varchar2(20),
 date date,
 amount number
)
PARTITION BY HASH (part_no) PARTITIONS 8;

The eight partitions are created and assigned system-generated names. The partitions are stored in the default tablespace of the table.

edb=# SELECT table_name, partition_name FROM ALL_TAB_PARTITIONS WHERE
table_name = 'SALES' ORDER BY 1,2;
 table_name | partition_name
------------+----------------
 SALES | SYS0101
 SALES | SYS0102
 SALES | SYS0103
 SALES | SYS0104
 SALES | SYS0105
 SALES | SYS0106
 SALES | SYS0107

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 785

 SALES | SYS0108
(8 rows)

Example: PARTITION BY HASH...PARTITIONS num...STORE IN

This example creates a hash-partitioned table named sales . The example specifies the number of partitions to create and the tablespaces in which the partition resides.

CREATE TABLE sales
(
 dept_no number,
 part_no varchar2,
 country varchar2(20),
 date date,
 amount number
)
PARTITION BY HASH (part_no) PARTITIONS 5 STORE IN (ts1, ts2, ts3);

The STORE IN clause evenly distributes the partitions across the tablespaces ts1 , ts2 , and ts3 .

edb=# SELECT table_name, partition_name, tablespace_name FROM
ALL_TAB_PARTITIONS WHERE table_name = 'SALES' ORDER BY 1,2;
 table_name | partition_name | tablespace_name
------------+----------------+-----------------
 SALES | SYS0101 | TS1
 SALES | SYS0102 | TS2
 SALES | SYS0103 | TS3
 SALES | SYS0104 | TS1
 SALES | SYS0105 | TS2
(5 rows)

Example: HASH/RANGE PARTITIONS num...

The HASH partition clause allows you to define a partitioning strategy. You can extend the PARTITION BY HASH clause to include SUBPARTITION BY either [RANGE | LIST | HASH]
to create subpartitions in a HASH partitioned table.

This example creates a table sales that's hash partitioned by part_no and subpartitioned using a range by dept_no . The example specifies the number of partitions when creating the table
sales .

CREATE TABLE sales
(
 dept_no number,
 part_no varchar2,
 country varchar2(20),
 date date,
 amount number
)
PARTITION BY HASH (part_no) SUBPARTITION BY RANGE (dept_no) PARTITIONS 5;

The five partitions are created with default subpartitions and assigned system-generated names:

edb=# SELECT table_name, partition_name, subpartition_name FROM
ALL_TAB_SUBPARTITIONS WHERE table_name = 'SALES' ORDER BY 1,2;
 table_name | partition_name | subpartition_name
------------+----------------+-------------------
 SALES | SYS0101 | SYS0102
 SALES | SYS0103 | SYS0104
 SALES | SYS0105 | SYS0106
 SALES | SYS0107 | SYS0108
 SALES | SYS0109 | SYS0110
(5 rows)

Example: LIST/HASH SUBPARTITIONS num...

This example shows the table sales that's list-partitioned by country . It is subpartitioned using hash partitioning by the dept_no column. This example specifies the number of subpartitions
when creating the table.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 786

CREATE TABLE sales
(
 dept_no number,
 part_no varchar2,
 country varchar2(20),
 date date,
 amount number
)
PARTITION BY LIST (country) SUBPARTITION BY HASH (dept_no) SUBPARTITIONS 3
(
 PARTITION p1 VALUES('FRANCE', 'ITALY'),
 PARTITION p2 VALUES('INDIA', 'PAKISTAN'),
 PARTITION p3 VALUES('US', 'CANADA')
);

The three partitions p1 , p2 , and p3 each contain three subpartitions with system-generated names:

edb=# SELECT table_name, partition_name, subpartition_name FROM
ALL_TAB_SUBPARTITIONS WHERE table_name = 'SALES' ORDER BY 1,2;
 table_name | partition_name | subpartition_name
------------+----------------+-------------------
 SALES | P1 | SYS0101
 SALES | P1 | SYS0102
 SALES | P1 | SYS0103
 SALES | P2 | SYS0104
 SALES | P2 | SYS0105
 SALES | P2 | SYS0106
 SALES | P3 | SYS0107
 SALES | P3 | SYS0108
 SALES | P3 | SYS0109
(9 rows)

Example: HASH/HASH PARTITIONS num... SUBPARTITIONS num...

This example creates the sales table, hash partitioned by part_no and hash subpartitioned by dept_no :

CREATE TABLE sales
(
 dept_no number,
 part_no varchar2,
 country varchar2(20),
 date date,
 amount number
)
PARTITION BY HASH (part_no) SUBPARTITION BY HASH (dept_no) SUBPARTITIONS 3
PARTITIONS 2;

The two partitions are created. Each partition includes three subpartitions with the system-generated name assigned to them.

edb=# SELECT table_name, partition_name, subpartition_name FROM
ALL_TAB_SUBPARTITIONS WHERE table_name = 'SALES' ORDER BY 1,2;
 table_name | partition_name | subpartition_name
------------+----------------+-------------------
 SALES | SYS0101 | SYS0102
 SALES | SYS0101 | SYS0103
 SALES | SYS0101 | SYS0104
 SALES | SYS0105 | SYS0106
 SALES | SYS0105 | SYS0107
 SALES | SYS0105 | SYS0108
(6 rows)

Example: HASH/HASH SUBPARTITIONS num... STORE IN

This example creates a hash-partitioned table sales . This example specifies the number of partitions and subpartitions to create when creating a hash partitioned table. It also specifies the
tablespaces in which the subpartitions reside when creating a hash-partitioned table.

CREATE TABLE sales
(
 dept_no number,

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 787

 part_no varchar2,
 country varchar2(20),
 date date,
 amount number
)
PARTITION BY HASH (part_no) SUBPARTITION BY HASH (dept_no) SUBPARTITIONS 3
PARTITIONS 2 STORE IN (ts1, ts2);

The two partitions are created and assigned system-generated names. The partitions are stored in the default tablespace. Subpartitions are stored in tablespaces ts1 and ts2 .

edb=# SELECT table_name, partition_name, tablespace_name FROM
ALL_TAB_PARTITIONS WHERE table_name = 'SALES' ORDER BY 1,2;
 table_name | partition_name | tablespace_name
------------+----------------+-----------------
 SALES | SYS0101 |
 SALES | SYS0105 |
(2 rows)

The STORE IN clause assigns the hash subpartitions to the tablespaces and stores them in the two named tablespaces ts1 and ts2 :

edb=# SELECT table_name, partition_name, subpartition_name, tablespace_name
FROM ALL_TAB_SUBPARTITIONS WHERE table_name = 'SALES' ORDER BY 1,2;
 table_name | partition_name | subpartition_name | tablespace_name
------------+----------------+-------------------+-----------------
 SALES | SYS0101 | SYS0102 | TS1
 SALES | SYS0101 | SYS0103 | TS2
 SALES | SYS0101 | SYS0104 | TS1
 SALES | SYS0105 | SYS0106 | TS1
 SALES | SYS0105 | SYS0107 | TS2
 SALES | SYS0105 | SYS0108 | TS1
(6 rows)

Example: HASH/HASH PARTITIONS num ...STORE IN SUBPARTITIONS num... STORE IN

This example creates the hash-partitioned table sales . It specifies the number of partitions and subpartitions to create and the tablespaces in which the partitions and subpartitions reside.

CREATE TABLE sales
(
 dept_no number,
 part_no varchar2,
 country varchar2(20),
 date date,
 amount number
)
PARTITION BY HASH (part_no) SUBPARTITION BY HASH (dept_no) SUBPARTITIONS 3
STORE IN (ts3) PARTITIONS 2 STORE IN (ts1, ts2);

The two partitions are created with system-generated names and stored in the default tablespace:

edb=# SELECT table_name, partition_name, tablespace_name FROM
ALL_TAB_PARTITIONS WHERE table_name = 'SALES' ORDER BY 1,2;
 table_name | partition_name | tablespace_name
------------+----------------+-----------------
 SALES | SYS0101 |
 SALES | SYS0105 |
(2 rows)

Each partition includes three subpartitions. The STORE IN clause stores the subpartitions in tablespaces ts1 and ts2 :

edb=# SELECT table_name, partition_name, subpartition_name, tablespace_name
FROM ALL_TAB_SUBPARTITIONS WHERE table_name = 'SALES' ORDER BY 1,2;
 table_name | partition_name | subpartition_name | tablespace_name
------------+----------------+-------------------+-----------------
 SALES | SYS0101 | SYS0102 | TS1
 SALES | SYS0101 | SYS0103 | TS2
 SALES | SYS0101 | SYS0104 | TS1
 SALES | SYS0105 | SYS0106 | TS1
 SALES | SYS0105 | SYS0107 | TS2
 SALES | SYS0105 | SYS0108 | TS1
(6 rows)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 788

Note

If you specify the STORE IN clause for partitions and subpartitions, then the subpartitions are stored in the tablespaces defined in the PARTITIONS...STORE IN clause. The
SUBPARTITIONS...STORE IN clause is ignored.

Example: RANGE/HASH SUBPARTITIONS num...

This example creates a range-partitioned table sales , which is first partitioned by the transaction date. Two range partitions are created and then hash subpartitioned using the value of the
country column.

CREATE TABLE sales
(
 dept_no number,
 part_no varchar2,
 country varchar2(20),
 date date,
 amount number
)
PARTITION BY RANGE (date) SUBPARTITION BY HASH (country) SUBPARTITIONS 2
(
 PARTITION p1 VALUES LESS THAN ('2012-Apr-01') (SUBPARTITION q1_europe),
 PARTITION p2 VALUES LESS THAN ('2012-Jul-01')
);

This statement creates a table with two partitions. The subpartition explicitly named q1_europe is created for partition p1 . Because subpartitions aren't named for partition p2 , the subpartitions
are created based on the subpartition number and are assigned a system-generated name.

edb=# SELECT table_name, partition_name, subpartition_name FROM
ALL_TAB_SUBPARTITIONS WHERE table_name = 'SALES' ORDER BY 1,2;
 table_name | partition_name | subpartition_name
------------+----------------+-------------------
 SALES | P1 | Q1_EUROPE
 SALES | P2 | SYS0101
 SALES | P2 | SYS0102
(3 rows)

Example: RANGE/HASH SUBPARTITIONS num... IN PARTITION DESCRIPTION

This example creates a range-partitioned table sales . The table is first partitioned by the transaction date. Two range partitions are created and then hash subpartitioned using the value of the
country column.

CREATE TABLE sales
(
 dept_no number,
 part_no varchar2,
 country varchar2(20),
 date date,
 amount number
)
PARTITION BY RANGE (date) SUBPARTITION BY HASH (country) SUBPARTITIONS 2
(
 PARTITION p1 VALUES LESS THAN ('2012-Apr-01') SUBPARTITIONS 3,
 PARTITION p2 VALUES LESS THAN ('2012-Jul-01')
);

The partition p1 explicitly defines the subpartition count in the partition description. By default, two subpartitions are created for partition p2 . Since you don't name subpartitions, system-generated
names are assigned.

edb=# SELECT table_name, partition_name, subpartition_name FROM
ALL_TAB_SUBPARTITIONS WHERE table_name = 'SALES' ORDER BY 1,2;
 table_name | partition_name | subpartition_name
------------+----------------+-------------------
 SALES | P1 | SYS0101
 SALES | P1 | SYS0102
 SALES | P1 | SYS0103
 SALES | P2 | SYS0104
 SALES | P2 | SYS0105
(5 rows)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 789

Example: LIST/HASH SUBPARTITIONS num STORE IN... IN PARTITION DESCRIPTION

This example creates a list-partitioned table sales with two list partitions. Partition p1 consists of three subpartitions, and partition p2 consists of two subpartitions. Since you don't name
subpartitions, system-generated names are assigned.

CREATE TABLE sales
(
 dept_no number,
 part_no varchar2,
 country varchar2(20),
 date date,
 amount number
)
PARTITION BY LIST (country) SUBPARTITION BY HASH (part_no) SUBPARTITIONS 3
STORE IN (ts1)
(
 PARTITION p1 VALUES ('FRANCE', 'ITALY'),
 PARTITION p2 VALUES ('INDIA', 'PAKISTAN') SUBPARTITIONS 2 STORE IN
 (ts2)
);

The partition p2 explicitly defines the subpartition count in the partition description. Based on the definition, two subpartitions are created and stored in the tablespace named ts2 . The subpartitions
for partition p1 are stored in the tablespace named ts1 .

edb=# SELECT table_name, partition_name, subpartition_name, tablespace_name
FROM ALL_TAB_SUBPARTITIONS WHERE table_name = 'SALES' ORDER BY 1,2;
 table_name | partition_name | subpartition_name | tablespace_name
------------+----------------+-------------------+-----------------
 SALES | P1 | SYS0101 | TS1
 SALES | P1 | SYS0102 | TS1
 SALES | P1 | SYS0103 | TS1
 SALES | P2 | SYS0104 | TS2
 SALES | P2 | SYS0105 | TS2
(5 rows)

Example: LIST/HASH STORE IN...TABLESPACES

This example creates a list-partitioned table sales . Partition p1 consists of three subpartitions stored explicitly in the tablespace ts2 .

CREATE TABLE sales
(
 dept_no number,
 part_no varchar2,
 country varchar2(20),
 date date,
 amount number
)
PARTITION BY LIST (country) SUBPARTITION BY HASH (part_no) SUBPARTITIONS 3
STORE IN (ts1)
(
 PARTITION p1 VALUES ('FRANCE', 'ITALY') TABLESPACE ts2
);

The SELECT statement shows partition p1 , consisting of three subpartitions stored in the tablespace ts2 :

edb=# SELECT table_name, partition_name, subpartition_name, tablespace_name
FROM ALL_TAB_SUBPARTITIONS WHERE table_name = 'SALES' ORDER BY 1,2;
 table_name | partition_name | subpartition_name | tablespace_name
------------+----------------+-------------------+-----------------
 SALES | P1 | SYS0101 | TS2
 SALES | P1 | SYS0102 | TS2
 SALES | P1 | SYS0103 | TS2
(3 rows)

This command adds a partition p2 to the sales table. Five subpartitions are created and distributed across the tablespace listed by the STORE IN clause.

ALTER TABLE sales ADD PARTITION p2 VALUES ('US', 'CANADA') SUBPARTITIONS 5
STORE IN (ts1);

A query of the ALL_TAB_PARTITIONS view shows the sales table with a partition named p2 . The partition has five subpartitions. The STORE IN clause distributes the subpartitions across a

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 790

tablespace named ts1 .

edb=# SELECT table_name, partition_name, subpartition_name, tablespace_name
FROM ALL_TAB_SUBPARTITIONS WHERE table_name = 'SALES' and partition_name =
'P2' ORDER BY 1,2;
 table_name | partition_name | subpartition_name | tablespace_name
------------+----------------+-------------------+-----------------
 SALES | P2 | SYS0105 | TS1
 SALES | P2 | SYS0106 | TS1
 SALES | P2 | SYS0107 | TS1
 SALES | P2 | SYS0108 | TS1
 SALES | P2 | SYS0109 | TS1
(5 rows)

21.3.1.7 Example: PARTITION BY RANGE, SUBPARTITION BY LIST

This example creates a partitioned table sales that's first partitioned by the transaction date. The range partitions q1_2012 , q2_2012 , q3_2012 and q4_2012 are then list subpartitioned
using the value of the country column.

CREATE TABLE sales
(
 dept_no number,
 part_no varchar2,
 country varchar2(20),
 date date,
 amount number
)
PARTITION BY RANGE(date)
 SUBPARTITION BY LIST(country)
 (
 PARTITION q1_2012
 VALUES LESS THAN('2012-Apr-01')
 (
 SUBPARTITION q1_europe VALUES ('FRANCE', 'ITALY'),
 SUBPARTITION q1_asia VALUES ('INDIA', 'PAKISTAN'),
 SUBPARTITION q1_americas VALUES ('US', 'CANADA')
),
 PARTITION q2_2012
 VALUES LESS THAN('2012-Jul-01')
 (
 SUBPARTITION q2_europe VALUES ('FRANCE', 'ITALY'),
 SUBPARTITION q2_asia VALUES ('INDIA', 'PAKISTAN'),
 SUBPARTITION q2_americas VALUES ('US', 'CANADA')
),
 PARTITION q3_2012
 VALUES LESS THAN('2012-Oct-01')
 (
 SUBPARTITION q3_europe VALUES ('FRANCE', 'ITALY'),
 SUBPARTITION q3_asia VALUES ('INDIA', 'PAKISTAN'),
 SUBPARTITION q3_americas VALUES ('US', 'CANADA')
),
 PARTITION q4_2012
 VALUES LESS THAN('2013-Jan-01')
 (
 SUBPARTITION q4_europe VALUES ('FRANCE', 'ITALY'),
 SUBPARTITION q4_asia VALUES ('INDIA', 'PAKISTAN'),
 SUBPARTITION q4_americas VALUES ('US', 'CANADA')
)
);

This statement creates a table with four partitions. Each partition has three subpartitions.

edb=# SELECT subpartition_name, high_value, partition_name FROM ALL_TAB_SUBPARTITIONS;
 subpartition_name | high_value | partition_name
-------------------+---------------------+----------------
 Q1_EUROPE | 'FRANCE', 'ITALY' | Q1_2012
 Q1_ASIA | 'INDIA', 'PAKISTAN' | Q1_2012
 Q1_AMERICAS | 'US', 'CANADA' | Q1_2012
 Q2_EUROPE | 'FRANCE', 'ITALY' | Q2_2012
 Q2_ASIA | 'INDIA', 'PAKISTAN' | Q2_2012
 Q2_AMERICAS | 'US', 'CANADA' | Q2_2012
 Q3_EUROPE | 'FRANCE', 'ITALY' | Q3_2012
 Q3_ASIA | 'INDIA', 'PAKISTAN' | Q3_2012
 Q3_AMERICAS | 'US', 'CANADA' | Q3_2012

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 791

 Q4_EUROPE | 'FRANCE', 'ITALY' | Q4_2012
 Q4_ASIA | 'INDIA', 'PAKISTAN' | Q4_2012
 Q4_AMERICAS | 'US', 'CANADA' | Q4_2012
(12 rows)

When a row is added to this table, the value in the date column is compared to the values specified in the range-partitioning rules. The server selects the partition for the row to reside in. The value in
the country column is then compared to the values specified in the list subpartitioning rules. When the server locates a match for the value, the row is stored in the corresponding subpartition.

Any row added to the table is stored in a subpartition, so the partitions contain no data.

The server evaluates the following statement against the partitioning and subpartitioning rules. It stores the row in the q3_europe partition.

INSERT INTO sales VALUES (10, '9519a', 'FRANCE', '18-Aug-2012', '650000');

21.3.1.8 Example: CREATING UNIQUE INDEX on PARTITION TABLE

For unique-index partitioned tables, you can use the range, list, or hash-partitioning method. To create a unique ROWID for the partitioned table, you must set the parameter
default_with_rowids = true .

This example creates a partitioned table sales using the PARTITION BY LIST clause. The sales table stores information in three partitions: europe , asia , and americas .

CREATE TABLE sales
(
 dept_no number,
 part_no varchar2,
 country varchar2(20),
 date date,
 amount number
)
PARTITION BY LIST(country)
(
 PARTITION europe VALUES('FRANCE', 'ITALY'),
 PARTITION asia VALUES('INDIA', 'PAKISTAN'),
 PARTITION americas VALUES('US', 'CANADA')
)
WITH(ROWIDS=TRUE);

The table is partitioned by the value specified in the country column:

edb=# SELECT partition_name, high_value from ALL_TAB_PARTITIONS;
 partition_name | high_value
----------------+---------------------
 EUROPE | 'FRANCE', 'ITALY'
 ASIA | 'INDIA', 'PAKISTAN'
 AMERICAS | 'US', 'CANADA'
(3 rows)

Insert values into the sales table:

INSERT INTO sales VALUES (10, '9519a', 'FRANCE', '18-Aug-2012', '650000');
INSERT INTO sales VALUES (10, '9519b', 'ITALY', '20-Aug-2012', '700000');

This query shows that a unique index is created for the sales table:

edb=# SELECT oid, relname, relhasindex from pg_class where relname='sales';
 oid | relname | relhasindex
-------+---------+-------------
 16557 | sales | f
(1 row)

Querying the contents of the sales_europe confirms that the unique index is created for the table:

edb=# SELECT oid, relname, relhasindex from pg_class where relname='sales_europe';
 oid | relname | relhasindex
-------+--------------+-------------
 16561 | sales_europe | t
(1 row)

edb=# SELECT * from pg_index where indrelid='16561';

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 792

 indexrelid | indrelid | indnatts | indnkeyatts | indisunique | indisprimary | indisexclusion | indimmediate | indisclustered | indisvalid
| indcheckxmin | indisready | indislive | indisreplident |
 indkey | indcollation | indclass | indoption | indexprs | indpred
------------+----------+----------+-------------+-------------+--------------+----------------+--------------+----------------+------------+-----
---------+------------+-----------+----------------+
--------+--------------+----------+-----------+----------+---------
 16565 | 16561 | 1 | 1 | t | f | f | t | f | t | f
| t | t | f |
 1 | 0 | 3124 | 0 | |
(1 row)

21.3.1.9 Example: CREATING SUBPARTITION TEMPLATE

These examples show how to create subpartitions in a partitioned table using a subpartition template.

This example creates a table sales list partitioned by country and subpartitioned using list by date . The sales table uses a subpartition template and displays the subpartition and tablespace
name.

CREATE TABLE sales
(
 dept_no number,
 part_no varchar2,
 country varchar2(20),
 date date,
 amount number
)
PARTITION BY LIST (country)
 SUBPARTITION BY LIST (date)
 SUBPARTITION TEMPLATE
(
 SUBPARTITION europe VALUES('2021-Jan-01') TABLESPACE ts1,
 SUBPARTITION asia VALUES('2021-Apr-01') TABLESPACE ts2,
 SUBPARTITION americas VALUES('2021-Jul-01') TABLESPACE ts3
)
(
 PARTITION q1_2021 VALUES('2021-Jul-01')
);

The SELECT statement shows partition q1_2021 consisting of three subpartitions stored in tablespaces ts1 , ts2 , and ts3 :

edb=# SELECT partition_name, subpartition_name, high_value, tablespace_name
FROM DBA_TAB_SUBPARTITIONS WHERE table_name = 'SALES' ORDER BY 1,2;
 partition_name | subpartition_name | high_value | tablespace_name
----------------+-------------------+----------------------+-----------------
 Q1_2021 | Q1_2021_AMERICAS | '01-JUL-21 00:00:00' | TS3
 Q1_2021 | Q1_2021_ASIA | '01-APR-21 00:00:00' | TS2
 Q1_2021 | Q1_2021_EUROPE | '01-JAN-21 00:00:00' | TS1
(3 rows)

Example: Creating a subpartition template for LIST/RANGE partitioned table

This example creates a table sales list partitioned by country and subpartitioned using range partitioning by the date column:

CREATE TABLE sales
(
 dept_no number,
 part_no varchar2,
 country varchar2(20),
 date date,
 amount number
)
PARTITION BY LIST(country)
 SUBPARTITION BY RANGE(date)
 SUBPARTITION TEMPLATE
(
 SUBPARTITION europe VALUES LESS THAN('2021-Jan-01') TABLESPACE ts1,
 SUBPARTITION asia VALUES LESS THAN('2021-Apr-01') TABLESPACE ts2,
 SUBPARTITION americas VALUES LESS THAN('2021-Jul-01') TABLESPACE ts3
)
(

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 793

 PARTITION q1_2021 VALUES ('2021-Jul-01')
);

The sales table creates a partition named q1_2021 that includes three subpartitions stored in tablespaces ts1 , ts2 , and ts3 .

edb=# SELECT partition_name, subpartition_name, high_value, tablespace_name
FROM DBA_TAB_SUBPARTITIONS WHERE table_name = 'SALES' ORDER BY 1,2;
 partition_name | subpartition_name | high_value | tablespace_name
----------------+-------------------+----------------------+-----------------
 Q1_2021 | Q1_2021_AMERICAS | '01-JUL-21 00:00:00' | TS3
 Q1_2021 | Q1_2021_ASIA | '01-APR-21 00:00:00' | TS2
 Q1_2021 | Q1_2021_EUROPE | '01-JAN-21 00:00:00' | TS1
(3 rows)

Example: Creating a subpartition template for LIST/HASH partitioned table

This example creates a list-partitioned table sales that's first partitioned by country and then hash subpartitioned using the value of the dept_no column:

CREATE TABLE sales
(
 dept_no number,
 part_no varchar2,
 country varchar2(20),
 date date,
 amount number
)
PARTITION BY LIST(country)
 SUBPARTITION BY HASH (dept_no)
 SUBPARTITION TEMPLATE
(
 SUBPARTITION europe TABLESPACE ts1,
 SUBPARTITION asia TABLESPACE ts2,
 SUBPARTITION americas TABLESPACE ts3
)
(
 PARTITION q1_2021 VALUES ('2021-Jul-01')
);

The sales table creates a q1_2021 partition that includes three subpartitions stored in tablespaces ts1 , ts2 , and ts3 .

edb=# SELECT partition_name, subpartition_name, high_value, tablespace_name
FROM DBA_TAB_SUBPARTITIONS WHERE table_name = 'SALES' ORDER BY 1,2;
 partition_name | subpartition_name | high_value | tablespace_name
----------------+-------------------+------------+-----------------
 Q1_2021 | Q1_2021_AMERICAS | | TS3
 Q1_2021 | Q1_2021_ASIA | | TS2
 Q1_2021 | Q1_2021_EUROPE | | TS1
(3 rows)

Example: Creating a subpartition template for INTERVAL/HASH partitioned table

This example creates a sales table, interval partitioned using monthly intervals on the date column and hash subpartitioned using the value of the dept_no column:

CREATE TABLE sales
(
 dept_no number,
 part_no varchar2,
 country varchar2(20),
 date date,
 amount number
)
PARTITION BY RANGE(date) INTERVAL(NUMTOYMINTERVAL(1, 'MONTH'))
 SUBPARTITION BY HASH (dept_no)
 SUBPARTITION TEMPLATE
(
 SUBPARTITION europe TABLESPACE ts1,
 SUBPARTITION asia TABLESPACE ts2,
 SUBPARTITION americas TABLESPACE ts3
)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 794

(
 PARTITION q2_2021 VALUES LESS THAN ('2021-Jul-01')
);

The sales table creates a partition q2_2021 consisting of three subpartitions stored in tablespaces ts1 , ts2 , and ts3 :

edb=# SELECT partition_name, subpartition_name, high_value, tablespace_name
FROM DBA_TAB_SUBPARTITIONS WHERE table_name = 'SALES' ORDER BY 1,2;
 partition_name | subpartition_name | high_value | tablespace_name
----------------+-------------------+------------+-----------------
 Q2_2021 | Q2_2021_AMERICAS | | TS3
 Q2_2021 | Q2_2021_ASIA | | TS2
 Q2_2021 | Q2_2021_EUROPE | | TS1
(3 rows)

Insert values into the sales table:

INSERT INTO sales VALUES (10, '9519a', 'FRANCE', '05-Jul-2021', '650000');

The SELECT statement shows a system-generated name of partitions and subpartitions stored in tablespaces ts1 , ts2 , and ts3 .

edb=# SELECT partition_name, subpartition_name, high_value, tablespace_name
FROM DBA_TAB_SUBPARTITIONS WHERE table_name = 'SALES' ORDER BY 1,2;
 partition_name | subpartition_name | high_value | tablespace_name
----------------+-------------------+------------+-----------------
 Q2_2021 | Q2_2021_AMERICAS | | TS3
 Q2_2021 | Q2_2021_ASIA | | TS2
 Q2_2021 | Q2_2021_EUROPE | | TS1
 SYS368340105 | SYS368340106 | | TS1
 SYS368340105 | SYS368340107 | | TS2
 SYS368340105 | SYS368340108 | | TS3
(6 rows)

21.3.2 ALTER TABLE...ADD PARTITION

Use the ALTER TABLE… ADD PARTITION command to add a partition to an existing partitioned table. The syntax is:

ALTER TABLE <table_name> ADD PARTITION <partition_definition>;

Where partition_definition is:

 {<list_partition> | <range_partition>}

and list_partition is:

 PARTITION [<partition_name>]
 VALUES (<value>[, <value>]...)
 [TABLESPACE <tablespace_name>]
 [(<subpartition>, ...)]

and range_partition is:

 PARTITION [<partition_name>]
 VALUES LESS THAN (<value>[, <value>]...)
 [TABLESPACE <tablespace_name>]
 [(<subpartition>, ...)]

Where subpartition is:

 {<list_subpartition> | <range_subpartition> | <hash_subpartition>}

and list_subpartition is:

 SUBPARTITION [<subpartition_name>]
 VALUES (<value>[, <value>]...)
 [TABLESPACE <tablespace_name>]

and range_subpartition is:

 SUBPARTITION [<subpartition_name>]
 VALUES LESS THAN (<value>[, <value>]...)
 [TABLESPACE <tablespace_name>]

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 795

and hash_subpartition is:

 SUBPARTITION [<subpartition_name>]
 [TABLESPACE <tablespace_name>] |
 SUBPARTITIONS <num> [STORE IN (<tablespace_name> [, <tablespace_name>]...)]

Description

The ALTER TABLE… ADD PARTITION command adds a partition to an existing partitioned table. There's no upper limit to the number of defined partitions in a partitioned table.

New partitions must be of the same type (LIST , RANGE , or HASH) as existing partitions. The new partition rules must reference the same column specified in the partitioning rules that define the
existing partitions.

You can use the ALTER TABLE… ADD PARTITION statement to add a partition to a table with a DEFAULT rule. However, there can't be conflicting values between existing rows in the table and
the values of the partition to add.

You can't use the ALTER TABLE… ADD PARTITION statement to add a partition to a table with a MAXVALUE rule.

You can alternatively use the ALTER TABLE… SPLIT PARTITION statement to split an existing partition, effectively increasing the number of partitions in a table.

Specify RANGE partitions in ascending order. You can't add a new partition that precedes existing partitions in a RANGE partitioned table.

Include the TABLESPACE clause to specify the tablespace in which the new partition resides. If you don't specify a tablespace, the partition resides in the default tablespace.

Use the STORE IN clause to specify the tablespace list across which the autogenerated subpartitions are stored.

If the table is indexed, the index is created on the new partition.

To use the ALTER TABLE... ADD PARTITION command, you must be the table owner or have superuser or administrative privileges.

Parameters

table_name

The name (optionally schema-qualified) of the partitioned table.

partition_name

The name of the partition to create. Partition names must be unique among all partitions and subpartitions and must follow the naming conventions for object identifiers.

subpartition_name

The name of the subpartition to create. Subpartition names must be unique among all partitions and subpartitions and must follow the naming conventions for object identifiers.

(value[, value]...)

Use value to specify a quoted literal value or comma-delimited list of literal values by which rows are distributed into partitions. Each partitioning rule must specify at least one value . There's no
limit on the number of values specified in a rule. value can also be NULL , DEFAULT if specifying a LIST partition, or MAXVALUE if specifying a RANGE partition.

For information about creating a DEFAULT or MAXVALUE partition, see Handling stray values in a LIST or RANGE partitioned table.

num

The SUBPARTITIONS num clause is supported only for HASH and can be used to specify the number of hash subpartitions. Alternatively, you can use the subpartition definition to specify individual
subpartitions and their tablespaces. If you don't specify SUBPARTITIONS or SUBPARTITION DEFINITION , then the partition creates a subpartition based on the SUBPARTITION TEMPLATE .

tablespace_name

The name of the tablespace in which a partition or subpartition resides.

21.3.2.1 Example: Adding a partition to a LIST partitioned table

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 796

This example adds a partition to the list-partitioned sales table. The table was created using the command:

CREATE TABLE sales
(
 dept_no number,
 part_no varchar2,
 country varchar2(20),
 date date,
 amount number
)
PARTITION BY LIST(country)
(
 PARTITION europe VALUES('FRANCE', 'ITALY'),
 PARTITION asia VALUES('INDIA', 'PAKISTAN'),
 PARTITION americas VALUES('US', 'CANADA')
);

The table contains the three partitions americas , asia , and europe :

edb=# SELECT partition_name, high_value FROM ALL_TAB_PARTITIONS;
 partition_name | high_value
----------------+---------------------
 EUROPE | 'FRANCE', 'ITALY'
 ASIA | 'INDIA', 'PAKISTAN'
 AMERICAS | 'US', 'CANADA'
(3 rows)

This command adds a partition named east_asia to the sales table:

ALTER TABLE sales ADD PARTITION east_asia
 VALUES ('CHINA', 'KOREA');

After the command is invoked, the table includes the east_asia partition:

edb=# SELECT partition_name, high_value FROM ALL_TAB_PARTITIONS;
 partition_name | high_value
----------------+---------------------
 EUROPE | 'FRANCE', 'ITALY'
 ASIA | 'INDIA', 'PAKISTAN'
 AMERICAS | 'US', 'CANADA'
 EAST_ASIA | 'CHINA', 'KOREA'
(4 rows)

21.3.2.2 Example - Adding a partition to a RANGE partitioned table

This example adds a partition to a range-partitioned table named sales :

CREATE TABLE sales
(
 dept_no number,
 part_no varchar2,
 country varchar2(20),
 date date,
 amount number
)
PARTITION BY RANGE(date)
(
 PARTITION q1_2012
 VALUES LESS THAN('2012-Apr-01'),
 PARTITION q2_2012
 VALUES LESS THAN('2012-Jul-01'),
 PARTITION q3_2012
 VALUES LESS THAN('2012-Oct-01'),
 PARTITION q4_2012
 VALUES LESS THAN('2013-Jan-01')
);

The table contains the four partitions q1_2012 , q2_2012 , q3_2012 , and q4_2012 :

edb=# SELECT partition_name, high_value FROM ALL_TAB_PARTITIONS;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 797

 partition_name | high_value
----------------+----------------------
 Q1_2012 | '01-APR-12 00:00:00'
 Q2_2012 | '01-JUL-12 00:00:00'
 Q3_2012 | '01-OCT-12 00:00:00'
 Q4_2012 | '01-JAN-13 00:00:00'
(4 rows)

This command adds a partition named q1_2013 to the sales table:

ALTER TABLE sales ADD PARTITION q1_2013
 VALUES LESS THAN('01-APR-2013');

After the command is invoked, the table includes the q1_2013 partition:

edb=# SELECT partition_name, high_value FROM ALL_TAB_PARTITIONS;
 partition_name | high_value
----------------+----------------------
 Q1_2012 | '01-APR-12 00:00:00'
 Q2_2012 | '01-JUL-12 00:00:00'
 Q3_2012 | '01-OCT-12 00:00:00'
 Q4_2012 | '01-JAN-13 00:00:00'
 Q1_2013 | '01-APR-13 00:00:00'
(5 rows)

21.3.2.3 Example: Adding a partition with SUBPARTITIONS num...IN PARTITION DESCRIPTION

This example adds a partition to a list-partitioned sales table. You can specify a SUBPARTITIONS clause to add a specified number of subpartitions. The sales table was created with the
command:

CREATE TABLE sales
(
 dept_no number,
 part_no varchar2,
 country varchar2(20),
 date date,
 amount number
)
PARTITION BY LIST (country) SUBPARTITION BY HASH (part_no) SUBPARTITIONS 2
(
 PARTITION europe VALUES ('FRANCE', 'ITALY'),
 PARTITION asia VALUES ('INDIA', 'PAKISTAN')
);

The table contains two partitions: europe and asia . Each contains two subpartitions. Because the subpartitions aren't named, system-generated names are assigned to them.

edb=# SELECT table_name, partition_name, subpartition_name FROM
ALL_TAB_SUBPARTITIONS WHERE table_name = 'SALES' ORDER BY 1,2;
 table_name | partition_name | subpartition_name
------------+----------------+-------------------
 SALES | ASIA | SYS0103
 SALES | ASIA | SYS0104
 SALES | EUROPE | SYS0101
 SALES | EUROPE | SYS0102
(4 rows)

This command adds a partition americas to the sales table and creates a number of subpartitions as specified in the partition description:

ALTER TABLE sales ADD PARTITION americas
 VALUES ('US', 'CANADA');

After invoking the command, the table includes the partition americas and two newly added subpartitions:

edb=# SELECT table_name, partition_name, subpartition_name FROM
ALL_TAB_SUBPARTITIONS WHERE table_name = 'SALES' ORDER BY 1,2;
 table_name | partition_name | subpartition_name
------------+----------------+-------------------
 SALES | AMERICAS | SYS0107
 SALES | AMERICAS | SYS0108
 SALES | ASIA | SYS0103

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 798

 SALES | ASIA | SYS0104
 SALES | EUROPE | SYS0101
 SALES | EUROPE | SYS0102
(6 rows)

Example - Adding a Partition with SUBPARTITIONS num...

This example adds a partition a list-partitioned table sales consisting of three subpartitions. The sales table was created with the command:

CREATE TABLE sales
(
 dept_no number,
 part_no varchar2,
 country varchar2(20),
 date date,
 amount number
)
PARTITION BY LIST (country) SUBPARTITION BY HASH (part_no) SUBPARTITIONS 3
(
 PARTITION europe VALUES ('FRANCE', 'ITALY'),
 PARTITION asia VALUES ('INDIA', 'PAKISTAN')
);

The table contains partitions europe and asia , each containing three subpartitions:

edb=# SELECT table_name, partition_name, subpartition_name FROM
ALL_TAB_SUBPARTITIONS WHERE table_name = 'SALES' ORDER BY 1,2;
 table_name | partition_name | subpartition_name
------------+----------------+-------------------
 SALES | ASIA | SYS0104
 SALES | ASIA | SYS0105
 SALES | ASIA | SYS0106
 SALES | EUROPE | SYS0101
 SALES | EUROPE | SYS0102
 SALES | EUROPE | SYS0103
(6 rows)

This command adds a partition americas and five subpartitions, as specified in the ADD PARTITION clause:

ALTER TABLE sales ADD PARTITION americas
 VALUES ('US', 'CANADA') SUBPARTITIONS 5;

After the command is invoked, the sales table includes the partition americas and five newly added subpartitions:

edb=# SELECT table_name, partition_name, subpartition_name FROM
ALL_TAB_SUBPARTITIONS WHERE table_name = 'SALES' and partition_name =
'AMERICAS' ORDER BY 1,2;
 table_name | partition_name | subpartition_name
------------+----------------+-------------------
 SALES | AMERICAS | SYS0109
 SALES | AMERICAS | SYS0110
 SALES | AMERICAS | SYS0111
 SALES | AMERICAS | SYS0112
 SALES | AMERICAS | SYS0113
(5 rows)

Example: Adding a partition with SUBPARTITIONS num... STORE IN

This example adds a partition to a list-partitioned table sales consisting of three subpartitions. The table was created using the command:

CREATE TABLE sales
(
 dept_no number,
 part_no varchar2,
 country varchar2(20),
 date date,
 amount number
)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 799

PARTITION BY LIST (country) SUBPARTITION BY HASH (part_no) SUBPARTITIONS 3
(
 PARTITION europe VALUES('FRANCE', 'ITALY'),
 PARTITION asia VALUES('INDIA', 'PAKISTAN'),
 PARTITION americas VALUES('US', 'CANADA')
);

The table contains the three partitions americas , asia , and europe . Each contains three subpartitions with system-generated names:

edb=# SELECT table_name, partition_name, subpartition_name FROM
ALL_TAB_SUBPARTITIONS WHERE table_name = 'SALES' ORDER BY 1,2;
 table_name | partition_name | subpartition_name
------------+----------------+-------------------
 SALES | AMERICAS | SYS0109
 SALES | AMERICAS | SYS0107
 SALES | AMERICAS | SYS0108
 SALES | ASIA | SYS0105
 SALES | ASIA | SYS0104
 SALES | ASIA | SYS0106
 SALES | EUROPE | SYS0101
 SALES | EUROPE | SYS0103
 SALES | EUROPE | SYS0102
(9 rows)

This command adds a partition east_asia with five subpartitions as specified in the ADD PARTITION clause. It stores them in the tablespace named ts1 .

ALTER TABLE sales ADD PARTITION east_asia
 VALUES ('CHINA', 'KOREA') SUBPARTITIONS 5 STORE IN (ts1);

After the command is invoked, the table includes the partition east_asia and five newly added subpartitions stored in tablespace ts1 :

edb=# SELECT table_name, partition_name, subpartition_name, tablespace_name
FROM ALL_TAB_SUBPARTITIONS WHERE table_name = 'SALES' and partition_name =
'EAST_ASIA' ORDER BY 1,2;
 table_name | partition_name | subpartition_name | tablespace_name
------------+----------------+-------------------+-----------------
 SALES | EAST_ASIA | SYS0113 | TS1
 SALES | EAST_ASIA | SYS0114 | TS1
 SALES | EAST_ASIA | SYS0115 | TS1
 SALES | EAST_ASIA | SYS0116 | TS1
 SALES | EAST_ASIA | SYS0117 | TS1
(5 rows)

21.3.3 ALTER TABLE...ADD SUBPARTITION

The ALTER TABLE… ADD SUBPARTITION command adds a subpartition to an existing subpartitioned partition. The syntax is:

ALTER TABLE <table_name> MODIFY PARTITION <partition_name>
 ADD SUBPARTITION <subpartition_definition>;

Where subpartition_definition is:

{<list_subpartition> | <range_subpartition>}

and list_subpartition is:

 SUBPARTITION [<subpartition_name>]
 VALUES (<value>[, <value>]...)
 [TABLESPACE <tablespace_name>]

and range_subpartition is:

 SUBPARTITION [<subpartition_name>]
 VALUES LESS THAN (<value>[, <value>]...)
 [TABLESPACE <tablespace_name>]

Description

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 800

The ALTER TABLE… ADD SUBPARTITION command adds a subpartition to an existing partition. The partition must already be subpartitioned. There's no upper limit to the number of defined
subpartitions.

New subpartitions must be of the same type (LIST , RANGE or HASH) as existing subpartitions. The new subpartition rules must reference the same column specified in the subpartitioning rules that
define the existing subpartitions.

You can use the ALTER TABLE… ADD SUBPARTITION statement to add a subpartition to a table with a DEFAULT rule. However, there must not be conflicting values between existing rows in the
table and the values of the subpartition to add.

You can't use the ALTER TABLE… ADD SUBPARTITION statement to add a subpartition to a table with a MAXVALUE rule.

You can split an existing subpartition with the ALTER TABLE… SPLIT SUBPARTITION statement, effectively adding a subpartition to a table.

You can't add a subpartition that precedes existing subpartitions in a range-subpartitioned table. You must specify range subpartitions in ascending order.

Include the TABLESPACE clause to specify the tablespace in which the subpartition resides. If you don't specify a tablespace, the subpartition is created in the default tablespace.

If the table is indexed, the index is created on the new subpartition.

To use the ALTER TABLE... ADD SUBPARTITION command, you must be the table owner or have superuser or administrative privileges.

Parameters

table_name

The name (optionally schema-qualified) of the partitioned table in which the subpartition resides.

partition_name

The name of the partition in which the new subpartition resides.

subpartition_name

The name of the subpartition to create. Subpartition names must be unique among all partitions and subpartitions and must follow the naming conventions for object identifiers.

(value[, value]...)

Use value to specify a quoted literal value or comma-delimited list of literal values by which table entries are grouped into partitions. Each partitioning rule must specify at least one value. However,
there's no limit on the number of values specified in a rule. value can also be NULL , DEFAULT if specifying a LIST partition, or MAXVALUE if specifying a RANGE partition.

For information about creating a DEFAULT or MAXVALUE partition, see Handling stray values in a LIST or RANGE partitioned table.

tablespace_name

The name of the tablespace in which the subpartition resides.

21.3.3.1 Example: Adding a subpartition to a LIST/RANGE partitioned table

This example adds a RANGE subpartition to the list-partitioned sales table. The sales table was created with the command:

CREATE TABLE sales
(
 dept_no number,
 part_no varchar2,
 country varchar2(20),
 date date,
 amount number
)
PARTITION BY LIST(country)
 SUBPARTITION BY RANGE(date)
(
 PARTITION europe VALUES('FRANCE', 'ITALY')
 (
 SUBPARTITION europe_2011
 VALUES LESS THAN('2012-Jan-01'),
 SUBPARTITION europe_2012
 VALUES LESS THAN('2013-Jan-01')

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 801

),
 PARTITION asia VALUES('INDIA', 'PAKISTAN')
 (
 SUBPARTITION asia_2011
 VALUES LESS THAN('2012-Jan-01'),
 SUBPARTITION asia_2012
 VALUES LESS THAN('2013-Jan-01')
),
 PARTITION americas VALUES('US', 'CANADA')
 (
 SUBPARTITION americas_2011
 VALUES LESS THAN('2012-Jan-01'),
 SUBPARTITION americas_2012
 VALUES LESS THAN('2013-Jan-01')
)
);

The sales table has three partitions named europe , asia , and americas . Each partition has two range-defined subpartitions.

edb=# SELECT partition_name, subpartition_name, high_value FROM ALL_TAB_SUBPARTITIONS;
 partition_name | subpartition_name | high_value
----------------+-------------------+----------------------
 EUROPE | EUROPE_2011 | '01-JAN-12 00:00:00'
 EUROPE | EUROPE_2012 | '01-JAN-13 00:00:00'
 ASIA | ASIA_2011 | '01-JAN-12 00:00:00'
 ASIA | ASIA_2012 | '01-JAN-13 00:00:00'
 AMERICAS | AMERICAS_2011 | '01-JAN-12 00:00:00'
 AMERICAS | AMERICAS_2012 | '01-JAN-13 00:00:00'
(6 rows)

This command adds a subpartition named europe_2013 :

ALTER TABLE sales MODIFY PARTITION europe
 ADD SUBPARTITION europe_2013
 VALUES LESS THAN('2015-Jan-01');

After the command is invoked, the table includes a subpartition named europe_2013 :

edb=# SELECT partition_name, subpartition_name, high_value FROM ALL_TAB_SUBPARTITIONS;
 partition_name | subpartition_name | high_value
----------------+-------------------+----------------------
 EUROPE | EUROPE_2011 | '01-JAN-12 00:00:00'
 EUROPE | EUROPE_2012 | '01-JAN-13 00:00:00'
 EUROPE | EUROPE_2013 | '01-JAN-15 00:00:00'
 ASIA | ASIA_2011 | '01-JAN-12 00:00:00'
 ASIA | ASIA_2012 | '01-JAN-13 00:00:00'
 AMERICAS | AMERICAS_2011 | '01-JAN-12 00:00:00'
 AMERICAS | AMERICAS_2012 | '01-JAN-13 00:00:00'
(7 rows)

Note

When adding a range subpartition, the subpartitioning rules must specify a range that falls after any existing subpartitions.

21.3.3.2 Example: Adding a subpartition to a RANGE/LIST partitioned table

This example adds a LIST subpartition to the RANGE partitioned sales table. The sales table was created with the command:

CREATE TABLE sales
(
 dept_no number,
 part_no varchar2,
 country varchar2(20),
 date date,
 amount number
)
PARTITION BY RANGE(date)
 SUBPARTITION BY LIST (country)
 (
 PARTITION first_half_2012 VALUES LESS THAN('01-JUL-2012')
 (

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 802

 SUBPARTITION europe VALUES ('ITALY', 'FRANCE'),
 SUBPARTITION americas VALUES ('US', 'CANADA')
),
 PARTITION second_half_2012 VALUES LESS THAN('01-JAN-2013')
 (
 SUBPARTITION asia VALUES ('INDIA', 'PAKISTAN')
)
);

After the command is invoked, the sales table has two partitions, named first_half_2012 and second_half_2012 . The first_half_2012 partition has two subpartitions, named
europe and americas . The second_half_2012 partition has one partition, named asia .

edb=# SELECT partition_name, subpartition_name, high_value FROM ALL_TAB_SUBPARTITIONS;
 partition_name | subpartition_name | high_value
------------------+-------------------+---------------------
 SECOND_HALF_2012 | ASIA | 'INDIA', 'PAKISTAN'
 FIRST_HALF_2012 | AMERICAS | 'US', 'CANADA'
 FIRST_HALF_2012 | EUROPE | 'ITALY', 'FRANCE'
(3 rows)

This command adds a subpartition named east_asia to the second_half_2012 partition:

ALTER TABLE sales MODIFY PARTITION second_half_2012
 ADD SUBPARTITION east_asia VALUES ('CHINA');

After the command is invoked, the table includes a subpartition named east_asia :

edb=# SELECT partition_name, subpartition_name, high_value FROM ALL_TAB_SUBPARTITIONS;
 partition_name | subpartition_name | high_value
------------------+-------------------+---------------------
 SECOND_HALF_2012 | ASIA | 'INDIA', 'PAKISTAN'
 SECOND_HALF_2012 | EAST_ASIA | 'CHINA'
 FIRST_HALF_2012 | AMERICAS | 'US', 'CANADA'
 FIRST_HALF_2012 | EUROPE | 'ITALY', 'FRANCE'
(4 rows)

21.3.4 ALTER TABLE...SPLIT PARTITION

Use the ALTER TABLE… SPLIT PARTITION command to divide a single partition into two partitions. This command maintains the partitioning of the original table in the newly created partitions
and redistributes the partition's contents between the new partitions. The command syntax comes in two forms.

The first form splits a RANGE partition into two partitions:

ALTER TABLE <table_name> SPLIT PARTITION <partition_name>
 AT (<range_part_value>)
 INTO
 (
 PARTITION <new_part1>
 [TABLESPACE <tablespace_name>]
 [SUBPARTITIONS <num>] [STORE IN (<tablespace_name> [, <tablespace_name>]...)],
 PARTITION <new_part2>
 [TABLESPACE <tablespace_name>]
 [SUBPARTITIONS <num>] [STORE IN (<tablespace_name> [, <tablespace_name>]...)]
);

The second form splits a LIST partition into two partitions:

ALTER TABLE <table_name> SPLIT PARTITION <partition_name>
 VALUES (<value>[, <value>]...)
 INTO
 (
 PARTITION <new_part1>
 [TABLESPACE <tablespace_name>]
 [SUBPARTITIONS <num>] [STORE IN (<tablespace_name> [, <tablespace_name>]...)],
 PARTITION <new_part2>
 [TABLESPACE <tablespace_name>]
 [SUBPARTITIONS <num>] [STORE IN (<tablespace_name> [, <tablespace_name>]...)]
);

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 803

Description

The ALTER TABLE...SPLIT PARTITION command adds a partition to an existing LIST or RANGE partitioned table. The ALTER TABLE… SPLIT PARTITION command can't add a
partition to a HASH partitioned table. There's no upper limit to the number of partitions.

When you execute an ALTER TABLE...SPLIT PARTITION command, EDB Postgres Advanced Server:

Creates two new partitions
Maintains the partitioning of the original table in the newly created partitions
Redistributes the content of the old partition between them, as constrained by the partitioning rules

Include the TABLESPACE clause to specify the tablespace in which a partition resides. If you don't specify a tablespace, the partition resides in the tablespace of the original partitioned table.

Use the STORE IN clause to specify the tablespace list across which the autogenerated subpartitions are stored.

If the table is indexed, the index is created on the new partition.

To use the ALTER TABLE... SPLIT PARTITION command, you must be the table owner or have superuser or administrative privileges.

Parameters

table_name

The name (optionally schema-qualified) of the partitioned table.

partition_name

The name of the partition that's being split.

new_part1

The name of the first partition to create. Partition names must be unique among all partitions and subpartitions and must follow the naming conventions for object identifiers.

new_part1 receives the rows that meet the partitioning constraints specified in the ALTER TABLE… SPLIT PARTITION command.

new_part2

The name of the second partition to create. Partition names must be unique among all partitions and subpartitions and must follow the naming conventions for object identifiers.

new_part2 receives the rows aren't directed to new_part1 by the partitioning constraints specified in the ALTER TABLE… SPLIT PARTITION command.

range_part_value

Use range_part_value to specify the boundary rules by which to create the new partition. The partitioning rule must contain at least one column of a data type that has two operators, that is, a
greater-than-or-equal-to operator and a less-than operator. Range boundaries are evaluated against a LESS THAN clause and are non-inclusive. A date boundary of January 1, 2010 includes only
those date values that fall on or before December 31, 2009.

(value[, value]...)

Use value to specify a quoted literal value or comma-delimited list of literal values by which to distribute rows into partitions. Each partitioning rule must specify at least one value. There's no limit on
the number of values specified in a rule.

For information about creating a DEFAULT or MAXVALUE partition, see Handling stray values in a LIST or RANGE partitioned table.

num

The SUBPARTITIONS num clause is supported only for HASH subpartitions. Use the clause to specify the number of hash subpartitions. Alternatively, you can use the subpartition definition to
specify individual subpartitions and their tablespaces. If you don't specify SUBPARTITIONS or SUBPARTITION DEFINITION , then the partition creates a subpartition based on the
SUBPARTITION TEMPLATE .

tablespace_name

The name of the tablespace in which the partition or subpartition resides.

21.3.4.1 Example: Splitting a LIST partition

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 804

This example divides one of the partitions in the list-partitioned sales table into two new partitions and redistributes the contents of the partition between them. The sales table is created with the
statement:

CREATE TABLE sales
(
 dept_no number,
 part_no varchar2,
 country varchar2(20),
 date date,
 amount number
)
PARTITION BY LIST(country)
(
 PARTITION europe VALUES('FRANCE', 'ITALY'),
 PARTITION asia VALUES('INDIA', 'PAKISTAN'),
 PARTITION americas VALUES('US', 'CANADA')
);

The table definition creates three partitions: europe , asia , and americas . This command adds rows to each partition:

INSERT INTO sales VALUES
 (10, '4519b', 'FRANCE', '17-Jan-2012', '45000'),
 (20, '3788a', 'INDIA', '01-Mar-2012', '75000'),
 (40, '9519b', 'US', '12-Apr-2012', '145000'),
 (20, '3788a', 'PAKISTAN', '04-Jun-2012', '37500'),
 (40, '4577b', 'US', '11-Nov-2012', '25000'),
 (30, '7588b', 'CANADA', '14-Dec-2012', '50000'),
 (30, '9519b', 'CANADA', '01-Feb-2012', '75000'),
 (30, '4519b', 'CANADA', '08-Apr-2012', '120000'),
 (40, '3788a', 'US', '12-May-2012', '4950'),
 (10, '9519b', 'ITALY', '07-Jul-2012', '15000'),
 (10, '9519a', 'FRANCE', '18-Aug-2012', '650000'),
 (10, '9519b', 'FRANCE', '18-Aug-2012', '650000'),
 (20, '3788b', 'INDIA', '21-Sept-2012', '5090'),
 (40, '4788a', 'US', '23-Sept-2012', '4950'),
 (40, '4788b', 'US', '09-Oct-2012', '15000'),
 (20, '4519a', 'INDIA', '18-Oct-2012', '650000'),
 (20, '4519b', 'INDIA', '2-Dec-2012', '5090');

The rows are distributed among the partitions:

edb=# SELECT tableoid::regclass, * FROM sales;
 tableoid | dept_no | part_no | country | date | amount
----------------+---------+---------+----------+--------------------+--------
 sales_americas | 40 | 9519b | US | 12-APR-12 00:00:00 | 145000
 sales_americas | 40 | 4577b | US | 11-NOV-12 00:00:00 | 25000
 sales_americas | 30 | 7588b | CANADA | 14-DEC-12 00:00:00 | 50000
 sales_americas | 30 | 9519b | CANADA | 01-FEB-12 00:00:00 | 75000
 sales_americas | 30 | 4519b | CANADA | 08-APR-12 00:00:00 | 120000
 sales_americas | 40 | 3788a | US | 12-MAY-12 00:00:00 | 4950
 sales_americas | 40 | 4788a | US | 23-SEP-12 00:00:00 | 4950
 sales_americas | 40 | 4788b | US | 09-OCT-12 00:00:00 | 15000
 sales_europe | 10 | 4519b | FRANCE | 17-JAN-12 00:00:00 | 45000
 sales_europe | 10 | 9519b | ITALY | 07-JUL-12 00:00:00 | 15000
 sales_europe | 10 | 9519a | FRANCE | 18-AUG-12 00:00:00 | 650000
 sales_europe | 10 | 9519b | FRANCE | 18-AUG-12 00:00:00 | 650000
 sales_asia | 20 | 3788a | INDIA | 01-MAR-12 00:00:00 | 75000
 sales_asia | 20 | 3788a | PAKISTAN | 04-JUN-12 00:00:00 | 37500
 sales_asia | 20 | 3788b | INDIA | 21-SEP-12 00:00:00 | 5090
 sales_asia | 20 | 4519a | INDIA | 18-OCT-12 00:00:00 | 650000
 sales_asia | 20 | 4519b | INDIA | 02-DEC-12 00:00:00 | 5090
(17 rows)

This command splits the americas partition into partitions named us and canada :

ALTER TABLE sales SPLIT PARTITION americas
 VALUES ('US')
 INTO (PARTITION us, PARTITION canada);

A SELECT statement confirms that the rows were redistributed:

edb=# SELECT tableoid::regclass, * FROM sales;
 tableoid | dept_no | part_no | country | date | amount
--------------+---------+---------+----------+--------------------+--------
 sales_canada | 30 | 7588b | CANADA | 14-DEC-12 00:00:00 | 50000

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 805

 sales_canada | 30 | 9519b | CANADA | 01-FEB-12 00:00:00 | 75000
 sales_canada | 30 | 4519b | CANADA | 08-APR-12 00:00:00 | 120000
 sales_europe | 10 | 4519b | FRANCE | 17-JAN-12 00:00:00 | 45000
 sales_europe | 10 | 9519b | ITALY | 07-JUL-12 00:00:00 | 15000
 sales_europe | 10 | 9519a | FRANCE | 18-AUG-12 00:00:00 | 650000
 sales_europe | 10 | 9519b | FRANCE | 18-AUG-12 00:00:00 | 650000
 sales_asia | 20 | 3788a | INDIA | 01-MAR-12 00:00:00 | 75000
 sales_asia | 20 | 3788a | PAKISTAN | 04-JUN-12 00:00:00 | 37500
 sales_asia | 20 | 3788b | INDIA | 21-SEP-12 00:00:00 | 5090
 sales_asia | 20 | 4519a | INDIA | 18-OCT-12 00:00:00 | 650000
 sales_asia | 20 | 4519b | INDIA | 02-DEC-12 00:00:00 | 5090
 sales_us | 40 | 9519b | US | 12-APR-12 00:00:00 | 145000
 sales_us | 40 | 4577b | US | 11-NOV-12 00:00:00 | 25000
 sales_us | 40 | 3788a | US | 12-MAY-12 00:00:00 | 4950
 sales_us | 40 | 4788a | US | 23-SEP-12 00:00:00 | 4950
 sales_us | 40 | 4788b | US | 09-OCT-12 00:00:00 | 15000
(17 rows)

21.3.4.2 Example: Splitting a RANGE partition

This example divides the q4_2012 partition of the range-partitioned sales table into two partitions and redistributes the partition's contents. Use this command to create the sales table:

CREATE TABLE sales
(
 dept_no number,
 part_no varchar2,
 country varchar2(20),
 date date,
 amount number
)
PARTITION BY RANGE(date)
(
 PARTITION q1_2012
 VALUES LESS THAN('2012-Apr-01'),
 PARTITION q2_2012
 VALUES LESS THAN('2012-Jul-01'),
 PARTITION q3_2012
 VALUES LESS THAN('2012-Oct-01'),
 PARTITION q4_2012
 VALUES LESS THAN('2013-Jan-01')
);

The table definition creates four partitions: q1_2012 , q2_2012 , q3_2012 , and q4_2012). This command adds rows to each partition:

INSERT INTO sales VALUES
 (10, '4519b', 'FRANCE', '17-Jan-2012', '45000'),
 (20, '3788a', 'INDIA', '01-Mar-2012', '75000'),
 (40, '9519b', 'US', '12-Apr-2012', '145000'),
 (20, '3788a', 'PAKISTAN', '04-Jun-2012', '37500'),
 (40, '4577b', 'US', '11-Nov-2012', '25000'),
 (30, '7588b', 'CANADA', '14-Dec-2012', '50000'),
 (30, '9519b', 'CANADA', '01-Feb-2012', '75000'),
 (30, '4519b', 'CANADA', '08-Apr-2012', '120000'),
 (40, '3788a', 'US', '12-May-2012', '4950'),
 (10, '9519b', 'ITALY', '07-Jul-2012', '15000'),
 (10, '9519a', 'FRANCE', '18-Aug-2012', '650000'),
 (10, '9519b', 'FRANCE', '18-Aug-2012', '650000'),
 (20, '3788b', 'INDIA', '21-Sept-2012', '5090'),
 (40, '4788a', 'US', '23-Sept-2012', '4950'),
 (40, '4788b', 'US', '09-Oct-2012', '15000'),
 (20, '4519a', 'INDIA', '18-Oct-2012', '650000'),
 (20, '4519b', 'INDIA', '2-Dec-2012', '5090');

A SELECT statement confirms that the rows are distributed among the partitions:

edb=# SELECT tableoid::regclass, * FROM sales;
 tableoid | dept_no | part_no | country | date | amount
---------------+---------+---------+----------+--------------------+--------
 sales_q1_2012 | 10 | 4519b | FRANCE | 17-JAN-12 00:00:00 | 45000
 sales_q1_2012 | 20 | 3788a | INDIA | 01-MAR-12 00:00:00 | 75000
 sales_q1_2012 | 30 | 9519b | CANADA | 01-FEB-12 00:00:00 | 75000
 sales_q2_2012 | 40 | 9519b | US | 12-APR-12 00:00:00 | 145000
 sales_q2_2012 | 20 | 3788a | PAKISTAN | 04-JUN-12 00:00:00 | 37500

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 806

 sales_q2_2012 | 30 | 4519b | CANADA | 08-APR-12 00:00:00 | 120000
 sales_q2_2012 | 40 | 3788a | US | 12-MAY-12 00:00:00 | 4950
 sales_q3_2012 | 10 | 9519b | ITALY | 07-JUL-12 00:00:00 | 15000
 sales_q3_2012 | 10 | 9519a | FRANCE | 18-AUG-12 00:00:00 | 650000
 sales_q3_2012 | 10 | 9519b | FRANCE | 18-AUG-12 00:00:00 | 650000
 sales_q3_2012 | 20 | 3788b | INDIA | 21-SEP-12 00:00:00 | 5090
 sales_q3_2012 | 40 | 4788a | US | 23-SEP-12 00:00:00 | 4950
 sales_q4_2012 | 40 | 4577b | US | 11-NOV-12 00:00:00 | 25000
 sales_q4_2012 | 30 | 7588b | CANADA | 14-DEC-12 00:00:00 | 50000
 sales_q4_2012 | 40 | 4788b | US | 09-OCT-12 00:00:00 | 15000
 sales_q4_2012 | 20 | 4519a | INDIA | 18-OCT-12 00:00:00 | 650000
 sales_q4_2012 | 20 | 4519b | INDIA | 02-DEC-12 00:00:00 | 5090
(17 rows)

This command splits the q4_2012 partition into two partitions named q4_2012_p1 and q4_2012_p2 :

ALTER TABLE sales SPLIT PARTITION q4_2012
 AT ('15-Nov-2012')
 INTO
 (
 PARTITION q4_2012_p1,
 PARTITION q4_2012_p2
);

A SELECT statement confirms that the rows were redistributed across the new partitions:

edb=# SELECT tableoid::regclass, * FROM sales;
 tableoid | dept_no | part_no | country | date |amount
-----------------+---------+---------+----------+--------------------+------
 sales_q1_2012 | 10 | 4519b | FRANCE | 17-JAN-12 00:00:00 | 45000
 sales_q1_2012 | 20 | 3788a | INDIA | 01-MAR-12 00:00:00 | 75000
 sales_q1_2012 | 30 | 9519b | CANADA | 01-FEB-12 00:00:00 | 75000
 sales_q2_2012 | 40 | 9519b | US | 12-APR-12 00:00:00 |145000
 sales_q2_2012 | 20 | 3788a | PAKISTAN | 04-JUN-12 00:00:00 | 37500
 sales_q2_2012 | 30 | 4519b | CANADA | 08-APR-12 00:00:00 |120000
 sales_q2_2012 | 40 | 3788a | US | 12-MAY-12 00:00:00 | 4950
 sales_q3_2012 | 10 | 9519b | ITALY | 07-JUL-12 00:00:00 | 15000
 sales_q3_2012 | 10 | 9519a | FRANCE | 18-AUG-12 00:00:00 |650000
 sales_q3_2012 | 10 | 9519b | FRANCE | 18-AUG-12 00:00:00 |650000
 sales_q3_2012 | 20 | 3788b | INDIA | 21-SEP-12 00:00:00 | 5090
 sales_q3_2012 | 40 | 4788a | US | 23-SEP-12 00:00:00 | 4950
 sales_q4_2012_p1| 40 | 4577b | US | 11-NOV-12 00:00:00 | 25000
 sales_q4_2012_p1| 40 | 4788b | US | 09-OCT-12 00:00:00 | 15000
 sales_q4_2012_p1| 20 | 4519a | INDIA | 18-OCT-12 00:00:00 |650000
 sales_q4_2012_p2| 30 | 7588b | CANADA | 14-DEC-12 00:00:00 | 50000
 sales_q4_2012_p2| 20 | 4519b | INDIA | 02-DEC-12 00:00:00 | 5090
(17 rows)

21.3.4.3 Example: Splitting a RANGE/LIST partition

This example divides one of the partitions in the range-partitioned sales table into new partitions. This approach maintains the partitioning of the original table in the newly created partitions and
redistributes the contents of the partition between them.

CREATE TABLE sales
(
 dept_no number,
 part_no varchar2,
 country varchar2(20),
 date date,
 amount number
)
PARTITION BY RANGE(date)
 SUBPARTITION BY LIST (country)
 (
 PARTITION q1_2012 VALUES LESS THAN('2012-Apr-01')
 (
 SUBPARTITION europe VALUES('FRANCE', 'ITALY'),
 SUBPARTITION americas VALUES('US', 'CANADA'),
 SUBPARTITION asia VALUES('INDIA', 'PAKISTAN')
)
);

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 807

The sales table contains partition q1_2012 and the three subpartitions europe , americas , and asia :

edb=# SELECT table_name, partition_name, subpartition_name, high_value FROM
ALL_TAB_SUBPARTITIONS WHERE table_name = 'SALES' ORDER BY 1,2;
 table_name | partition_name | subpartition_name | high_value
------------+----------------+-------------------+---------------------
 SALES | Q1_2012 | EUROPE | 'FRANCE', 'ITALY'
 SALES | Q1_2012 | AMERICAS | 'US', 'CANADA'
 SALES | Q1_2012 | ASIA | 'INDIA', 'PAKISTAN'
(3 rows)

This command splits the q1_2012 partition into partitions named q1_2012_p1 and q1_2012_p2 :

ALTER TABLE sales SPLIT PARTITION q1_2012
 AT ('01-Mar-2012')
 INTO
 (
 PARTITION q1_2012_p1,
 PARTITION q1_2012_p2
);

A SELECT statement confirms that the same number of subpartitions is created in the newly created partitions q1_2012_p1 and q1_2012_p2 with system-generated names:

edb=# SELECT table_name, partition_name, subpartition_name, high_value FROM
ALL_TAB_SUBPARTITIONS WHERE table_name = 'SALES' ORDER BY 1,2,3;
 table_name | partition_name | subpartition_name | high_value
------------+----------------+-------------------+---------------------
 SALES | Q1_2012_P1 | SYS0105 | 'US', 'CANADA'
 SALES | Q1_2012_P1 | SYS0106 | 'FRANCE', 'ITALY'
 SALES | Q1_2012_P1 | SYS0107 | 'INDIA', 'PAKISTAN'
 SALES | Q1_2012_P2 | SYS0108 | 'US', 'CANADA'
 SALES | Q1_2012_P2 | SYS0109 | 'FRANCE', 'ITALY'
 SALES | Q1_2012_P2 | SYS0110 | 'INDIA', 'PAKISTAN'
(6 rows)

Example: Splitting a partition with SUBPARTITIONS num...

This example divides one of the partitions in the list-partitioned sales table into new partitions. It maintains the partitioning of the original table in the newly created partitions and redistributes the
contents of the partition between them. The SUBPARTITIONS clause lets you add a specified number of subpartitions. Without the SUBPARTITIONS clause, the new partitions inherit the default
number of subpartitions.

This statement creates the sales table:

CREATE TABLE sales
(
 dept_no number,
 part_no varchar2,
 country varchar2(20),
 date date,
 amount number
)
PARTITION BY LIST(country) SUBPARTITION BY HASH (part_no) SUBPARTITIONS 2
(
 PARTITION europe VALUES('FRANCE', 'ITALY'),
 PARTITION asia VALUES('INDIA', 'PAKISTAN'),
 PARTITION americas VALUES('US', 'CANADA')
);

The table definition creates the three partitions europe , asia , and americas . Each contains two subpartitions.

edb=# SELECT table_name, partition_name, subpartition_name FROM
ALL_TAB_SUBPARTITIONS WHERE table_name = 'SALES' ORDER BY 1,2;
 table_name | partition_name | subpartition_name
------------+----------------+-------------------
 SALES | AMERICAS | SYS0105
 SALES | AMERICAS | SYS0106
 SALES | ASIA | SYS0103
 SALES | ASIA | SYS0104
 SALES | EUROPE | SYS0101
 SALES | EUROPE | SYS0102
(6 rows)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 808

This command splits the americas partition into partitions named partition_us and partition_canada :

ALTER TABLE sales SPLIT PARTITION americas VALUES ('US') INTO (PARTITION
partition_us SUBPARTITIONS 5, PARTITION partition_canada);

A SELECT statement confirms that the americas partition is split into partition_us and partition_canada . The partition_us contains five subpartitions. partition_canada
contains two default subpartitions with system-generated names.

edb=# SELECT table_name, partition_name, subpartition_name FROM
ALL_TAB_SUBPARTITIONS WHERE table_name = 'SALES' ORDER BY 1,2,3;
 table_name | partition_name | subpartition_name
------------+------------------+-------------------
 SALES | ASIA | SYS0103
 SALES | ASIA | SYS0104
 SALES | EUROPE | SYS0101
 SALES | EUROPE | SYS0102
 SALES | PARTITION_CANADA | SYS0115
 SALES | PARTITION_CANADA | SYS0116
 SALES | PARTITION_US | SYS0110
 SALES | PARTITION_US | SYS0111
 SALES | PARTITION_US | SYS0112
 SALES | PARTITION_US | SYS0113
 SALES | PARTITION_US | SYS0114
(11 rows)

Example: Splitting a partition with SUBPARTITIONS num...STORE IN

This example divides the europe partition of the list-partitioned sales table into two partitions. It maintains the partitioning of the original table in the newly created partitions and redistributes the
partition's contents. The SUBPARTITIONS clause lets you add a specified number of subpartitions.

Use the following command to create the sales table:

CREATE TABLE sales
(
 dept_no number,
 part_no varchar2,
 country varchar2(20),
 date date,
 amount number
)
PARTITION BY LIST(country) SUBPARTITION BY HASH (part_no) SUBPARTITIONS 4
(
 PARTITION europe VALUES('FRANCE', 'ITALY'),
 PARTITION asia VALUES('INDIA', 'PAKISTAN'),
 PARTITION americas VALUES('US', 'CANADA')
);

The sales table contains the partitions europe , asia , and americas . Each contains four subpartitions with system-generated names.

edb=# SELECT table_name, partition_name, subpartition_name FROM
ALL_TAB_SUBPARTITIONS WHERE table_name = 'SALES' ORDER BY 1,2;
 table_name | partition_name | subpartition_name
------------+----------------+-------------------
 SALES | AMERICAS | SYS0112
 SALES | AMERICAS | SYS0111
 SALES | AMERICAS | SYS0109
 SALES | AMERICAS | SYS0110
 SALES | ASIA | SYS0107
 SALES | ASIA | SYS0105
 SALES | ASIA | SYS0106
 SALES | ASIA | SYS0108
 SALES | EUROPE | SYS0101
 SALES | EUROPE | SYS0104
 SALES | EUROPE | SYS0103
 SALES | EUROPE | SYS0102
(12 rows)

This command splits the europe partition into the partitions france and italy :

ALTER TABLE sales SPLIT PARTITION europe VALUES ('FRANCE') INTO (PARTITION
france SUBPARTITIONS 10 STORE IN (ts1), PARTITION italy);

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 809

A SELECT statement confirms that the europe partition is split into two partitions. The partition france contains 10 subpartitions that are stored in the tablespace ts1 . Partition italy
contains four subpartitions as in the original partition europe .

edb=# SELECT table_name, partition_name, subpartition_name, tablespace_name
FROM ALL_TAB_SUBPARTITIONS WHERE table_name = 'SALES' ORDER BY 1,2,3;
 table_name | partition_name | subpartition_name | tablespace_name
------------+----------------+-------------------+-----------------
 SALES | AMERICAS | SYS0109 |
 SALES | AMERICAS | SYS0110 |
 SALES | AMERICAS | SYS0111 |
 SALES | AMERICAS | SYS0112 |
 SALES | ASIA | SYS0105 |
 SALES | ASIA | SYS0106 |
 SALES | ASIA | SYS0107 |
 SALES | ASIA | SYS0108 |
 SALES | FRANCE | SYS0116 | TS1
 SALES | FRANCE | SYS0117 | TS1
 SALES | FRANCE | SYS0118 | TS1
 SALES | FRANCE | SYS0119 | TS1
 SALES | FRANCE | SYS0120 | TS1
 SALES | FRANCE | SYS0121 | TS1
 SALES | FRANCE | SYS0122 | TS1
 SALES | FRANCE | SYS0123 | TS1
 SALES | FRANCE | SYS0124 | TS1
 SALES | FRANCE | SYS0125 | TS1
 SALES | ITALY | SYS0126 |
 SALES | ITALY | SYS0127 |
 SALES | ITALY | SYS0128 |
 SALES | ITALY | SYS0129 |
(22 rows)

21.3.5 ALTER TABLE...SPLIT SUBPARTITION

Use the ALTER TABLE… SPLIT SUBPARTITION command to divide a single subpartition into two subpartition and redistribute the subpartition's contents. The command comes in two variations.

The first variation splits a range subpartition into two subpartitions:

ALTER TABLE <table_name> SPLIT SUBPARTITION <subpartition_name>
 AT (range_part_value)
 INTO
 (
 SUBPARTITION <new_subpart1>
 [TABLESPACE <tablespace_name>],
 SUBPARTITION <new_subpart2>
 [TABLESPACE <tablespace_name>]
);

The second variation splits a list subpartition into two subpartitions:

ALTER TABLE <table_name> SPLIT SUBPARTITION <subpartition_name>
 VALUES (<value>[, <value>]...)
 INTO
 (
 SUBPARTITION <new_subpart1>
 [TABLESPACE <tablespace_name>],
 SUBPARTITION <new_subpart2>
 [TABLESPACE <tablespace_name>]
);

Description

The ALTER TABLE...SPLIT SUBPARTITION command adds a subpartition to an existing subpartitioned table. There's no upper limit to the number of defined subpartitions. When you execute an
ALTER TABLE...SPLIT SUBPARTITION command, EDB Postgres Advanced Server creates two subpartitions. It moves any rows that contain values that are constrained by the specified

subpartition rules into new_subpart1 and any remaining rows into new_subpart2 .

The new subpartition rules must reference the column specified in the rules that define the existing subpartitions.

Include the TABLESPACE clause to specify a tablespace in which a new subpartition resides. If you don't specify a tablespace, the subpartition is created in the default tablespace.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 810

If the table is indexed, the index is created on the new subpartition.

To use the ALTER TABLE... SPLIT SUBPARTITION command, you must be the table owner or have superuser or administrative privileges.

Parameters

table_name

The name (optionally schema-qualified) of the partitioned table.

subpartition_name

The name of the subpartition that's being split.

new_subpart1

The name of the first subpartition to create. Subpartition names must be unique among all partitions and subpartitions and must follow the naming conventions for object identifiers.

new_subpart1 receives the rows that meet the subpartitioning constraints specified in the ALTER TABLE… SPLIT SUBPARTITION command.

new_subpart2

The name of the second subpartition to create. Subpartition names must be unique among all partitions and subpartitions and must follow the naming conventions for object identifiers.

new_subpart2 receives the rows that aren't directed to new_subpart1 by the subpartitioning constraints specified in the ALTER TABLE… SPLIT SUBPARTITION command.

(value[, value]...)

Use value to specify a quoted literal value or comma-delimited list of literal values by which table entries are grouped into partitions. Each partitioning rule must specify at least one value. There's no
limit on the number of values specified in a rule. value can also be NULL , DEFAULT if specifying a LIST subpartition, or MAXVALUE if specifying a RANGE subpartition.

For information about creating a DEFAULT or MAXVALUE partition, see Handling stray values in a LIST or RANGE partitioned table.

tablespace_name

The name of the tablespace in which the partition or subpartition resides.

21.3.5.1 Example: Splitting a lIST subpartition

This example splits a list subpartition, redistributing the subpartition's contents between two new subpartitions.

The sample table sales was created with the command:

CREATE TABLE sales
(
 dept_no number,
 part_no varchar2,
 country varchar2(20),
 date date,
 amount number
)
PARTITION BY RANGE(date)
 SUBPARTITION BY LIST (country)
 (
 PARTITION first_half_2012 VALUES LESS THAN('01-JUL-2012')
 (
 SUBPARTITION p1_europe VALUES ('ITALY', 'FRANCE'),
 SUBPARTITION p1_americas VALUES ('US', 'CANADA')
),
 PARTITION second_half_2012 VALUES LESS THAN('01-JAN-2013')
 (
 SUBPARTITION p2_europe VALUES ('ITALY', 'FRANCE'),
 SUBPARTITION p2_americas VALUES ('US', 'CANADA')
)
);

The sales table has partitions named first_half_2012 and second_half_2012 . Each partition has two range-defined subpartitions that distribute the partition's contents into

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 811

subpartitions based on the value of the country column.

edb=# SELECT partition_name, subpartition_name, high_value FROM ALL_TAB_SUBPARTITIONS;
 partition_name | subpartition_name | high_value
------------------+-------------------+-------------------
 SECOND_HALF_2012 | P2_AMERICAS | 'US', 'CANADA'
 SECOND_HALF_2012 | P2_EUROPE | 'ITALY', 'FRANCE'
 FIRST_HALF_2012 | P1_AMERICAS | 'US', 'CANADA'
 FIRST_HALF_2012 | P1_EUROPE | 'ITALY', 'FRANCE'
(4 rows)

This command adds rows to each subpartition:

INSERT INTO sales VALUES
 (10, '4519b', 'FRANCE', '17-Jan-2012', '45000'),
 (40, '9519b', 'US', '12-Apr-2012', '145000'),
 (40, '4577b', 'US', '11-Nov-2012', '25000'),
 (30, '7588b', 'CANADA', '14-Dec-2012', '50000'),
 (30, '9519b', 'CANADA', '01-Feb-2012', '75000'),
 (30, '4519b', 'CANADA', '08-Apr-2012', '120000'),
 (40, '3788a', 'US', '12-May-2012', '4950'),
 (10, '9519b', 'ITALY', '07-Jul-2012', '15000'),
 (10, '9519a', 'FRANCE', '18-Aug-2012', '650000'),
 (10, '9519b', 'FRANCE', '18-Aug-2012', '650000'),
 (40, '4788a', 'US', '23-Sept-2012', '4950'),
 (40, '4788b', 'US', '09-Oct-2012', '15000');

A SELECT statement confirms that the rows are correctly distributed among the subpartitions:

edb=# SELECT tableoid::regclass, * FROM sales;
 tableoid | dept_no | part_no | country | date | amount
-----------------+---------+---------+---------+--------------------+--------
sales_p1_americas| 40 | 9519b | US | 12-APR-12 00:00:00 | 145000
sales_p1_americas| 30 | 9519b | CANADA | 01-FEB-12 00:00:00 | 75000
sales_p1_americas| 30 | 4519b | CANADA | 08-APR-12 00:00:00 | 120000
sales_p1_americas| 40 | 3788a | US | 12-MAY-12 00:00:00 | 4950
sales_p1_europe | 10 | 4519b | FRANCE | 17-JAN-12 00:00:00 | 45000
sales_p2_americas| 40 | 4577b | US | 11-NOV-12 00:00:00 | 25000
sales_p2_americas| 30 | 7588b | CANADA | 14-DEC-12 00:00:00 | 50000
sales_p2_americas| 40 | 4788a | US | 23-SEP-12 00:00:00 | 4950
sales_p2_americas| 40 | 4788b | US | 09-OCT-12 00:00:00 | 15000
sales_p2_europe | 10 | 9519b | ITALY | 07-JUL-12 00:00:00 | 15000
sales_p2_europe | 10 | 9519a | FRANCE | 18-AUG-12 00:00:00 | 650000
sales_p2_europe | 10 | 9519b | FRANCE | 18-AUG-12 00:00:00 | 650000
(12 rows)

This command splits the p2_americas subpartition into two new subpartitions and redistributes the contents.

ALTER TABLE sales SPLIT SUBPARTITION p2_americas
 VALUES ('US')
 INTO
 (
 SUBPARTITION p2_us,
 SUBPARTITION p2_canada
);

After the command is invoked, the p2_americas subpartition is deleted. In its place, the server creates the subpartitions p2_us and p2_canada :

edb=# SELECT partition_name, subpartition_name, high_value FROM ALL_TAB_SUBPARTITIONS;
 partition_name | subpartition_name | high_value
------------------+-------------------+-------------------
 FIRST_HALF_2012 | P1_EUROPE | 'ITALY', 'FRANCE'
 FIRST_HALF_2012 | P1_AMERICAS | 'US', 'CANADA'
 SECOND_HALF_2012 | P2_EUROPE | 'ITALY', 'FRANCE'
 SECOND_HALF_2012 | P2_US | 'US'
 SECOND_HALF_2012 | P2_CANADA | 'CANADA'
(5 rows)

Querying the sales table shows that the content of the p2_americas subpartition was redistributed:

edb=# SELECT tableoid::regclass, * FROM sales;
 tableoid | dept_no | part_no | country | date |amount
------------------+---------+---------+---------+--------------------+------
 sales_p1_americas| 40 | 9519b | US | 12-APR-12 00:00:00 |145000

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 812

 sales_p1_americas| 30 | 9519b | CANADA | 01-FEB-12 00:00:00 | 75000
 sales_p1_americas| 30 | 4519b | CANADA | 08-APR-12 00:00:00 |120000
 sales_p1_americas| 40 | 3788a | US | 12-MAY-12 00:00:00 | 4950
 sales_p1_europe | 10 | 4519b | FRANCE | 17-JAN-12 00:00:00 | 45000
 sales_p2_canada | 30 | 7588b | CANADA | 14-DEC-12 00:00:00 | 50000
 sales_p2_europ | 10 | 9519b | ITALY | 07-JUL-12 00:00:00 | 15000
 sales_p2_europe | 10 | 9519a | FRANCE | 18-AUG-12 00:00:00 |650000
 sales_p2_europe | 10 | 9519b | FRANCE | 18-AUG-12 00:00:00 |650000
 sales_p2_us | 40 | 4577b | US | 11-NOV-12 00:00:00 | 25000
 sales_p2_us | 40 | 4788a | US | 23-SEP-12 00:00:00 | 4950
 sales_p2_us | 40 | 4788b | US | 09-OCT-12 00:00:00 | 15000
(12 rows)

21.3.5.2 Example: Splitting a RANGE subpartition

This example splits a range subpartition, redistributing the subpartition's contents between two new subpartitions.

The sample table sales was created with the command:

CREATE TABLE sales
(
 dept_no number,
 part_no varchar2,
 country varchar2(20),
 date date,
 amount number
)
PARTITION BY LIST(country)
 SUBPARTITION BY RANGE(date)
(
 PARTITION europe VALUES('FRANCE', 'ITALY')
 (
 SUBPARTITION europe_2011
 VALUES LESS THAN('2012-Jan-01'),
 SUBPARTITION europe_2012
 VALUES LESS THAN('2013-Jan-01')
),
 PARTITION asia VALUES('INDIA', 'PAKISTAN')
 (
 SUBPARTITION asia_2011
 VALUES LESS THAN('2012-Jan-01'),
 SUBPARTITION asia_2012
 VALUES LESS THAN('2013-Jan-01')
),
 PARTITION americas VALUES('US', 'CANADA')
 (
 SUBPARTITION americas_2011
 VALUES LESS THAN('2012-Jan-01'),
 SUBPARTITION americas_2012
 VALUES LESS THAN('2013-Jan-01')
)
);

The sales table has the partitions europe , asia , and americas . Each partition has two range-defined subpartitions that sort the partitions contents into subpartitions by the value of the
date column:

edb=# SELECT partition_name, subpartition_name, high_value FROM ALL_TAB_SUBPARTITIONS;
 partition_name | subpartition_name | high_value
----------------+-------------------+----------------------
 EUROPE | EUROPE_2011 | '01-JAN-12 00:00:00'
 EUROPE | EUROPE_2012 | '01-JAN-13 00:00:00'
 ASIA | ASIA_2011 | '01-JAN-12 00:00:00'
 ASIA | ASIA_2012 | '01-JAN-13 00:00:00'
 AMERICAS | AMERICAS_2011 | '01-JAN-12 00:00:00'
 AMERICAS | AMERICAS_2012 | '01-JAN-13 00:00:00'
(6 rows)

This command adds rows to each subpartition:

INSERT INTO sales VALUES
 (10, '4519b', 'FRANCE', '17-Jan-2012', '45000'),
 (20, '3788a', 'INDIA', '01-Mar-2012', '75000'),
 (40, '9519b', 'US', '12-Apr-2012', '145000'),

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 813

 (20, '3788a', 'PAKISTAN', '04-Jun-2012', '37500'),
 (40, '4577b', 'US', '11-Nov-2012', '25000'),
 (30, '7588b', 'CANADA', '14-Dec-2012', '50000'),
 (30, '9519b', 'CANADA', '01-Feb-2012', '75000'),
 (30, '4519b', 'CANADA', '08-Apr-2012', '120000'),
 (40, '3788a', 'US', '12-May-2012', '4950'),
 (10, '9519b', 'ITALY', '07-Jul-2012', '15000'),
 (10, '9519a', 'FRANCE', '18-Aug-2012', '650000'),
 (10, '9519b', 'FRANCE', '18-Aug-2012', '650000'),
 (20, '3788b', 'INDIA', '21-Sept-2012', '5090'),
 (40, '4788a', 'US', '23-Sept-2012', '4950'),
 (40, '4788b', 'US', '09-Oct-2012', '15000'),
 (20, '4519a', 'INDIA', '18-Oct-2012', '650000'),
 (20, '4519b', 'INDIA', '2-Dec-2012', '5090');

A SELECT statement confirms that the rows are distributed among the subpartitions:

edb=# SELECT tableoid::regclass, * FROM sales;
 tableoid |dept_no|part_no| country | date | amount
--------------------+-------+-------+---------+--------------------+---------
 sales_americas_2012| 40 | 9519b | US | 12-APR-12 00:00:00 | 145000
 sales_americas_2012| 40 | 4577b | US | 11-NOV-12 00:00:00 | 25000
 sales_americas_2012| 30 | 7588b | CANADA | 14-DEC-12 00:00:00 | 50000
 sales_americas_2012| 30 | 9519b | CANADA | 01-FEB-12 00:00:00 | 75000
 sales_americas_2012| 30 | 4519b | CANADA | 08-APR-12 00:00:00 | 120000
 sales_americas_2012| 40 | 3788a | US | 12-MAY-12 00:00:00 | 4950
 sales_americas_2012| 40 | 4788a | US | 23-SEP-12 00:00:00 | 4950
 sales_americas_2012| 40 | 4788b | US | 09-OCT-12 00:00:00 | 15000
 sales_europe_2012 | 10 | 4519b | FRANCE | 17-JAN-12 00:00:00 | 45000
 sales_europe_2012 | 10 | 9519b | ITALY | 07-JUL-12 00:00:00 | 15000
 sales_europe_2012 | 10 | 9519a | FRANCE | 18-AUG-12 00:00:00 | 650000
 sales_europe_2012 | 10 | 9519b | FRANCE | 18-AUG-12 00:00:00 | 650000
 sales_asia_2012 | 20 | 3788a | INDIA | 01-MAR-12 00:00:00 | 75000
 sales_asia_2012 | 20 | 3788a | PAKISTAN| 04-JUN-12 00:00:00 | 37500
 sales_asia_2012 | 20 | 3788b | INDIA | 21-SEP-12 00:00:00 | 5090
 sales_asia_2012 | 20 | 4519a | INDIA | 18-OCT-12 00:00:00 | 650000
 sales_asia_2012 | 20 | 4519b | INDIA | 02-DEC-12 00:00:00 | 5090
(17 rows)

This command splits the americas_2012 subpartition into two new subpartitions and redistributes the contents:

ALTER TABLE sales
 SPLIT SUBPARTITION americas_2012
 AT('2012-Jun-01')
 INTO
 (
 SUBPARTITION americas_p1_2012,
 SUBPARTITION americas_p2_2012
);

After the command is invoked, the americas_2012 subpartition is deleted. In its place, the server creates the subpartitions americas_p1_2012 and americas_p2_2012 :

edb=# SELECT partition_name, subpartition_name, high_value FROM ALL_TAB_SUBPARTITIONS;
 partition_name | subpartition_name | high_value
----------------+-------------------+----------------------
 EUROPE | EUROPE_2011 | '01-JAN-12 00:00:00'
 EUROPE | EUROPE_2012 | '01-JAN-13 00:00:00'
 ASIA | ASIA_2011 | '01-JAN-12 00:00:00'
 ASIA | ASIA_2012 | '01-JAN-13 00:00:00'
 AMERICAS | AMERICAS_2011 | '01-JAN-12 00:00:00'
 AMERICAS | AMERICAS_P1_2012 | '01-JUN-12 00:00:00'
 AMERICAS | AMERICAS_P2_2012 | '01-JAN-13 00:00:00'
(7 rows)

Querying the sales table shows that the subpartition's contents are redistributed:

edb=# SELECT tableoid::regclass, * FROM sales;
 tableoid |dept_no|part_no|country | date | amount
-----------------------+-------+-------+---------+-------------------+-------
 sales_americas_p1_2012| 40 | 9519b | US | 12-APR-12 00:00:00|145000
 sales_americas_p1_2012| 30 | 9519b | CANADA | 01-FEB-12 00:00:00|75000
 sales_americas_p1_2012| 30 | 4519b | CANADA | 08-APR-12 00:00:00|120000
 sales_americas_p1_2012| 40 | 3788a | US | 12-MAY-12 00:00:00| 4950
 sales_americas_p2_2012| 40 | 4577b | US | 11-NOV-12 00:00:00|25000
 sales_americas_p2_2012| 30 | 7588b | CANADA | 14-DEC-12 00:00:00|50000

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 814

 sales_americas_p2_2012| 40 | 4788a | US | 23-SEP-12 00:00:00| 4950
 sales_americas_p2_2012| 40 | 4788b | US | 09-OCT-12 00:00:00|15000
 sales_europe_2012 | 10 | 4519b | FRANCE | 17-JAN-12 00:00:00|45000
 sales_europe_2012 | 10 | 9519b | ITALY | 07-JUL-12 00:00:00|15000
 sales_europe_2012 | 10 | 9519a | FRANCE | 18-AUG-12 00:00:00|650000
 sales_europe_2012 | 10 | 9519b | FRANCE | 18-AUG-12 00:00:00|650000
 sales_asia_2012 | 20 | 3788a | INDIA | 01-MAR-12 00:00:00|75000
 sales_asia_2012 | 20 | 3788a | PAKISTAN| 04-JUN-12 00:00:00|37500
 sales_asia_2012 | 20 | 3788b | INDIA | 21-SEP-12 00:00:00|5090
 sales_asia_2012 | 20 | 4519a | INDIA | 18-OCT-12 00:00:00|650000
 sales_asia_2012 | 20 | 4519b | INDIA | 02-DEC-12 00:00:00| 5090
(17 rows)

21.3.6 ALTER TABLE...EXCHANGE PARTITION

The ALTER TABLE…EXCHANGE PARTITION command swaps an existing table with a partition. If you plan to add a large quantity of data to a partitioned table, you can use the ALTER TABLE…
EXCHANGE PARTITION command to implement a bulk load. You can also use the ALTER TABLE… EXCHANGE PARTITION command to remove old or unneeded data for storage.

The command syntax is available in two forms. The first form swaps a table for a partition:

ALTER TABLE <target_table>
 EXCHANGE PARTITION <target_partition>
 WITH TABLE <source_table>
 [(INCLUDING | EXCLUDING) INDEXES]
 [(WITH | WITHOUT) VALIDATION];

The second form swaps a table for a subpartition:

ALTER TABLE <target_table>
 EXCHANGE SUBPARTITION <target_subpartition>
 WITH TABLE <source_table>
 [(INCLUDING | EXCLUDING) INDEXES]
 [(WITH | WITHOUT) VALIDATION];

Description

When the ALTER TABLE… EXCHANGE PARTITION command completes, the data originally located in the target_partition is located in the source_table . The data originally located in
the source_table is located in the target_partition .

The ALTER TABLE… EXCHANGE PARTITION command can exchange partitions in a LIST , RANGE or HASH partitioned table. The structure of the source_table must match the structure
of the target_table in that both tables must have matching columns and data types. The data in the table must adhere to the partitioning constraints.

If the INCLUDING INDEXES clause is specified with EXCHANGE PARTITION , then matching indexes in the target_partition and source_table are swapped. Indexes in the
target_partition with no match in the source_table are rebuilt and vice versa. That is, indexes in the source_table with no match in the target_partition are also rebuilt.

If the EXCLUDING INDEXES clause is specified with EXCHANGE PARTITION , then matching indexes in the target_partition and source_table are swapped. However the
target_partition indexes with no match in the source_table are marked as invalid and vice versa. That is, indexes in the source_table with no match in the target_partition are

also marked as invalid.

The term matching index refers to indexes that have the same attributes. Attribute examples include the collation order, ascending or descending direction, ordering of nulls first or nulls last, and so
forth as determined by the CREATE INDEX command.

If you omit both INCLUDING INDEXES and EXCLUDING INDEXES , then the default action is the EXCLUDING INDEXES behavior.

The same behavior described applies for the target_subpartition used with the EXCHANGE SUBPARTITION clause.

You must own a table to invoke ALTER TABLE… EXCHANGE PARTITION or ALTER TABLE… EXCHANGE SUBPARTITION against that table.

Parameters

target_table

The name (optionally schema-qualified) of the table in which the partition or subpartition resides.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 815

target_partition

The name of the partition to replace.

target_subpartition

The name of the subpartition to replace.

source_table

The name of the table that replaces the target_partition or target_subpartition .

21.3.6.1 Example: Exchanging a table for a partition

This example swaps a table for the partition americas of the sales table. You can create the sales table with this command:

CREATE TABLE sales
(
 dept_no number,
 part_no varchar2,
 country varchar2(20),
 date date,
 amount number
)
PARTITION BY LIST(country)
(
 PARTITION europe VALUES('FRANCE', 'ITALY'),
 PARTITION asia VALUES('INDIA', 'PAKISTAN'),
 PARTITION americas VALUES('US', 'CANADA')
);

Use this command to add sample data to the sales table:

INSERT INTO sales VALUES
 (40, '9519b', 'US', '12-Apr-2012', '145000'),
 (10, '4519b', 'FRANCE', '17-Jan-2012', '45000'),
 (20, '3788a', 'INDIA', '01-Mar-2012', '75000'),
 (20, '3788a', 'PAKISTAN', '04-Jun-2012', '37500'),
 (10, '9519b', 'ITALY', '07-Jul-2012', '15000'),
 (10, '9519a', 'FRANCE', '18-Aug-2012', '650000'),
 (10, '9519b', 'FRANCE', '18-Aug-2012', '650000'),
 (20, '3788b', 'INDIA', '21-Sept-2012', '5090'),
 (20, '4519a', 'INDIA', '18-Oct-2012', '650000'),
 (20, '4519b', 'INDIA', '2-Dec-2012', '5090');

Querying the sales table shows that only one row resides in the americas partition:

edb=# SELECT tableoid::regclass, * FROM sales;
 tableoid | dept_no | part_no | country | date | amount
----------------+---------+---------+----------+--------------------+--------
 sales_americas | 40 | 9519b | US | 12-APR-12 00:00:00 | 145000
 sales_europe | 10 | 4519b | FRANCE | 17-JAN-12 00:00:00 | 45000
 sales_europe | 10 | 9519b | ITALY | 07-JUL-12 00:00:00 | 15000
 sales_europe | 10 | 9519a | FRANCE | 18-AUG-12 00:00:00 | 650000
 sales_europe | 10 | 9519b | FRANCE | 18-AUG-12 00:00:00 | 650000
 sales_asia | 20 | 3788a | INDIA | 01-MAR-12 00:00:00 | 75000
 sales_asia | 20 | 3788a | PAKISTAN | 04-JUN-12 00:00:00 | 37500
 sales_asia | 20 | 3788b | INDIA | 21-SEP-12 00:00:00 | 5090
 sales_asia | 20 | 4519a | INDIA | 18-OCT-12 00:00:00 | 650000
 sales_asia | 20 | 4519b | INDIA | 02-DEC-12 00:00:00 | 5090
(10 rows)

This command creates a table n_america that matches the definition of the sales table:

CREATE TABLE n_america
(
 dept_no number,
 part_no varchar2,
 country varchar2(20),
 date date,
 amount number

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 816

);

This command adds data to the n_america table. The data conforms to the partitioning rules of the americas partition.

INSERT INTO n_america VALUES
 (40, '9519b', 'US', '12-Apr-2012', '145000'),
 (40, '4577b', 'US', '11-Nov-2012', '25000'),
 (30, '7588b', 'CANADA', '14-Dec-2012', '50000'),
 (30, '9519b', 'CANADA', '01-Feb-2012', '75000'),
 (30, '4519b', 'CANADA', '08-Apr-2012', '120000'),
 (40, '3788a', 'US', '12-May-2012', '4950'),
 (40, '4788a', 'US', '23-Sept-2012', '4950'),
 (40, '4788b', 'US', '09-Oct-2012', '15000');

This command swaps the table into the partitioned table:

ALTER TABLE sales
 EXCHANGE PARTITION americas
 WITH TABLE n_america;

Querying the sales table shows that the contents of the n_america table were exchanged for the contents of the americas partition:

edb=# SELECT tableoid::regclass, * FROM sales;
 tableoid | dept_no | part_no | country | date | amount
----------------+---------+---------+----------+--------------------+--------
 sales_americas | 40 | 9519b | US | 12-APR-12 00:00:00 | 145000
 sales_americas | 40 | 4577b | US | 11-NOV-12 00:00:00 | 25000
 sales_americas | 30 | 7588b | CANADA | 14-DEC-12 00:00:00 | 50000
 sales_americas | 30 | 9519b | CANADA | 01-FEB-12 00:00:00 | 75000
 sales_americas | 30 | 4519b | CANADA | 08-APR-12 00:00:00 | 120000
 sales_americas | 40 | 3788a | US | 12-MAY-12 00:00:00 | 4950
 sales_americas | 40 | 4788a | US | 23-SEP-12 00:00:00 | 4950
 sales_americas | 40 | 4788b | US | 09-OCT-12 00:00:00 | 15000
 sales_europe | 10 | 4519b | FRANCE | 17-JAN-12 00:00:00 | 45000
 sales_europe | 10 | 9519b | ITALY | 07-JUL-12 00:00:00 | 15000
 sales_europe | 10 | 9519a | FRANCE | 18-AUG-12 00:00:00 | 650000
 sales_europe | 10 | 9519b | FRANCE | 18-AUG-12 00:00:00 | 650000
 sales_asia | 20 | 3788a | INDIA | 01-MAR-12 00:00:00 | 75000
 sales_asia | 20 | 3788a | PAKISTAN | 04-JUN-12 00:00:00 | 37500
 sales_asia | 20 | 3788b | INDIA | 21-SEP-12 00:00:00 | 5090
 sales_asia | 20 | 4519a | INDIA | 18-OCT-12 00:00:00 | 650000
 sales_asia | 20 | 4519b | INDIA | 02-DEC-12 00:00:00 | 5090
(17 rows)

Querying the n_america table shows that the row that was previously stored in the americas partition was moved to the n_america table:

edb=# SELECT tableoid::regclass, * FROM n_america;
 tableoid | dept_no | part_no | country | date | amount
-----------+---------+---------+---------+--------------------+--------
 n_america | 40 | 9519b | US | 12-APR-12 00:00:00 | 145000
(1 row)

21.3.7 ALTER TABLE...MOVE PARTITION

Use the ALTER TABLE… MOVE PARTITION command to move a partition to a different tablespace. The command takes two forms.

The first form moves a partition to a new tablespace:

ALTER TABLE <table_name>
 MOVE PARTITION <partition_name>
 TABLESPACE <tablespace_name>;

The second form moves a subpartition to a new tablespace:

ALTER TABLE <table_name>
 MOVE SUBPARTITION <subpartition_name>
 TABLESPACE <tablespace_name>;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 817

Description

The ALTER TABLE…MOVE PARTITION command moves a partition from its current tablespace to a different tablespace. The ALTER TABLE… MOVE PARTITION command can move partitions
of a LIST , RANGE or HASH partitioned table.

The same behavior applies for the subpartition_name used with the MOVE SUBPARTITION clause.

You must own the table to invoke ALTER TABLE… MOVE PARTITION or ALTER TABLE… MOVE SUBPARTITION .

Parameters

table_name

The name (optionally schema-qualified) of the table in which the partition or subpartition resides.

partition_name

The name of the partition to move.

subpartition_name

The name of the subpartition to move.

tablespace_name

The name of the tablespace to which the partition or subpartition is moved.

21.3.7.1 Example: Moving a partition to a different tablespace

This following example moves a partition of the sales table from one tablespace to another.

Create the sales table with the command:

CREATE TABLE sales
(
 dept_no number,
 part_no varchar2,
 country varchar2(20),
 date date,
 amount number
)
PARTITION BY RANGE(date)
(
 PARTITION q1_2012 VALUES LESS THAN ('2012-Apr-01'),
 PARTITION q2_2012 VALUES LESS THAN ('2012-Jul-01'),
 PARTITION q3_2012 VALUES LESS THAN ('2012-Oct-01'),
 PARTITION q4_2012 VALUES LESS THAN ('2013-Jan-01') TABLESPACE ts_1,
 PARTITION q1_2013 VALUES LESS THAN ('2013-Mar-01') TABLESPACE ts_2
);

Querying the ALL_TAB_PARTITIONS view confirms that the partitions reside on the expected servers and tablespaces:

edb=# SELECT partition_name, tablespace_name FROM ALL_TAB_PARTITIONS;
 partition_name | tablespace_name
----------------+-----------------
 Q1_2012 |
 Q2_2012 |
 Q3_2012 |
 Q4_2012 | TS_1
 Q1_2013 | TS_2
(5 rows)

After preparing the target tablespace, invoke the ALTER TABLE… MOVE PARTITION command to move the q1_2013 partition from a tablespace named ts_2 to a tablespace named ts_3 :

ALTER TABLE sales MOVE PARTITION q1_2013 TABLESPACE ts_3;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 818

Querying the ALL_TAB_PARTITIONS view shows that the move was successful:

edb=# SELECT partition_name, tablespace_name FROM ALL_TAB_PARTITIONS;
 partition_name | tablespace_name
----------------+-----------------
 Q1_2012 |
 Q2_2012 |
 Q3_2012 |
 Q4_2012 | TS_1
 Q1_2013 | TS_3
(5 rows)

21.3.8 ALTER TABLE...RENAME PARTITION

Use the ALTER TABLE… RENAME PARTITION command to rename a table partition. The syntax takes two forms.

The first form renames a partition:

ALTER TABLE <table_name>
 RENAME PARTITION <partition_name>
 TO <new_name>;

The second form renames a subpartition:

ALTER TABLE <table_name>
 RENAME SUBPARTITION <subpartition_name>
 TO <new_name>;

Description

The ALTER TABLE… RENAME PARTITION command renames a partition.

The behavior for subpartition_name is the same as for the same variable used with the RENAME SUBPARTITION clause.

You must own the specified table to invoke ALTER TABLE… RENAME PARTITION or ALTER TABLE… RENAME SUBPARTITION .

Parameters

table_name

The name (optionally schema-qualified) of the table in which the partition or subpartition resides.

partition_name

The name of the partition to rename.

subpartition_name

The name of the subpartition to rename.

new_name

The new name of the partition or subpartition.

21.3.8.1 Example: Renaming a partition

This command creates a list-partitioned table named sales :

CREATE TABLE sales
(

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 819

 dept_no number,
 part_no varchar2,
 country varchar2(20),
 date date,
 amount number
)
PARTITION BY LIST(country)
(
 PARTITION europe VALUES('FRANCE', 'ITALY'),
 PARTITION asia VALUES('INDIA', 'PAKISTAN'),
 PARTITION americas VALUES('US', 'CANADA')
);

Query the ALL_TAB_PARTITIONS view to display the partition names:

edb=# SELECT partition_name, high_value FROM ALL_TAB_PARTITIONS;
 partition_name | high_value
----------------+---------------------
 EUROPE | 'FRANCE', 'ITALY'
 ASIA | 'INDIA', 'PAKISTAN'
 AMERICAS | 'US', 'CANADA'
(3 rows)

This command renames the americas partition to n_america :

ALTER TABLE sales
 RENAME PARTITION americas TO n_america;

Query the ALL_TAB_PARTITIONS view to show that the partition was successfully renamed:

edb=# SELECT partition_name, high_value FROM ALL_TAB_PARTITIONS;
 partition_name | high_value
----------------+---------------------
 EUROPE | 'FRANCE', 'ITALY'
 ASIA | 'INDIA', 'PAKISTAN'
 N_AMERICA | 'US', 'CANADA'
(3 rows)

21.3.9 ALTER TABLE...SET INTERVAL

Use the ALTER TABLE… SET INTERVAL command to convert an existing range-partitioned table to an interval range-partitioned table. The database creates a partition of a specified range or
interval for the partitioned table when you set INTERVAL . The syntax is:

ALTER TABLE <table_name> SET INTERVAL (<constant> | <expression>);

To disable an interval range partitioned table and convert it to a range-partitioned table, the syntax is:

ALTER TABLE <table_name> SET INTERVAL ();

Parameters

table_name

The name (optionally schema-qualified) of the range-partitioned table.

constant | expression

Specifies a NUMERIC , DATE , or TIME value.

Description

You can use the ALTER TABLE… SET INTERVAL command to convert the range-partitioned table to use interval range partitioning. The command creates a new partition of a specified interval.
You can then insert data into the new partition.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 820

You can use the SET INTERVAL () command to disable interval range partitioning. The database converts an interval range-partitioned table to range partitioned and sets the boundaries of the
interval range partitions to the boundaries for the range partitions.

21.3.9.1 Example: Setting an interval range partition

This example sets an interval range partition of the sales table. It converts the table from range partitioning to start using monthly interval range partitioning.

This command creates the sales table:

CREATE TABLE sales
(
 prod_id int,
 prod_quantity int,
 sold_month date
)
PARTITION BY RANGE(sold_month)
(
 PARTITION p1
 VALUES LESS THAN('15-JAN-2019'),
 PARTITION p2
 VALUES LESS THAN('15-FEB-2019')
);

Set the interval range partitioning from the sales table:

ALTER TABLE sales SET INTERVAL (NUMTOYMINTERVAL(1, 'MONTH'));

Query the ALL_TAB_PARTITIONS view before a database creates an interval range partition:

edb=# SELECT partition_name, high_value from ALL_TAB_PARTITIONS;
 partition_name | high_value
----------------+----------------------
 P1 | '15-JAN-19 00:00:00'
 P2 | '15-FEB-19 00:00:00'
(2 rows)

Add data to the sales table that exceeds the high value of a range partition:

edb=# INSERT INTO sales VALUES (1,100,'05-APR-2019');
INSERT 0 1

Query the ALL_TAB_PARTITIONS view again after the INSERT statement. The interval range partition is successfully created and data is inserted. A system-generated name of the interval range
partition is created that varies for each session.

edb=# SELECT partition_name, high_value from ALL_TAB_PARTITIONS;
 partition_name | high_value
----------------+----------------------
 P1 | '15-JAN-19 00:00:00'
 P2 | '15-FEB-19 00:00:00'
 SYS916340103 | '15-APR-19 00:00:00'
(3 rows)

21.3.10 ALTER TABLE...SET [PARTITIONING] AUTOMATIC

Use the ALTER TABLE… SET [PARTITIONING] AUTOMATIC command to convert an existing list-partitioned table to automatic list partitioning. The database automatically creates a
partition based on a new value inserted into a table when AUTOMATIC is set. The syntax is:

ALTER TABLE <table_name> SET [PARTITIONING] AUTOMATIC;

To disable AUTOMATIC LIST PARTITIONING and convert to regular LIST partition, the syntax is:

ALTER TABLE <table_name> SET [PARTITIONING] MANUAL;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 821

Parameters

table_name

The name (optionally schema-qualified) of the list-partitioned table.

Description

You can use the ALTER TABLE… SET [PARTITIONING] AUTOMATIC command to convert the regular list-partitioned table to use automatic partitioning. A partition is created, and you can
insert data into the new partition.

You can use the ALTER TABLE… SET [PARTITIONING] MANUAL command to disable the automatic list partitioning. The database converts an automatic list-partitioned table to a regular list-
partitioned table.

21.3.10.1 Example: Setting an AUTOMATIC list partition

This example modifies a table sales to use automatic list partitioning instead of regular list partitioning.

This command creates a sales table:

CREATE TABLE sales
(
 dept_no number,
 part_no varchar2,
 sales_state varchar2(20),
 date date,
 amount number
)
PARTITION BY LIST(sales_state)
(
 PARTITION P_KAN VALUES('KANSAS'),
 PARTITION P_TEX VALUES('TEXAS')
);

Implement automatic list partitioning on the sales table:

ALTER TABLE sales SET AUTOMATIC;

Query the ALL_TAB_PARTITIONS view to show that an existing partition is successfully created:

edb=# SELECT table_name, partition_name, high_value FROM ALL_TAB_PARTITIONS;
 table_name | partition_name | high_value
------------+----------------+------------
 SALES | P_KAN | 'KANSAS'
 SALES | P_TEX | 'TEXAS'
(2 rows)

Insert data into the sales table to create a partition and add the value:

edb=# INSERT INTO sales VALUES (1, 'VIR', 'VIRGINIA');
INSERT 0 1

Query the ALL_TAB_PARTITIONS view again after the insert. The automatic list partition is successfully created and data is inserted. A system-generated name of the partition is created that varies
for each session.

edb=# SELECT table_name, partition_name, high_value FROM ALL_TAB_PARTITIONS;
 table_name | partition_name | high_value
------------+----------------+------------
 SALES | P_KAN | 'KANSAS'
 SALES | P_TEX | 'TEXAS'
 SALES | SYS106900103 | 'VIRGINIA'
(3 rows)

21.3.11 ALTER TABLE...SET SUBPARTITION TEMPLATE

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 822

Use the ALTER TABLE… SET SUBPARTITION TEMPLATE command to update the subpartition template for a table. The command syntax comes in several forms.

To set the subpartition number for HASH subpartitions only:

ALTER TABLE <table_name> SET SUBPARTITION TEMPLATE <num>;

To set a subpartition description for an existing partitioned table:

ALTER TABLE <table_name>
[SET SUBPARTITION TEMPLATE (<subpartition_template_description>)]

To reset the subpartitions number to default using the subpartition template:

ALTER TABLE <table_name> SET SUBPARTITION TEMPLATE ();

Parameters

table_name

The name (optionally schema-qualified) of the partitioned table.

num

The number of subpartitions to add for a partition.

subpartition_template_description

The list of subpartition details with subpartition name, subpartition bound, and tablespace name.

Description

You can use the ALTER TABLE… SET SUBPARTITION TEMPLATE command to update the subpartition template for range, list, or hash-partitioned table. If you're specifying a subpartition
descriptor for a partition, use a subpartition descriptor instead of a subpartition template. You can use the subpartition template whenever a subpartition descriptor isn't specified for a partition. If you
don't specify either the subpartition descriptor or subpartition template, then by default a single subpartition is created.

For more information about creating a subpartition template, see CREATE TABLE...PARTITION BY.

Note

The partitions added to a table after invoking ALTER TABLE… SET SUBPARTITION TEMPLATE command use the new SUBPARTITION TEMPLATE .

You can use the ALTER TABLE… SET SUBPARTITION TEMPLATE () command to reset the subpartitions number to default 1 .

21.3.11.1 Example: Setting a SUBPARTITION TEMPLATE

This example creates a table sales that's range partitioned by date and hash-subpartitioned by country .

This command creates the sales table:

CREATE TABLE sales
(
 dept_no number,
 part_no varchar2,
 country varchar2(20),
 date date,
 amount number
)
PARTITION BY RANGE (date) SUBPARTITION BY HASH (country) SUBPARTITIONS 2
(
 PARTITION q1_2012
 VALUES LESS THAN('2012-Apr-01'),
 PARTITION q2_2012
 VALUES LESS THAN('2012-Jul-01'),

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 823

 PARTITION q3_2012
 VALUES LESS THAN('2012-Oct-01'),
 PARTITION q4_2012
 VALUES LESS THAN('2013-Jan-01')
);

The table definition creates four partitions: q1_2012 , q2_2012 , q3_2012 , and q4_2012 . Each partition consists of two subpartitions with system-generated names.

edb=# SELECT table_name, partition_name, subpartition_name FROM
ALL_TAB_SUBPARTITIONS WHERE table_name = 'SALES' ORDER BY 1,2;
 table_name | partition_name | subpartition_name
------------+----------------+-------------------
 SALES | Q1_2012 | SYS0101
 SALES | Q1_2012 | SYS0102
 SALES | Q2_2012 | SYS0103
 SALES | Q2_2012 | SYS0104
 SALES | Q3_2012 | SYS0105
 SALES | Q3_2012 | SYS0106
 SALES | Q4_2012 | SYS0107
 SALES | Q4_2012 | SYS0108
(8 rows)

Set the subpartition template on the sales table:

ALTER TABLE sales SET SUBPARTITION TEMPLATE 8;

The sales table is modified, with the subpartition template set to eight. If you try to add a partition q1_2013 , a new partition is created and consists of eight subpartitions.

ALTER TABLE sales ADD PARTITION q1_2013 VALUES LESS THAN ('2013-Apr-01');

Query the ALL_TAB_PARTITIONS view. The q1_2013 partition is successfully added. It has eight subpartitions that have system-generated names.

edb=# SELECT table_name, partition_name, subpartition_name FROM
ALL_TAB_SUBPARTITIONS WHERE table_name = 'SALES' and partition_name =
'Q1_2013' ORDER BY 1,2;
 table_name | partition_name | subpartition_name
------------+----------------+-------------------
 SALES | Q1_2013 | SYS0113
 SALES | Q1_2013 | SYS0114
 SALES | Q1_2013 | SYS0115
 SALES | Q1_2013 | SYS0116
 SALES | Q1_2013 | SYS0117
 SALES | Q1_2013 | SYS0118
 SALES | Q1_2013 | SYS0119
 SALES | Q1_2013 | SYS0120
(8 rows)

Example: Adding a subpartition template for LIST/LIST partitioned table

This example creates a table sales that's list-partitioned by country. It is subpartitioned using the list by the date column.

CREATE TABLE sales
(
 dept_no number,
 part_no varchar2,
 country varchar2(20),
 date date,
 amount number
)
PARTITION BY LIST (country)
 SUBPARTITION BY LIST (date)
 SUBPARTITION TEMPLATE
(
 SUBPARTITION europe VALUES('2021-Jan-01') TABLESPACE ts1,
 SUBPARTITION asia VALUES('2021-Apr-01') TABLESPACE ts2,
 SUBPARTITION americas VALUES('2021-Jul-01') TABLESPACE ts3
)
(
 PARTITION q1_2021 VALUES('2021-Jul-01')
);

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 824

The SELECT statement shows partition q1_2021 consisting of three subpartitions stored in tablespaces ts1 , ts2 , and ts3 .

edb=# SELECT partition_name, subpartition_name, high_value, tablespace_name FROM
DBA_TAB_SUBPARTITIONS WHERE table_name = 'SALES' ORDER BY 1,2;
 partition_name | subpartition_name | high_value | tablespace_name
----------------+-------------------+----------------------+-----------------
 Q1_2021 | Q1_2021_AMERICAS | '01-JUL-21 00:00:00' | TS3
 Q1_2021 | Q1_2021_ASIA | '01-APR-21 00:00:00' | TS2
 Q1_2021 | Q1_2021_EUROPE | '01-JAN-21 00:00:00' | TS1
(3 rows)

This command adds a partition named q2_2021 to the sales table:

ALTER TABLE sales ADD PARTITION q2_2021 VALUES('US', 'CANADA');

This command shows that the sales table includes the q2_2021 partition:

edb=# SELECT partition_name, subpartition_name, high_value, tablespace_name FROM
DBA_TAB_SUBPARTITIONS WHERE table_name = 'SALES' ORDER BY 1,2;
 partition_name | subpartition_name | high_value | tablespace_name
----------------+-------------------+----------------------+-----------------
 Q1_2021 | Q1_2021_AMERICAS | '01-JUL-21 00:00:00' | TS3
 Q1_2021 | Q1_2021_ASIA | '01-APR-21 00:00:00' | TS2
 Q1_2021 | Q1_2021_EUROPE | '01-JAN-21 00:00:00' | TS1
 Q2_2021 | Q2_2021_AMERICAS | '01-JUL-21 00:00:00' | TS3
 Q2_2021 | Q2_2021_ASIA | '01-APR-21 00:00:00' | TS2
 Q2_2021 | Q2_2021_EUROPE | '01-JAN-21 00:00:00' | TS1
(6 rows)

Example: Adding a subpartition template for LIST/RANGE partitioned table

This example creates a table sales list-partitioned by country and subpartitioned using range partitioning by the date column:

CREATE TABLE sales
(
 dept_no number,
 part_no varchar2,
 country varchar2(20),
 date date,
 amount number
)
PARTITION BY LIST(country)
 SUBPARTITION BY RANGE(date)
 SUBPARTITION TEMPLATE
(
 SUBPARTITION europe VALUES LESS THAN('2021-Jan-01') TABLESPACE ts1,
 SUBPARTITION asia VALUES LESS THAN('2021-Apr-01') TABLESPACE ts2,
 SUBPARTITION americas VALUES LESS THAN('2021-Jul-01') TABLESPACE ts3
)
(
 PARTITION q1_2021 VALUES ('2021-Jul-01')
);

The sales table creates a partition named q1_2021 that includes three subpartitions stored in tablespaces ts1 , ts2 , and ts3 .

edb=# SELECT partition_name, subpartition_name, high_value, tablespace_name FROM
DBA_TAB_SUBPARTITIONS WHERE table_name = 'SALES' ORDER BY 1,2;
 partition_name | subpartition_name | high_value | tablespace_name
----------------+-------------------+----------------------+-----------------
 Q1_2021 | Q1_2021_AMERICAS | '01-JUL-21 00:00:00' | TS3
 Q1_2021 | Q1_2021_ASIA | '01-APR-21 00:00:00' | TS2
 Q1_2021 | Q1_2021_EUROPE | '01-JAN-21 00:00:00' | TS1
(3 rows)

This command adds a partition named q2_2021 to the sales table:

ALTER TABLE sales ADD PARTITION q2_2021 VALUES('INDIA', 'PAKISTAN');

This command shows that the sales table includes the q2_2021 partition:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 825

edb=# SELECT partition_name, subpartition_name, high_value, tablespace_name FROM
DBA_TAB_SUBPARTITIONS WHERE table_name = 'SALES' ORDER BY 1,2;
 partition_name | subpartition_name | high_value | tablespace_name
----------------+-------------------+----------------------+-----------------
 Q1_2021 | Q1_2021_AMERICAS | '01-JUL-21 00:00:00' | TS3
 Q1_2021 | Q1_2021_ASIA | '01-APR-21 00:00:00' | TS2
 Q1_2021 | Q1_2021_EUROPE | '01-JAN-21 00:00:00' | TS1
 Q2_2021 | Q2_2021_AMERICAS | '01-JUL-21 00:00:00' | TS3
 Q2_2021 | Q2_2021_ASIA | '01-APR-21 00:00:00' | TS2
 Q2_2021 | Q2_2021_EUROPE | '01-JAN-21 00:00:00' | TS1
(6 rows)

Example: Adding a subpartition template for LIST/HASH partitioned table

This example creates a list-partitioned table sales that's first partitioned by country and then hash-subpartitioned using the value of the dept_no column:

CREATE TABLE sales
(
 dept_no number,
 part_no varchar2,
 country varchar2(20),
 date date,
 amount number
)
PARTITION BY LIST(country)
 SUBPARTITION BY HASH (dept_no)
 SUBPARTITION TEMPLATE
(
 SUBPARTITION europe TABLESPACE ts1,
 SUBPARTITION asia TABLESPACE ts2,
 SUBPARTITION americas TABLESPACE ts3
)
(
 PARTITION q1_2021 VALUES ('2021-Jul-01')
);

The sales table creates a q1_2021 partition that includes three subpartitions stored in tablespaces ts1 , ts2 , and ts3 :

edb=# SELECT partition_name, subpartition_name, high_value, tablespace_name
FROM DBA_TAB_SUBPARTITIONS WHERE table_name = 'SALES' ORDER BY 1,2;
 partition_name | subpartition_name | high_value | tablespace_name
----------------+-------------------+------------+-----------------
 Q1_2021 | Q1_2021_AMERICAS | | TS3
 Q1_2021 | Q1_2021_ASIA | | TS2
 Q1_2021 | Q1_2021_EUROPE | | TS1
(3 rows)

This command adds a partition named q2_2021 to the sales table:

ALTER TABLE sales ADD PARTITION q2_2021 VALUES('FRANCE', 'ITALY');

This command shows that the sales table includes the q2_2021 partition:

edb=# SELECT partition_name, subpartition_name, high_value, tablespace_name
FROM DBA_TAB_SUBPARTITIONS WHERE table_name = 'SALES' ORDER BY 1,2;
 partition_name | subpartition_name | high_value | tablespace_name
----------------+-------------------+------------+-----------------
 Q1_2021 | Q1_2021_AMERICAS | | TS3
 Q1_2021 | Q1_2021_ASIA | | TS2
 Q1_2021 | Q1_2021_EUROPE | | TS1
 Q2_2021 | Q2_2021_AMERICAS | | TS3
 Q2_2021 | Q2_2021_ASIA | | TS2
 Q2_2021 | Q2_2021_EUROPE | | TS1
(6 rows)

Examples: Resetting a SUBPARTITION TEMPLATE

This example creates a list-partitioned table sales that's list partitioned by country and hash subpartitioned by part_no .

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 826

This command creates the sales table:

CREATE TABLE sales
(
 dept_no number,
 part_no varchar2,
 country varchar2(20),
 date date,
 amount number
)
PARTITION BY LIST (country) SUBPARTITION BY HASH (part_no) SUBPARTITIONS 3
(
 PARTITION europe VALUES('FRANCE', 'ITALY'),
 PARTITION asia VALUES('INDIA', 'PAKISTAN'),
 PARTITION americas VALUES('US', 'CANADA')
);

The table contains three partitions: americas , asia , and europe . Each partition consists of three subpartitions with system-generated names.

edb=# SELECT table_name, partition_name, subpartition_name FROM
ALL_TAB_SUBPARTITIONS WHERE table_name = 'SALES' ORDER BY 1,2;
 table_name | partition_name | subpartition_name
------------+----------------+-------------------
 SALES | AMERICAS | SYS0109
 SALES | AMERICAS | SYS0107
 SALES | AMERICAS | SYS0108
 SALES | ASIA | SYS0105
 SALES | ASIA | SYS0104
 SALES | ASIA | SYS0106
 SALES | EUROPE | SYS0101
 SALES | EUROPE | SYS0103
 SALES | EUROPE | SYS0102
(9 rows)

This command resets the subpartition template on the sales table:

ALTER TABLE sales SET SUBPARTITION TEMPLATE ();

The sales table is modified with the subpartition template reset to default 1 . Try to add a new partition east_asia using this command:

ALTER TABLE sales ADD PARTITION east_asia VALUES ('CHINA', 'KOREA');

Query the ALL_TAB_PARTITIONS view. A new partition east_asia is created consisting of one subpartition with a system-generated name.

edb=# SELECT table_name, partition_name, subpartition_name FROM
ALL_TAB_SUBPARTITIONS WHERE table_name = 'SALES' and partition_name =
'EAST_ASIA' ORDER BY 1,2;
 table_name | partition_name | subpartition_name
------------+----------------+-------------------
 SALES | EAST_ASIA | SYS0113
(1 row)

This example creates a table sales list-partitioned by country and subpartitioned using range partitioning by the date column:

CREATE TABLE sales
(
 dept_no number,
 part_no varchar2,
 country varchar2(20),
 date date,
 amount number
)
PARTITION BY LIST(country)
 SUBPARTITION BY RANGE(date)
 SUBPARTITION TEMPLATE
(
 SUBPARTITION europe VALUES LESS THAN('2021-Jan-01') TABLESPACE ts1,
 SUBPARTITION asia VALUES LESS THAN('2021-Apr-01') TABLESPACE ts2,
 SUBPARTITION americas VALUES LESS THAN('2021-Jul-01') TABLESPACE ts3
)
(
 PARTITION q1_2021 VALUES ('2021-Jul-01')
);

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 827

The sales table contains a partition named q1_2021 that includes three subpartitions stored in tablespaces ts1 , ts2 , and ts3 .

edb=# SELECT partition_name, subpartition_name, high_value, tablespace_name
FROM DBA_TAB_SUBPARTITIONS WHERE table_name = 'SALES' ORDER BY 1,2;
 partition_name | subpartition_name | high_value | tablespace_name
----------------+-------------------+----------------------+-----------------
 Q1_2021 | Q1_2021_AMERICAS | '01-JUL-21 00:00:00' | TS3
 Q1_2021 | Q1_2021_ASIA | '01-APR-21 00:00:00' | TS2
 Q1_2021 | Q1_2021_EUROPE | '01-JAN-21 00:00:00' | TS1
(3 rows)

This command adds a partition named q2_2021 to the sales table:

ALTER TABLE sales ADD PARTITION q2_2021 VALUES('INDIA', 'PAKISTAN');

This command shows that the sales table includes the q2_2021 partition:

edb=# SELECT partition_name, subpartition_name, high_value, tablespace_name FROM
DBA_TAB_SUBPARTITIONS WHERE table_name = 'SALES' ORDER BY 1,2;
 partition_name | subpartition_name | high_value | tablespace_name
----------------+-------------------+----------------------+-----------------
 Q1_2021 | Q1_2021_AMERICAS | '01-JUL-21 00:00:00' | TS3
 Q1_2021 | Q1_2021_ASIA | '01-APR-21 00:00:00' | TS2
 Q1_2021 | Q1_2021_EUROPE | '01-JAN-21 00:00:00' | TS1
 Q2_2021 | Q2_2021_AMERICAS | '01-JUL-21 00:00:00' | TS3
 Q2_2021 | Q2_2021_ASIA | '01-APR-21 00:00:00' | TS2
 Q2_2021 | Q2_2021_EUROPE | '01-JAN-21 00:00:00' | TS1
(6 rows)

Use the ALTER TABLE... SET SUBPARTITION TEMPLATE command to specify a new subpartition template:

ALTER TABLE sales SET SUBPARTITION TEMPLATE
(
 SUBPARTITION europe VALUES LESS THAN('2021-Jan-01'),
 SUBPARTITION asia VALUES LESS THAN('2021-Apr-01') TABLESPACE ts2
);

This command adds a partition named q3_2021 to the sales table:

ALTER TABLE sales ADD PARTITION q3_2021 VALUES('US', 'CANADA');

This command shows that the sales table includes the q3_2021 partition:

edb=# SELECT partition_name, subpartition_name, high_value, tablespace_name FROM
DBA_TAB_SUBPARTITIONS WHERE table_name = 'SALES' ORDER BY 1,2;
 partition_name | subpartition_name | high_value | tablespace_name
----------------+-------------------+----------------------+-----------------
 Q1_2021 | Q1_2021_AMERICAS | '01-JUL-21 00:00:00' | TS3
 Q1_2021 | Q1_2021_ASIA | '01-APR-21 00:00:00' | TS2
 Q1_2021 | Q1_2021_EUROPE | '01-JAN-21 00:00:00' | TS1
 Q2_2021 | Q2_2021_AMERICAS | '01-JUL-21 00:00:00' | TS3
 Q2_2021 | Q2_2021_ASIA | '01-APR-21 00:00:00' | TS2
 Q2_2021 | Q2_2021_EUROPE | '01-JAN-21 00:00:00' | TS1
 Q3_2021 | Q3_2021_ASIA | '01-APR-21 00:00:00' | TS2
 Q3_2021 | Q3_2021_EUROPE | '01-JAN-21 00:00:00' | PG_DEFAULT
(8 rows)

This command resets or drops the subpartition template on the sales table:

ALTER TABLE sales SET SUBPARTITION TEMPLATE ();

This command adds a partition named q4_2021 to the sales table:

ALTER TABLE sales ADD PARTITION q4_2021 VALUES('FRANCE', 'ITALY');

The SELECT statement shows partition q4_2021 consists of a subpartition with a system-generated name:

edb=# SELECT partition_name, subpartition_name, high_value, tablespace_name FROM
DBA_TAB_SUBPARTITIONS WHERE table_name = 'SALES' ORDER BY 1,2;
 partition_name | subpartition_name | high_value | tablespace_name

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 828

----------------+-------------------+----------------------+-----------------
 Q1_2021 | Q1_2021_AMERICAS | '01-JUL-21 00:00:00' | TS3
 Q1_2021 | Q1_2021_ASIA | '01-APR-21 00:00:00' | TS2
 Q1_2021 | Q1_2021_EUROPE | '01-JAN-21 00:00:00' | TS1
 Q2_2021 | Q2_2021_AMERICAS | '01-JUL-21 00:00:00' | TS3
 Q2_2021 | Q2_2021_ASIA | '01-APR-21 00:00:00' | TS2
 Q2_2021 | Q2_2021_EUROPE | '01-JAN-21 00:00:00' | TS1
 Q3_2021 | Q3_2021_ASIA | '01-APR-21 00:00:00' | TS2
 Q3_2021 | Q3_2021_EUROPE | '01-JAN-21 00:00:00' | PG_DEFAULT
 Q4_2021 | SYS0112 | MAXVALUE | PG_DEFAULT
(9 rows)

21.3.12 DROP TABLE

Use the PostgreSQL DROP TABLE command to remove a partitioned table definition, its partitions and subpartitions, and the table contents. The syntax is:

DROP TABLE <table_name>

Parameters

table_name

The name (optionally schema-qualified) of the partitioned table.

Description

The DROP TABLE command removes an entire table and the data that resides in that table. Deleting a table deletes any partitions or subpartitions of that table.

To use the DROP TABLE command, you must be the owner of the partitioning root, a member of a group that owns the table, the schema owner, or a database superuser.

Example

To delete a table, connect to the controller node (the host of the partitioning root), and invoke the DROP TABLE command. For example, delete the sales table:

DROP TABLE sales;

The server confirms that the table was dropped:

edb=# drop table sales;
DROP TABLE
edb=#

For more information about the DROP TABLE command, see the PostgreSQL core documentation.

21.3.13 ALTER TABLE...DROP PARTITION

Use the ALTER TABLE… DROP PARTITION command to delete a partition definition and the data stored in that partition. The syntax is:

ALTER TABLE <table_name> DROP PARTITION <partition_name>;

Parameters

table_name

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 829

https://www.postgresql.org/docs/current/static/sql-droptable.html

The name (optionally schema-qualified) of the partitioned table.

partition_name

The name of the partition to delete.

Description

The ALTER TABLE… DROP PARTITION command deletes a partition and any data stored on that partition. The ALTER TABLE… DROP PARTITION command can drop partitions of a LIST or
RANGE partitioned table. This command doesn't work on a HASH partitioned table. Deleting a partition deletes its subpartitions.

To use the DROP PARTITION clause, you must be the owner of the partitioning root, a member of a group that owns the table, or have database superuser or administrative privileges.

21.3.13.1 Example: Deleting a partition

This example deletes a partition of the sales table.

Create the sales table:

CREATE TABLE sales
(
 dept_no number,
 part_no varchar2,
 country varchar2(20),
 date date,
 amount number
)
PARTITION BY LIST(country)
(
 PARTITION europe VALUES('FRANCE', 'ITALY'),
 PARTITION asia VALUES('INDIA', 'PAKISTAN'),
 PARTITION americas VALUES('US', 'CANADA')
);

Query the ALL_TAB_PARTITIONS view to display the partition names:

edb=# SELECT partition_name, high_value FROM ALL_TAB_PARTITIONS;
 partition_name | high_value
----------------+---------------------
 EUROPE | 'FRANCE', 'ITALY'
 ASIA | 'INDIA', 'PAKISTAN'
 AMERICAS | 'US', 'CANADA'
(3 rows)

Delete the americas partition from the sales table:

ALTER TABLE sales DROP PARTITION americas;

Query the ALL_TAB_PARTITIONS view to show that the partition was successfully deleted:

edb=# SELECT partition_name, high_value FROM ALL_TAB_PARTITIONS;
 partition_name | high_value
----------------+---------------------
 EUROPE | 'FRANCE', 'ITALY'
 ASIA | 'INDIA', 'PAKISTAN'
(2 rows)

21.3.14 ALTER TABLE...DROP SUBPARTITION

Use the ALTER TABLE… DROP SUBPARTITION command to drop a subpartition definition and the data stored in that subpartition. The syntax is:

ALTER TABLE <table_name> DROP SUBPARTITION <subpartition_name>;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 830

Parameters

table_name

The name (optionally schema-qualified) of the partitioned table.

subpartition_name

The name of the subpartition to delete.

Description

The ALTER TABLE… DROP SUBPARTITION command deletes a subpartition and the data stored in that subpartition. To use the DROP SUBPARTITION clause, you must be the owner of the
partitioning root, a member of a group that owns the table, or have superuser or administrative privileges.

21.3.14.1 Example: Deleting a subpartition

This example deletes a subpartition of the sales table.

Create the sales table:

CREATE TABLE sales
(
 dept_no number,
 part_no varchar2,
 country varchar2(20),
 date date,
 amount number
)
PARTITION BY RANGE(date)
 SUBPARTITION BY LIST (country)
 (
 PARTITION first_half_2012 VALUES LESS THAN('01-JUL-2012')
 (
 SUBPARTITION europe VALUES ('ITALY', 'FRANCE'),
 SUBPARTITION americas VALUES ('CANADA', 'US'),
 SUBPARTITION asia VALUES ('PAKISTAN', 'INDIA')
),
 PARTITION second_half_2012 VALUES LESS THAN('01-JAN-2013')
);

Query the ALL_TAB_SUBPARTITIONS view to display the subpartition names:

edb=# SELECT subpartition_name, high_value FROM ALL_TAB_SUBPARTITIONS;
 subpartition_name | high_value
-------------------+---------------------
 EUROPE | 'ITALY', 'FRANCE'
 AMERICAS | 'CANADA', 'US'
 ASIA | 'PAKISTAN', 'INDIA'
 SYS0101 | DEFAULT
(4 rows)

Delete the americas subpartition from the sales table:

ALTER TABLE sales DROP SUBPARTITION americas;

Query the ALL_TAB_SUBPARTITIONS view to show that the subpartition was successfully deleted:

edb=# SELECT subpartition_name, high_value FROM ALL_TAB_SUBPARTITIONS;
 subpartition_name | high_value
-------------------+---------------------
 EUROPE | 'ITALY', 'FRANCE'
 ASIA | 'PAKISTAN', 'INDIA'
 SYS0101 | DEFAULT
(3 rows)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 831

21.3.15 TRUNCATE TABLE

Use the TRUNCATE TABLE command to remove the contents of a table while preserving the table definition. Truncating a table also truncates the table's partitions or subpartitions. The syntax is:

TRUNCATE TABLE <table_name>

Parameters

table_name

The name (optionally schema-qualified) of the partitioned table.

Description

The TRUNCATE TABLE command removes an entire table and the data that resides in that table. Deleting a table deletes any partitions or subpartitions of that table.

To use the TRUNCATE TABLE command, you must be the owner of the partitioning root, a member of a group that owns the table, the schema owner, or a database superuser.

21.3.15.1 Example: Emptying a table

This example removes the data from the sales table.

Create the sales table:

CREATE TABLE sales
(
 dept_no number,
 part_no varchar2,
 country varchar2(20),
 date date,
 amount number
)
PARTITION BY LIST(country)
(
 PARTITION europe VALUES('FRANCE', 'ITALY'),
 PARTITION asia VALUES('INDIA', 'PAKISTAN'),
 PARTITION americas VALUES('US', 'CANADA')
);

Populate the sales table:

INSERT INTO sales VALUES
 (10, '4519b', 'FRANCE', '17-Jan-2012', '45000'),
 (20, '3788a', 'INDIA', '01-Mar-2012', '75000'),
 (40, '9519b', 'US', '12-Apr-2012', '145000'),
 (20, '3788a', 'PAKISTAN', '04-Jun-2012', '37500'),
 (40, '4577b', 'US', '11-Nov-2012', '25000'),
 (30, '7588b', 'CANADA', '14-Dec-2012', '50000'),
 (30, '9519b', 'CANADA', '01-Feb-2012', '75000'),
 (30, '4519b', 'CANADA', '08-Apr-2012', '120000'),
 (40, '3788a', 'US', '12-May-2012', '4950'),
 (10, '9519b', 'ITALY', '07-Jul-2012', '15000'),
 (10, '9519a', 'FRANCE', '18-Aug-2012', '650000'),
 (10, '9519b', 'FRANCE', '18-Aug-2012', '650000'),
 (20, '3788b', 'INDIA', '21-Sept-2012', '5090'),
 (40, '4788a', 'US', '23-Sept-2012', '4950'),
 (40, '4788b', 'US', '09-Oct-2012', '15000'),
 (20, '4519a', 'INDIA', '18-Oct-2012', '650000'),
 (20, '4519b', 'INDIA', '2-Dec-2012', '5090');

Query the sales table to show that the partitions have data:

edb=# SELECT tableoid::regclass, * FROM sales;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 832

 tableoid | dept_no | part_no | country | date | amount
----------------+---------+---------+----------+--------------------+--------
 sales_americas | 40 | 9519b | US | 12-APR-12 00:00:00 | 145000
 sales_americas | 40 | 4577b | US | 11-NOV-12 00:00:00 | 25000
 sales_americas | 30 | 7588b | CANADA | 14-DEC-12 00:00:00 | 50000
 sales_americas | 30 | 9519b | CANADA | 01-FEB-12 00:00:00 | 75000
 sales_americas | 30 | 4519b | CANADA | 08-APR-12 00:00:00 | 120000
 sales_americas | 40 | 3788a | US | 12-MAY-12 00:00:00 | 4950
 sales_americas | 40 | 4788a | US | 23-SEP-12 00:00:00 | 4950
 sales_americas | 40 | 4788b | US | 09-OCT-12 00:00:00 | 15000
 sales_europe | 10 | 4519b | FRANCE | 17-JAN-12 00:00:00 | 45000
 sales_europe | 10 | 9519b | ITALY | 07-JUL-12 00:00:00 | 15000
 sales_europe | 10 | 9519a | FRANCE | 18-AUG-12 00:00:00 | 650000
 sales_europe | 10 | 9519b | FRANCE | 18-AUG-12 00:00:00 | 650000
 sales_asia | 20 | 3788a | INDIA | 01-MAR-12 00:00:00 | 75000
 sales_asia | 20 | 3788a | PAKISTAN | 04-JUN-12 00:00:00 | 37500
 sales_asia | 20 | 3788b | INDIA | 21-SEP-12 00:00:00 | 5090
 sales_asia | 20 | 4519a | INDIA | 18-OCT-12 00:00:00 | 650000
 sales_asia | 20 | 4519b | INDIA | 02-DEC-12 00:00:00 | 5090
(17 rows)

Delete the contents of the sales table:

TRUNCATE TABLE sales;

Query the sales table to show that the data was removed but the structure is intact:

edb=# SELECT tableoid::regclass, * FROM sales;
 tableoid | dept_no | part_no | country | date | amount
----------+---------+---------+---------+------+--------
(0 rows)

For more information about the TRUNCATE TABLE command, see the PostgreSQL documentation.

21.3.16 ALTER TABLE...TRUNCATE PARTITION

Use the ALTER TABLE… TRUNCATE PARTITION command to remove the data from the specified partition and leave the partition structure intact. The syntax is:

ALTER TABLE <table_name> TRUNCATE PARTITION <partition_name>
 [{DROP|REUSE} STORAGE]

Parameters

table_name

The name (optionally schema-qualified) of the partitioned table.

partition_name

The name of the partition to delete.

Description

Use the ALTER TABLE… TRUNCATE PARTITION command to remove the data from the specified partition and leave the partition structure intact. Truncating a partition also truncates its
subpartitions.

ALTER TABLE… TRUNCATE PARTITION doesn't cause ON DELETE triggers for the table to fire, but it fires ON TRUNCATE triggers. If an ON TRUNCATE trigger is defined for the partition, all
BEFORE TRUNCATE triggers are fired before any truncation happens. All AFTER TRUNCATE triggers are fired after the last truncation occurs.

You must have the TRUNCATE privilege on a table to invoke ALTER TABLE… TRUNCATE PARTITION .

DROP STORAGE and REUSE STORAGE are included only for compatibility. The clauses are parsed and ignored.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 833

https://www.postgresql.org/docs/current/static/sql-truncate.html

21.3.16.1 Example: Emptying a partition

This example removes the data from a partition of the sales table.

Create the sales table:

CREATE TABLE sales
(
 dept_no number,
 part_no varchar2,
 country varchar2(20),
 date date,
 amount number
)
PARTITION BY LIST(country)
(
 PARTITION europe VALUES('FRANCE', 'ITALY'),
 PARTITION asia VALUES('INDIA', 'PAKISTAN'),
 PARTITION americas VALUES('US', 'CANADA')
);

Populate the sales table:

INSERT INTO sales VALUES
 (10, '4519b', 'FRANCE', '17-Jan-2012', '45000'),
 (20, '3788a', 'INDIA', '01-Mar-2012', '75000'),
 (40, '9519b', 'US', '12-Apr-2012', '145000'),
 (20, '3788a', 'PAKISTAN', '04-Jun-2012', '37500'),
 (40, '4577b', 'US', '11-Nov-2012', '25000'),
 (30, '7588b', 'CANADA', '14-Dec-2012', '50000'),
 (30, '9519b', 'CANADA', '01-Feb-2012', '75000'),
 (30, '4519b', 'CANADA', '08-Apr-2012', '120000'),
 (40, '3788a', 'US', '12-May-2012', '4950'),
 (10, '9519b', 'ITALY', '07-Jul-2012', '15000'),
 (10, '9519a', 'FRANCE', '18-Aug-2012', '650000'),
 (10, '9519b', 'FRANCE', '18-Aug-2012', '650000'),
 (20, '3788b', 'INDIA', '21-Sept-2012', '5090'),
 (40, '4788a', 'US', '23-Sept-2012', '4950'),
 (40, '4788b', 'US', '09-Oct-2012', '15000'),
 (20, '4519a', 'INDIA', '18-Oct-2012', '650000'),
 (20, '4519b', 'INDIA', '2-Dec-2012', '5090');

Query the sales table to show that the partitions are populated with data:

edb=# SELECT tableoid::regclass, * FROM sales;
 tableoid | dept_no | part_no | country | date | amount
----------------+---------+---------+----------+--------------------+--------
 sales_americas | 40 | 9519b | US | 12-APR-12 00:00:00 | 145000
 sales_americas | 40 | 4577b | US | 11-NOV-12 00:00:00 | 25000
 sales_americas | 30 | 7588b | CANADA | 14-DEC-12 00:00:00 | 50000
 sales_americas | 30 | 9519b | CANADA | 01-FEB-12 00:00:00 | 75000
 sales_americas | 30 | 4519b | CANADA | 08-APR-12 00:00:00 | 120000
 sales_americas | 40 | 3788a | US | 12-MAY-12 00:00:00 | 4950
 sales_americas | 40 | 4788a | US | 23-SEP-12 00:00:00 | 4950
 sales_americas | 40 | 4788b | US | 09-OCT-12 00:00:00 | 15000
 sales_europe | 10 | 4519b | FRANCE | 17-JAN-12 00:00:00 | 45000
 sales_europe | 10 | 9519b | ITALY | 07-JUL-12 00:00:00 | 15000
 sales_europe | 10 | 9519a | FRANCE | 18-AUG-12 00:00:00 | 650000
 sales_europe | 10 | 9519b | FRANCE | 18-AUG-12 00:00:00 | 650000
 sales_asia | 20 | 3788a | INDIA | 01-MAR-12 00:00:00 | 75000
 sales_asia | 20 | 3788a | PAKISTAN | 04-JUN-12 00:00:00 | 37500
 sales_asia | 20 | 3788b | INDIA | 21-SEP-12 00:00:00 | 5090
 sales_asia | 20 | 4519a | INDIA | 18-OCT-12 00:00:00 | 650000
 sales_asia | 20 | 4519b | INDIA | 02-DEC-12 00:00:00 | 5090
(17 rows)

Delete the contents of the americas partition:

ALTER TABLE sales TRUNCATE PARTITION americas;

Query the sales table to show that the contents of the americas partition were removed:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 834

edb=# SELECT tableoid::regclass, * FROM sales;
 tableoid | dept_no | part_no | country | date | amount
--------------+---------+---------+----------+--------------------+--------
 sales_europe | 10 | 4519b | FRANCE | 17-JAN-12 00:00:00 | 45000
 sales_europe | 10 | 9519b | ITALY | 07-JUL-12 00:00:00 | 15000
 sales_europe | 10 | 9519a | FRANCE | 18-AUG-12 00:00:00 | 650000
 sales_europe | 10 | 9519b | FRANCE | 18-AUG-12 00:00:00 | 650000
 sales_asia | 20 | 3788a | INDIA | 01-MAR-12 00:00:00 | 75000
 sales_asia | 20 | 3788a | PAKISTAN | 04-JUN-12 00:00:00 | 37500
 sales_asia | 20 | 3788b | INDIA | 21-SEP-12 00:00:00 | 5090
 sales_asia | 20 | 4519a | INDIA | 18-OCT-12 00:00:00 | 650000
 sales_asia | 20 | 4519b | INDIA | 02-DEC-12 00:00:00 | 5090
(9 rows)

The rows were removed, but the structure of the americas partition is intact:

edb=# SELECT partition_name, high_value FROM ALL_TAB_PARTITIONS;
 partition_name | high_value
----------------+---------------------
 EUROPE | 'FRANCE', 'ITALY'
 ASIA | 'INDIA', 'PAKISTAN'
 AMERICAS | 'US', 'CANADA'
(3 rows)

21.3.17 ALTER TABLE...TRUNCATE SUBPARTITION

Use the ALTER TABLE… TRUNCATE SUBPARTITION command to remove all of the data from the specified subpartition and leave the subpartition structure intact. The syntax is:

ALTER TABLE <table_name>
 TRUNCATE SUBPARTITION <subpartition_name>
 [{DROP|REUSE} STORAGE]

Parameters

table_name

The name (optionally schema-qualified) of the partitioned table.

subpartition_name

The name of the subpartition to truncate.

Description

The ALTER TABLE… TRUNCATE SUBPARTITION command removes all data from a specified subpartition, leaving the subpartition structure intact.

ALTER TABLE… TRUNCATE SUBPARTITION doesn't cause ON DELETE triggers for the table to fire, but it fires ON TRUNCATE triggers. If an ON TRUNCATE trigger is defined for the
subpartition, all BEFORE TRUNCATE triggers are fired before any truncation happens. All AFTER TRUNCATE triggers are fired after the last truncation occurs.

You must have the TRUNCATE privilege on a table to invoke ALTER TABLE… TRUNCATE SUBPARTITION .

The DROP STORAGE and REUSE STORAGE clauses are included only for compatibility. The clauses are parsed and ignored.

21.3.17.1 Example: Emptying a subpartition

This example removes the data from a subpartition of the sales table.

Create the sales table:

CREATE TABLE sales
(

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 835

 dept_no number,
 part_no varchar2,
 country varchar2(20),
 date date,
 amount number
)
PARTITION BY RANGE(date) SUBPARTITION BY LIST (country)
(
 PARTITION "2011" VALUES LESS THAN('01-JAN-2012')
 (
 SUBPARTITION europe_2011 VALUES ('ITALY', 'FRANCE'),
 SUBPARTITION asia_2011 VALUES ('PAKISTAN', 'INDIA'),
 SUBPARTITION americas_2011 VALUES ('US', 'CANADA')
),
 PARTITION "2012" VALUES LESS THAN('01-JAN-2013')
 (
 SUBPARTITION europe_2012 VALUES ('ITALY', 'FRANCE'),
 SUBPARTITION asia_2012 VALUES ('PAKISTAN', 'INDIA'),
 SUBPARTITION americas_2012 VALUES ('US', 'CANADA')
),
 PARTITION "2013" VALUES LESS THAN('01-JAN-2015')
 (
 SUBPARTITION europe_2013 VALUES ('ITALY', 'FRANCE'),
 SUBPARTITION asia_2013 VALUES ('PAKISTAN', 'INDIA'),
 SUBPARTITION americas_2013 VALUES ('US', 'CANADA')
)
);

Populate the sales table:

INSERT INTO sales VALUES
 (10, '4519b', 'FRANCE', '17-Jan-2011', '45000'),
 (20, '3788a', 'INDIA', '01-Mar-2012', '75000'),
 (40, '9519b', 'US', '12-Apr-2012', '145000'),
 (20, '3788a', 'PAKISTAN', '04-Jun-2012', '37500'),
 (40, '4577b', 'US', '11-Nov-2012', '25000'),
 (30, '7588b', 'CANADA', '14-Dec-2011', '50000'),
 (30, '4519b', 'CANADA', '08-Apr-2012', '120000'),
 (40, '3788a', 'US', '12-May-2011', '4950'),
 (20, '3788a', 'US', '04-Apr-2012', '37500'),
 (40, '4577b', 'INDIA', '11-Jun-2011', '25000'),
 (10, '9519b', 'ITALY', '07-Jul-2012', '15000'),
 (20, '4519b', 'INDIA', '2-Dec-2012', '5090');

Query the sales table to show that the rows were distributed among the subpartitions:

edb=# SELECT tableoid::regclass, * FROM sales;
 tableoid | dept_no| part_no | country| date | amount
-------------------+--------+---------+--------+--------------------+--------
sales_americas_2011| 30| 7588b | CANADA | 14-DEC-11 00:00:00 | 50000
sales_americas_2011| 40| 3788a | US | 12-MAY-11 00:00:00 | 4950
sales_europe_2011 | 10| 4519b | FRANCE | 17-JAN-11 00:00:00 | 45000
sales_asia_2011 | 40| 4577b | INDIA | 11-JUN-11 00:00:00 | 25000
sales_americas_2012| 40| 9519b | US | 12-APR-12 00:00:00 |145000
sales_americas_2012| 40| 4577b | US | 11-NOV-12 00:00:00 | 25000
sales_americas_2012| 30| 4519b | CANADA | 08-APR-12 00:00:00 |120000
sales_americas_2012| 20| 3788a | US | 04-APR-12 00:00:00 | 37500
sales_europe_2012 | 10| 9519b | ITALY | 07-JUL-12 00:00:00 | 15000
sales_asia_2012 | 20| 3788a | INDIA | 01-MAR-12 00:00:00 | 75000
sales_asia_2012 | 20| 3788a |PAKISTAN| 04-JUN-12 00:00:00 | 37500
sales_asia_2012 | 20| 4519b | INDIA | 02-DEC-12 00:00:00 | 5090
(12 rows)

Delete the contents of the 2012_americas partition:

ALTER TABLE sales TRUNCATE SUBPARTITION "americas_2012";

Query the sales table to show that the contents of the americas_2012 partition were removed:

edb=# SELECT tableoid::regclass, * FROM sales;
 tableoid | dept_no| part_no | country | date |amount
-------------------+--------+---------+----------+--------------------+------
sales_americas_2011| 30| 7588b | CANADA | 14-DEC-11 00:00:00 |50000
sales_americas_2011| 40| 3788a | US | 12-MAY-11 00:00:00 | 4950
sales_europe_2011 | 10| 4519b | FRANCE | 17-JAN-11 00:00:00 |45000

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 836

sales_asia_2011 | 40| 4577b | INDIA | 11-JUN-11 00:00:00 |25000
sales_europe_2012 | 10| 9519b | ITALY | 07-JUL-12 00:00:00 |15000
sales_asia_2012 | 20| 3788a | INDIA | 01-MAR-12 00:00:00 |75000
sales_asia_2012 | 20| 3788a | PAKISTAN | 04-JUN-12 00:00:00 |37500
sales_asia_2012 | 20| 4519b | INDIA | 02-DEC-12 00:00:00 | 5090
(8 rows)

The rows were removed, but the structure of the 2012_americas partition is intact:

edb=# SELECT subpartition_name, high_value FROM ALL_TAB_SUBPARTITIONS;
 subpartition_name | high_value
-------------------+---------------------
 EUROPE_2011 | 'ITALY', 'FRANCE'
 ASIA_2011 | 'PAKISTAN', 'INDIA'
 AMERICAS_2011 | 'US', 'CANADA'
 EUROPE_2012 | 'ITALY', 'FRANCE'
 ASIA_2012 | 'PAKISTAN', 'INDIA'
 AMERICAS_2012 | 'US', 'CANADA'
 EUROPE_2013 | 'ITALY', 'FRANCE'
 ASIA_2013 | 'PAKISTAN', 'INDIA'
 AMERICAS_2013 | 'US', 'CANADA'
(9 rows)

21.3.18 Accessing a PARTITION or SUBPARTITION

For a partitioned table, you can access the partition or subpartition using PARTITION part_name or SUBPARTITION subpart_name . This example creates a partitioned table sales that's
range partitioned by date and subpartitioned using list partitioning by the country column:

CREATE TABLE sales
(
 dept_no number,
 part_no varchar2,
 country varchar2(20),
 date date,
 amount number
)
PARTITION BY RANGE(date)
 SUBPARTITION BY LIST(country)
(
 PARTITION q1_2020
 VALUES LESS THAN('2020-Apr-01')
 (
 SUBPARTITION q1_europe VALUES ('FRANCE', 'ITALY'),
 SUBPARTITION q1_asia VALUES ('INDIA', 'PAKISTAN'),
 SUBPARTITION q1_americas VALUES ('US', 'CANADA')
),
 PARTITION q2_2020
 VALUES LESS THAN('2020-Jul-01')
 (
 SUBPARTITION q2_europe VALUES ('FRANCE', 'ITALY'),
 SUBPARTITION q2_asia VALUES ('INDIA', 'PAKISTAN'),
 SUBPARTITION q2_americas VALUES ('US', 'CANADA')
)
);

The SELECT statement shows two partitions. Each partition has three subpartitions.

edb=# SELECT subpartition_name, high_value, partition_name FROM ALL_TAB_SUBPARTITIONS;
 subpartition_name | high_value | partition_name
-------------------+---------------------+----------------
 Q1_EUROPE | 'FRANCE', 'ITALY' | Q1_2020
 Q1_ASIA | 'INDIA', 'PAKISTAN' | Q1_2020
 Q1_AMERICAS | 'US', 'CANADA' | Q1_2020
 Q2_EUROPE | 'FRANCE', 'ITALY' | Q2_2020
 Q2_ASIA | 'INDIA', 'PAKISTAN' | Q2_2020
 Q2_AMERICAS | 'US', 'CANADA' | Q2_2020
(6 rows)

This INSERT statement inserts rows into the sales table using specific PARTITION part_name or SUBPARTITION subpart_name values:

INSERT INTO sales PARTITION (q1_2020) VALUES (10, 'q1_2020', 'FRANCE', '2020-Feb-01', '500000');
INSERT INTO sales PARTITION (q2_2020) VALUES (10, 'q2_2020', 'ITALY', '2020-Apr-01', '550000');

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 837

INSERT INTO sales SUBPARTITION (q1_europe) VALUES (10, 'q1_europe', 'FRANCE', '2020-Feb-01', '600000');
INSERT INTO sales SUBPARTITION (q2_asia) VALUES (10, 'q2_asia', 'INDIA', '2020-Apr-01', '650000');

edb=# SELECT tableoid::regclass, * FROM sales ORDER BY date;
 tableoid | dept_no | part_no | country | date | amount
-----------------+---------+-----------+---------+--------------------+--------
 sales_q1_europe | 10 | q1_2020 | FRANCE | 01-FEB-20 00:00:00 | 500000
 sales_q1_europe | 10 | q1_europe | FRANCE | 01-FEB-20 00:00:00 | 600000
 sales_q2_europe | 10 | q2_2020 | ITALY | 01-APR-20 00:00:00 | 550000
 sales_q2_asia | 10 | q2_asia | INDIA | 01-APR-20 00:00:00 | 650000
(4 rows)

Use this query to fetch the values from a specific partition q1_2020 or subpartition q1_europe :

edb=# SELECT tableoid::regclass, * FROM sales PARTITION (q1_2020) ORDER BY date;
 tableoid | dept_no | part_no | country | date | amount
-----------------+---------+-----------+---------+--------------------+--------
 sales_q1_europe | 10 | q1_2020 | FRANCE | 01-FEB-20 00:00:00 | 500000
 sales_q1_europe | 10 | q1_europe | FRANCE | 01-FEB-20 00:00:00 | 600000
(2 rows)

edb=# SELECT tableoid::regclass, country FROM sales SUBPARTITION (q1_europe) ORDER BY date;
 tableoid | country
-----------------+---------
 sales_q1_europe | FRANCE
 sales_q1_europe | FRANCE
(2 rows)

This SELECT statement selects rows from a specific partition or subpartition of a partitioned table by specifying the keyword PARTITION or SUBPARTITION :

edb=# SELECT tableoid::regclass, * FROM sales PARTITION (q2_2020) ORDER BY country;
 tableoid | dept_no | part_no | country | date | amount
-----------------+---------+---------+---------+--------------------+--------
 sales_q2_asia | 10 | q2_asia | INDIA | 01-APR-20 00:00:00 | 650000
 sales_q2_europe | 10 | q2_2020 | ITALY | 01-APR-20 00:00:00 | 550000
(2 rows)

edb=# SELECT tableoid::regclass, date FROM sales SUBPARTITION (q2_asia) ORDER BY country;
 tableoid | date
---------------+--------------------
 sales_q2_asia | 01-APR-20 00:00:00
(1 row)

This UPDATE statement updates values in a partition or subpartition of the sales table:

edb=# UPDATE sales PARTITION (q1_2020) SET amount = 10000 WHERE amount = 500000 RETURNING tableoid::regclass, *;
 tableoid | dept_no | part_no | country | date | amount
-----------------+---------+---------+---------+--------------------+--------
 sales_q1_europe | 10 | q1_2020 | FRANCE | 01-FEB-20 00:00:00 | 10000
(1 row)

UPDATE 1

edb=# UPDATE sales SUBPARTITION (q1_europe) SET amount = 5000 WHERE amount = 600000 RETURNING tableoid::regclass, *;
 tableoid | dept_no | part_no | country | date | amount
-----------------+---------+-----------+---------+--------------------+--------
 sales_q1_europe | 10 | q1_europe | FRANCE | 01-FEB-20 00:00:00 | 5000
(1 row)

UPDATE 1

This DELETE statement removes rows from the partition q2_2020 or subpartition q2_asia of the sales table:

edb=# DELETE FROM sales PARTITION (q2_2020) WHERE amount = 550000 RETURNING tableoid::regclass, *;
 tableoid | dept_no | part_no | country | date | amount
-----------------+---------+---------+---------+--------------------+--------
 sales_q2_europe | 10 | q2_2020 | ITALY | 01-APR-20 00:00:00 | 550000
(1 row)

DELETE 1

edb=# DELETE FROM sales SUBPARTITION (q2_asia) RETURNING tableoid::regclass, *;
 tableoid | dept_no | part_no | country | date | amount
---------------+---------+---------+---------+--------------------+--------
 sales_q2_asia | 10 | q2_asia | INDIA | 01-APR-20 00:00:00 | 650000

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 838

(1 row)

DELETE 1

Using alias for accessing PARTITION or SUBPARTITION

You can use aliases with SELECT , INSERT , UPDATE , or DELETE statements to access a partition or subpartition. This example creates a partitioned table sales that's range partitioned by date
and subpartitioned using list partitioning by the country column:

CREATE TABLE sales
(
 dept_no number,
 part_no varchar2,
 country varchar2(20),
 date date,
 amount number
)
PARTITION BY RANGE(date)
 SUBPARTITION BY LIST(country)
(
 PARTITION q1_2020
 VALUES LESS THAN('2020-Apr-01')
 (
 SUBPARTITION q1_europe VALUES ('FRANCE', 'ITALY'),
 SUBPARTITION q1_asia VALUES ('INDIA', 'PAKISTAN'),
 SUBPARTITION q1_americas VALUES ('US', 'CANADA')
),
 PARTITION q2_2020
 VALUES LESS THAN('2020-Jul-01')
 (
 SUBPARTITION q2_europe VALUES ('FRANCE', 'ITALY'),
 SUBPARTITION q2_asia VALUES ('INDIA', 'PAKISTAN'),
 SUBPARTITION q2_americas VALUES ('US', 'CANADA')
)
);

The SELECT statement shows two partitions. Each partition has three subpartitions.

edb=# SELECT subpartition_name, high_value, partition_name FROM ALL_TAB_SUBPARTITIONS;
 subpartition_name | high_value | partition_name
-------------------+---------------------+----------------
 Q1_EUROPE | 'FRANCE', 'ITALY' | Q1_2020
 Q1_ASIA | 'INDIA', 'PAKISTAN' | Q1_2020
 Q1_AMERICAS | 'US', 'CANADA' | Q1_2020
 Q2_EUROPE | 'FRANCE', 'ITALY' | Q2_2020
 Q2_ASIA | 'INDIA', 'PAKISTAN' | Q2_2020
 Q2_AMERICAS | 'US', 'CANADA' | Q2_2020
(6 rows)

This INSERT statement creates an alias of the sales table and inserts rows into partition q1_2020 and q2_2020 or subpartition q1_europe and q1_asia :

INSERT INTO sales PARTITION (q1_2020) AS q1_sales VALUES (10, 'q1_2020', 'FRANCE', '2020-Feb-01', '500000');
INSERT INTO sales PARTITION (q2_2020) q2_sales (q2_sales.dept_no, q2_sales.part_no, q2_sales.country, q2_sales.date, q2_sales.amount)
VALUES (20, 'q2_2020', 'ITALY', '2020-Apr-01', '550000');
INSERT INTO sales SUBPARTITION (q1_europe) AS sales_q1_europe VALUES (10, 'q1_europe', 'FRANCE', '2020-Feb-01', '600000');
INSERT INTO sales SUBPARTITION (q1_asia) sales_q1_asia (sales_q1_asia.dept_no, sales_q1_asia.part_no, sales_q1_asia.country,
sales_q1_asia.date, sales_q1_asia.amount) VALUES (20, 'q1_asia', 'INDIA', '2020-Mar-01', '650000');

This SELECT statement selects rows from a specific partition or subpartition of a sales table:

edb=# SELECT tableoid::regclass, * FROM sales PARTITION (q1_2020) AS q1_sales ORDER BY country;
 tableoid | dept_no | part_no | country | date | amount
-----------------+---------+-----------+---------+--------------------+--------
 sales_q1_europe | 10 | q1_2020 | FRANCE | 01-FEB-20 00:00:00 | 500000
 sales_q1_europe | 10 | q1_europe | FRANCE | 01-FEB-20 00:00:00 | 600000
 sales_q1_asia | 20 | q1_asia | INDIA | 01-MAR-20 00:00:00 | 650000
(3 rows)

edb=# SELECT tableoid::regclass, * FROM sales SUBPARTITION (q1_europe) sales_q1_europe ORDER BY country;
 tableoid | dept_no | part_no | country | date | amount
-----------------+---------+-----------+---------+--------------------+--------
 sales_q1_europe | 10 | q1_2020 | FRANCE | 01-FEB-20 00:00:00 | 500000

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 839

 sales_q1_europe | 10 | q1_europe | FRANCE | 01-FEB-20 00:00:00 | 600000
(2 rows)

This UPDATE statement updates values in a partition or subpartition of the sales table:

edb=# UPDATE sales PARTITION (q1_2020) AS q1_sales SET q1_sales.amount = 10000 WHERE q1_sales.amount = 500000;
UPDATE 1

edb=# UPDATE sales SUBPARTITION (q1_europe) sales_q1_europe SET sales_q1_europe.amount = 5000 WHERE sales_q1_europe.amount = 600000;
UPDATE 1

This DELETE statement removes rows from the partition q1_2020 or subpartition q1_europe of the sales table:

edb=# DELETE FROM sales PARTITION (q1_2020) q1_sales WHERE q1_sales.amount = 10000;
DELETE 1

edb=# DELETE FROM sales SUBPARTITION (q1_europe) AS sales_q1_europe WHERE sales_q1_europe.amount = 5000;
DELETE 1

21.4 Handling stray values in a LIST or RANGE partitioned table

A DEFAULT or MAXVALUE partition or subpartition captures any rows that don't meet the other partitioning rules defined for a table.

Defining a DEFAULT partition

A DEFAULT partition captures any rows that don't fit into any other partition in a LIST partitioned or subpartitioned table. If you don't include a DEFAULT rule, any row that doesn't match one of
the values in the partitioning constraints causes an error. Each LIST partition or subpartition can have its own DEFAULT rule.

The syntax of a DEFAULT rule is:

PARTITION [<partition_name>] VALUES (DEFAULT)

Where partition_name specifies the name of the partition or subpartition that stores any rows that don't match the rules specified for other partitions.

You can create a list-partitioned table in which the server decides the partition for storing the data based on the value of the country column. In that case, if you attempt to add a row in which the
value of the country column contains a value not listed in the rules, an error is reported:

edb=# INSERT INTO sales VALUES
edb-# (40, '3000x', 'IRELAND', '01-Mar-2012', '45000');
ERROR: no partition of relation "sales_2012" found for row
DETAIL: Partition key of the failing row contains (country) = (IRELAND).

This example creates such a table but adds a DEFAULT partition. The server stores any rows that don't match a value specified in the partitioning rules for europe , asia , or americas partitions
in the others partition.

CREATE TABLE sales
(
 dept_no number,
 part_no varchar2,
 country varchar2(20),
 date date,
 amount number
)
PARTITION BY LIST(country)
(
 PARTITION europe VALUES('FRANCE', 'ITALY'),
 PARTITION asia VALUES('INDIA', 'PAKISTAN'),
 PARTITION americas VALUES('US', 'CANADA'),
 PARTITION others VALUES (DEFAULT)
);

To test the DEFAULT partition, add a row with a value in the country column that doesn't match one of the countries specified in the partitioning constraints:

INSERT INTO sales VALUES
 (40, '3000x', 'IRELAND', '01-Mar-2012', '45000');

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 840

Query the contents of the sales table to confirm that the previously rejected row is now stored in the sales_others partition:

edb=# SELECT tableoid::regclass, * FROM sales;
 tableoid | dept_no | part_no | country | date | amount
----------------+---------+---------+----------+--------------------+--------
 sales_americas | 40 | 9519b | US | 12-APR-12 00:00:00 | 145000
 sales_americas | 40 | 4577b | US | 11-NOV-12 00:00:00 | 25000
 sales_americas | 30 | 7588b | CANADA | 14-DEC-12 00:00:00 | 50000
 sales_americas | 30 | 9519b | CANADA | 01-FEB-12 00:00:00 | 75000
 sales_americas | 30 | 4519b | CANADA | 08-APR-12 00:00:00 | 120000
 sales_americas | 40 | 3788a | US | 12-MAY-12 00:00:00 | 4950
 sales_americas | 40 | 4788a | US | 23-SEP-12 00:00:00 | 4950
 sales_americas | 40 | 4788b | US | 09-OCT-12 00:00:00 | 15000
 sales_europe | 10 | 4519b | FRANCE | 17-JAN-12 00:00:00 | 45000
 sales_europe | 10 | 9519b | ITALY | 07-JUL-12 00:00:00 | 15000
 sales_europe | 10 | 9519a | FRANCE | 18-AUG-12 00:00:00 | 650000
 sales_europe | 10 | 9519b | FRANCE | 18-AUG-12 00:00:00 | 650000
 sales_asia | 20 | 3788a | INDIA | 01-MAR-12 00:00:00 | 75000
 sales_asia | 20 | 3788a | PAKISTAN | 04-JUN-12 00:00:00 | 37500
 sales_asia | 20 | 3788b | INDIA | 21-SEP-12 00:00:00 | 5090
 sales_asia | 20 | 4519a | INDIA | 18-OCT-12 00:00:00 | 650000
 sales_asia | 20 | 4519b | INDIA | 02-DEC-12 00:00:00 | 5090
 sales_others | 40 | 3000x | IRELAND | 01-MAR-12 00:00:00 | 45000
(18 rows)

EDB Postgres Advanced Server provides the following methods to reassign the contents of a DEFAULT partition or subpartition:

You can use the ALTER TABLE… ADD PARTITION command to add a partition to a table with a DEFAULT rule. There can't be conflicting values between existing rows in the table and the
values of the partition you're adding. You can alternatively use the ALTER TABLE… SPLIT PARTITION command to split an existing partition.
You can use the ALTER TABLE… ADD SUBPARTITION command to add a subpartition to a table with a DEFAULT rule. There can't be conflicting values between existing rows in the table
and the values of the subpartition you're adding. You can alternatively use the ALTER TABLE… SPLIT SUBPARTITION command to split an existing subpartition.

Example: Adding a partition to a table with a DEFAULT partition

This example uses the ALTER TABLE... ADD PARTITION command. It assumes there's no conflicting values between the existing rows in the table and the values of the partition to add.

edb=# ALTER TABLE sales ADD PARTITION africa values ('SOUTH AFRICA', 'KENYA');
ALTER TABLE

When the following rows are inserted into the table, an error occurs, indicating that there are conflicting values:

edb=# INSERT INTO sales (dept_no, country) VALUES
(1,'FRANCE'),(2,'INDIA'),(3,'US'),(4,'SOUTH AFRICA'),(5,'NEPAL');
INSERT 0 5

Row (4,'SOUTH AFRICA') conflicts with the VALUES list in the ALTER TABLE... ADD PARTITION statement, thus resulting in an error:

edb=# ALTER TABLE sales ADD PARTITION africa values ('SOUTH AFRICA', 'KENYA');
ERROR: updated partition constraint for default partition "sales_others"
would be violated by some row

Example: Splitting a DEFAULT partition

This example splits a DEFAULT partition, redistributing the partition's content between two new partitions in the table sales .

This command inserts rows into the table, including rows into the DEFAULT partition:

INSERT INTO sales VALUES
 (10, '4519b', 'FRANCE', '17-Jan-2012', '45000'),
 (10, '9519b', 'ITALY', '07-Jul-2012', '15000'),
 (20, '3788a', 'INDIA', '01-Mar-2012', '75000'),
 (20, '3788a', 'PAKISTAN', '04-Jun-2012', '37500'),
 (30, '9519b', 'US', '12-Apr-2012', '145000'),
 (30, '7588b', 'CANADA', '14-Dec-2012', '50000'),
 (40, '4519b', 'SOUTH AFRICA', '08-Apr-2012', '120000'),
 (40, '4519b', 'KENYA', '08-Apr-2012', '120000'),
 (50, '3788a', 'CHINA', '12-May-2012', '4950');

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 841

The partitions include the DEFAULT others partition:

edb=# SELECT partition_name, high_value FROM ALL_TAB_PARTITIONS;
 partition_name | high_value
----------------+---------------------
 EUROPE | 'FRANCE', 'ITALY'
 ASIA | 'INDIA', 'PAKISTAN'
 AMERICAS | 'US', 'CANADA'
 OTHERS | DEFAULT
(4 rows)

This command shows the rows distributed among the partitions:

edb=# SELECT tableoid::regclass, * FROM sales;
 tableoid | dept_no| part_no | country | date | amount
--------------+--------+---------+--------------+--------------------+-------
sales_americas| 30 | 9519b | US | 12-APR-12 00:00:00 |145000
sales_americas| 30 | 7588b | CANADA | 14-DEC-12 00:00:00 | 50000
sales_europe | 10 | 4519b | FRANCE | 17-JAN-12 00:00:00 | 45000
sales_europe | 10 | 9519b | ITALY | 07-JUL-12 00:00:00 | 15000
sales_asia | 20 | 3788a | INDIA | 01-MAR-12 00:00:00 | 75000
sales_asia | 20 | 3788a | PAKISTAN | 04-JUN-12 00:00:00 | 37500
sales_others | 40 | 4519b | SOUTH AFRICA | 08-APR-12 00:00:00 |120000
sales_others | 40 | 4519b | KENYA | 08-APR-12 00:00:00 |120000
sales_others | 50 | 3788a | CHINA | 12-MAY-12 00:00:00 | 4950
(9 rows)

This command splits the DEFAULT others partition into partitions named africa and others :

ALTER TABLE sales SPLIT PARTITION others VALUES
 ('SOUTH AFRICA', 'KENYA')
 INTO (PARTITION africa, PARTITION others);

The partitions now include the africa partition along with the DEFAULT others partition:

edb=# SELECT partition_name, high_value FROM ALL_TAB_PARTITIONS;
 partition_name | high_value
----------------+-------------------------
 EUROPE | 'FRANCE', 'ITALY'
 ASIA | 'INDIA', 'PAKISTAN'
 AMERICAS | 'US', 'CANADA'
 AFRICA | 'SOUTH AFRICA', 'KENYA'
 OTHERS | DEFAULT
(5 rows)

This command shows that the rows were redistributed across the new partitions:

edb=# SELECT tableoid::regclass, * FROM sales;
 tableoid |dept_no | part_no | country | date | amount
---------------+--------+---------+-------------+--------------------+-------
sales_americas | 30 | 9519b | US | 12-APR-12 00:00:00 |145000
sales_americas | 30 | 7588b | CANADA | 14-DEC-12 00:00:00 | 50000
sales_europe | 10 | 4519b | FRANCE | 17-JAN-12 00:00:00 | 45000
sales_europe | 10 | 9519b | ITALY | 07-JUL-12 00:00:00 | 15000
sales_asia | 20 | 3788a | INDIA | 01-MAR-12 00:00:00 | 75000
sales_asia | 20 | 3788a | PAKISTAN | 04-JUN-12 00:00:00 | 37500
sales_africa | 40 | 4519b | SOUTH AFRICA| 08-APR-12 00:00:00 |120000
sales_africa | 40 | 4519b | KENYA | 08-APR-12 00:00:00 |120000
sales_others_1 | 50 | 3788a | CHINA | 12-MAY-12 00:00:00 | 4950
(9 rows)

Defining a MAXVALUE partition

A MAXVALUE partition or subpartition captures any rows that don't fit into any other partition in a range-partitioned or subpartitioned table. If you don't include a MAXVALUE rule, any row that
exceeds the maximum limit specified by the partitioning rules causes in an error. Each partition or subpartition can have its own MAXVALUE partition.

The syntax of a MAXVALUE rule is:

PARTITION [<partition_name>] VALUES LESS THAN (MAXVALUE)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 842

Where partition_name specifies the name of the partition that stores any rows that don't match the rules specified for other partitions.

The last example created a range-partitioned table in which the data was partitioned based on the value of the date column. If you attempt to add a row with a date value that exceeds a date listed
in the partitioning constraints, EDB Postgres Advanced Server reports an error.

edb=# INSERT INTO sales VALUES
edb-# (40, '3000x', 'IRELAND', '01-Mar-2013', '45000');
ERROR: no partition of relation "sales" found for row
DETAIL: Partition key of the failing row contains (date) = (01-MAR-13 00:00:00).

This CREATE TABLE command creates the same table but with a MAXVALUE partition. Instead of throwing an error, the server stores any rows that don't match the previous partitioning constraints
in the others partition.

CREATE TABLE sales
(
 dept_no number,
 part_no varchar2,
 country varchar2(20),
 date date,
 amount number
)
PARTITION BY RANGE(date)
(
 PARTITION q1_2012 VALUES LESS THAN('2012-Apr-01'),
 PARTITION q2_2012 VALUES LESS THAN('2012-Jul-01'),
 PARTITION q3_2012 VALUES LESS THAN('2012-Oct-01'),
 PARTITION q4_2012 VALUES LESS THAN('2013-Jan-01'),
 PARTITION others VALUES LESS THAN (MAXVALUE)
);

To test the MAXVALUE partition, add a row with a value in the date column that exceeds the last date value listed in a partitioning rule. The server stores the row in the others partition.

INSERT INTO sales VALUES
 (40, '3000x', 'IRELAND', '01-Mar-2013', '45000');

Query the contents of the sales table to confirm that the previously rejected row is now stored in the sales_others partition:

edb=# SELECT tableoid::regclass, * FROM sales;
 tableoid | dept_no | part_no | country | date | amount
---------------+---------+---------+----------+--------------------+--------
 sales_q1_2012 | 10 | 4519b | FRANCE | 17-JAN-12 00:00:00 | 45000
 sales_q1_2012 | 20 | 3788a | INDIA | 01-MAR-12 00:00:00 | 75000
 sales_q1_2012 | 30 | 9519b | CANADA | 01-FEB-12 00:00:00 | 75000
 sales_q2_2012 | 40 | 9519b | US | 12-APR-12 00:00:00 | 145000
 sales_q2_2012 | 20 | 3788a | PAKISTAN | 04-JUN-12 00:00:00 | 37500
 sales_q2_2012 | 30 | 4519b | CANADA | 08-APR-12 00:00:00 | 120000
 sales_q2_2012 | 40 | 3788a | US | 12-MAY-12 00:00:00 | 4950
 sales_q3_2012 | 10 | 9519b | ITALY | 07-JUL-12 00:00:00 | 15000
 sales_q3_2012 | 10 | 9519a | FRANCE | 18-AUG-12 00:00:00 | 650000
 sales_q3_2012 | 10 | 9519b | FRANCE | 18-AUG-12 00:00:00 | 650000
 sales_q3_2012 | 20 | 3788b | INDIA | 21-SEP-12 00:00:00 | 5090
 sales_q3_2012 | 40 | 4788a | US | 23-SEP-12 00:00:00 | 4950
 sales_q4_2012 | 40 | 4577b | US | 11-NOV-12 00:00:00 | 25000
 sales_q4_2012 | 30 | 7588b | CANADA | 14-DEC-12 00:00:00 | 50000
 sales_q4_2012 | 40 | 4788b | US | 09-OCT-12 00:00:00 | 15000
 sales_q4_2012 | 20 | 4519a | INDIA | 18-OCT-12 00:00:00 | 650000
 sales_q4_2012 | 20 | 4519b | INDIA | 02-DEC-12 00:00:00 | 5090
 sales_others | 40 | 3000x | IRELAND | 01-MAR-13 00:00:00 | 45000
(18 rows)

EDB Postgres Advanced Server doesn't have a way to reassign the contents of a MAXVALUE partition or subpartition.

You can't use the ALTER TABLE… ADD PARTITION statement to add a partition to a table with a MAXVALUE rule. However, you can use the ALTER TABLE… SPLIT PARTITION
statement to split an existing partition.
You can't use the ALTER TABLE… ADD SUBPARTITION statement to add a subpartition to a table with a MAXVALUE rule. However, you can split an existing subpartition with the ALTER
TABLE… SPLIT SUBPARTITION statement.

21.5 Specifying multiple partitioning keys in a RANGE partitioned table

You can often improve performance by specifying multiple key columns for a RANGE partitioned table. If you often select rows using comparison operators on a small set of columns based on a greater-
than or less-than value, consider using those columns in RANGE partitioning rules.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 843

Specifying multiple keys in a range-partitioned table

Range-partitioned table definitions can include multiple columns in the partitioning key. To specify multiple partitioning keys for a range-partitioned table, include the column names in a comma-
separated list after the PARTITION BY RANGE clause:

CREATE TABLE sales
(
 dept_no number,
 part_no varchar2,
 country varchar2(20),
 sale_year number,
 sale_month number,
 sale_day number,
 amount number
)
PARTITION BY RANGE(sale_year, sale_month)
(
 PARTITION q1_2012
 VALUES LESS THAN(2012, 4),
 PARTITION q2_2012
 VALUES LESS THAN(2012, 7),
 PARTITION q3_2012
 VALUES LESS THAN(2012, 10),
 PARTITION q4_2012
 VALUES LESS THAN(2013, 1)
);

If a table is created with multiple partitioning keys, you must specify multiple key values when querying the table to take full advantage of partition pruning:

edb=# EXPLAIN SELECT * FROM sales WHERE sale_year = 2012 AND sale_month = 8;
 QUERY PLAN
--
 Append (cost=0.00..14.35 rows=1 width=250)
 -> Seq Scan on sales_q3_2012 (cost=0.00..14.35 rows=1 width=250)
 Filter: ((sale_year = '2012'::numeric) AND (sale_month = '8'::numeric))
(3 rows)

Since all rows with a value of 8 in the sale_month column and a value of 2012 in the sale_year column are stored in the q3_2012 partition, EDB Postgres Advanced Server searches only
that partition.

21.6 Retrieving information about a partitioned table

EDB Postgres Advanced Server provides five system catalog views that you can use to view information about the structure of partitioned tables.

Querying the partitioning views

You can query the following views to retrieve information about partitioned and subpartitioned tables:

ALL_PART_TABLES
ALL_TAB_PARTITIONS
ALL_TAB_SUBPARTITIONS
ALL_PART_KEY_COLUMNS
ALL_SUBPART_KEY_COLUMNS

The structure of each view is explained in Table partitioning views reference. If you're using the EDB-PSQL client, you can also learn about the structure of a view by entering:

\d <view_name>

Where view_name specifies the name of the table partitioning view.

Querying a view can provide information about the structure of a partitioned or subpartitioned table. For example, this code displays the names of a subpartitioned table:

edb=# SELECT subpartition_name, partition_name FROM ALL_TAB_SUBPARTITIONS;
 subpartition_name | partition_name
-------------------+----------------
 EUROPE_2011 | EUROPE
 EUROPE_2012 | EUROPE
 ASIA_2011 | ASIA

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 844

 ASIA_2012 | ASIA
 AMERICAS_2011 | AMERICAS
 AMERICAS_2012 | AMERICAS
(6 rows)

21.6.1 Table partitioning views reference

Query the catalog views that are compatible with Oracle databases to review detailed information about your partitioned tables.

21.6.1.1 ALL_PART_TABLES

The following table lists the information available in the ALL_PART_TABLES view.

Column Type Description

owner name The owner of the table.

schema_name name The schema in which the table resides.

table_name name The name of the table.

partitioning_type text RANGE, LIST, or HASH.

subpartitioning_type text RANGE, LIST, HASH, or NONE.

partition_count bigint The number of partitions.

def_subpartition_count integer The default subpartition count. This value is always 0.

partitioning_key_count integer The number of columns listed in the partition by clause.

subpartitioning_key_count integer The number of columns in the subpartition by clause.

status character varying(8) This column is always VALID.

def_tablespace_name character varying(30) This column is always NULL.

def_pct_free numeric This column is always NULL.

def_pct_used numeric This column is always NULL.

def_ini_trans numeric This column is always NULL.

def_max_trans numeric This column is always NULL.

def_initial_extent character varying(40) This column is always NULL.

def_next_extent character varying(40)
This column is always NULL.

def_min_extents character varying(40) This column is always NULL.

def_max_extents character varying(40) This column is always NULL.

def_pct_increase character varying(40) This column is always NULL.

def_freelists numeric This column is always NULL.

def_freelist_groups numeric This column is always NULL.

def_logging character varying(7) This column is always YES.

def_compression character varying(8) This column is always NONE.

def_buffer_pool character varying(7) This column is always DEFAULT.

ref_ptn_constraint_name character varying(30) This column is always NULL.

interval character varying(1000) This column is always NULL.

21.6.1.2 ALL_TAB_PARTITIONS

The following table lists the information available in the ALL_TAB_PARTITIONS view.

Column Type Description

table_owner name The owner of the table.

schema_name name The schema in which the table resides.

table_name name The name of the table.

composite text YES if the table is subpartitioned; NO if it is not subpartitioned.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 845

partition_name name The name of the partition.

subpartition_count bigint The number of subpartitions for this partition.

high_value text The high partitioning value specified in the CREATE TABLE statement.

high_value_length integer The length of high partitioning value.

partition_position integer The ordinal position of this partition.

tablespace_name name The tablespace in which this partition resides.

pct_free numeric This column is always 0.

pct_used numeric This column is always 0.

ini_trans numeric This column is always 0.

max_trans numeric This column is always 0.

initial_extent numeric This column is always NULL.

next_extent numeric This column is always NULL.

min_extent numeric This column is always 0.

max_extent numeric This column is always 0.

pct_increase numeric This column is always 0.

freelists numeric This column is always NULL.

freelist_groups numeric This column is always NULL.

logging character varying(7) This column is always YES.

compression character varying(8) This column is always NONE.

num_rows numeric The approx. number of rows in this partition.

blocks integer The approx. number of blocks in this partition.

empty_blocks numeric This column is always NULL.

avg_space numeric This column is always NULL.

chain_cnt numeric This column is always NULL.

avg_row_len numeric This column is always NULL.

sample_size numeric This column is always NULL.

last_analyzed timestamp without time zone This column is always NULL.

buffer_pool character varying(7) This column is always NULL.

global_stats character varying(3) This column is always YES.

user_stats character varying(3) This column is always NO.

backing_table regclass OID of the backing table for this partition.

Column Type Description

21.6.1.3 ALL_TAB_SUBPARTITIONS

The following table lists the information available in the ALL_TAB_SUBPARTITIONS view.

Column Type Description

table_owner name The name of the owner of the table.

schema_name name The name of the schema in which the table resides.

table_name name The name of the table.

partition_name name The name of the partition.

subpartition_name name The name of the subpartition.

high_value text The high partitioning value specified in the CREATE TABLE statement.

high_value_length integer The length of high partitioning value.

subpartition_position integer The ordinal position of this subpartition.

tablespace_name name The tablespace in which this subpartition resides.

pct_free numeric This column is always 0.

pct_used numeric This column is always 0.

ini_trans numeric This column is always 0.

max_trans numeric This column is always 0.

initial_extent numeric This column is always NULL.

next_extent numeric This column is always NULL.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 846

min_extent numeric This column is always 0.

max_extent numeric This column is always 0.

pct_increase numeric This column is always 0.

freelists numeric This column is always NULL.

freelist_groups numeric This column is always NULL.

logging character varying(7) This column is always YES.

compression character varying(8) This column is always NONE.

num_rows numeric The approx. number of rows in this subpartition.

blocks integer The approx. number of blocks in this subpartition.

empty_blocks numeric This column is always NULL.

avg_space numeric This column is always NULL.

chain_cnt numeric This column is always NULL.

avg_row_len numeric This column is always NULL.

sample_size numeric This column is always NULL.

last_analyzed timestamp without time zone This column is always NULL.

buffer_pool character varying(7) This column is always NULL.

global_stats character varying(3) This column is always YES.

user_stats character varying(3) This column is always NO.

backing_table regclass OID of the backing table for this subpartition.

Column Type Description

21.6.1.4 ALL_PART_KEY_COLUMNS

The following table lists the information available in the ALL_PART_KEY_COLUMNS view.

Column Type Description

owner name The name of the table owner.

schema_name name The name of the schema on which the table resides.

name name The name of the table.

object_type character(5) This column is always TABLE .

column_name name The name of the partitioning key column.

column_position integer The position of this column in the partitioning key. The first column has a column position of 1, the second column has a column position of 2, and so
on.

21.6.1.5 ALL_SUBPART_KEY_COLUMNS

The following table lists the information available in the ALL_SUBPART_KEY_COLUMNS view.

Column Type Description

owner name The name of the table owner.

schema_name name The name of the schema on which the table resides.

name name The name of the table.

object_type character(5) This column is always TABLE .

column_name name The name of the partitioning key column.

column_position integer The position of this column within the subpartitioning key (the first column has a column position of 1, the second column has a column position of
2...)

22 ECPGPlus

EDB enhanced ECPG (the PostgreSQL precompiler) to create ECPGPlus. ECPGPlus allows you to include Pro*C-compatible embedded SQL commands in C applications when connected to an EDB
Postgres Advanced Server database. When you use ECPGPlus to compile an application, the SQL code syntax is checked and translated into C.

ECPGPlus supports:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 847

Oracle Dynamic SQL – Method 4 (ODS-M4)
Pro*C-compatible anonymous blocks
A CALL statement compatible with Oracle databases

As part of ECPGPlus's Pro*C compatibility, you don't need to include the BEGIN DECLARE SECTION and END DECLARE SECTION directives.

PostgreSQL compatibility

While most ECPGPlus statements work with community PostgreSQL, the CALL statement and the EXECUTE…END EXEC statement work only when the client application is connected to EDB
Postgres Advanced Server.

22.1 ECPGPlus overview

EDB enhanced ECPG (the PostgreSQL precompiler) to create ECPGPlus. ECPGPlus is a Pro*C-compatible version of the PostgreSQL C precompiler. ECPGPlus translates a program that combines C code
and embedded SQL statements into an equivalent C program. As it performs the translation, ECPGPlus verifies that the syntax of each SQL construct is correct.

The following diagram charts the path of a program containing embedded SQL statements as it's compiled into an executable:

Compilation of a program containing embedded SQL statements

To produce an executable from a C program that contains embedded SQL statements:

1. Pass the program (my_program.pgc in the diagram) to the ECPGPlus precompiler. ECPGPlus translates each SQL statement in my_program.pgc into C code that calls the ecpglib API
and produces a C program (my_program.c).

2. Pass the C program to a C compiler. The C compiler generates an object file (my_program.o).
3. Pass the object file (my_program.o) as well as the ecpglib library file and any other required libraries to the linker, which in turn produces the executable (my_program).

While the ECPGPlus preprocessor validates the syntax of each SQL statement, it can't validate the semantics. For example, the preprocessor confirms that an INSERT statement is syntactically
correct, but it can't confirm that the table mentioned in the INSERT statement exists.

Behind the scenes

A client application contains a mix of C code and SQL code made up of the following elements:

C preprocessor directives
C declarations (variables, types, functions, ...)
C definitions (variables, types, functions, ...)
SQL preprocessor directives

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 848

SQL statements

For example:

1 #include <stdio.h>
2 EXEC SQL INCLUDE sqlca;
3
4 extern void printInt(char *label, int val);
5 extern void printStr(char *label, char *val);
6 extern void printFloat(char *label, float val);
7
8 void displayCustomer(int custNumber)
9 {
10 EXEC SQL BEGIN DECLARE SECTION;
11 VARCHAR custName[50];
12 float custBalance;
13 int custID = custNumber;
14 EXEC SQL END DECLARE SECTION;
15
16 EXEC SQL SELECT name, balance
17 INTO :custName, :custBalance
18 FROM customer
19 WHERE id = :custID;
20
21 printInt("ID", custID);
22 printStr("Name", custName);
23 printFloat("Balance", custBalance);
24 }

In this code fragment:

Line 1 specifies a directive to the C preprocessor.

C preprocessor directives can be interpreted or ignored. The option is controlled by a command line option (-C PROC) entered when you invoke ECPGPlus. In either case, ECPGPlus copies each
C preprocessor directive to the output file (4) without change. Any C preprocessor directive found in the source file appears in the output file.

Line 2 specifies a directive to the SQL preprocessor.

SQL preprocessor directives are interpreted by the ECPGPlus preprocessor and aren't copied to the output file.

Lines 4 through 6 contain C declarations.

C declarations are copied to the output file without change, except that each VARCHAR declaration is translated into an equivalent struct declaration.

Lines 10 through 14 contain an embedded-SQL declaration section.

C variables that you refer to in SQL code are known as host variables. If you invoke the ECPGPlus preprocessor in Pro*C mode (-C PROC), you can refer to any C variable in a SQL statement.
Otherwise you must declare each host variable in a BEGIN/END DECLARATION SECTION pair.

Lines 16 through 19 contain a SQL statement.

SQL statements are translated into calls to the ECPGPlus runtime library.

Lines 21 through 23 contain C code.

C code is copied to the output file without change.

Prefix any SQL statement with EXEC SQL . The SQL statement extends to the next (unquoted) semicolon. For example:

printf(“Updating employee salaries\n”);

EXEC SQL UPDATE emp SET sal = sal * 1.25;
EXEC SQL COMMIT;

printf(“Employee salaries updated\n”);

When the preprocessor encounters this code fragment, it passes the C code (the first line and the last line) to the output file without translation and converts each EXEC SQL statement into a call to
an ecpglib function. The result is similar to the following:

printf("Updating employee salaries\n");

{
 ECPGdo(__LINE__, 0, 1, NULL, 0, ECPGst_normal,

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 849

 "update emp set sal = sal * 1.25",
 ECPGt_EOIT, ECPGt_EORT);
}

{
 ECPGtrans(__LINE__, NULL, "commit");
}

printf(“Employee salaries updated\n”);

Installation and configuration

On Windows, ECPGPlus is installed by the EDB Postgres Advanced Server installation wizard as part of the Database Server component. On Linux, install with the edb-asxx-server-devel RPM
package, where xx is the EDB Postgres Advanced Server version number. By default, the executable is located on Windows in:

C:\Program Files\edb\as14\bin

On Linux, it's located in:

/usr/edb/as14/bin

When invoking the ECPGPlus compiler, the executable must be in your search path (%PATH% on Windows, $PATH on Linux). For example, the following commands set the search path to include the
directory that holds the ECPGPlus executable file ecpg .

On Windows:

set EDB_PATH=C:\Program Files\edb\as14\bin
set PATH=%EDB_PATH%;%PATH%

On Linux:

export EDB_PATH==/usr/edb/as14/bin
export PATH=$EDB_PATH:$PATH

Constructing a makefile

A makefile contains a set of instructions that tell the make utility how to transform a program written in C that contains embedded SQL into a C program. To try the examples, you need:

A C compiler (and linker)
The make utility
ECPGPlus preprocessor and library
A makefile that contains instructions for ECPGPlus

The following code is an example of a makefile for the samples included in this documentation. To use the sample code, save it in a file named makefile in the directory that contains the source code
file.

INCLUDES = -I$(shell pg_config --includedir)
LIBPATH = -L $(shell pg_config --libdir)
CFLAGS += $(INCLUDES) -g
LDFLAGS += -g
LDLIBS += $(LIBPATH) -lecpg -lpq

.SUFFIXES: .pgc,.pc

.pgc.c:
 ecpg -c $(INCLUDES) $?

.pc.c:
 ecpg -C PROC -c $(INCLUDES) $?

The first two lines use the pg_config program to locate the necessary header files and library directories:

INCLUDES = -I$(shell pg_config --includedir)
LIBPATH = -L $(shell pg_config --libdir)

The pg_config program is shipped with EDB Postgres Advanced Server.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 850

make knows to use the CFLAGS variable when running the C compiler and LDFLAGS and LDLIBS when invoking the linker. ECPG programs must be linked against the ECPG runtime library (-
lecpg) and the libpq library (-lpq).

CFLAGS += $(INCLUDES) -g
LDFLAGS += -g
LDLIBS += $(LIBPATH) -lecpg -lpq

The sample makefile tells make how to translate a .pgc or a .pc file into a C program. Two lines in the makefile specify the mode in which the source file is compiled. The first compile option is:

.pgc.c:
 ecpg -c $(INCLUDES) $?

The first option tells make how to transform a file that ends in .pgc (presumably, an ECPG source file) into a file that ends in .c (a C program), using community ECPG, without the ECPGPlus
enhancements. It invokes the ECPG precompiler with the -c flag, which instructs the compiler to convert SQL code into C, using the value of the INCLUDES variable and the name of the .pgc file.

.pc.c:
 ecpg -C PROC -c $(INCLUDES) $?

The second option tells make how to transform a file that ends in .pg (an ECPG source file) into a file that ends in .c (a C program) using the ECPGPlus extensions. It invokes the ECPG precompiler
with the -c flag, which instructs the compiler to convert SQL code to C. It also uses the -C PROC flag, which instructs the compiler to use ECPGPlus in Pro*C-compatibility mode, using the value of
the INCLUDES variable and the name of the .pgc file.

When you run make, pass the name of the ECPG source code file you want to compile. For example, to compile an ECPG source code file named customer_list.pgc , use the command:

make customer_list

The make utility:

1. Consults the makefile located in the current directory.
2. Discovers that the makefile contains a rule that compiles customer_list.pgc into a C program (customer_list.c).
3. Uses the rules built into make to compile customer_list.c into an executable program.

ECPGPlus command line options

In the sample makefile, make includes the -C option when invoking ECPGPlus to invoke ECPGPlus in Pro*C-compatible mode.

If you include the -C PROC keywords on the command line, in addition to the ECPG syntax, you can use Pro*C command line syntax. For example:

$ ecpg -C PROC INCLUDE=/usr/edb/as14/include acct_update.c

To display a complete list of the other ECPGPlus options available, in the ECPGPlus installation directory, enter:

./ecpg --help

The command line options are:

Option Description

-c Automatically generate C code from embedded SQL code.

-C mode

Use the -C option to specify a compatibility mode:

INFORMIX

INFORMIX_SE

PROC

-D symbol

Define a preprocessor symbol.

The -D keyword is not supported when compiling in PROC mode. Instead, use the Oracle-style ‘DEFINE=’ clause.

-h Parse a header file, this option includes option '-c' .

-i Parse system, include files as well.

-I directory Search directory for include files.

-o outfile Write the result to outfile.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 851

-r option

Specify runtime behavior; option can be:

no_indicator - Don't use indicators, but instead use special values to represent NULL values.

prepare - Prepare all statements before using them.

questionmarks - Allow use of a question mark as a placeholder.

usebulk - Enable bulk processing for INSERT , UPDATE , and DELETE statements that operate on host variable arrays.

--regression Run in regression testing mode.

-t Turn on autocommit of transactions.

-l Disable #line directives.

--help Display the help options.

--version Output version information.

Option Description

Note

If you don't specify an output file name when invoking ECPGPlus, the output file name is created by removing the .pgc extension from the file name and appending .c .

22.2 Using embedded SQL

Example: A simple query

The first code sample shows how to execute a SELECT statement that returns a single row, storing the results in a group of host variables. After declaring host variables, it connects to the edb
sample database using a hard-coded role name and the associated password and queries the emp table. The query returns the values into the declared host variables. After checking the value of the
NULL indicator variable, it prints a simple result set onscreen and closes the connection.

/**
 * print_emp.pgc
 *
 */
#include <stdio.h>

int main(void)
{
 EXEC SQL BEGIN DECLARE SECTION;
 int v_empno;
 char v_ename[40];
 double v_sal;
 double v_comm;
 short v_comm_ind;
 EXEC SQL END DECLARE SECTION;

 EXEC SQL WHENEVER SQLERROR sqlprint;

 EXEC SQL CONNECT TO edb
 USER 'alice' IDENTIFIED BY '1safepwd';

 EXEC SQL
 SELECT
 empno, ename, sal, comm
 INTO
 :v_empno, :v_ename, :v_sal, :v_comm INDICATOR:v_comm_ind
 FROM
 emp
 WHERE
 empno = 7369;

 if (v_comm_ind)
 printf("empno(%d), ename(%s), sal(%.2f) comm(NULL)\n",
 v_empno, v_ename, v_sal);
 else
 printf("empno(%d), ename(%s), sal(%.2f) comm(%.2f)\n",
 v_empno, v_ename, v_sal, v_comm);
 EXEC SQL DISCONNECT;
}
/**

The code sample begins by including the prototypes and type definitions for the C stdio library and then declares the main function:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 852

#include <stdio.h>

int main(void)
{

Next, the application declares a set of host variables used to interact with the database server:

EXEC SQL BEGIN DECLARE SECTION;
 int v_empno;
 char v_ename[40];
 double v_sal;
 double v_comm;
 short v_comm_ind;
EXEC SQL END DECLARE SECTION;

If you plan to precompile the code in PROC mode, you can omit the BEGIN DECLARE…END DECLARE section. For more information about declaring host variables, see Declaring host variables.

The data type associated with each variable in the declaration section is a C data type. Data passed between the server and the client application must share a compatible data type. For more
information about data types, see the Supported C data types.

The next statement tells the server how to handle an error:

EXEC SQL WHENEVER SQLERROR sqlprint;

If the client application encounters an error in the SQL code, the server prints an error message to stderr (standard error), using the sqlprint() function supplied with ecpglib . The next
EXEC SQL statement establishes a connection with EDB Postgres Advanced Server:

EXEC SQL CONNECT TO edb
 USER 'alice' IDENTIFIED BY '1safepwd';

In this example, the client application connects to the edb database using a role named alice with a password of 1safepwd .

The code then performs a query against the emp table:

EXEC SQL
 SELECT
 empno, ename, sal, comm
 INTO
 :v_empno, :v_ename, :v_sal, :v_comm INDICATOR :v_comm_ind
 FROM
 emp
 WHERE
 empno = 7369;

The query returns information about employee number 7369.

The SELECT statement uses an INTO clause to assign the retrieved values (from the empno , ename , sal , and comm columns) into the :v_empno , :v_ename , :v_sal , and :v_comm
host variables (and the :v_comm_ind null indicator). The first value retrieved is assigned to the first variable listed in the INTO clause, the second value is assigned to the second variable, and so on.

The comm column contains the commission values earned by an employee and can potentially contain a NULL value. The statement includes the INDICATOR keyword and a host variable to hold a
null indicator.

The code checks the null indicator and displays the appropriate results:

if (v_comm_ind)
 printf("empno(%d), ename(%s), sal(%.2f) comm(NULL)\n",
 v_empno, v_ename, v_sal);
else
 printf("empno(%d), ename(%s), sal(%.2f) comm(%.2f)\n",
 v_empno, v_ename, v_sal, v_comm);

If the null indicator is 0 (that is, false), the comm column contains a meaningful value, and the printf function displays the commission. If the null indicator contains a non-zero value, comm
is NULL , and printf displays a value of NULL . A host variable (other than a null indicator) contains no meaningful value if you fetch a NULL into that host variable. You must use null indicators
to identify any value that might be NULL .

The final statement in the code sample closes the connection to the server:

EXEC SQL DISCONNECT;
}

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 853

Using indicator variables

The previous example included an indicator variable that identifies any row in which the value of the comm column (when returned by the server) was NULL . An indicator variable is an extra host
variable that denotes if the content of the preceding variable is NULL or truncated. The indicator variable is populated when the contents of a row are stored. An indicator variable can contain the
following values:

Indicator value Denotes

If an indicator variable is less than 0 . The value returned by the server was NULL .

If an indicator variable is equal to 0 . The value returned by the server was not NULL , and was not truncated.

If an indicator variable is greater than 0 . The value returned by the server was truncated when stored in the host variable.

When including an indicator variable in an INTO clause, you don't need to include the optional INDICATOR keyword.

You can omit an indicator variable if you're certain that a query never returns a NULL value into the corresponding host variable. If you omit an indicator variable and a query returns a NULL value,
ecpglib raises a runtime error.

Declaring host variables

You can use a host variable in a SQL statement at any point that a value can appear in that statement. A host variable is a C variable that you can use to pass data values from the client application to the
server and return data from the server to the client application. A host variable can be:

An array
A typedef
A pointer
A struct
Any scalar C data type

The code fragments that follow show using host variables in code compiled in PROC mode and in non- PROC mode. The SQL statement adds a row to the dept table, inserting the values returned by
the variables v_deptno , v_dname , and v_loc into the deptno column, the dname column, and the loc column, respectively.

If you're compiling in PROC mode, you can omit the EXEC SQL BEGIN DECLARE SECTION and EXEC SQL END DECLARE SECTION directives. PROC mode permits you to use C function
parameters as host variables:

void addDept(int v_deptno, char v_dname, char v_loc)
{
 EXEC SQL INSERT INTO dept VALUES(:v_deptno, :v_dname, :v_loc);
}

If you aren't compiling in PROC mode, you must wrap embedded variable declarations with the EXEC SQL BEGIN DECLARE SECTION and the EXEC SQL END DECLARE SECTION
directives:

void addDept(int v_deptno, char v_dname, char v_loc)
{
 EXEC SQL BEGIN DECLARE SECTION;
 int v_deptno_copy = v_deptno;
 char v_dname_copy[14+1] = v_dname;
 char v_loc_copy[13+1] = v_loc;
 EXEC SQL END DECLARE SECTION;

 EXEC SQL INSERT INTO dept VALUES(:v_deptno, :v_dname, :v_loc);
}

You can also include the INTO clause in a SELECT statement to use the host variables to retrieve information:

EXEC SQL SELECT deptno, dname, loc
 INTO :v_deptno, :v_dname, v_loc FROM dept;

Each column returned by the SELECT statement must have a type-compatible target variable in the INTO clause. This is a simple example that retrieves a single row. To retrieve more than one row,
you must define a cursor, as shown in the next example.

Example: Using a cursor to process a result set

The code sample that follows shows using a cursor to process a result set. Four basic steps are involved in creating and using a cursor:

1. Use the DECLARE CURSOR statement to define a cursor.
2. Use the OPEN CURSOR statement to open the cursor.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 854

3. Use the FETCH statement to retrieve data from a cursor.
4. Use the CLOSE CURSOR statement to close the cursor.

After declaring host variables, the example connects to the edb database using a user-supplied role name and password and queries the emp table. The query returns the values into a cursor named
employees . The code sample then opens the cursor and loops through the result set a row at a time, printing the result set. When the sample detects the end of the result set, it closes the connection.

/**
 * print_emps.pgc
 *
 */
#include <stdio.h>

int main(int argc, char *argv[])
{
 EXEC SQL BEGIN DECLARE SECTION;
 char *username = argv[1];
 char *password = argv[2];
 int v_empno;
 char v_ename[40];
 double v_sal;
 double v_comm;
 short v_comm_ind;
 EXEC SQL END DECLARE SECTION;

 EXEC SQL WHENEVER SQLERROR sqlprint;

 EXEC SQL CONNECT TO edb USER :username IDENTIFIED BY :password;

 EXEC SQL DECLARE employees CURSOR FOR
 SELECT
 empno, ename, sal, comm
 FROM
 emp;

 EXEC SQL OPEN employees;

 EXEC SQL WHENEVER NOT FOUND DO break;

 for (;;)
 {
 EXEC SQL FETCH NEXT FROM employees
 INTO
 :v_empno, :v_ename, :v_sal, :v_comm INDICATOR :v_comm_ind;

 if (v_comm_ind)
 printf("empno(%d), ename(%s), sal(%.2f) comm(NULL)\n",
 v_empno, v_ename, v_sal);
 else
 printf("empno(%d), ename(%s), sal(%.2f) comm(%.2f)\n",
 v_empno, v_ename, v_sal, v_comm);
 }
 EXEC SQL CLOSE employees;
 EXEC SQL DISCONNECT;
}
/**

The code sample begins by including the prototypes and type definitions for the C stdio library and then declares the main function:

#include <stdio.h>

int main(int argc, char *argv[])
{

Next, the application declares a set of host variables used to interact with the database server:

EXEC SQL BEGIN DECLARE SECTION;
 char *username = argv[1];
 char *password = argv[2];
 int v_empno;
 char v_ename[40];
 double v_sal;
 double v_comm;
 short v_comm_ind;
EXEC SQL END DECLARE SECTION;

argv[] is an array that contains the command line arguments entered when the user runs the client application. argv[1] contains the first command line argument (in this case, a username),
and argv[2] contains the second command line argument (a password). The example omits the error-checking code you would normally include a real-world application. The declaration

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 855

initializes the values of username and password , setting them to the values entered when the user invoked the client application.

You might think that you can refer to argv[1] and argv[2] in a SQL statement instead of creating a separate copy of each variable. However, that doesn't work. All host variables must be declared
in a BEGIN/END DECLARE SECTION , unless you're compiling in PROC mode. Since argv is a function parameter (not an automatic variable), you can't declare it in a BEGIN/END DECLARE
SECTION . If you're compiling in PROC mode, you can refer to any C variable in a SQL statement.

The next statement tells the server to respond to an SQL error by printing the text of the error message returned by ECPGPlus or the database server:

EXEC SQL WHENEVER SQLERROR sqlprint;

Then, the client application establishes a connection with EDB Postgres Advanced Server:

EXEC SQL CONNECT TO edb USER :username IDENTIFIED BY :password;

The CONNECT statement creates a connection to the edb database, using the values found in the :username and :password host variables to authenticate the application to the server when
connecting.

The next statement declares a cursor named employees :

EXEC SQL DECLARE employees CURSOR FOR
 SELECT
 empno, ename, sal, comm
 FROM
 emp;

employees contains the result set of a SELECT statement on the emp table. The query returns employee information from the following columns: empno , ename , sal , and comm . Notice
that when you declare a cursor, you don't include an INTO clause. Instead, you specify the target variables (or descriptors) when you FETCH from the cursor.

Before fetching rows from the cursor, the client application must OPEN the cursor:

EXEC SQL OPEN employees;

In the subsequent FETCH section, the client application loops through the contents of the cursor. The client application includes a WHENEVER statement that instructs the server to break (that is,
terminate the loop) when it reaches the end of the cursor:

EXEC SQL WHENEVER NOT FOUND DO break;

The client application then uses a FETCH statement to retrieve each row from the cursor INTO the previously declared host variables:

for (;;)
{
 EXEC SQL FETCH NEXT FROM employees
 INTO
 :v_empno, :v_ename, :v_sal, :v_comm INDICATOR :v_comm_ind;

The FETCH statement uses an INTO clause to assign the retrieved values into the :v_empno , :v_ename , :v_sal , and :v_comm host variables (and the :v_comm_ind null indicator). The
first value in the cursor is assigned to the first variable listed in the INTO clause, the second value is assigned to the second variable, and so on.

The FETCH statement also includes the INDICATOR keyword and a host variable to hold a null indicator. If the comm column for the retrieved record contains a NULL value, v_comm_ind is set
to a non-zero value, indicating that the column is NULL .

The code then checks the null indicator and displays the appropriate results:

if (v_comm_ind)
 printf("empno(%d), ename(%s), sal(%.2f) comm(NULL)\n",
 v_empno, v_ename, v_sal);
else
 printf("empno(%d), ename(%s), sal(%.2f) comm(%.2f)\n",
 v_empno, v_ename, v_sal, v_comm);
}

If the null indicator is 0 (that is, false), v_comm contains a meaningful value, and the printf function displays the commission. If the null indicator contains a non-zero value, comm is NULL ,
and printf displays the string 'NULL' . A host variable (other than a null indicator) contains no meaningful value if you fetch a NULL into that host variable. You must use null indicators for any
value which may be NULL .

The final statements in the code sample close the cursor (employees) and the connection to the server:

EXEC SQL CLOSE employees;
EXEC SQL DISCONNECT;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 856

22.3 Using descriptors

Dynamic SQL allows a client application to execute SQL statements that are composed at runtime. This ability is useful when you don't know the content or form for a statement when you're writing a
client application. ECPGPlus doesn't allow you to use a host variable in place of an identifier (such as a table name, column name, or index name). Instead, use dynamic SQL statements to build a string
that includes the information, and then execute that string. The string is passed between the client and the server in the form of a descriptor. A descriptor is a data structure that contains both the data
and the information about the shape of the data.

A client application must use a GET DESCRIPTOR statement to retrieve information from a descriptor. The basic flow of a client application using dynamic SQL is:

1. Use an ALLOCATE DESCRIPTOR statement to allocate a descriptor for the result set (select list).
2. Use an ALLOCATE DESCRIPTOR statement to allocate a descriptor for the input parameters (bind variables).
3. Obtain, assemble, or compute the text of an SQL statement.
4. Use a PREPARE statement to parse and check the syntax of the SQL statement.
5. Use a DESCRIBE statement to describe the select list into the select-list descriptor.
6. Use a DESCRIBE statement to describe the input parameters into the bind-variables descriptor.
7. Prompt the user (if required) for a value for each input parameter. Use a SET DESCRIPTOR statement to assign the values into a descriptor.
8. Use a DECLARE CURSOR statement to define a cursor for the statement.
9. Use an OPEN CURSOR statement to open a cursor for the statement.

10. Use a FETCH statement to fetch each row from the cursor, storing each row in select-list descriptor.
11. Use a GET DESCRIPTOR command to interrogate the select-list descriptor to find the value of each column in the current row.
12. Use a CLOSE CURSOR statement to close the cursor and free any cursor resources.

A descriptor can contain these attributes.

Field Type Attribute description

CARDINALITY integer The number of rows in the result set.

DATA N/A The data value.

DATETIME_INTERVAL_CODE integer

If TYPE is 9 :

1 - DATE

2 - TIME

3 - TIMESTAMP

4 - TIME WITH TIMEZONE

5 - TIMESTAMP WITH TIMEZONE

DATETIME_INTERVAL_PRECISION integer Unused.

INDICATOR integer Indicates a NULL or truncated value.

KEY_MEMBER integer Unused (returns FALSE).

LENGTH integer The data length (as stored on server).

NAME string The name of the column in which the data resides.

NULLABLE integer Unused (returns TRUE).

OCTET_LENGTH integer The data length (in bytes) as stored on server.

PRECISION integer The data precision (if the data is of numeric type).

RETURNED_LENGTH integer Actual length of data item.

RETURNED_OCTET_LENGTH integer Actual length of data item.

SCALE integer The data scale (if the data is of numeric type).

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 857

TYPE integer

A numeric code that represents the data type of the column:

1 - SQL3_CHARACTER

2 - SQL3_NUMERIC

3 - SQL3_DECIMAL

4 - SQL3_INTEGER

5 - SQL3_SMALLINT

6 - SQL3_FLOAT

7 - SQL3_REAL

8 - SQL3_DOUBLE_PRECISION

9 - SQL3_DATE_TIME_TIMESTAMP

10 - SQL3_INTERVAL

12 - SQL3_CHARACTER_VARYING

13 - SQL3_ENUMERATED

14 - SQL3_BIT

15 - SQL3_BIT_VARYING

16 - SQL3_BOOLEAN

Field Type Attribute description

Example: Using a descriptor to return data

The following simple application executes an SQL statement entered by an end user. The code sample shows:

How to use a SQL descriptor to execute a SELECT statement.
How to find the data and metadata returned by the statement.

The application accepts an SQL statement from an end user, tests the statement to see if it includes the SELECT keyword, and executes the statement.

When invoking the application, an end user must provide the name of the database on which to perform the SQL statement and a string that contains the text of the query.

For example, a user might invoke the sample with the following command:

./exec_stmt edb "SELECT * FROM emp"

/**
/* exec_stmt.pgc
*
*/

#include <stdio.h>
#include <stdlib.h>
#include <sql3types.h>
#include <sqlca.h>

EXEC SQL WHENEVER SQLERROR SQLPRINT;
static void print_meta_data(char * desc_name);

char *md1 = "col field data ret";
char *md2 = "num name type len";
char *md3 = "--- -------------------- ----------------- ---";

int main(int argc, char *argv[])
{

 EXEC SQL BEGIN DECLARE SECTION;
 char *db = argv[1];
 char *stmt = argv[2];
 int col_count;
 EXEC SQL END DECLARE SECTION;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 858

 EXEC SQL CONNECT TO :db;

 EXEC SQL ALLOCATE DESCRIPTOR parse_desc;
 EXEC SQL PREPARE query FROM :stmt;
 EXEC SQL DESCRIBE query INTO SQL DESCRIPTOR parse_desc;
 EXEC SQL GET DESCRIPTOR 'parse_desc' :col_count = COUNT;

if(col_count == 0)
{
 EXEC SQL EXECUTE IMMEDIATE :stmt;

 if(sqlca.sqlcode >= 0)
 EXEC SQL COMMIT;
}
else
{
 int row;

 EXEC SQL ALLOCATE DESCRIPTOR row_desc;
 EXEC SQL DECLARE my_cursor CURSOR FOR query;
 EXEC SQL OPEN my_cursor;

 for(row = 0; ; row++)
 {
 EXEC SQL BEGIN DECLARE SECTION;
 int col;
 EXEC SQL END DECLARE SECTION;
 EXEC SQL FETCH IN my_cursor
 INTO SQL DESCRIPTOR row_desc;

 if(sqlca.sqlcode != 0)
 break;

 if(row == 0)
 print_meta_data("row_desc");

 printf("[RECORD %d]\n", row+1);

 for(col = 1; col <= col_count; col++)
 {
 EXEC SQL BEGIN DECLARE SECTION;
 short ind;
 varchar val[40+1];
 varchar name[20+1];
 EXEC SQL END DECLARE SECTION;

 EXEC SQL GET DESCRIPTOR 'row_desc'
 VALUE :col
 :val = DATA, :ind = INDICATOR, :name = NAME;

 if(ind == -1)
 printf(" %-20s : <null>\n", name.arr);
 else if(ind > 0)
 printf(" %-20s : <truncated>\n", name.arr);
 else
 printf(" %-20s : %s\n", name.arr, val.arr);
 }

 printf("\n");

 }
 printf("%d rows\n", row);
}

exit(0);
}

static void print_meta_data(char *desc_name)
{
 EXEC SQL BEGIN DECLARE SECTION;
 char *desc = desc_name;
 int col_count;
 int col;
 EXEC SQL END DECLARE SECTION;

static char *types[] =
{
 "unused ",
 "CHARACTER ",

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 859

 "NUMERIC ",
 "DECIMAL ",
 "INTEGER ",
 "SMALLINT ",
 "FLOAT ",
 "REAL ",
 "DOUBLE ",
 "DATE_TIME ",
 "INTERVAL ",
 "unused ",
 "CHARACTER_VARYING",
 "ENUMERATED ",
 "BIT ",
 "BIT_VARYING ",
 "BOOLEAN ",
 "abstract "
};

EXEC SQL GET DESCRIPTOR :desc :col_count = count;

printf("%s\n", md1);
printf("%s\n", md2);
printf("%s\n", md3);

for(col = 1; col <= col_count; col++)
{

 EXEC SQL BEGIN DECLARE SECTION;
 int type;
 int ret_len;
 varchar name[21];
 EXEC SQL END DECLARE SECTION;
 char *type_name;

 EXEC SQL GET DESCRIPTOR :desc
 VALUE :col
 :name = NAME,
 :type = TYPE,
 :ret_len = RETURNED_OCTET_LENGTH;

 if(type > 0 && type < SQL3_abstract)
 type_name = types[type];
 else
 type_name = "unknown";

 printf("%02d: %-20s %-17s %04d\n",
 col, name.arr, type_name, ret_len);
}
printf("\n");
}

/**

The code sample begins by including the prototypes and type definitions for the C stdio and stdlib libraries, SQL data type symbols, and the SQLCA (SQL communications area) structure:

#include <stdio.h>
#include <stdlib.h>
#include <sql3types.h>
#include <sqlca.h>

The sample provides minimal error handling. When the application encounters a SQL error, it prints the error message to screen:

EXEC SQL WHENEVER SQLERROR SQLPRINT;

The application includes a forward-declaration for a function named print_meta_data() that prints the metadata found in a descriptor:

static void print_meta_data(char * desc_name);

The following code specifies the column header information that the application uses when printing the metadata:

char *md1 = "col field data ret";
char *md2 = "num name type len";
char *md3 = "--- -------------------- ----------------- ---";

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 860

int main(int argc, char *argv[])
{

The following declaration section identifies the host variables to contain the name of the database the application connects to, the content of the SQL statement, and a host variable for the number of
columns in the result set (if any).

EXEC SQL BEGIN DECLARE SECTION;
 char *db = argv[1];
 char *stmt = argv[2];
 int col_count;
EXEC SQL END DECLARE SECTION;

The application connects to the database using the default credentials:

EXEC SQL CONNECT TO :db;

Next, the application allocates a SQL descriptor to hold the metadata for a statement:

EXEC SQL ALLOCATE DESCRIPTOR parse_desc;

The application uses a PREPARE statement to check the syntax of the string provided by the user:

EXEC SQL PREPARE query FROM :stmt;

It also uses a DESCRIBE statement to move the metadata for the query into the SQL descriptor.

EXEC SQL DESCRIBE query INTO SQL DESCRIPTOR parse_desc;

Then, the application interrogates the descriptor to discover the number of columns in the result set and stores that in the host variable col_count .

EXEC SQL GET DESCRIPTOR parse_desc :col_count = COUNT;

If the column count is zero, the end user didn't enter a SELECT statement. The application uses an EXECUTE IMMEDIATE statement to process the contents of the statement:

if(col_count == 0)
{
 EXEC SQL EXECUTE IMMEDIATE :stmt;

If the statement executes successfully, the application performs a COMMIT :

if(sqlca.sqlcode >= 0)
 EXEC SQL COMMIT;
}
else
{

If the statement entered by the user is a SELECT statement (which we know because the column count is non-zero), the application declares a variable named row :

int row;

Then, the application allocates another descriptor that holds the description and the values of a specific row in the result set:

EXEC SQL ALLOCATE DESCRIPTOR row_desc;

The application declares and opens a cursor for the prepared statement:

EXEC SQL DECLARE my_cursor CURSOR FOR query;
EXEC SQL OPEN my_cursor;

It loops through the rows in the result set:

for(row = 0; ; row++)
{
 EXEC SQL BEGIN DECLARE SECTION;
 int col;
 EXEC SQL END DECLARE SECTION;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 861

Then, it uses a FETCH to retrieve the next row from the cursor into the descriptor:

EXEC SQL FETCH IN my_cursor INTO SQL DESCRIPTOR row_desc;

The application confirms that the FETCH didn't fail. If the FETCH fails, the application reached the end of the result set and breaks the loop:

if(sqlca.sqlcode != 0)
 break;

The application checks to see if this is the first row of the cursor. If it is, the application prints the metadata for the row:

if(row == 0)
 print_meta_data("row_desc");

Next, it prints a record header containing the row number:

printf("[RECORD %d]\n", row+1);

Then, it loops through each column in the row:

for(col = 1; col <= col_count; col++)
{
 EXEC SQL BEGIN DECLARE SECTION;
 short ind;
 varchar val[40+1];
 varchar name[20+1];
 EXEC SQL END DECLARE SECTION;

The application interrogates the row descriptor (row_desc) to copy the column value :val , null indicator :ind , and column name :name into the host variables declared earlier. You can
retrieve multiple items from a descriptor using a comma-separated list:

EXEC SQL GET DESCRIPTOR row_desc
 VALUE :col
 :val = DATA, :ind = INDICATOR, :name = NAME;

If the null indicator (ind) is negative, the column value is NULL . If the null indicator is greater than 0 , the column value is too long to fit into the val host variable, so we print <truncated> .
Otherwise, the null indicator is 0 , meaning NOT NULL , so we print the value. In each case, we prefix the value (or <null> or <truncated>) with the name of the column.

if(ind == -1)
 printf(" %-20s : <null>\n", name.arr);
else if(ind > 0)
 printf(" %-20s : <truncated>\n", name.arr);
else
 printf(" %-20s : %s\n", name.arr, val.arr);
}

printf("\n");
}

When the loop terminates, the application prints the number of rows fetched and exits:

 printf("%d rows\n", row);
 }

exit(0);
}

The print_meta_data() function extracts the metadata from a descriptor and prints the name, data type, and length of each column:

static void print_meta_data(char *desc_name)
{

The application declares host variables:

EXEC SQL BEGIN DECLARE SECTION;
 char *desc = desc_name;
 int col_count;
 int col;
EXEC SQL END DECLARE SECTION;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 862

The application then defines an array of character strings that map data type values (numeric) into data type names. We use the numeric value found in the descriptor to index into this array. For
example, if we find that a given column is of type 2 , we can find the name of that type (NUMERIC) by writing types[2] .

static char *types[] =
{
 "unused ",
 "CHARACTER ",
 "NUMERIC ",
 "DECIMAL ",
 "INTEGER ",
 "SMALLINT ",
 "FLOAT ",
 "REAL ",
 "DOUBLE ",
 "DATE_TIME ",
 "INTERVAL ",
 "unused ",
 "CHARACTER_VARYING",
 "ENUMERATED ",
 "BIT ",
 "BIT_VARYING ",
 "BOOLEAN ",
 "abstract "
};

The application retrieves the column count from the descriptor. The program refers to the descriptor using a host variable (desc) that contains the name of the descriptor. In most scenarios, you use
an identifier to refer to a descriptor. In this case, the caller provided the descriptor name, so we can use a host variable to refer to the descriptor.

EXEC SQL GET DESCRIPTOR :desc :col_count = count;

The application prints the column headers defined at the beginning of this application:

printf("%s\n", md1);
printf("%s\n", md2);
printf("%s\n", md3);

Then, it loops through each column found in the descriptor and prints the name, type, and length of each column.

for(col = 1; col <= col_count; col++)
{
 EXEC SQL BEGIN DECLARE SECTION;
 int type;
 int ret_len;
 varchar name[21];
 EXEC SQL END DECLARE SECTION;
 char *type_name;

It retrieves the name, type code, and length of the current column:

EXEC SQL GET DESCRIPTOR :desc
 VALUE :col
 :name = NAME,
 :type = TYPE,
 :ret_len = RETURNED_OCTET_LENGTH;

If the numeric type code matches a 'known' type code (that is, a type code found in the types[] array), it sets type_name to the name of the corresponding type. Otherwise, it sets type_name to
"unknown" :

if(type > 0 && type < SQL3_abstract)
 type_name = types[type];
else
 type_name = "unknown";

It then prints the column number, name, type name, and length:

 printf("%02d: %-20s %-17s %04d\n",
 col, name.arr, type_name, ret_len);
 }
 printf("\n");
}

Invoke the sample application with the following command:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 863

./exec_stmt test "SELECT * FROM emp WHERE empno IN(7902, 7934)"

The application returns:

col field data ret
num name type len
--- -------------------- ----------------- ---
01: empno NUMERIC 0004
02: ename CHARACTER_VARYING 0004
03: job CHARACTER_VARYING 0007
04: mgr NUMERIC 0004
05: hiredate DATE_TIME 0018
06: sal NUMERIC 0007
07: comm NUMERIC 0000
08: deptno NUMERIC 0002

[RECORD 1]
 empno : 7902
 ename : FORD
 job : ANALYST
 mgr : 7566
 hiredate : 03-DEC-81 00:00:00
 sal : 3000.00
 comm : <null>
 deptno : 20

[RECORD 2]
 empno : 7934
 ename : MILLER
 job : CLERK
 mgr : 7782
 hiredate : 23-JAN-82 00:00:00
 sal : 1300.00
 comm : <null>
 deptno : 10

2 rows

22.4 Building and executing dynamic SQL statements

The following examples show four techniques for building and executing dynamic SQL statements. Each example shows processing a different combination of statement and input types:

The first example shows processing and executing a SQL statement that doesn't contain a SELECT statement and doesn't require input variables. This example corresponds to the techniques
used by Oracle Dynamic SQL Method 1.
The second example shows processing and executing a SQL statement that doesn't contain a SELECT statement and contains a known number of input variables. This example corresponds to
the techniques used by Oracle Dynamic SQL Method 2.
The third example shows processing and executing a SQL statement that might contain a SELECT statement and includes a known number of input variables. This example corresponds to the
techniques used by Oracle Dynamic SQL Method 3.
The fourth example shows processing and executing a SQL statement that might contain a SELECT statement and includes an unknown number of input variables. This example corresponds to
the techniques used by Oracle Dynamic SQL Method 4.

Example: Executing a nonquery statement without parameters

This example shows how to use the EXECUTE IMMEDIATE command to execute a SQL statement, where the text of the statement isn't known until you run the application. You can't use EXECUTE
IMMEDIATE to execute a statement that returns a result set. You can't use EXECUTE IMMEDIATE to execute a statement that contains parameter placeholders.

The EXECUTE IMMEDIATE statement parses and plans the SQL statement each time it executes, which can have a negative impact on the performance of your application. If you plan to execute the
same statement repeatedly, consider using the PREPARE/EXECUTE technique described in Example: Executing a nonquery statement with a specified number of placeholders.

/***/
#include <stdio.h>
#include <string.h>
#include <stdlib.h>

static void handle_error(void);

int main(int argc, char *argv[])
{
 char *insertStmt;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 864

 EXEC SQL WHENEVER SQLERROR DO handle_error();

 EXEC SQL CONNECT :argv[1];

 insertStmt = "INSERT INTO dept VALUES(50, 'ACCTG', 'SEATTLE')";

 EXEC SQL EXECUTE IMMEDIATE :insertStmt;

 fprintf(stderr, "ok\n");

 EXEC SQL COMMIT RELEASE;

 exit(EXIT_SUCCESS);
}

static void handle_error(void)
{
 fprintf(stderr, "%s\n", sqlca.sqlerrm.sqlerrmc);

 EXEC SQL WHENEVER SQLERROR CONTINUE;
 EXEC SQL ROLLBACK RELEASE;

 exit(EXIT_FAILURE);
}

/***/

The code sample begins by including the prototypes and type definitions for the C stdio , string , and stdlib libraries and providing basic infrastructure for the program:

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

static void handle_error(void);
int main(int argc, char *argv[])
{
 char *insertStmt;

The example then sets up an error handler. ECPGPlus calls the handle_error() function whenever a SQL error occurs:

EXEC SQL WHENEVER SQLERROR DO handle_error();

Then, the example connects to the database using the credentials specified on the command line:

EXEC SQL CONNECT :argv[1];

Next, the program uses an EXECUTE IMMEDIATE statement to execute a SQL statement, adding a row to the dept table:

insertStmt = "INSERT INTO dept VALUES(50, 'ACCTG', 'SEATTLE')";

EXEC SQL EXECUTE IMMEDIATE :insertStmt;

If the EXECUTE IMMEDIATE command fails, ECPGPlus invokes the handle_error() function, which terminates the application after displaying an error message to the user. If the EXECUTE
IMMEDIATE command succeeds, the application displays a message (ok) to the user, commits the changes, disconnects from the server, and terminates the application:

 fprintf(stderr, "ok\n");

 EXEC SQL COMMIT RELEASE;

 exit(EXIT_SUCCESS);
}

ECPGPlus calls the handle_error() function whenever it encounters a SQL error. The handle_error() function prints the content of the error message, resets the error handler, rolls back any
changes, disconnects from the database, and terminates the application:

static void handle_error(void)
{
 fprintf(stderr, "%s\n", sqlca.sqlerrm.sqlerrmc);

 EXEC SQL WHENEVER SQLERROR CONTINUE;
 EXEC SQL ROLLBACK RELEASE;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 865

 exit(EXIT_FAILURE);
}

Example: Executing a nonquery statement with a specified number of placeholders

To execute a nonquery command that includes a known number of parameter placeholders, you must first PREPARE the statement (providing a statement handle) and then EXECUTE the statement
using the statement handle. When the application executes the statement, it must provide a value for each placeholder found in the statement.

When an application uses the PREPARE/EXECUTE mechanism, each SQL statement is parsed and planned once but might execute many times, providing different values each time.

ECPGPlus converts each parameter value to the type required by the SQL statement, if possible. Otherwise, ECPGPlus reports an error.

/***/
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <sqlca.h>

static void handle_error(void);

int main(int argc, char *argv[])
{
 char *stmtText;

 EXEC SQL WHENEVER SQLERROR DO handle_error();

 EXEC SQL CONNECT :argv[1];

 stmtText = "INSERT INTO dept VALUES(?, ?, ?)";

 EXEC SQL PREPARE stmtHandle FROM :stmtText;

 EXEC SQL EXECUTE stmtHandle USING :argv[2], :argv[3], :argv[4];

 fprintf(stderr, "ok\n");

 EXEC SQL COMMIT RELEASE;

 exit(EXIT_SUCCESS);
}

static void handle_error(void)
{
 printf("%s\n", sqlca.sqlerrm.sqlerrmc);
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 EXEC SQL ROLLBACK RELEASE;

 exit(EXIT_FAILURE);
}
/***/

The code sample begins by including the prototypes and type definitions for the C stdio , string , stdlib , and sqlca libraries and providing basic infrastructure for the program:

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <sqlca.h>

static void handle_error(void);

int main(int argc, char *argv[])
{
 char *stmtText;

The example then sets up an error handler. ECPGPlus calls the handle_error() function whenever a SQL error occurs.

EXEC SQL WHENEVER SQLERROR DO handle_error();

Then, the example connects to the database using the credentials specified on the command line:

EXEC SQL CONNECT :argv[1];

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 866

Next, the program uses a PREPARE statement to parse and plan a statement that includes three parameter markers. If the PREPARE statement succeeds, it creates a statement handle that you can
use to execute the statement. (In this example, the statement handle is named stmtHandle .) You can execute a given statement multiple times using the same statement handle.

stmtText = "INSERT INTO dept VALUES(?, ?, ?)";

EXEC SQL PREPARE stmtHandle FROM :stmtText;

After parsing and planning the statement, the application uses the EXECUTE statement to execute the statement associated with the statement handle, substituting user-provided values for the
parameter markers:

EXEC SQL EXECUTE stmtHandle USING :argv[2], :argv[3], :argv[4];

If the EXECUTE command fails, ECPGPlus invokes the handle_error() function, which terminates the application after displaying an error message to the user. If the EXECUTE command
succeeds, the application displays a message (ok) to the user, commits the changes, disconnects from the server, and terminates the application:

 fprintf(stderr, "ok\n");

 EXEC SQL COMMIT RELEASE;

 exit(EXIT_SUCCESS);
}

ECPGPlus calls the handle_error() function whenever it encounters a SQL error. The handle_error() function prints the content of the error message, resets the error handler, rolls back any
changes, disconnects from the database, and terminates the application:

static void handle_error(void)
{
 printf("%s\n", sqlca.sqlerrm.sqlerrmc);

 EXEC SQL WHENEVER SQLERROR CONTINUE;
 EXEC SQL ROLLBACK RELEASE;
 exit(EXIT_FAILURE);
}

Example: Executing a query with a known number of placeholders

This example shows how to execute a query with a known number of input parameters and with a known number of columns in the result set. This method uses the PREPARE statement to parse and
plan a query and then opens a cursor and iterates through the result set.

/***/
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <stdbool.h>
#include <sqlca.h>

static void handle_error(void);

int main(int argc, char *argv[])
{
 VARCHAR empno[10];
 VARCHAR ename[20];

 EXEC SQL WHENEVER SQLERROR DO handle_error();

 EXEC SQL CONNECT :argv[1];

 EXEC SQL PREPARE queryHandle
 FROM "SELECT empno, ename FROM emp WHERE deptno = ?";

 EXEC SQL DECLARE empCursor CURSOR FOR queryHandle;

 EXEC SQL OPEN empCursor USING :argv[2];

 EXEC SQL WHENEVER NOT FOUND DO break;

 while(true)
 {

 EXEC SQL FETCH empCursor INTO :empno, :ename;

 printf("%-10s %s\n", empno.arr, ename.arr);

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 867

 }

 EXEC SQL CLOSE empCursor;

 EXEC SQL COMMIT RELEASE;

 exit(EXIT_SUCCESS);
}

static void handle_error(void)
{
 printf("%s\n", sqlca.sqlerrm.sqlerrmc);

 EXEC SQL WHENEVER SQLERROR CONTINUE;
 EXEC SQL ROLLBACK RELEASE;

 exit(EXIT_FAILURE);
}

/***/

The code sample begins by including the prototypes and type definitions for the C stdio , string , stdlib , stdbool , and sqlca libraries and providing basic infrastructure for the program:

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <stdbool.h>
#include <sqlca.h>

static void handle_error(void);

int main(int argc, char *argv[])
{
 VARCHAR empno[10];
 VARCHAR ename[20];

The example then sets up an error handler. ECPGPlus calls the handle_error() function whenever a SQL error occurs:

EXEC SQL WHENEVER SQLERROR DO handle_error();

Then, the example connects to the database using the credentials specified on the command line:

EXEC SQL CONNECT :argv[1];

Next, the program uses a PREPARE statement to parse and plan a query that includes a single parameter marker. If the PREPARE statement succeeds, it creates a statement handle that you can use
to execute the statement. (In this example, the statement handle is named stmtHandle .) You can execute a given statement multiple times using the same statement handle.

EXEC SQL PREPARE stmtHandle
 FROM "SELECT empno, ename FROM emp WHERE deptno = ?";

The program then declares and opens the cursor empCursor , substituting a user-provided value for the parameter marker in the prepared SELECT statement. The OPEN statement includes a
USING clause, which must provide a value for each placeholder found in the query:

EXEC SQL DECLARE empCursor CURSOR FOR stmtHandle;

EXEC SQL OPEN empCursor USING :argv[2];

EXEC SQL WHENEVER NOT FOUND DO break;

while(true)
{

The program iterates through the cursor and prints the employee number and name of each employee in the selected department:

 EXEC SQL FETCH empCursor INTO :empno, :ename;

 printf("%-10s %s\n", empno.arr, ename.arr);
}

The program then closes the cursor, commits any changes, disconnects from the server, and terminates the application:

 EXEC SQL CLOSE empCursor;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 868

 EXEC SQL COMMIT RELEASE;

 exit(EXIT_SUCCESS);
}

The application calls the handle_error() function whenever it encounters a SQL error. The handle_error() function prints the content of the error message, resets the error handler, rolls
back any changes, disconnects from the database, and terminates the application:

static void handle_error(void)
{
 printf("%s\n", sqlca.sqlerrm.sqlerrmc);

 EXEC SQL WHENEVER SQLERROR CONTINUE;
 EXEC SQL ROLLBACK RELEASE;

 exit(EXIT_FAILURE);
}

Example: Executing a query with an unknown number of variables

This example shows executing a query with an unknown number of input parameters or columns in the result set. This type of query might occur when you prompt the user for the text of the query or
when a query is assembled from a form on which the user chooses from a number of conditions (i.e., a filter).

/***/
#include <stdio.h>
#include <stdlib.h>
#include <sqlda.h>
#include <sqlcpr.h>

SQLDA *params;
SQLDA *results;

static void allocateDescriptors(int count,
 int varNameLength,
 int indNameLenth);
static void bindParams(void);
static void displayResultSet(void);

int main(int argc, char *argv[])
{
 EXEC SQL BEGIN DECLARE SECTION;
 char *username = argv[1];
 char *password = argv[2];
 char *stmtText = argv[3];
 EXEC SQL END DECLARE SECTION;

 EXEC SQL WHENEVER SQLERROR sqlprint;

 EXEC SQL CONNECT TO test
 USER :username
 IDENTIFIED BY :password;

 params = sqlald(20, 64, 64);
 results = sqlald(20, 64, 64);

 EXEC SQL PREPARE stmt FROM :stmtText;

 EXEC SQL DECLARE dynCursor CURSOR FOR stmt;

 bindParams();

 EXEC SQL OPEN dynCursor USING DESCRIPTOR params;

 displayResultSet(20);
}

static void bindParams(void)
{
 EXEC SQL DESCRIBE BIND VARIABLES FOR stmt INTO params;

 if (params->F < 0)
 fprintf(stderr, "Too many parameters required\n");
 else
 {

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 869

 int i;

 params->N = params->F;

 for (i = 0; i < params->F; i++)
 {
 char *paramName = params->S[i];
 int nameLen = params->C[i];
 char paramValue[255];

 printf("Enter value for parameter %.*s: ",
 nameLen, paramName);

 fgets(paramValue, sizeof(paramValue), stdin);

 params->T[i] = 1; /* Data type = Character (1) */
 params->L[i] = strlen(paramValue) - 1;
 params->V[i] = strdup(paramValue);
 }
 }
}

static void displayResultSet(void)
{
 EXEC SQL DESCRIBE SELECT LIST FOR stmt INTO results;

 if (results->F < 0)
 fprintf(stderr, "Too many columns returned by query\n");
 else if (results->F == 0)
 return;
 else
 {
 int col;

 results->N = results->F;

 for (col = 0; col < results->F; col++)
 {
 int null_permitted, length;

 sqlnul(&results->T[col],
 &results->T[col],
 &null_permitted);

 switch (results->T[col])
 {
 case 2: /* NUMERIC */
 {
 int precision, scale;

 sqlprc(&results->L[col], &precision, &scale);

 if (precision == 0)
 precision = 38;

 length = precision + 3;
 break;
 }

 case 12: /* DATE */
 {
 length = 30;
 break;
 }

 default: /* Others */
 {
 length = results->L[col] + 1;
 break;
 }
 }

 results->V[col] = realloc(results->V[col], length);
 results->L[col] = length;
 results->T[col] = 1;
 }

 EXEC SQL WHENEVER NOT FOUND DO break;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 870

 while (1)
 {
 const char *delimiter = "";

 EXEC SQL FETCH dynCursor USING DESCRIPTOR results;

 for (col = 0; col < results->F; col++)
 {
 if (*results->I[col] == -1)
 printf("%s%s", delimiter, "<null>");
 else
 printf("%s%s", delimiter, results->V[col]);
 delimiter = ", ";
 }

 printf("\n");
 }
 }
}
/***/

The code sample begins by including the prototypes and type definitions for the C stdio and stdlib libraries. In addition, the program includes the sqlda.h and sqlcpr.h header files.
sqlda.h defines the SQLDA structure used throughout this example. sqlcpr.h defines a small set of functions used to interrogate the metadata found in an SQLDA structure.

#include <stdio.h>
#include <stdlib.h>
#include <sqlda.h>
#include <sqlcpr.h>

Next, the program declares pointers to two SQLDA structures. The first SQLDA structure (params) is used to describe the metadata for any parameter markers found in the dynamic query text. The
second SQLDA structure (results) contains both the metadata and the result set obtained by executing the dynamic query.

SQLDA *params;
SQLDA *results;

The program then declares two helper functions, which are defined near the end of the code sample:

static void bindParams(void);
static void displayResultSet(void);

Next, the program declares three host variables. The first two (username and password) are used to connect to the database server. The third host variable (stmtTxt) is a NULL-terminated C
string containing the text of the query to execute. The values for these three host variables are derived from the command-line arguments. When the program begins to execute, it sets up an error
handler and then connects to the database server:

int main(int argc, char *argv[])
{
 EXEC SQL BEGIN DECLARE SECTION;
 char *username = argv[1];
 char *password = argv[2];
 char *stmtText = argv[3];
 EXEC SQL END DECLARE SECTION;

 EXEC SQL WHENEVER SQLERROR sqlprint;
 EXEC SQL CONNECT TO test
 USER :username
 IDENTIFIED BY :password;

Next, the program calls the sqlald() function to allocate the memory required for each descriptor. Each descriptor contains pointers to arrays of:

Column names
Indicator names
Data types
Lengths
Data values

When you allocate an SQLDA descriptor, you specify the maximum number of columns you expect to find in the result set (for SELECT -list descriptors) or the maximum number of parameters you
expect to find the dynamic query text (for bind-variable descriptors). In this case, we specify that we expect no more than 20 columns and 20 parameters. You must also specify a maximum length for
each column or parameter name and each indicator variable name. In this case, we expect names to be no more than 64 bytes long.

See SQLDA structure for a complete description of the SQLDA structure.

params = sqlald(20, 64, 64);
results = sqlald(20, 64, 64);

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 871

After allocating the SELECT -list and bind descriptors, the program prepares the dynamic statement and declares a cursor over the result set.

EXEC SQL PREPARE stmt FROM :stmtText;

EXEC SQL DECLARE dynCursor CURSOR FOR stmt;

Next, the program calls the bindParams() function. The bindParams() function examines the bind descriptor (params) and prompts the user for a value to substitute in place of each
parameter marker found in the dynamic query.

bindParams();

Finally, the program opens the cursor (using any parameter values supplied by the user) and calls the displayResultSet() function to print the result set produced by the query:

EXEC SQL OPEN dynCursor USING DESCRIPTOR params;

displayResultSet();
}

The bindParams() function determines whether the dynamic query contains any parameter markers. If so, it prompts the user for a value for each parameter and then binds that value to the
corresponding marker. The DESCRIBE BIND VARIABLE statement populates the params SQLDA structure with information describing each parameter marker:

static void bindParams(void)
{
 EXEC SQL DESCRIBE BIND VARIABLES FOR stmt INTO params;

If the statement contains no parameter markers, params->F contains 0. If the statement contains more parameters than fit into the descriptor, params->F contains a negative number. In this
case, the absolute value of params->F indicates the number of parameter markers found in the statement. If params->F contains a positive number, that number indicates how many parameter
markers were found in the statement.

if (params->F < 0)
 fprintf(stderr, "Too many parameters required\n");
else
{
 int i;

 params->N = params->F;

Next, the program executes a loop that prompts the user for a value, iterating once for each parameter marker found in the statement:

for (i = 0; i < params->F; i++)
{
 char *paramName = params->S[i];
 int nameLen = params->C[i];
 char paramValue[255];

 printf("Enter value for parameter %.*s: ",
 nameLen, paramName);

 fgets(paramValue, sizeof(paramValue), stdin);

After prompting the user for a value for a given parameter, the program binds that value to the parameter by setting:

params->T[i] to indicate the data type of the value
params->L[i] to the length of the value (we subtract one to trim off the trailing new-line character added by fgets())
params->V[i] to point to a copy of the NULL-terminated string provided by the user

 params->T[i] = 1; /* Data type = Character (1) */
 params->L[i] = strlen(paramValue) + 1;
 params->V[i] = strdup(paramValue);
 }
 }
}

The displayResultSet() function loops through each row in the result set and prints the value found in each column. displayResultSet() starts by executing a DESCRIBE SELECT
LIST statement. This statement populates an SQLDA descriptor (results) with a description of each column in the result set.

static void displayResultSet(void)
{
 EXEC SQL DESCRIBE SELECT LIST FOR stmt INTO results;

If the dynamic statement returns no columns (that is, the dynamic statement is not a SELECT statement), results->F contains 0. If the statement returns more columns than fit into the descriptor,

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 872

results->F contains a negative number. In this case, the absolute value of results->F indicates the number of columns returned by the statement. If results->F contains a positive
number, that number indicates how many columns were returned by the query.

if (results->F < 0)
 fprintf(stderr, "Too many columns returned by query\n");
else if (results->F == 0)
 return;
else
{
 int col;

 results->N = results->F;

Next, the program enters a loop, iterating once for each column in the result set:

for (col = 0; col < results->F; col++)
{
 int null_permitted, length;

To decode the type code found in results->T , the program invokes the sqlnul() function (see the description of the T member of the SQLDA structure in the The SQLDA structure). This call to
sqlnul() modifies results->T[col] to contain only the type code (the nullability flag is copied to null_permitted). This step is needed because the DESCRIBE SELECT LIST

statement encodes the type of each column and the nullability of each column into the T array.

sqlnul(&results->T[col],
 &results->T[col],
 &null_permitted);

After decoding the actual data type of the column, the program modifies the results descriptor to tell ECPGPlus to return each value in the form of a NULL-terminated string. Before modifying the
descriptor, the program must compute the amount of space required to hold each value. To make this computation, the program examines the maximum length of each column (results->V[col])
and the data type of each column (results->T[col]) .

For numeric values (where results->T[col] = 2), the program calls the sqlprc() function to extract the precision and scale from the column length. To compute the number of bytes
required to hold a numeric value in string form, displayResultSet() starts with the precision (that is, the maximum number of digits) and adds three bytes for a sign character, a decimal point,
and a NULL terminator.

switch (results->T[col])
{
 case 2: /* NUMERIC */
 {
 int precision, scale;

 sqlprc(&results->L[col], &precision, &scale);

 if (precision == 0)
 precision = 38;
 length = precision + 3;
 break;
 }

For date values, the program uses a hard-coded length of 30. In a real-world application, you might want to more carefully compute the amount of space required.

case 12: /* DATE */
{
 length = 30;
 break;
}

For a value of any type other than date or numeric, displayResultSet() starts with the maximum column width reported by DESCRIBE SELECT LIST and adds one extra byte for the NULL
terminator. Again, in a real-world application you might want to include more careful calculations for other data types:

default: /* Others */
{
 length = results->L[col] + 1;
 break;
}
}

After computing the amount of space required to hold a given column, the program:

Allocates enough memory to hold the value
Sets results->L[col] to indicate the number of bytes found at results->V[col]
Sets the type code for the column (results->T[col]) to 1 to instruct the upcoming FETCH statement to return the value in the form of a NULL-terminated string

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 873

 results->V[col] = malloc(length);
 results->L[col] = length;
 results->T[col] = 1;
}

At this point, the results descriptor is configured such that a FETCH statement can copy each value into an appropriately sized buffer in the form of a NULL-terminated string.

Next, the program defines a new error handler to break out of the upcoming loop when the cursor is exhausted.

EXEC SQL WHENEVER NOT FOUND DO break;

while (1)
{
 const char *delimiter = "";

The program executes a FETCH statement to fetch the next row in the cursor into the results descriptor. If the FETCH statement fails (because the cursor is exhausted), control transfers to the
end of the loop because of the EXEC SQL WHENEVER directive found before the top of the loop.

EXEC SQL FETCH dynCursor USING DESCRIPTOR results;

The FETCH statement populates the following members of the results descriptor:

*results->I[col] indicates whether the column contains a NULL value (-1) or a non-NULL value (0) . If the value is non-NULL but too large to fit into the space provided, the value is
truncated, and *results->I[col] contains a positive value.
results->V[col] contains the value fetched for the given column (unless *results->I[col] indicates that the column value is NULL).
results->L[col] contains the length of the value fetched for the given column.

Finally, displayResultSet() iterates through each column in the result set, examines the corresponding NULL indicator, and prints the value. The result set isn't aligned. Instead, each value is
separated from the previous value by a comma.

for (col = 0; col < results->F; col++)
{
 if (*results->I[col] == -1)
 printf("%s%s", delimiter, "<null>");
 else
 printf("%s%s", delimiter, results->V[col]);
 delimiter = ", ";
}

printf("\n");
}
}
}
/***/

22.5 Error handling

ECPGPlus provides two methods to detect and handle errors in embedded SQL code. A client application can:

Examine the sqlca data structure for error messages and supply customized error handling for your client application.
Include EXEC SQL WHENEVER directives to instruct the ECPGPlus compiler to add error-handling code.

Error handling with sqlca

sqlca (SQL communications area) is a global variable used by ecpglib to communicate information from the server to the client application. After executing a SQL statement such as an INSERT
or SELECT statement, you can inspect the contents of sqlca to determine if the statement completed successfully or if the statement failed.

sqlca has the following structure:

struct
{
 char sqlcaid[8];
 long sqlabc;
 long sqlcode;
 struct
 {
 int sqlerrml;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 874

 char sqlerrmc[SQLERRMC_LEN];
 } sqlerrm;
 char sqlerrp[8];
 long sqlerrd[6];
 char sqlwarn[8];
 char sqlstate[5];

} sqlca;

Use the following directive to implement sqlca functionality:

EXEC SQL INCLUDE sqlca;

If you include the ecpg directive, you don't need to #include the sqlca.h file in the client application's header declaration.

The EDB Postgres Advanced Server sqlca structure contains the following members:

sqlcaid — Contains the string: "SQLCA" .

sqlabc — sqlabc contains the size of the sqlca structure.

sqlcode — The sqlcode member was deprecated with SQL 92. EDB Postgres Advanced Server supports sqlcode for backward compatibility. Use the sqlstate member when writing
new code.

sqlcode is an integer value. A positive sqlcode value indicates that the client application encountered a harmless processing condition. A negative value indicates a warning or error.

If a statement processes without error, sqlcode contains a value of 0 . If the client application encounters an error or warning during a statement's execution, sqlcode contains the last
code returned.

The SQL standard defines only a positive value of 100, which indicates that the most recent SQL statement processed returned or affected no rows. Since the SQL standard doesn't define other
sqlcode values, be aware that the values assigned to each condition can vary from database to database.

sqlerrm is a structure embedded in sqlca , composed of two members:

sqlerrml — Contains the length of the error message currently stored in sqlerrmc .

sqlerrmc — Contains the null-terminated message text associated with the code stored in sqlstate . If a message exceeds 149 characters, ecpglib truncates the error message.

sqlerrp — Contains the string "NOT SET" .

sqlerrd is an array that contains six elements:

sqlerrd[1] — Contains the OID of the processed row (if applicable).

sqlerrd[2] — Contains the number of processed or returned rows.

sqlerrd[0] , sqlerrd[3] , sqlerrd[4] and sqlerrd[5] are unused.

sqlwarn is an array that contains 8 characters:

sqlwarn[0] — Contains a value of 'W' if any other element in sqlwarn is set to 'W' .

sqlwarn[1] — Contains a value of 'W' if a data value was truncated when it was stored in a host variable.

sqlwarn[2] — Contains a value of 'W' if the client application encounters a nonfatal warning.

sqlwarn[3] , sqlwarn[4] , sqlwarn[5] , sqlwarn[6] , and sqlwarn[7] are unused.

sqlstate is a five-character array that contains a SQL-compliant status code after the execution of a statement from the client application. If a statement processes without error, sqlstate
contains a value of 00000 . sqlstate isn't a null-terminated string.

sqlstate codes are assigned in a hierarchical scheme:

The first two characters of sqlstate indicate the general class of the condition.
The last three characters of sqlstate indicate a specific status within the class.

If the client application encounters multiple errors (or warnings) during an SQL statement's execution, sqlstate contains the last code returned.

The following table lists the sqlstate and sqlcode values, as well as the symbolic name and error description for the related condition.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 875

sqlstate sqlcode
(deprecated)

Symbolic name Description

YE001 -12 ECPG_OUT_OF_MEMOR
Y

Virtual memory is exhausted.

YE002 -200 ECPG_UNSUPPORTED The preprocessor generated an unrecognized item. Might indicate incompatibility between the preprocessor and the library.

07001 ,
or 07002

-201 ECPG_TOO_MANY_ARG
UMENTS

The program specifies more variables than the command expects.

07001 ,
or 07002

-202 ECPG_TOO_FEW_ARGU
MENTS

The program specified fewer variables than the command expects.

21000 -203 ECPG_TOO_MANY_MAT
CHES

The SQL command returned multiple rows, but the statement was prepared to receive a single row.

42804 -204 ECPG_INT_FORMAT The host variable (defined in the C code) is of type INT, and the selected data is of a type that can't be converted into an INT. ecpglib
uses the strtol() function to convert string values into numeric form.

42804 -205 ECPG_UINT_FORMAT The host variable (defined in the C code) is an unsigned INT, and the selected data is of a type that can't be converted into an unsigned
INT. ecpglib uses the strtoul() function to convert string values into numeric form.

42804 -206 ECPG_FLOAT_FORMAT The host variable (defined in the C code) is of type FLOAT, and the selected data is of a type that can't be converted into a FLOAT.
ecpglib uses the strtod() function to convert string values into numeric form.

42804 -211 ECPG_CONVERT_BOOL The host variable (defined in the C code) is of type BOOL, and the selected data can't be stored in a BOOL.

YE002 -2-1 ECPG_EMPTY The statement sent to the server was empty.

22002 -213 ECPG_MISSING_INDI
CATOR

A NULL indicator variable wasn't supplied for the NULL value returned by the server. (The client application received an unexpected
NULL value.).

42804 -214 ECPG_NO_ARRAY The server returned an array, and the corresponding host variable can't store an array.

42804 -215 ECPG_DATA_NOT_ARR
AY

The server returned a value that isn't an array into a host variable that expects an array value.

08003 -220 ECPG_NO_CONN The client application attempted to use a nonexistent connection.

YE002 -221 ECPG_NOT_CONN The client application attempted to use an allocated but closed connection.

26000 -230 ECPG_INVALID_STMT The statement wasn't prepared.

33000 -240 ECPG_UNKNOWN_DESC
RIPTOR

The specified descriptor isn't found.

07009 -241 ECPG_INVALID_DESC
RIPTOR_INDEX

The descriptor index is out of range.

YE002 -242 ECPG_UNKNOWN_DESC
RIPTOR_ITEM

The client application requested an invalid descriptor item (internal error).

07006 -243 ECPG_VAR_NOT_NUME
RIC

A dynamic statement returned a numeric value for a non-numeric host variable.

07006 -244 ECPG_VAR_NOT_CHAR A dynamic SQL statement returned a CHAR value, and the host variable isn't a CHAR.

-400 ECPG_PGSQL The server returned an error message. The resulting message contains the error text.

08007 -401 ECPG_TRANS The server can't start, commit, or roll back the specified transaction.

08001 -402 ECPG_CONNECT The client application's attempt to connect to the database failed.

02000 100 ECPG_NOT_FOUND The last command retrieved or processed no rows, or you reached the end of a cursor.

EXEC SQL WHENEVER

Use the EXEC SQL WHENEVER directive to implement simple error handling for client applications compiled with ECPGPlus. The syntax of the directive is:

EXEC SQL WHENEVER <condition> <action>;

This directive instructs the ECPG compiler to insert error-handling code into your program.

The code instructs the client application to perform a specified action if the client application detects a given condition. The condition can be one of the following:

SQLERROR

A SQLERROR condition exists when sqlca.sqlcode is less than zero.

SQLWARNING

A SQLWARNING condition exists when sqlca.sqlwarn[0] contains a 'W' .

NOT FOUND

A NOT FOUND condition exists when sqlca.sqlcode is ECPG_NOT_FOUND (when a query returns no data).

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 876

You can specify that the client application perform one of the following actions if it encounters one of the previous conditions:

CONTINUE

Specify CONTINUE to instruct the client application to continue processing, ignoring the current condition . CONTINUE is the default action.

DO CONTINUE

An action of DO CONTINUE generates a CONTINUE statement in the emitted C code. If it encounters the condition, it skips the rest of the code in the loop and continues with the next iteration. You
can use it only in a loop.

GOTO label or GO TO label

Use a C goto statement to jump to the specified label .

SQLPRINT

Print an error message to stderr (standard error), using the sqlprint() function. The sqlprint() function prints sql error followed by the contents of sqlca.sqlerrm.sqlerrmc .

STOP

Call exit(1) to signal an error and terminate the program.

DO BREAK

Execute the C break statement. Use this action in loops or switch statements.

CALL name(args) or DO name(args)

Invoke the C function specified by the name parameter , using the parameters specified in the args parameter.

Example

The following code fragment prints a message if the client application encounters a warning and aborts the application if it encounters an error:

EXEC SQL WHENEVER SQLWARNING SQLPRINT;
EXEC SQL WHENEVER SQLERROR STOP;

Note

The ECPGPlus compiler processes your program from top to bottom, even though the client application might not execute from top to bottom. The compiler directive is applied to each line in
order and remains in effect until the compiler encounters another directive. If the control of the flow in your program isn't top to bottom, consider adding error-handling directives to any parts
of the program that might be missed during compiling.

22.6 Reference

ECPGPlus has these language elements:

C-preprocessor directives
Supported C data types
Type codes
The SQLDA structure
ECPGPlus statements

C-preprocessor directives

The ECPGPlus C-preprocessor enforces two behaviors that depend on the mode in which you invoke ECPGPlus:

PROC mode
Non- PROC mode

Compiling in PROC mode

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 877

In PROC mode, ECPGPlus allows you to:

Declare host variables outside of an EXEC SQL BEGIN/END DECLARE SECTION .
Use any C variable as a host variable as long as its data type is compatible with ECPG.

When you invoke ECPGPlus in PROC mode (by including the -C PROC keywords), the ECPG compiler honors the following C-preprocessor directives:

#include
#if expression
#ifdef symbolName
#ifndef symbolName
#else
#elif expression
#endif
#define symbolName expansion
#define symbolName([macro arguments]) expansion
#undef symbolName
#defined(symbolName)

Preprocessor directives are used to affect or direct the code that's received by the compiler. For example, consider the following code sample:

#if HAVE_LONG_LONG == 1
#define BALANCE_TYPE long long
#else
#define BALANCE_TYPE double
#endif
...
BALANCE_TYPE customerBalance;

Suppose you invoke ECPGPlus with the following command-line arguments:

ecpg –C PROC –DHAVE_LONG_LONG=1

ECPGPlus copies the entire fragment, without change, to the output file. It sends only the following tokens to the ECPG parser:

long long customerBalance;

On the other hand, suppose you invoke ECPGPlus with the following command-line arguments:

ecpg –C PROC –DHAVE_LONG_LONG=0

The ECPG parser receives the following tokens:

double customerBalance;

If your code uses preprocessor directives to filter the code that's sent to the compiler, the complete code is retained in the original code, while the ECPG parser sees only the processed token stream.

You can also use compatible syntax when executing the following preprocessor directives with an EXEC directive:

EXEC ORACLE DEFINE
EXEC ORACLE UNDEF
EXEC ORACLE INCLUDE
EXEC ORACLE IFDEF
EXEC ORACLE IFNDEF
EXEC ORACLE ELIF
EXEC ORACLE ELSE
EXEC ORACLE ENDIF
EXEC ORACLE OPTION

For example, suppose your code includes the following:

EXEC ORACLE IFDEF HAVE_LONG_LONG;
#define BALANCE_TYPE long long
EXEC ORACLE ENDIF;
BALANCE_TYPE customerBalance;

You invoke ECPGPlus with the following command-line arguments:

ecpg –C PROC DEFINE=HAVE_LONG_LONG=1

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 878

ECPGPlus sends the following tokens to the output file and the ECPG parser:

long long customerBalance;

Note

The EXEC ORACLE preprocessor directives work only if you specify -C PROC on the ECPG command line.

Using the SELECT_ERROR precompiler option

When using ECPGPlus in compatible mode, you can use the SELECT_ERROR precompiler option to tell your program how to handle result sets that contain more rows than the host variable can
accommodate. The syntax is:

SELECT_ERROR={YES|NO}

The default value is YES . A SELECT statement returns an error message if the result set exceeds the capacity of the host variable. Specify NO to suppress error messages when a SELECT
statement returns more rows than a host variable can accommodate.

Use SELECT_ERROR with the EXEC ORACLE OPTION directive.

Compiling in non-PROC mode

If you don't include the -C PROC command-line option:

C preprocessor directives are copied to the output file without change.
You must declare the type and name of each C variable that you intend to use as a host variable in an EXEC SQL BEGIN/END DECLARE section.

When invoked in non- PROC mode, ECPG implements the behavior described in the PostgreSQL core documentation.

Supported C data types

An ECPGPlus application must deal with two sets of data types: SQL data types (such as SMALLINT , DOUBLE PRECISION , and CHARACTER VARYING) and C data types (like short , double ,
and varchar[n]). When an application fetches data from the server, ECPGPlus maps each SQL data type to the type of the C variable into which the data is returned.

In general, ECPGPlus can convert most SQL server types into similar C types, but not all combinations are valid. For example, ECPGPlus tries to convert a SQL character value into a C integer value, but
the conversion might fail at execution time if the SQL character value contains non-numeric characters.

The reverse is also true. When an application sends a value to the server, ECPGPlus tries to convert the C data type into the required SQL type. Again, the conversion might fail at execution time if the C
value can't be converted into the required SQL type.

ECPGPlus can convert any SQL type into C character values (char[n] or varchar[n]). Although it's safe to convert any SQL type to or from char[n] or varchar[n] , it's often convenient to
use more natural C types such as int , double , or float .

The supported C data types are:

short
int
unsigned int
long long int
float
double
char[n+1]
varchar[n+1]
bool

Any equivalent created by a typedef

In addition to the numeric and character types supported by C, the pgtypeslib runtime library offers custom data types, as well as functions to operate on those types, for dealing with date/time
and exact numeric values:

timestamp
interval
date
decimal
numeric

To use a data type supplied by pgtypeslib , you must #include the proper header file.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 879

Type codes

The following table contains the type codes for external data types. An external data type is used to indicate the type of a C host variable. When an application binds a value to a parameter or binds a
buffer to a SELECT -list item, set the type code in the corresponding SQLDA descriptor (descriptor->T[column]) to one of the following values:

Type code Host variable type (C data type)

1, 2, 8, 11, 12, 15, 23, 24, 91, 94, 95, 96,
97

char[]

3 int

4, 7, 21 float

5, 6 null-terminated string
(char[length+1])

9 varchar

22 double

68 unsigned int

The following table contains the type codes for internal data types. An internal type code is used to indicate the type of a value as it resides in the database. The DESCRIBE SELECT LIST statement
populates the data type array (descriptor->T[column]) using the following values.

Internal type code Server type

1 VARCHAR2

2 NUMBER

8 LONG

11 ROWID

12 DATE

23 RAW

24 LONG RAW

96 CHAR

100 BINARY FLOAT

101 BINARY DOUBLE

104 UROWID

187 TIMESTAMP

188 TIMESTAMP W/TIMEZONE

189 INTERVAL YEAR TO MONTH

190 INTERVAL DAY TO
SECOND

232 TIMESTAMP LOCAL_TZ

The SQLDA structure

Oracle Dynamic SQL method 4 uses the SQLDA data structure to hold the data and metadata for a dynamic SQL statement. A SQLDA structure can describe a set of input parameters corresponding to
the parameter markers found in the text of a dynamic statement or the result set of a dynamic statement. The layout of the SQLDA structure is:

struct SQLDA
{
 int N; /* Number of entries */
 char **V; /* Variables */
 int *L; /* Variable lengths */
 short *T; /* Variable types */
 short **I; /* Indicators */
 int F; /* Count of variables discovered by DESCRIBE */
 char **S; /* Variable names */
 short *M; /* Variable name maximum lengths */
 short *C; /* Variable name actual lengths */
 char **X; /* Indicator names */
 short *Y; /* Indicator name maximum lengths */
 short *Z; /* Indicator name actual lengths */
};

Parameters

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 880

N - maximum number of entries

The N structure member contains the maximum number of entries that the SQLDA can describe. This member is populated by the sqlald() function when you allocate the SQLDA structure. Before
using a descriptor in an OPEN or FETCH statement, you must set N to the actual number of values described.

V - data values

The V structure member is a pointer to an array of data values.

For a SELECT -list descriptor, V points to an array of values returned by a FETCH statement. Each member in the array corresponds to a column in the result set.
For a bind descriptor, V points to an array of parameter values. You must populate the values in this array before opening a cursor that uses the descriptor.

Your application must allocate the space required to hold each value. See displayResultSet for an example of how to allocate space for SELECT -list values.

L - length of each data value

The L structure member is a pointer to an array of lengths. Each member of this array must indicate the amount of memory available in the corresponding member of the V array. For example, if
V[5] points to a buffer large enough to hold a 20-byte NULL-terminated string, L[5] must contain the value 21 (20 bytes for the characters in the string plus 1 byte for the NULL-terminator). Your

application must set each member of the L array.

T - data types

The T structure member points to an array of data types, one for each column (or parameter) described by the descriptor.

For a bind descriptor, you must set each member of the T array to tell ECPGPlus the data type of each parameter.
For a SELECT -list descriptor, the DESCRIBE SELECT LIST statement sets each member of the T array to reflect the type of data found in the corresponding column.

You can change any member of the T array before executing a FETCH statement to force ECPGPlus to convert the corresponding value to a specific data type. For example, if the DESCRIBE SELECT
LIST statement indicates that a given column is of type DATE , you can change the corresponding T member to request that the next FETCH statement return that value in the form of a NULL-
terminated string. Each member of the T array is a numeric type code (see Type Codes for a list of type codes). The type codes returned by a DESCRIBE SELECT LIST statement differ from those
expected by a FETCH statement. After executing a DESCRIBE SELECT LIST statement, each member of T encodes a data type and a flag indicating whether the corresponding column is
nullable. You can use the sqlnul() function to extract the type code and nullable flag from a member of the T array. The signature of the sqlnul() function is as follows:

void sqlnul(unsigned short *valType,
 unsigned short *typeCode,
 int *isNull)

For example, to find the type code and nullable flag for the third column of a descriptor named results, invoke sqlnul() as follows:

sqlnul(&results->T[2], &typeCode, &isNull);

I - indicator variables

The I structure member points to an array of indicator variables. This array is allocated for you when your application calls the sqlald() function to allocate the descriptor.

For a SELECT -list descriptor, each member of the I array indicates whether the corresponding column contains a NULL (non-zero) or non-NULL (zero) value.
For a bind parameter, your application must set each member of the I array to indicate whether the corresponding parameter value is NULL.

F - number of entries

The F structure member indicates how many values are described by the descriptor. The N structure member indicates the maximum number of values that the descriptor can describe. F indicates
the actual number of values. The value of the F member is set by ECPGPlus when you execute a DESCRIBE statement. F can be positive, negative, or zero.

For a SELECT -list descriptor, F contains a positive value if the number of columns in the result set is equal to or less than the maximum number of values permitted by the descriptor (as
determined by the N structure member). It contains 0 if the statement isn't a SELECT statement. It contains a negative value if the query returns more columns than allowed by the N
structure member.
For a bind descriptor, F contains a positive number if the number of parameters found in the statement is less than or equal to the maximum number of values permitted by the descriptor (as
determined by the N structure member). It contains 0 if the statement contains no parameters markers. It contains a negative value if the statement contains more parameter markers than
allowed by the N structure member.

If F contains a positive number (after executing a DESCRIBE statement), that number reflects the count of columns in the result set (for a SELECT -list descriptor) or the number of parameter
markers found in the statement (for a bind descriptor). If F contains a negative value, you can compute the absolute value of F to discover how many values or parameter markers are required. For
example, if F contains -24 after describing a SELECT list, you know that the query returns 24 columns.

S - column/parameter names

The S structure member points to an array of NULL-terminated strings.

For a SELECT -list descriptor, the DESCRIBE SELECT LIST statement sets each member of this array to the name of the corresponding column in the result set.
For a bind descriptor, the DESCRIBE BIND VARIABLES statement sets each member of this array to the name of the corresponding bind variable.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 881

In this release, the name of each bind variable is determined by the left-to-right order of the parameter marker within the query. For example, the name of the first parameter is always ?0 , the name of
the second parameter is always ?1 , and so on.

M - maximum column/parameter name length

The M structure member points to an array of lengths. Each member in this array specifies the maximum length of the corresponding member of the S array (that is, M[0] specifies the maximum
length of the column/parameter name found at S[0]). This array is populated by the sqlald() function.

C - actual column/parameter name length

The C structure member points to an array of lengths. Each member in this array specifies the actual length of the corresponding member of the S array (that is, C[0] specifies the actual length of
the column/parameter name found at S[0]).

This array is populated by the DESCRIBE statement.

X - indicator variable names

The X structure member points to an array of NULL-terminated strings. Each string represents the name of a NULL indicator for the corresponding value.

This array isn't used by ECPGPlus but is provided for compatibility with Pro*C applications.

Y - maximum indicator name length

The Y structure member points to an array of lengths. Each member in this array specifies the maximum length of the corresponding member of the X array (that is, Y[0] specifies the maximum
length of the indicator name found at X[0]).

This array isn't used by ECPGPlus but is provided for compatibility with Pro*C applications.

Z - actual indicator name length

The Z structure member points to an array of lengths. Each member in this array specifies the actual length of the corresponding member of the X array (that is, Z[0] specifies the actual length of
the indicator name found at X[0]).

This array isn't used by ECPGPlus but is provided for compatibility with Pro*C applications.

ECPGPlus statements

An embedded SQL statement allows your client application to interact with the server. An embedded directive is an instruction to the ECPGPlus compiler.

You can embed any EDB Postgres Advanced Server SQL statement in a C program. Each statement must begin with the keywords EXEC SQL and must be terminated with a semi-colon (;). In the C
program, a SQL statement takes the form:

EXEC SQL <sql_command_body>;

Where sql_command_body represents a standard SQL statement. You can use a host variable anywhere that the SQL statement expects a value expression. For more information about substituting
host variables for value expressions, see Declaring host variables.

ECPGPlus extends the PostgreSQL server-side syntax for some statements. Syntax differences are noted in the reference information that follows. For a complete reference to the supported syntax of
other SQL commands, see the PostgreSQL core documentation.

ALLOCATE DESCRIPTOR

Use the ALLOCATE DESCRIPTOR statement to allocate an SQL descriptor area:

EXEC SQL [FOR <array_size>] ALLOCATE DESCRIPTOR <descriptor_name>
 [WITH MAX <variable_count>];

Where:

array_size is a variable that specifies the number of array elements to allocate for the descriptor. array_size can be an INTEGER value or a host variable.
descriptor_name is the host variable that contains the name of the descriptor or the name of the descriptor. This value can take the form of an identifier, a quoted string literal, or of a host

variable.
variable_count specifies the maximum number of host variables in the descriptor. The default value of variable_count is 100 .

The following code fragment allocates a descriptor named emp_query that can be processed as an array (emp_array) :

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 882

https://www.postgresql.org/docs/current/static/sql-commands.html

EXEC SQL FOR :emp_array ALLOCATE DESCRIPTOR emp_query;

CALL

Use the CALL statement to invoke a procedure or function on the server. The CALL statement works only on EDB Postgres Advanced Server. The CALL statement comes in two forms. The first form
is used to call a function:

EXEC SQL CALL <program_name> '('[<actual_arguments>]')'
 INTO [[:<ret_variable>][: <ret_indicator>]];

The second form is used to call a procedure:

EXEC SQL CALL <program_name> '('[<actual_arguments>]')';

Where:

program_name is the name of the stored procedure or function that the CALL statement invokes. The program name can be schema qualified, package qualified, or both. If you don't specify
the schema or package in which the program resides, ECPGPlus uses the value of search_path to locate the program.
actual_arguments specifies a comma-separated list of arguments required by the program. Each actual_argument corresponds to a formal argument expected by the program. Each

formal argument can be an IN parameter, an OUT parameter, or an INOUT parameter.
:ret_variable specifies a host variable that receives the value returned if the program is a function.
:ret_indicator specifies a host variable that receives the indicator value returned if the program is a function.

For example, the following statement invokes the get_job_desc function with the value contained in the :ename host variable and captures the value returned by that function in the :job host
variable:

EXEC SQL CALL get_job_desc(:ename)
 INTO :job;

CLOSE

Use the CLOSE statement to close a cursor and free any resources currently in use by the cursor. A client application can't fetch rows from a closed cursor. The syntax of the CLOSE statement is:

EXEC SQL CLOSE [<cursor_name>];

Where cursor_name is the name of the cursor closed by the statement. The cursor name can take the form of an identifier or of a host variable.

The OPEN statement initializes a cursor. Once initialized, a cursor result set remains unchanged unless the cursor is reopened. You don't need to CLOSE a cursor before reopening it.

To manually close a cursor named emp_cursor , use the command:

EXEC SQL CLOSE emp_cursor;

A cursor is automatically closed when an application terminates.

COMMIT

Use the COMMIT statement to complete the current transaction, making all changes permanent and visible to other users. The syntax is:

EXEC SQL [AT <database_name>] COMMIT [WORK]
 [COMMENT <'text'>] [COMMENT <'text'> RELEASE];

Where database_name is the name of the database or host variable that contains the name of the database in which the work resides. This value can take the form of an unquoted string literal or of
a host variable.

For compatibility, ECPGPlus accepts the COMMENT clause without error but doesn't store any text included with the COMMENT clause.

Include the RELEASE clause to close the current connection after performing the commit.

For example, the following command commits all work performed on the dept database and closes the current connection:

EXEC SQL AT dept COMMIT RELEASE;

By default, statements are committed only when a client application performs a COMMIT statement. Include the -t option when invoking ECPGPlus to specify for a client application to invoke

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 883

AUTOCOMMIT functionality. You can also control AUTOCOMMIT functionality in a client application with the following statements:

EXEC SQL SET AUTOCOMMIT TO ON

EXEC SQL SET AUTOCOMMIT TO OFF

CONNECT

Use the CONNECT statement to establish a connection to a database. The CONNECT statement is available in two forms. One form is compatible with Oracle databases, and the other is not.

The first form is compatible with Oracle databases:

EXEC SQL CONNECT
 {{:<user_name> IDENTIFIED BY :<password>} | :<connection_id>}
 [AT <database_name>]
 [USING :database_string]
 [ALTER AUTHORIZATION :new_password];

Where:

user_name is a host variable that contains the role that the client application uses to connect to the server.
password is a host variable that contains the password associated with that role.
connection_id is a host variable that contains a slash-delimited user name and password used to connect to the database.

Include the AT clause to specify the database to which the connection is established. database_name is the name of the database to which the client is connecting. Specify the value in the form of
a variable or as a string literal.

Include the USING clause to specify a host variable that contains a null-terminated string identifying the database to which to establish the connection.

The ALTER AUTHORIZATION clause is supported for syntax compatibility only. ECPGPlus parses the ALTER AUTHORIZATION clause and reports a warning.

Using the first form of the CONNECT statement, a client application might establish a connection with a host variable named user that contains the identity of the connecting role and a host variable
named password that contains the associated password using the following command:

EXEC SQL CONNECT :user IDENTIFIED BY :password;

A client application can also use the first form of the CONNECT statement to establish a connection using a single host variable named :connection_id . In the following example,
connection_id contains the slash-delimited role name and associated password for the user:

EXEC SQL CONNECT :connection_id;

The syntax of the second form of the CONNECT statement is:

EXEC SQL CONNECT TO <database_name>
[AS <connection_name>] [<credentials>];

Where credentials is one of the following:

USER user_name password
USER user_name IDENTIFIED BY password
USER user_name USING password

In the second form:

database_name is the name or identity of the database to which the client is connecting. Specify database_name as a variable or as a string literal in one of the following forms:

<database_name>[@<hostname>][:<port>]

tcp:postgresql://<hostname>[:<port>][/<database_name>][options]

unix:postgresql://<hostname>[:<port>][/<database_name>][options]

Where:

hostname is the name or IP address of the server on which the database resides.

port is the port on which the server listens.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 884

You can also specify a value of DEFAULT to establish a connection with the default database, using the default role name. If you specify DEFAULT as the target database, don't include a
connection_name or credentials .

connection_name is the name of the connection to the database. connection_name takes the form of an identifier (that is, not a string literal or a variable). You can open multiple
connections by providing a unique connection_name for each connection.

If you don't specify a name for a connection, ecpglib assigns a name of DEFAULT to the connection. You can refer to the connection by name (DEFAULT) in any EXEC SQL statement.

CURRENT is the most recently opened or the connection mentioned in the most-recent SET CONNECTION TO statement. If you don't refer to a connection by name in an EXEC SQL
statement, ECPG assumes the name of the connection to be CURRENT .

user_name is the role used to establish the connection with the EDB Postgres Advanced Server database. The privileges of the specified role are applied to all commands performed through
the connection.

password is the password associated with the specified user_name .

The following code fragment uses the second form of the CONNECT statement to establish a connection to a database named edb using the role alice and the password associated with that role,
1safepwd :

EXEC SQL CONNECT TO edb AS acctg_conn
 USER 'alice' IDENTIFIED BY '1safepwd';

The name of the connection is acctg_conn . You can use the connection name when changing the connection name using the SET CONNECTION statement.

DEALLOCATE DESCRIPTOR

Use the DEALLOCATE DESCRIPTOR statement to free memory in use by an allocated descriptor. The syntax of the statement is:

EXEC SQL DEALLOCATE DESCRIPTOR <descriptor_name>

Where descriptor_name is the name of the descriptor. This value can take the form of a quoted string literal or of a host variable.

The following example deallocates a descriptor named emp_query :

EXEC SQL DEALLOCATE DESCRIPTOR emp_query;

DECLARE CURSOR

Use the DECLARE CURSOR statement to define a cursor. The syntax of the statement is:

EXEC SQL [AT <database_name>] DECLARE <cursor_name> CURSOR FOR
(<select_statement> | <statement_name>);

Where:

database_name is the name of the database on which the cursor operates. This value can take the form of an identifier or of a host variable. If you don't specify a database name, the default
value of database_name is the default database.
cursor_name is the name of the cursor.
select_statement is the text of the SELECT statement that defines the cursor result set. The SELECT statement can't contain an INTO clause.
statement_name is the name of a SQL statement or block that defines the cursor result set.

The following example declares a cursor named employees :

EXEC SQL DECLARE employees CURSOR FOR
 SELECT
 empno, ename, sal, comm
 FROM
 emp;

The cursor generates a result set that contains the employee number, employee name, salary, and commission for each employee record that's stored in the emp table.

DECLARE DATABASE

Use the DECLARE DATABASE statement to declare a database identifier for use in subsequent SQL statements (for example, in a CONNECT statement). The syntax is:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 885

EXEC SQL DECLARE <database_name> DATABASE;

Where database_name specifies the name of the database.

The following example shows declaring an identifier for the acctg database:

EXEC SQL DECLARE acctg DATABASE;

After invoking the command declaring acctg as a database identifier, you can reference the acctg database by name when establishing a connection or in AT clauses.

This statement has no effect and is provided for Pro*C compatibility only.

DECLARE STATEMENT

Use the DECLARE STATEMENT directive to declare an identifier for an SQL statement. EDB Postgres Advanced Server supports two versions of the DECLARE STATEMENT directive:

EXEC SQL [<database_name>] DECLARE <statement_name> STATEMENT;

EXEC SQL DECLARE STATEMENT <statement_name>;

Where:

statement_name specifies the identifier associated with the statement.
database_name specifies the name of the database. This value may take the form of an identifier or of a host variable that contains the identifier.

A typical usage sequence that includes the DECLARE STATEMENT directive is:

EXEC SQL DECLARE give_raise STATEMENT; // give_raise is now a statement
handle (not prepared)
EXEC SQL PREPARE give_raise FROM :stmtText; // give_raise is now associated
with a statement
EXEC SQL EXECUTE give_raise;

This statement has no effect and is provided for Pro*C compatibility only.

DELETE

Use the DELETE statement to delete one or more rows from a table. The syntax for the ECPGPlus DELETE statement is the same as the syntax for the SQL statement, but you can use parameter
markers and host variables any place that an expression is allowed. The syntax is:

[FOR <exec_count>] DELETE FROM [ONLY] <table> [[AS] <alias>]
 [USING <using_list>]
 [WHERE <condition> | WHERE CURRENT OF <cursor_name>]
 [{RETURNING|RETURN} * | <output_expression> [[AS] <output_name>]
[, ...] INTO <host_variable_list>]

Include the FOR exec_count clause to specify the number of times the statement executes. This clause is valid only if the VALUES clause references an array or a pointer to an array.
table is the name (optionally schema qualified) of an existing table. Include the ONLY clause to limit processing to the specified table. If you don't include the ONLY clause, any tables

inheriting from the named table are also processed.
alias is a substitute name for the target table.
using_list is a list of table expressions, allowing columns from other tables to appear in the WHERE condition.

Include the WHERE clause to specify the rows to delete. If you don't include a WHERE clause in the statement, DELETE deletes all rows from the table, leaving the table definition intact.
condition is an expression, host variable, or parameter marker that returns a value of type BOOLEAN . Those rows for which condition returns true are deleted.
cursor_name is the name of the cursor to use in the WHERE CURRENT OF clause. The row to be deleted is the one most recently fetched from this cursor. The cursor must be a nongrouping

query on the DELETE statements target table. You can't specify WHERE CURRENT OF in a DELETE statement that includes a Boolean condition.

The RETURN/RETURNING clause specifies an output_expression or host_variable_list that's returned by the DELETE command after each row is deleted:

output_expression is an expression to be computed and returned by the DELETE command after each row is deleted. output_name is the name of the returned column. Include * to
return all columns.
host_variable_list is a comma-separated list of host variables and optional indicator variables. Each host variable receives a corresponding value from the RETURNING clause.

For example, the following statement deletes all rows from the emp table, where the sal column contains a value greater than the value specified in the host variable, :max_sal:

DELETE FROM emp WHERE sal > :max_sal;

For more information about using the DELETE statement, see the PostgreSQL core documentation.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 886

https://www.postgresql.org/docs/current/static/sql-delete.html

DESCRIBE

Use the DESCRIBE statement to find the number of input values required by a prepared statement or the number of output values returned by a prepared statement. The DESCRIBE statement is
used to analyze a SQL statement whose shape is unknown at the time you write your application.

The DESCRIBE statement populates an SQLDA descriptor. To populate a SQL descriptor, use the ALLOCATE DESCRIPTOR and DESCRIBE...DESCRIPTOR statements.

EXEC SQL DESCRIBE BIND VARIABLES FOR <statement_name> INTO <descriptor>;

EXEC SQL DESCRIBE SELECT LIST FOR <statement_name> INTO <descriptor>;

Where:

statement_name is the identifier associated with a prepared SQL statement or PL/SQL block.
descriptor is the name of C variable of type SQLDA* . You must allocate the space for the descriptor by calling sqlald() and initialize the descriptor before executing the DESCRIBE

statement.

When you execute the first form of the DESCRIBE statement, ECPG populates the given descriptor with a description of each input variable required by the statement. For example, given two
descriptors:

SQLDA *query_values_in;
SQLDA *query_values_out;

You might prepare a query that returns information from the emp table:

EXEC SQL PREPARE get_emp FROM
 "SELECT ename, empno, sal FROM emp WHERE empno = ?";

The command requires one input variable for the parameter marker (?).

EXEC SQL DESCRIBE BIND VARIABLES
 FOR get_emp INTO query_values_in;

After describing the bind variables for this statement, you can examine the descriptor to find the number of variables required and the type of each variable.

When you execute the second form, ECPG populates the given descriptor with a description of each value returned by the statement. For example, the following statement returns three values:

EXEC SQL DESCRIBE SELECT LIST
 FOR get_emp INTO query_values_out;

After describing the select list for this statement, you can examine the descriptor to find the number of returned values and the name and type of each value.

Before executing the statement, you must bind a variable for each input value and a variable for each output value. The variables that you bind for the input values specify the actual values used by the
statement. The variables that you bind for the output values tell ECPGPlus where to put the values when you execute the statement.

This is alternative Pro*C-compatible syntax for the DESCRIBE DESCRIPTOR statement.

DESCRIBE DESCRIPTOR

Use the DESCRIBE DESCRIPTOR statement to retrieve information about a SQL statement and store that information in a SQL descriptor. Before using DESCRIBE DESCRIPTOR , you must
allocate the descriptor with the ALLOCATE DESCRIPTOR statement. The syntax is:

EXEC SQL DESCRIBE [INPUT | OUTPUT] <statement_identifier>
 USING [SQL] DESCRIPTOR <descriptor_name>;

Where:

statement_name is the name of a prepared SQL statement.
descriptor_name is the name of the descriptor. descriptor_name can be a quoted string value or a host variable that contains the name of the descriptor.

If you include the INPUT clause, ECPGPlus populates the given descriptor with a description of each input variable required by the statement.

For example, given two descriptors:

EXEC SQL ALLOCATE DESCRIPTOR query_values_in;
EXEC SQL ALLOCATE DESCRIPTOR query_values_out;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 887

You might prepare a query that returns information from the emp table:

EXEC SQL PREPARE get_emp FROM
 "SELECT ename, empno, sal FROM emp WHERE empno = ?";

The command requires one input variable for the parameter marker (?).

EXEC SQL DESCRIBE INPUT get_emp USING 'query_values_in';

After describing the bind variables for this statement, you can examine the descriptor to find the number of variables required and the type of each variable.

If you don't specify the INPUT clause, DESCRIBE DESCRIPTOR populates the specified descriptor with the values returned by the statement.

If you include the OUTPUT clause, ECPGPlus populates the given descriptor with a description of each value returned by the statement.

For example, the following statement returns three values:

EXEC SQL DESCRIBE OUTPUT FOR get_emp USING 'query_values_out';

After describing the select list for this statement, you can examine the descriptor to find the number of returned values and the name and type of each value.

DISCONNECT

Use the DISCONNECT statement to close the connection to the server. The syntax is:

EXEC SQL DISCONNECT [<connection_name>][CURRENT][DEFAULT][ALL];

Where connection_name is the connection name specified in the CONNECT statement used to establish the connection. If you don't specify a connection name, the current connection is closed.

Include the CURRENT keyword to specify for ECPGPlus to close the connection used most recently.

Include the DEFAULT keyword to specify for ECPGPlus to close the connection named DEFAULT . If you don't specify a name when opening a connection, ECPGPlus assigns the name DEFAULT to
the connection.

Include the ALL keyword to close all active connections.

The following example creates a connection named hr_connection that connects to the hr database and then disconnects from the connection:

/* client.pgc*/
int main()
{
 EXEC SQL CONNECT TO hr AS connection_name;
 EXEC SQL DISCONNECT connection_name;
 return(0);
}

EXECUTE

Use the EXECUTE statement to execute a statement previously prepared using an EXEC SQL PREPARE statement. The syntax is:

EXEC SQL [FOR <array_size>] EXECUTE <statement_name>
 [USING {DESCRIPTOR <SQLDA_descriptor>
 |: <host_variable> [[INDICATOR] :<indicator_variable>]}];

Where:

array_size is an integer value or a host variable that contains an integer value that specifies the number of rows to process. If you omit the FOR clause, the statement is executed once for
each member of the array.
statement_name specifies the name assigned to the statement when the statement was created using the EXEC SQL PREPARE statement.

Include the USING clause to supply values for parameters in the prepared statement:

Include the DESCRIPTOR SQLDA_descriptor clause to provide an SQLDA descriptor value for a parameter.
Use a host_variable (and an optional indicator_variable) to provide a user-specified value for a parameter.

The following example creates a prepared statement that inserts a record into the emp table:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 888

EXEC SQL PREPARE add_emp (numeric, text, text, numeric) AS
 INSERT INTO emp VALUES($1, $2, $3, $4);

Each time you invoke the prepared statement, provide fresh parameter values for the statement:

EXEC SQL EXECUTE add_emp USING 8000, 'DAWSON', 'CLERK', 7788;
EXEC SQL EXECUTE add_emp USING 8001, 'EDWARDS', 'ANALYST', 7698;

EXECUTE DESCRIPTOR

Use the EXECUTE statement to execute a statement previously prepared by an EXEC SQL PREPARE statement, using an SQL descriptor. The syntax is:

EXEC SQL [FOR <array_size>] EXECUTE <statement_identifier>
 [USING [SQL] DESCRIPTOR <descriptor_name>]
 [INTO [SQL] DESCRIPTOR <descriptor_name>];

Where:

array_size is an integer value or a host variable that contains an integer value that specifies the number of rows to process. If you omit the FOR clause, the statement is executed once for
each member of the array.
statement_identifier specifies the identifier assigned to the statement with the EXEC SQL PREPARE statement.
descriptor_name specifies the name of a descriptor (as a single-quoted string literal), or a host variable that contains the name of a descriptor.

Include the USING clause to specify values for any input parameters required by the prepared statement.

Include the INTO clause to specify a descriptor into which the EXECUTE statement writes the results returned by the prepared statement.

The following example executes the prepared statement, give_raise , using the values contained in the descriptor stmtText:

EXEC SQL PREPARE give_raise FROM :stmtText;
EXEC SQL EXECUTE give_raise USING DESCRIPTOR :stmtText;

EXECUTE...END EXEC

Use the EXECUTE…END-EXEC statement to embed an anonymous block into a client application. The syntax is:

EXEC SQL [AT <database_name>] EXECUTE <anonymous_block> END-EXEC;

Where:

database_name is the database identifier or a host variable that contains the database identifier. If you omit the AT clause, the statement executes on the current default database.
anonymous_block is an inline sequence of PL/pgSQL or SPL statements and declarations. You can include host variables and optional indicator variables in the block. Each such variable is

treated as an IN/OUT value.

The following example executes an anonymous block:

EXEC SQL EXECUTE
 BEGIN
 IF (current_user = :admin_user_name) THEN
 DBMS_OUTPUT.PUT_LINE('You are an administrator');
 END IF;
END-EXEC;

Note

The EXECUTE…END EXEC statement is supported only by EDB Postgres Advanced Server.

EXECUTE IMMEDIATE

Use the EXECUTE IMMEDIATE statement to execute a string that contains a SQL command. The syntax is:

EXEC SQL [AT <database_name>] EXECUTE IMMEDIATE <command_text>;

Where:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 889

database_name is the database identifier or a host variable that contains the database identifier. If you omit the AT clause, the statement executes on the current default database.
command_text is the command executed by the EXECUTE IMMEDIATE statement.

This dynamic SQL statement is useful when you don't know the text of an SQL statement when writing a client application. For example, a client application might prompt a trusted user for a statement
to execute. After the user provides the text of the statement as a string value, the statement is then executed with an EXECUTE IMMEDIATE command.

The statement text can't contain references to host variables. If the statement might contain parameter markers or returns one or more values, use the PREPARE and DESCRIBE statements.

The following example executes the command contained in the :command_text host variable:

EXEC SQL EXECUTE IMMEDIATE :command_text;

FETCH

Use the FETCH statement to return rows from a cursor into an SQLDA descriptor or a target list of host variables. Before using a FETCH statement to retrieve information from a cursor, you must
prepare the cursor using DECLARE and OPEN statements. The statement syntax is:

EXEC SQL [FOR <array_size>] FETCH <cursor>
 { USING DESCRIPTOR <SQLDA_descriptor> }|{ INTO <target_list> };

Where:

array_size is an integer value or a host variable that contains an integer value specifying the number of rows to fetch. If you omit the FOR clause, the statement is executed once for each
member of the array.
cursor is the name of the cursor from which rows are being fetched or a host variable that contains the name of the cursor.

If you include a USING clause, the FETCH statement populates the specified SQLDA descriptor with the values returned by the server.

If you include an INTO clause, the FETCH statement populates the host variables (and optional indicator variables) specified in the target_list .

The following code fragment declares a cursor named employees that retrieves the employee number , name , and salary from the emp table:

EXEC SQL DECLARE employees CURSOR FOR
 SELECT empno, ename, esal FROM emp;
EXEC SQL OPEN emp_cursor;
EXEC SQL FETCH emp_cursor INTO :emp_no, :emp_name, :emp_sal;

FETCH DESCRIPTOR

Use the FETCH DESCRIPTOR statement to retrieve rows from a cursor into an SQL descriptor. The syntax is:

EXEC SQL [FOR <array_size>] FETCH <cursor>
 INTO [SQL] DESCRIPTOR <descriptor_name>;

Where:

array_size is an integer value or a host variable that contains an integer value specifying the number of rows to fetch. If you omit the FOR clause, the statement is executed once for each
member of the array.
cursor is the name of the cursor from which rows are fetched or a host variable that contains the name of the cursor. The client must DECLARE and OPEN the cursor before calling the
FETCH DESCRIPTOR statement.
descriptor_name specifies the name of a descriptor (as a single-quoted string literal) or a host variable that contains the name of a descriptor. Prior to use, the descriptor must be allocated

using an ALLOCATE DESCRIPTOR statement.

Include the INTO clause to specify a SQL descriptor into which the EXECUTE statement writes the results returned by the prepared statement.

The following example allocates a descriptor named row_desc that holds the description and the values of a specific row in the result set. It then declares and opens a cursor for a prepared statement
(my_cursor), before looping through the rows in result set, using a FETCH to retrieve the next row from the cursor into the descriptor:

EXEC SQL ALLOCATE DESCRIPTOR 'row_desc';
EXEC SQL DECLARE my_cursor CURSOR FOR query;
EXEC SQL OPEN my_cursor;

for(row = 0; ; row++)
{
 EXEC SQL BEGIN DECLARE SECTION;
 int col;
EXEC SQL END DECLARE SECTION;
EXEC SQL FETCH my_cursor INTO SQL DESCRIPTOR 'row_desc';

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 890

GET DESCRIPTOR

Use the GET DESCRIPTOR statement to retrieve information from a descriptor. The GET DESCRIPTOR statement comes in two forms. The first form returns the number of values (or columns) in
the descriptor.

EXEC SQL GET DESCRIPTOR <descriptor_name>
 :<host_variable> = COUNT;

The second form returns information about a specific value (specified by the VALUE column_number clause):

EXEC SQL [FOR <array_size>] GET DESCRIPTOR <descriptor_name>
 VALUE <column_number> {:<host_variable> = <descriptor_item> {,…}};

Where:

array_size is an integer value or a host variable that contains an integer value that specifies the number of rows to process. If you specify an array_size , the host_variable must
be an array of that size. For example, if array_size is 10 , :host_variable must be a 10-member array of host_variables . If you omit the FOR clause, the statement is executed
once for each member of the array.
descriptor_name specifies the name of a descriptor as a single-quoted string literal or a host variable that contains the name of a descriptor.

Include the VALUE clause to specify the information retrieved from the descriptor.

column_number identifies the position of the variable in the descriptor.
host_variable specifies the name of the host variable that receives the value of the item.
descriptor_item specifies the type of the retrieved descriptor item.

ECPGPlus implements the following descriptor_item types:

TYPE
LENGTH
OCTET_LENGTH
RETURNED_LENGTH
RETURNED_OCTET_LENGTH
PRECISION
SCALE
NULLABLE
INDICATOR
DATA
NAME

The following code fragment shows using a GET DESCRIPTOR statement to obtain the number of columns entered in a user-provided string:

EXEC SQL ALLOCATE DESCRIPTOR parse_desc;
EXEC SQL PREPARE query FROM :stmt;
EXEC SQL DESCRIBE query INTO SQL DESCRIPTOR parse_desc;
EXEC SQL GET DESCRIPTOR parse_desc :col_count = COUNT;

The example allocates an SQL descriptor named parse_desc before using a PREPARE statement to check the syntax of the string provided by the user :stmt . A DESCRIBE statement moves the
user-provided string into the descriptor, parse_desc . The call to EXEC SQL GET DESCRIPTOR interrogates the descriptor to discover the number of columns (:col_count) in the result set.

INSERT

Use the INSERT statement to add one or more rows to a table. The syntax for the ECPGPlus INSERT statement is the same as the syntax for the SQL statement, but you can use parameter markers
and host variables any place that a value is allowed. The syntax is:

[FOR <exec_count>] INSERT INTO <table> [(<column> [, ...])]
 {DEFAULT VALUES |
 VALUES ({<expression> | DEFAULT} [, ...])[, ...] | <query>}
 [RETURNING * | <output_expression> [[AS] <output_name>] [, ...]]

Include the FOR exec_count clause to specify the number of times the statement executes. This clause is valid only if the VALUES clause references an array or a pointer to an array.

table specifies the (optionally schema-qualified) name of an existing table.
column is the name of a column in the table. The column name can be qualified with a subfield name or array subscript. Specify the DEFAULT VALUES clause to use default values for all

columns.
expression is the expression, value, host variable, or parameter marker that's assigned to the corresponding column. Specify DEFAULT to fill the corresponding column with its default

value.
query specifies a SELECT statement that supplies the rows to insert.
output_expression is an expression that's computed and returned by the INSERT command after each row is inserted. The expression can refer to any column in the table. Specify * to

return all columns of the inserted rows.
output_name specifies a name to use for a returned column.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 891

The following example adds a row to the employees table:

INSERT INTO emp (empno, ename, job, hiredate)
 VALUES ('8400', :ename, 'CLERK', '2011-10-31');

Note

The INSERT statement uses a host variable :ename to specify the value of the ename column.

For more information about using the INSERT statement, see the PostgreSQL core documentation.

OPEN

Use the OPEN statement to open a cursor. The syntax is:

EXEC SQL [FOR <array_size>] OPEN <cursor> [USING <parameters>];

parameters is one of the following:

DESCRIPTOR <SQLDA_descriptor>

<host_variable> [[INDICATOR] <indicator_variable>, …]

Where:

array_size is an integer value or a host variable that contains an integer value specifying the number of rows to fetch. If you omit the FOR clause, the statement is executed once for each
member of the array.
cursor is the name of the cursor being opened.
parameters is either DESCRIPTOR SQLDA_descriptor or a comma-separated list of host variables and optional indicator variables that initialize the cursor. If

specifying an SQLDA_descriptor , the descriptor must be initialized with a DESCRIBE statement.

The OPEN statement initializes a cursor using the values provided in parameters . Once initialized, the cursor result set remains unchanged unless the cursor is closed and reopened. A cursor is
automatically closed when an application terminates.

The following example declares a cursor named employees that queries the emp table. It returns the employee number , name , salary , and commission of an employee whose name
matches a user-supplied value stored in the host variable :emp_name .

EXEC SQL DECLARE employees CURSOR FOR
 SELECT
 empno, ename, sal, comm
 FROM
 emp
 WHERE ename = :emp_name;
EXEC SQL OPEN employees;
...

After declaring the cursor, the example uses an OPEN statement to make the contents of the cursor available to a client application.

OPEN DESCRIPTOR

Use the OPEN DESCRIPTOR statement to open a cursor with a SQL descriptor. The syntax is:

EXEC SQL [FOR <array_size>] OPEN <cursor>
 [USING [SQL] DESCRIPTOR <descriptor_name>]
 [INTO [SQL] DESCRIPTOR <descriptor_name>];

Where:

array_size is an integer value or a host variable that contains an integer value specifying the number of rows to fetch. If you omit the FOR clause, the statement is executed once for each
member of the array.
cursor is the name of the cursor being opened.
descriptor_name specifies the name of an SQL descriptor in the form of a single-quoted string literal or a host variable that contains the name of an SQL descriptor that contains the query

that initializes the cursor.

For example, the following statement opens a cursor named emp_cursor using the host variable :employees :

EXEC SQL OPEN emp_cursor USING DESCRIPTOR :employees;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 892

https://www.postgresql.org/docs/current/static/sql-insert.html

PREPARE

Prepared statements are useful when a client application must perform a task multiple times. The statement is parsed, written, and planned only once rather than each time the statement is executed.
This approach saves repetitive processing time.

Use the PREPARE statement to prepare a SQL statement or PL/pgSQL block for execution. The statement is available in two forms. The first form is:

EXEC SQL [AT <database_name>] PREPARE <statement_name>
 FROM <sql_statement>;

The second form is:

EXEC SQL [AT <database_name>] PREPARE <statement_name>
 AS <sql_statement>;

Where:

database_name is the database identifier or a host variable that contains the database identifier against which the statement executes. If you omit the AT clause, the statement executes
against the current default database.
statement_name is the identifier associated with a prepared SQL statement or PL/SQL block.
sql_statement can take the form of a SELECT statement, a single-quoted string literal, or a host variable that contains the text of an SQL statement.

To include variables in a prepared statement, substitute placeholders ($1, $2, $3 , and so on) for statement values that might change when you PREPARE the statement. When you EXECUTE the
statement, provide a value for each parameter. Provide the values in the order in which they replace placeholders.

The following example creates a prepared statement named add_emp that inserts a record into the emp table:

EXEC SQL PREPARE add_emp (int, text, text, numeric) AS
 INSERT INTO emp VALUES($1, $2, $3, $4);

Each time you invoke the statement, provide fresh parameter values for the statement:

EXEC SQL EXECUTE add_emp(8003, 'Davis', 'CLERK', 2000.00);
EXEC SQL EXECUTE add_emp(8004, 'Myer', 'CLERK', 2000.00);

Note

A client application must issue a PREPARE statement in each session in which a statement executes. Prepared statements persist only for the duration of the current session.

ROLLBACK

Use the ROLLBACK statement to abort the current transaction and discard any updates made by the transaction. The syntax is:

EXEC SQL [AT <database_name>] ROLLBACK [WORK]
 [{ TO [SAVEPOINT] <savepoint> } | RELEASE]

Where database_name is the database identifier or a host variable that contains the database identifier against which the statement executes. If you omit the AT clause, the statement executes
against the current default database.

Include the TO clause to abort any commands that executed after the specified savepoint . Use the SAVEPOINT statement to define the savepoint . If you omit the TO clause, the
ROLLBACK statement aborts the transaction, discarding all updates.

Include the RELEASE clause to cause the application to execute an EXEC SQL COMMIT RELEASE and close the connection.

Use the following statement to roll back a complete transaction:

EXEC SQL ROLLBACK;

Invoking this statement aborts the transaction, undoing all changes, erasing any savepoints, and releasing all transaction locks. Suppose you include a savepoint (my_savepoint in the following
example):

EXEC SQL ROLLBACK TO SAVEPOINT my_savepoint;

Only the portion of the transaction that occurred after the my_savepoint is rolled back. my_savepoint is retained, but any savepoints created after my_savepoint are erased.

Rolling back to a specified savepoint releases all locks acquired after the savepoint.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 893

SAVEPOINT

Use the SAVEPOINT statement to define a savepoint. A savepoint is a marker in a transaction. You can use a ROLLBACK statement to abort the current transaction, returning the state of the server to
its condition prior to the specified savepoint. The syntax of a SAVEPOINT statement is:

EXEC SQL [AT <database_name>] SAVEPOINT <savepoint_name>

Where:

database_name is the database identifier or a host variable that contains the database identifier against which the savepoint resides. If you omit the AT clause, the statement executes
against the current default database.
savepoint_name is the name of the savepoint. If you reuse a savepoint_name , the original savepoint is discarded.

You can establish savepoints only in a transaction block. A transaction block can contain multiple savepoints.

To create a savepoint named my_savepoint , include the statement:

EXEC SQL SAVEPOINT my_savepoint;

SELECT

ECPGPlus extends support of the SQL SELECT statement by providing the INTO host_variables clause. The clause allows you to select specified information from an EDB Postgres Advanced
Server database into a host variable. The syntax for the SELECT statement is:

EXEC SQL [AT <database_name>]
SELECT
 [<hint>]
 [ALL | DISTINCT [ON(<expression>, ...)]]
 select_list INTO <host_variables>

 [FROM from_item [, from_item]...]
 [WHERE condition]
 [hierarchical_query_clause]
 [GROUP BY expression [, ...]]
 [HAVING condition]
 [{ UNION [ALL] | INTERSECT | MINUS } (subquery)]
 [ORDER BY expression [order_by_options]]
 [LIMIT { count | ALL }]
 [OFFSET start [ROW | ROWS]]
 [FETCH { FIRST | NEXT } [count] { ROW | ROWS } ONLY]
 [FOR { UPDATE | SHARE } [OF table_name [, ...]][NOWAIT][...]]

Where:

database_name is the name of the database or host variable that contains the name of the database in which the table resides. This value can take the form of an unquoted string literal or of
a host variable.
host_variables is a list of host variables populated by the SELECT statement. If the SELECT statement returns more than a single row, host_variables must be an array.

ECPGPlus provides support for the additional clauses of the SQL SELECT statement as documented in the PostgreSQL core documentation.

To use the INTO host_variables clause, include the names of defined host variables when specifying the SELECT statement. For example, the following SELECT statement populates the
:emp_name and :emp_sal host variables with a list of employee names and salaries:

EXEC SQL SELECT ename, sal
 INTO :emp_name, :emp_sal
 FROM emp
 WHERE empno = 7988;

The enhanced SELECT statement also allows you to include parameter markers (question marks) in any clause where a value is allowed. For example, the following query contains a parameter marker
in the WHERE clause:

SELECT * FROM emp WHERE dept_no = ?;

This SELECT statement allows you to provide a value at runtime for the dept_no parameter marker.

SET CONNECTION

There are at least three reasons you might need more than one connection in a given client application:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 894

https://www.postgresql.org/docs/current/static/sql-select.html

You might want different privileges for different statements.
You might need to interact with multiple databases in the same client.
Multiple threads of execution in a client application can't share a connection concurrently.

The syntax for the SET CONNECTION statement is:

EXEC SQL SET CONNECTION <connection_name>;

Where connection_name is the name of the connection to the database.

To use the SET CONNECTION statement, open the connection to the database using the second form of the CONNECT statement. Include the AS clause to specify a connection_name .

By default, the current thread uses the current connection. Use the SET CONNECTION statement to specify a default connection for the current thread to use. The default connection is used only
when you execute an EXEC SQL statement that doesn't explicitly specify a connection name. For example, the following statement uses the default connection because it doesn't include an AT
connection_name clause:

EXEC SQL DELETE FROM emp;

This statement doesn't use the default connection because it specifies a connection name using the AT connection_name clause:

EXEC SQL AT acctg_conn DELETE FROM emp;

For example, suppose a client application creates and maintains multiple connections using either of the following approaches:

EXEC SQL CONNECT TO edb AS acctg_conn
 USER 'alice' IDENTIFIED BY 'acctpwd';

EXEC SQL CONNECT TO edb AS hr_conn
 USER 'bob' IDENTIFIED BY 'hrpwd';

It can change between the connections with the SET CONNECTION statement:

SET CONNECTION acctg_conn;

or

SET CONNECTION hr_conn;

The server uses the privileges associated with the connection when determining the privileges available to the connecting client. When using the acctg_conn connection, the client has the privileges
associated with the role alice . When connected using hr_conn , the client has the privileges associated with bob .

SET DESCRIPTOR

Use the SET DESCRIPTOR statement to assign a value to a descriptor area using information provided by the client application in the form of a host variable or an integer value. The statement comes
in two forms. The first form is:

EXEC SQL [FOR <array_size>] SET DESCRIPTOR <descriptor_name>
 VALUE <column_number> <descriptor_item> = <host_variable>;

The second form is:

EXEC SQL [FOR <array_size>] SET DESCRIPTOR <descriptor_name>
 COUNT = integer;

Where:

array_size is an integer value or a host variable that contains an integer value specifying the number of rows to fetch. If you omit the FOR clause, the statement executes once for each
member of the array.
descriptor_name specifies the name of a descriptor as a single-quoted string literal or a host variable that contains the name of a descriptor.

Include the VALUE clause to describe the information stored in the descriptor.

column_number identifies the position of the variable within the descriptor.
descriptor_item specifies the type of the descriptor item.
host_variable specifies the name of the host variable that contains the value of the item.

ECPGPlus implements the following descriptor_item types:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 895

TYPE
LENGTH
[REF] INDICATOR
[REF] DATA
[REF] RETURNED LENGTH

For example, a client application might prompt a user for a dynamically created query:

query_text = promptUser("Enter a query");

To execute a dynamically created query, you must first prepare the query (parsing and validating the syntax of the query) and then describe the input parameters found in the query using the EXEC SQL
DESCRIBE INPUT statement.

EXEC SQL ALLOCATE DESCRIPTOR query_params;
EXEC SQL PREPARE emp_query FROM :query_text;

EXEC SQL DESCRIBE INPUT emp_query
 USING SQL DESCRIPTOR 'query_params';

After describing the query, the query_params descriptor contains information about each parameter required by the query.

For this example, assume that the user entered:

SELECT ename FROM emp WHERE sal > ? AND job = ?;,

In this case, the descriptor describes two parameters, one for sal > ? and one for job = ? .

To discover the number of parameter markers (question marks) in the query and therefore the number of values you must provide before executing the query, use:

EXEC SQL GET DESCRIPTOR … :host_variable = COUNT;

Then, you can use EXEC SQL GET DESCRIPTOR to retrieve the name of each parameter. You can also use EXEC SQL GET DESCRIPTOR to retrieve the type of each parameter from the
descriptor, along with the number of parameters. Or you can supply each value in the form of a character string and ECPG converts that string into the required data type.

The data type of the first parameter is numeric . The type of the second parameter is varchar . The name of the first parameter is sal . The name of the second parameter is job .

Next, loop through each parameter, prompting the user for a value, and store those values in host variables. You can use GET DESCRIPTOR … COUNT to find the number of parameters in the query.

EXEC SQL GET DESCRIPTOR 'query_params'
 :param_count = COUNT;

for(param_number = 1;
 param_number <= param_count;
 param_number++)
{

Use GET DESCRIPTOR to copy the name of the parameter into the param_name host variable:

EXEC SQL GET DESCRIPTOR 'query_params'
 VALUE :param_number :param_name = NAME;

reply = promptUser(param_name);
if (reply == NULL)
 reply_ind = 1; /* NULL */
else
 reply_ind = 0; /* NOT NULL */

To associate a value with each parameter, you use the EXEC SQL SET DESCRIPTOR statement. For example:

EXEC SQL SET DESCRIPTOR 'query_params'
 VALUE :param_number DATA = :reply;
EXEC SQL SET DESCRIPTOR 'query_params'
 VALUE :param_number INDICATOR = :reply_ind;
}

Now, you can use the EXEC SQL EXECUTE DESCRIPTOR statement to execute the prepared statement on the server.

UPDATE

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 896

Use an UPDATE statement to modify the data stored in a table. The syntax is:

EXEC SQL [AT <database_name>][FOR <exec_count>]
 UPDATE [ONLY] table [[AS] alias]
 SET {column = { expression | DEFAULT } |
 (column [, ...]) = ({ expression|DEFAULT } [, ...])} [, ...]
 [FROM from_list]
 [WHERE condition | WHERE CURRENT OF cursor_name]
 [RETURNING * | output_expression [[AS] output_name] [, ...]]

Where database_name is the name of the database or host variable that contains the name of the database in which the table resides. This value can take the form of an unquoted string literal or of
a host variable.

Include the FOR exec_count clause to specify the number of times the statement executes. This clause is valid only if the SET or WHERE clause contains an array.

ECPGPlus provides support for the additional clauses of the SQL UPDATE statement as documented in the PostgreSQL core documentation.

You can use a host variable in any clause that specifies a value. To use a host variable, substitute a defined variable for any value associated with any of the documented UPDATE clauses.

The following UPDATE statement changes the job description of an employee (identified by the :ename host variable) to the value contained in the :new_job host variable. It increases the
employees salary by multiplying the current salary by the value in the :increase host variable:

EXEC SQL UPDATE emp
 SET job = :new_job, sal = sal * :increase
 WHERE ename = :ename;

The enhanced UPDATE statement also allows you to include parameter markers (question marks) in any clause where an input value is permitted. For example, we can write the same update statement
with a parameter marker in the WHERE clause:

EXEC SQL UPDATE emp
 SET job = ?, sal = sal * ?
 WHERE ename = :ename;

This UPDATE statement allows you to prompt the user for a new value for the job column and provide the amount by which the sal column is incremented for the employee specified by :ename .

WHENEVER

Use the WHENEVER statement to specify the action taken by a client application when it encounters an SQL error or warning. The syntax is:

EXEC SQL WHENEVER <condition> <action>;

The following table describes the different conditions that might trigger an action .

Condition Description

NOT FOUND The server returns a NOT FOUND condition when it encounters a SELECT that returns no rows or when a FETCH reaches the end of a result
set.

SQLERROR The server returns an SQLERROR condition when it encounters a serious error returned by an SQL statement.

SQLWARNING The server returns an SQLWARNING condition when it encounters a nonfatal warning returned by an SQL statement.

The following table describes the actions that result from a client encountering a condition .

Action Description

CALL function
[([args])]

Call the named function .

CONTINUE Proceed to the next statement.

DO BREAK Emit a C break statement. A break statement can appear in a loop or a switch statement. If executed, the break statement terminates the loop or the
switch statement.

DO CONTINUE Emit a C continue statement. A continue statement can exist only in a loop. If executed, it causes the flow of control to return to the top of the loop.

DO function ([args]) Call the named function .

GOTO label or GO TO
label

Proceed to the statement that contains the label.

SQLPRINT Print a message to standard error.

STOP Stop executing.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 897

https://www.postgresql.org/docs/current/static/sql-update.html

The following code fragment prints a message if the client application encounters a warning and aborts the application if it encounters an error:

EXEC SQL WHENEVER SQLWARNING SQLPRINT;
EXEC SQL WHENEVER SQLERROR STOP;

Include the following code to specify for a client to continue processing after warning a user of a problem:

EXEC SQL WHENEVER SQLWARNING SQLPRINT;

Include the following code to call a function if a query returns no rows or when a cursor reaches the end of a result set:

EXEC SQL WHENEVER NOT FOUND CALL error_handler(__LINE__);

23 EDB Postgres Language Pack

This guide provides information about how to install and configure Language Pack, as well as how to use the procedural languages (PL/Perl, PL/Python, and PL/Tcl).

Language pack installers contain supported languages that may be used with EDB Postgres Advanced Server and EnterpriseDB PostgreSQL database installers. The language pack installer allows you to
install Perl, Tcl/TK, and Python without installing supporting software from third-party vendors.

The Language Pack 2.0 installer includes:

Tcl with TK version 8.6
Perl version 5.26
Python version 3.7

The Perl package contains the cpan package manager, and Python contains pip and easy_install package managers. There is no package manager for Tcl/TK.

In previous Postgres releases, plpython was statically linked with ActiveState's python library. The Language Pack Installer dynamically links with our shared object for python. In ActiveState Linux
installers for Python, there is no dynamic library. As a result of these changes, plpython no longer works with ActiveState installers.

Convention used

The term Postgres refers to either PostgreSQL or EDB Postgres Advanced Server.

23.1 Supported database server versions

Language Pack installers are version specific. For EDB Postgres Advanced Server 14, use Language Pack Version 2.

23.2 Installing and configuring Language Pack

This section walks you through installing and configuring Language Pack.

Installing Language Pack

The graphical installer is available from the EDB website, as well as via Stack Builder and StackBuilder Plus. StackBuilder Plus is distributed with EDB Postgres Advanced Server and Stack Builder is
distributed with PostgreSQL.

Invoking the graphical installer

Assume Administrator privileges, and double-click the installer icon; if prompted, provide the password associated with the Administrator account. When prompted, select an installation language, and
click OK .

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 898

https://www.enterprisedb.com/software-downloads-postgres

Fig. 1: The Language Selection Window

The Language Pack setup wizard welcome window opens.

Fig. 2: The Language Pack Welcome Window

Click Next to continue.

The Ready to Install window displays the Language Pack installation directory:

On Windows 64: C:/edb/languagepack/v2

On OSX: /Library/edb/languagepack/v2

Fig. 3: The Ready to Install dialog

You cannot modify the installation directory. Click Next to continue.

A progress bar marks installation progress.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 899

Fig. 4: The Installing dialog

Click Next to continue.

The installer informs you that the Language Pack installation has completed; click Finish to exit the installer.

Fig. 5: The Language Pack Setup Complete dialog

Installing Language Pack with Stack Builder

You can use Stack Builder or StackBuilder Plus to download and invoke the Language Pack graphical installer. StackBuilder Plus is distributed with EDB Postgres Advanced Server and Stack Builder is
distributed with PostgreSQL.

The following section walks you through installing Language Pack with Stack Builder.

The Stack Builder utility provides a graphical interface that simplifies the process of downloading and installing modules that complement your PostgreSQL installation.

Stack Builder requires Internet access; if your installation of PostgreSQL resides behind a firewall (with restricted Internet access), Stack Builder can download program installers through a proxy
server. The module provider deter-mines if the module can be accessed through an HTTP proxy or an FTP proxy; currently, all updates are transferred via an HTTP proxy and the FTP proxy information is
not used.

You can invoke Stack Builder at any time after the installation has completed by selecting the Application Stack Builder menu option from the PostgreSQL 14 menu.

Select your server from the drop-down menu on the Stack Builder Welcome window and click Next to continue.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 900

Fig. 6: The Stack Builder Welcome Window

Expand the Add-ons, tools and utilities node of the Categories tree control, and check the box next to EDB Language Pack v2.0-1 . Click Next to continue.

Fig. 7: The Language Pack Selection Window

Stack Builder confirms your package selection before downloading the installer. Click Next to continue.

Fig. 8: The Selected Packages Window

When the download completes, Stack Builder offers to invoke the installer for you or delay the installation until a more convenient time. To invoke the installer, click Next and follow the steps
provided in the Invoking the Graphical Installer section.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 901

Fig. 9: The StackBuilder Installation Complete

Configuring Language Pack

This section walks you through configuring Language Pack on an EDB Postgres Advanced Server and PostgreSQL hosts.

Configuring Language Pack on an EDB Postgres Advanced Server host

After installing Language Pack on an EDB Postgres Advanced Server host, you must configure the installation.

Configuring Language Pack on Windows

On Windows, the Language Pack installer places the languages in:

C:\edb\as\languagepack\v2

Note

Check that the version of Language Pack you are running matches the version in the file path and in the following commands.

After installing Language Pack, you must set the following variables:

set PYTHONHOME=C:\edb\as\languagepack\v2\Python-3.7

Follow these steps to add Python, Perl, and Tcl to your Language Pack:

1. Go to This PC > Properties > Advanced System Settings > Environment Variables.

2. Edit the system-wide PATH variable.

To add Python, enter the following:

C:\edb\as\languagepack\v2\Python-3.7\
C:\edb\as\languagepack\v2\Python-3.7\Scripts

To add Perl and Tcl, enter the following:

C:\edb\as\languagepack\v2\Perl-5.26\bin
C:\edb\as\languagepack\v2\Tcl-8.6\bin

3. Close the dialog box.

4. Use the Windows Services applet to restart the EDB Postgres Advanced Server.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 902

Configuring Language Pack on a PostgreSQL Host

After installing Language Pack on a PostgreSQL host, you must configure the installation.

Configuring Language Pack on Windows

After installing Language Pack, you must set the following variables:

set PYTHONHOME=C:\edb\languagepack\v2\Python-3.7

Follow these steps to add Python, Perl, and Tcl to your Language Pack:

1. Go to This PC > Properties > Advanced System Settings > Environment Variables.

2. Edit the system-wide PATH variable.

To add Python, enter the following:

C:\edb\languagepack\v2\Python-3.7\
C:\edb\languagepack\v2\Python-3.7\Scripts

To add Perl and Tcl, enter the following:

C:\edb\languagepack\v2\Perl-5.26\bin
C:\edb\languagepack\v2\Tcl-8.6\bin

3. Close the dialog box.

4. Restart the database server.

Configuring Language Pack on OSX

To simplify setting the value of PATH or LD_LIBRARY_PATH , you can create environment variables that identify the installation location:

PERLHOME=/Library/edb/languagepack/v2/Perl-5.26
PYTHONHOME=/Library/edb/languagepack/v2/Python-3.7
TCLHOME=/Library/edb/languagepack/v2/Tcl-8.6

Then, execute the following command to instruct the Python interpreter where to find Python:

export PYTHONHOME

You can use the same environment variables when setting the value of PATH :

export PATH=$PYTHONHOME/bin:
$PERLHOME/bin:
$TCLHOME/bin:$PATH

Lastly, set the following variables to instruct OSX where to find the shared libraries:

export DYLD_LIBRARY_PATH=$PYTHONHOME/lib:
$PERLHOME/lib/CORE:$TCLHOME/lib:
$DYLD_LIBRARY_PATH

23.3 Using the procedural languages

The Postgres procedural languages (PL/Perl, PL/Python, and PL/Tcl) are installed by the Language Pack installer. You can also use a native package to add procedural language functionality to your EDB
Postgres Advanced Server installation.

PL/Perl

The PL/Perl procedural language allows you to use Perl functions in Postgres applications.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 903

You must install PL/Perl in each database (or in a template database) before creating a PL/Perl function. Use the CREATE LANGUAGE command at the EDB-PSQL command line to install PL/Perl.
Open the EDB-PSQL client, establish a connection to the database in which you wish to install PL/Perl, and enter the command:

CREATE EXTENSION plperl;

You can now use a Postgres client application to access the features of the PL/Perl language. The following PL/Perl example creates a function named perl_max that returns the larger of two integer
values:

CREATE OR REPLACE FUNCTION perl_max (integer, integer) RETURNS integer AS
$$
if ($_[0] > $_[1])
{ return $_[0]; }
return $_[1];
$$ LANGUAGE plperl;

Pass two values when calling the function:

SELECT perl_max(1, 2);

The server returns:

For more information about using the Perl procedural language, consult the official PostgreSQL documentation.

PL/Python

The PL/Python procedural language allows you to create and execute functions written in Python within Postgres applications. The version of PL/Python used by EDB Postgres Advanced Server and
PostgreSQL is untrusted (plpython3u); it offers no restrictions on users to prevent potential security risks.

Install PL/Python in each database (or in a template database) before creating a PL/Python function. You can use the CREATE LANGUAGE command at the EDB-PSQL command line to install
PL/Python. Use EDB-PSQL to connect to the database in which you wish to install PL/Python, and enter the command:

CREATE EXTENSION plpython3u;

After installing PL/Python in your database, you can use the features of the PL/Python language.

Note

The indentation shown in the following example must be included as you enter the sample function in EDB-PSQL.

The following PL/Python example creates a function named pymax that returns the larger of two integer values:

CREATE OR REPLACE FUNCTION pymax (a integer, b integer) RETURNS integer AS
$$
if a > b:
return a
return b
$$ LANGUAGE plpython3u;

When calling the pymax function, pass two values as shown below:

The server returns:

For more information about using the Python procedural language, consult the official PostgreSQL documentation.

PL/Tcl

perl_max

 2
(1 row)

SELECT pymax(12,
3);

pymax

 12
(1 row)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 904

https://www.postgresql.org/docs/12/static/plperl.html
https://www.postgresql.org/docs/12/static/plpython.html

The PL/Tcl procedural language allows you to use Tcl/Tk functions in applications.

You must install PL/Tcl in each database (or in a template database) before creating a PL/Tcl function. Use the CREATE LANGUAGE command at the EDB-PSQL command line to install PL/Tcl. Use
the psql client to connect to the database in which you wish to install PL/Tcl, and enter the command:

CREATE EXTENSION pltcl;

After creating the pltcl language, you can use the features of the PL/Tcl language from within your Postgres server.

The following PL/Tcl example creates a function named tcl_max that returns the larger of two integer values:

CREATE OR REPLACE FUNCTION tcl_max(integer, integer) RETURNS integer AS
$$
if {[argisnull 1]} {
if {[argisnull 2]} { return_null }
return $2
}
if {[argisnull 2]} { return $1 }
if {$1 > $2} {return $1}
return $2
$$ LANGUAGE pltcl;

Pass two values when calling the function:

The server returns:

For more information about using the Tcl procedural language, consult the official PostgreSQL documentation.

23.4 Uninstalling Language Pack

The following section outlines the process of uninstalling Language Pack.

The Language Pack graphical installer creates an uninstaller that you can use to remove Language Pack. The uninstaller is created in the installation directory.

Perform the following steps to uninstall Language Pack:

1. Navigate into the directory that contains the uninstaller and assume superuser privileges. Open the uninstaller and click Yes to begin uninstalling Language Pack.

Fig. 1: The Language Pack Uninstaller

2. The uninstallation process begins. Click OK when the uninstallation completes.

SELECT tcl_max(1,
2);

tcl_max

 2
(1 row)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 905

https://www.postgresql.org/docs/12/static/pltcl.html

Fig. 2: Uninstalling Language Pack

24 EDB Postgres Advanced Server Security Features

This guide describes features that provide added security to EDB Postgres Advanced Server installations. It is not a comprehensive guide to the security functionality provided by PostgreSQL that is built
into EDB Postgres Advanced Server.

SQL/Protect provides protection from SQL injection attacks.
Virtual Private Database provides fine-grained access control for sensitive data.
sslutils is a Postgres extension that allows you to generate SSL certificates.
Data redaction functionality allows you to dynamically mask portions of data.

For information about Postgres authentication and security features, consult the PostgreSQL core documentation.

24.1 Protecting against SQL injection attacks

EDB Postgres Advanced Server provides protection against SQL injection attacks. A SQL injection attack is an attempt to compromise a database by running SQL statements whose results provide clues
to the attacker as to the content, structure, or security of that database.

Preventing a SQL injection attack is normally the responsibility of the application developer. The database administrator typically has little or no control over the potential threat. The difficulty for
database administrators is that the application must have access to the data to function properly.

SQL/Protect is a module that allows a database administrator to protect a database from SQL injection attacks. SQL/Protect provides a layer of security in addition to the normal database security
policies by examining incoming queries for common SQL injection profiles.

SQL/Protect gives the control back to the database administrator by alerting the administrator to potentially dangerous queries and by blocking these queries.

24.1.1 SQL/Protect overview

This section contains an introduction to the different types of SQL injection attacks and describes how SQL/Protect guards against them.

Types of SQL injection attacks

There are a number of different techniques used to perpetrate SQL injection attacks. Each technique is characterized by a certain signature. SQL/Protect examines queries for the following signatures:

Unauthorized relations

While EDB Postgres Advanced Server allows administrators to restrict access to relations (tables, views, etc.), many administrators don't perform this tedious task. SQL/Protect provides a learn mode
that tracks the relations a user accesses.

This allows administrators to examine the workload of an application, and for SQL/Protect to learn which relations an application should be allowed to access for a given user or group of users in a role.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 906

https://www.postgresql.org/docs/

When SQL/Protect is switched to either passive or active mode, the incoming queries are checked against the list of learned relations.

Utility commands

A common technique used in SQL injection attacks is to run utility commands, which are typically SQL Data Definition Language (DDL) statements. An example is creating a user-defined function that
has the ability to access other system resources.

SQL/Protect can block the running of all utility commands, which are not normally needed during standard application processing.

SQL tautology

The most frequent technique used in SQL injection attacks is issuing a tautological WHERE clause condition (that is, using a condition that is always true).

The following is an example:

WHERE password = 'x' OR 'x'='x'

Attackers usually start identifying security weaknesses using this technique. SQL/Protect can block queries that use a tautological conditional clause.

Unbounded DML statements

A dangerous action taken during SQL injection attacks is the running of unbounded DML statements. These are UPDATE and DELETE statements with no WHERE clause. For example, an attacker
may update all users’ passwords to a known value or initiate a denial of service attack by deleting all of the data in a key table.

Monitoring SQL injection attacks

This section describes how SQL/Protect monitors and reports on SQL injection attacks.

Protected roles

Monitoring for SQL injection attacks involves analyzing SQL statements originating in database sessions where the current user of the session is a protected role. A protected role is an EDB Postgres
Advanced Server user or group that the database administrator has chosen to monitor using SQL/Protect. (In EDB Postgres Advanced Server, users and groups are collectively referred to as roles.)

Each protected role can be customized for the types of SQL injection attacks for which it is to be monitored, thus providing different levels of protection by role and significantly reducing the user
maintenance load for DBAs.

A role with the superuser privilege cannot be made a protected role. If a protected non-superuser role is subsequently altered to become a superuser, certain behaviors are exhibited whenever an
attempt is made by that superuser to issue any command:

A warning message is issued by SQL/Protect on every command issued by the protected superuser.
The statistic in column superusers of edb_sql_protect_stats is incremented with every command issued by the protected superuser. See Attack Attempt Statistics for information on the
edb_sql_protect_stats view.

When SQL/Protect is in active mode, all commands issued by the protected superuser are prevented from running.

A protected role that has the superuser privilege should either be altered so that it is no longer a superuser, or it should be reverted back to an unprotected role.

Attack attempt statistics

Each usage of a command by a protected role that is considered an attack by SQL/Protect is recorded. Statistics are collected by type of SQL injection attack as discussed in Types of SQL Injection
Attacks.

These statistics are accessible from view edb_sql_protect_stats that can be easily monitored to identify the start of a potential attack.

The columns in edb_sql_protect_stats monitor the following:

username. Name of the protected role.
superusers. Number of SQL statements issued when the protected role is a superuser. In effect, any SQL statement issued by a protected superuser increases this statistic. See Protected Roles
for information on protected superusers.
relations. Number of SQL statements issued referencing relations that were not learned by a protected role. (That is, relations that are not in a role’s protected relations list.)
commands. Number of DDL statements issued by a protected role.
tautology. Number of SQL statements issued by a protected role that contained a tautological condition.
dml. Number of UPDATE and DELETE statements issued by a protected role that did not contain a WHERE clause.

This gives database administrators the opportunity to react proactively in preventing theft of valuable data or other malicious actions.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 907

If a role is protected in more than one database, the role’s statistics for attacks in each database are maintained separately and are viewable only when connected to the respective database.

Note

SQL/Protect statistics are maintained in memory while the database server is running. When the database server is shut down, the statistics are saved to a binary file named
edb_sqlprotect.stat in the data/global subdirectory of the EDB Postgres Advanced Server home directory.

Attack attempt queries

Each usage of a command by a protected role that is considered an attack by SQL/Protect is recorded in the edb_sql_protect_queries view.

The edb_sql_protect_queries view contains the following columns:

username. Database user name of the attacker used to log into the database server.
ip_address. IP address of the machine from which the attack was initiated.
port. Port number from which the attack originated.
machine_name. Name of the machine, if known, from which the attack originated.
date_time. Date and time at which the query was received by the database server. The time is stored to the precision of a minute.
query. The query string sent by the attacker.

The maximum number of offending queries that are saved in edb_sql_protect_queries is controlled by the edb_sql_protect.max_queries_to_save configuration parameter.

If a role is protected in more than one database, the role’s queries for attacks in each database are maintained separately and are viewable only when connected to the respective database.

24.1.2 Configuring SQL/Protect

Ensure the following prerequisites are met before configuring SQL/Protect:

The library file (sqlprotect.so on Linux, sqlprotect.dll on Windows) necessary to run SQL/Protect should be installed in the lib subdirectory of your EDB Postgres Advanced
Server home directory. For Windows, this should be done by the EDB Postgres Advanced Server installer. For Linux, install the edb-asxx-server-sqlprotect RPM package where xx is
the EDB Postgres Advanced Server version number.

You also need the SQL script file sqlprotect.sql located in the share/contrib subdirectory of your EDB Postgres Advanced Server home directory.

You must configure the database server to use SQL/Protect , and you must configure each database that you want SQL/Protect to monitor:

The database server configuration file, postgresql.conf , must be modified by adding and enabling configuration parameters used by SQL/Protect .
Database objects used by SQL/Protect must be installed in each database that you want SQL/Protect to monitor.

Step 1: Edit the following configuration parameters in the postgresql.conf file located in the data subdirectory of your EDB Postgres Advanced Server home directory.

shared_preload_libraries. Add $libdir/sqlprotect to the list of libraries.

edb_sql_protect.enabled. Controls whether or not SQL/Protect is actively monitoring protected roles by analyzing SQL statements issued by those roles and reacting according to the setting
of edb_sql_protect.level . When you are ready to begin monitoring with SQL/Protect set this parameter to on . If this parameter is omitted, the default is off .

edb_sql_protect.level. Sets the action taken by SQL/Protect when a SQL statement is issued by a protected role. If this parameter is omitted, the default behavior is passive . Initially, set
this parameter to learn .

See Setting the Protection Level for more information.

edb_sql_protect.max_protected_roles. Sets the maximum number of roles that can be protected. If this parameter is omitted, the default setting is 64 .

edb_sql_protect.max_protected_relations. Sets the maximum number of relations that can be protected per role. If this parameter is omitted, the default setting is 1024 .

The total number of protected relations for the server is the number of protected relations times the number of protected roles. Every protected relation consumes space in shared memory. The
space for the maximum possible protected relations is reserved during database server startup.

edb_sql_protect.max_queries_to_save. Sets the maximum number of offending queries to save in the edb_sql_protect_queries view. If this parameter is omitted, the default setting is
5000 . If the number of offending queries reaches the limit, additional queries are not saved in the view, but are accessible in the database server log file.

The minimum valid value for this parameter is 100 . If a value less than 100 is specified, the database server starts using the default setting of 5000 . A warning message is recorded in the
database server log file.

The following example shows the settings of these parameters in the postgresql.conf file:

shared_preload_libraries = '$libdir/dbms_pipe,$libdir/edb_gen,$libdir/sqlprotect'
 # (change requires restart)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 908

 .
 .
 .
edb_sql_protect.enabled = off
edb_sql_protect.level = learn
edb_sql_protect.max_protected_roles = 64
edb_sql_protect.max_protected_relations = 1024
edb_sql_protect.max_queries_to_save = 5000

Step 2: Restart the database server after you have modified the postgresql.conf file.

On Linux: Invoke the EDB Postgres Advanced Server service script with the restart option.

On a Redhat or CentOS 7.x installation, use the command:

systemctl restart edb-as-14

On Windows: Use the Windows Services applet to restart the service named edb-as-14 .

Step 3: For each database that you want to protect from SQL injection attacks, connect to the database as a superuser (either enterprisedb or postgres , depending upon your installation
options) and run the script sqlprotect.sql located in the share/contrib subdirectory of your EDB Postgres Advanced Server home directory. The script creates the SQL/Protect database
objects in a schema named sqlprotect .

The following example shows this process to set up protection for a database named edb :

$ /usr/edb/as14/bin/psql -d edb -U enterprisedb
Password for user enterprisedb:
psql.bin (14.0.0, server 14.0.0)
Type "help" for help.

edb=# \i /usr/edb/as14/share/contrib/sqlprotect.sql
CREATE SCHEMA
GRANT
SET
CREATE TABLE
GRANT
CREATE TABLE
GRANT
CREATE FUNCTION
CREATE FUNCTION
CREATE FUNCTION
CREATE FUNCTION
CREATE FUNCTION
CREATE FUNCTION
CREATE FUNCTION
DO
CREATE FUNCTION
CREATE FUNCTION
DO
CREATE VIEW
GRANT
DO
CREATE VIEW
GRANT
CREATE VIEW
GRANT
CREATE FUNCTION
CREATE FUNCTION
SET

Selecting roles to protect

After the SQL/Protect database objects have been created in a database, you can select the roles for which SQL queries are to be monitored for protection, and the level of protection that is assigned to
each role.

Setting the protected roles list

For each database that you want to protect, you must determine the roles you want to monitor and then add those roles to the protected roles list of that database.

Step 1: Connect as a superuser to a database that you wish to protect with either psql or Postgres Enterprise Manager Client:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 909

$ /usr/edb/as14/bin/psql -d edb -U enterprisedb
Password for user enterprisedb:
psql.bin (14.0.0, server 14.0.0)
Type "help" for help.

edb=#

Step 2: Since the SQL/Protect tables, functions, and views are built under the sqlprotect schema, use the SET search_path command to include the sqlprotect schema in your search
path. This eliminates the need to schema-qualify any operation or query involving SQL/Protect database objects:

edb=# SET search_path TO sqlprotect;
SET

Step 3: Each role that you wish to protect must be added to the protected roles list. This list is maintained in the table edb_sql_protect .

To add a role, use the function protect_role('rolename') . The following example protects a role named appuser :

edb=# SELECT protect_role('appuser');
 protect_role

(1 row)

You can list the roles that have been added to the protected roles list by issuing the following query:

edb=# SELECT * FROM edb_sql_protect;
 dbid | roleid | protect_relations | allow_utility_cmds | allow_tautology |
 allow_empty_dml
-------+--------+-------------------+--------------------+-----------------+--

 13917 | 16671 | t | f | f | f
(1 row)

A view is also provided that gives the same information using the object names instead of the Object Identification numbers (OIDs):

edb=# \x
Expanded display is on.
edb=# SELECT * FROM list_protected_users;
-[RECORD 1]------+--------
dbname | edb
username | appuser
protect_relations | t
allow_utility_cmds | f
allow_tautology | f
allow_empty_dml | f

Setting the protection level

The edb_sql_protect.level configuration parameter sets the protection level, which defines the behavior of SQL/Protect when a protected role issues a SQL statement. The defined behavior
applies to all roles in the protected roles lists of all databases configured with SQL/Protect in the database server.

The edb_sql_protect.level configuration parameter (in the postgresql.conf file) can be set to one of the following values to use either learn mode, passive mode, or active
mode:

learn. Tracks the activities of protected roles and records the relations used by the roles. This is used when initially configuring SQL/Protect so the expected behaviors of the protected
applications are learned.
passive. Issues warnings if protected roles are breaking the defined rules, but does not stop any SQL statements from executing. This is the next step after SQL/Protect has learned the expected
behavior of the protected roles. This essentially behaves in intrusion detection mode and can be run in production when properly monitored.
active. Stops all invalid statements for a protected role. This behaves as a SQL firewall preventing dangerous queries from running. This is particularly effective against early penetration testing
when the attacker is trying to determine the vulnerability point and the type of database behind the application. Not only does SQL/Protect close those vulnerability points, but it tracks the
blocked queries allowing administrators to be alerted before the attacker finds an alternate method of penetrating the system.

If the edb_sql_protect.level parameter is not set or is omitted from the configuration file, the default behavior of SQL/Protect is passive .

If you are using SQL/Protect for the first time, set edb_sql_protect.level to learn .

Monitoring protected roles

Once you have configured SQL/Protect in a database, added roles to the protected roles list, and set the desired protection level, you can then activate SQL/Protect in either learn mode, passive

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 910

mode, or active mode. You can then start running your applications.

With a new SQL/Protect installation, the first step is to determine the relations that protected roles should be permitted to access during normal operation. Learn mode allows a role to run applications
during which time SQL/Protect is recording the relations that are accessed. These are added to the role’s protected relations list stored in table edb_sql_protect_rel .

Monitoring for protection against attack begins when SQL/Protect is run in passive or active mode. In passive and active modes, the role is permitted to access the relations in its protected relations list
as these were determined to be the relations the role should be able to access during typical usage.

However, if a role attempts to access a relation that is not in its protected relations list, a WARNING or ERROR severity level message is returned by SQL/Protect. The role’s attempted action on the
relation may or may not be carried out depending upon whether the mode is passive or active.

Learn mode

Step 1: To activate SQL/Protect in learn mode, set the parameters in the postgresql.conf file as shown below:

edb_sql_protect.enabled = on
edb_sql_protect.level = learn

Step 2: Reload the postgresql.conf file.

Choose Expert Configuration , then Reload Configuration from the EDB Postgres Advanced Server application menu.

For an alternative method of reloading the configuration file, use the pg_reload_conf function. Be sure you are connected to a database as a superuser and execute function
pg_reload_conf as shown by the following example:

edb=# SELECT pg_reload_conf();
 pg_reload_conf

 t
(1 row)

Step 3: Allow the protected roles to run their applications.

As an example the following queries are issued in the psql application by protected role appuser :

edb=> SELECT * FROM dept;
NOTICE: SQLPROTECT: Learned relation: 16384
 deptno | dname | loc
--------+------------+----------
 10 | ACCOUNTING | NEW YORK
 20 | RESEARCH | DALLAS
 30 | SALES | CHICAGO
 40 | OPERATIONS | BOSTON
(4 rows)

edb=> SELECT empno, ename, job FROM emp WHERE deptno = 10;
NOTICE: SQLPROTECT: Learned relation: 16391
 empno | ename | job
-------+--------+-----------
 7782 | CLARK | MANAGER
 7839 | KING | PRESIDENT
 7934 | MILLER | CLERK
(3 rows)

SQL/Protect generates a NOTICE severity level message indicating the relation has been added to the role’s protected relations list.

In SQL/Protect learn mode, SQL statements that are cause for suspicion are not prevented from executing, but a message is issued to alert the user to potentially dangerous statements as shown by the
following example:

edb=> CREATE TABLE appuser_tab (f1 INTEGER);
NOTICE: SQLPROTECT: This command type is illegal for this user
CREATE TABLE
edb=> DELETE FROM appuser_tab;
NOTICE: SQLPROTECT: Learned relation: 16672
NOTICE: SQLPROTECT: Illegal Query: empty DML
DELETE 0

Step 4: As a protected role runs applications, the SQL/Protect tables can be queried to observe the addition of relations to the role’s protected relations list.

Connect as a superuser to the database you are monitoring and set the search path to include the sqlprotect schema:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 911

edb=# SET search_path TO sqlprotect;
SET

Query the edb_sql_protect_rel table to see the relations added to the protected relations list:

edb=# SELECT * FROM edb_sql_protect_rel;
 dbid | roleid | relid
--------+--------+-------
 13917 | 16671 | 16384
 13917 | 16671 | 16391
 13917 | 16671 | 16672
(3 rows)

The list_protected_rels view provides more comprehensive information along with the object names instead of the OIDs:

edb=# SELECT * FROM list_protected_rels;
 Database | Protected User | Schema | Name | Type | Owner
----------+----------------+--------+-------------+-------+------------
 edb | appuser | public | dept | Table | enterprisedb
 edb | appuser | public | emp | Table | enterprisedb
 edb | appuser | public | appuser_tab | Table | appuser
(3 rows)

Passive mode

Once you have determined that a role’s applications have accessed all relations they need, you can now change the protection level so that SQL/Protect can actively monitor the incoming SQL queries
and protect against SQL injection attacks.

Passive mode is the less restrictive of the two protection modes, passive and active.

Step 1: To activate SQL/Protect in passive mode, set the following parameters in the postgresql.conf file as shown below:

edb_sql_protect.enabled = on
edb_sql_protect.level = passive

Step 2: Reload the configuration file as shown in Step 2 of the Learn Mode section.

Now SQL/Protect is in passive mode. For relations that have been learned such as the dept and emp tables of the prior examples, SQL statements are permitted with no special notification to the
client by SQL/Protect as shown by the following queries run by user appuser :

edb=> SELECT * FROM dept;
 deptno | dname | loc
--------+------------+----------
 10 | ACCOUNTING | NEW YORK
 20 | RESEARCH | DALLAS
 30 | SALES | CHICAGO
 40 | OPERATIONS | BOSTON
(4 rows)

edb=> SELECT empno, ename, job FROM emp WHERE deptno = 10;
 empno | ename | job
-------+--------+-----------
 7782 | CLARK | MANAGER
 7839 | KING | PRESIDENT
 7934 | MILLER | CLERK
(3 rows)

SQL/Protect does not prevent any SQL statement from executing, but issues a message of WARNING severity level for SQL statements executed against relations that were not learned, or for SQL
statements that contain a prohibited signature as shown in the following example:

edb=> CREATE TABLE appuser_tab_2 (f1 INTEGER);
WARNING: SQLPROTECT: This command type is illegal for this user
CREATE TABLE
edb=> INSERT INTO appuser_tab_2 VALUES (1);
WARNING: SQLPROTECT: Illegal Query: relations
INSERT 0 1
edb=> INSERT INTO appuser_tab_2 VALUES (2);
WARNING: SQLPROTECT: Illegal Query: relations
INSERT 0 1
edb=> SELECT * FROM appuser_tab_2 WHERE 'x' = 'x';
WARNING: SQLPROTECT: Illegal Query: relations
WARNING: SQLPROTECT: Illegal Query: tautology

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 912

f1

 1
 2
(2 rows)

Step 3: Monitor the statistics for suspicious activity.

By querying the view edb_sql_protect_stats , you can see the number of times SQL statements were executed that referenced relations that were not in a role’s protected relations list, or
contained SQL injection attack signatures. See Attack Attempt Statistics for more information on view edb_sql_protect_stats .

The following is a query on edb_sql_protect_stats :

edb=# SET search_path TO sqlprotect;
SET
edb=# SELECT * FROM edb_sql_protect_stats;
 username | superusers | relations | commands | tautology | dml
-----------+------------+-----------+----------+-----------+-----
 appuser | 0 | 3 | 1 | 1 | 0
(1 row)

Step 4: View information on specific attacks.

By querying the edb_sql_protect_queries view, you can see the SQL statements that were executed that referenced relations that were not in a role’s protected relations list, or contained SQL
injection attack signatures. See Attack Attempt Queries for more information on view edb_sql_protect_queries .

The following code sample shows a query on edb_sql_protect_queries :

edb=# SELECT * FROM edb_sql_protect_queries;
-[RECORD 1]+---
 username | appuser
 ip_address |
 port |
 machine_name |
 date_time | 20-JUN-14 13:21:00 -04:00
 query | INSERT INTO appuser_tab_2 VALUES (1);
-[RECORD 2]+---
 username | appuser
 ip_address |
 port |
 machine_name |
 date_time | 20-JUN-14 13:21:00 -04:00
 query | CREATE TABLE appuser_tab_2 (f1 INTEGER);
-[RECORD 3]+---
 username | appuser
 ip_address |
 port |
 machine_name |
 date_time | 20-JUN-14 13:22:00 -04:00
 query | INSERT INTO appuser_tab_2 VALUES (2);
-[RECORD 4]+---
 username | appuser
 ip_address |
 port |
 machine_name |
 date_time | 20-JUN-14 13:22:00 -04:00
 query | SELECT * FROM appuser_tab_2 WHERE 'x' = 'x';

Note

The ip_address and port columns don't return any information if the attack originated on the same host as the database server using the Unix-domain socket (that is, pg_hba.conf
connection type local).

Active mode

In active mode, disallowed SQL statements are prevented from executing. Also, the message issued by SQL/Protect has a higher severity level of ERROR instead of WARNING .

Step 1: To activate SQL/Protect in active mode, set the following parameters in the postgresql.conf file as shown below:

edb_sql_protect.enabled = on
edb_sql_protect.level = active

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 913

Step 2: Reload the configuration file as shown in Step 2 of the Learn Mode section.

The following example illustrates SQL statements similar to those given in the examples of Step 2 in Passive Mode , but executed by user appuser when edb_sql_protect.level is set to
active :

edb=> CREATE TABLE appuser_tab_3 (f1 INTEGER);
ERROR: SQLPROTECT: This command type is illegal for this user
edb=> INSERT INTO appuser_tab_2 VALUES (1);
ERROR: SQLPROTECT: Illegal Query: relations
edb=> SELECT * FROM appuser_tab_2 WHERE 'x' = 'x';
ERROR: SQLPROTECT: Illegal Query: relations

The following shows the resulting statistics:

edb=# SELECT * FROM sqlprotect.edb_sql_protect_stats;
 username | superusers | relations | commands | tautology | dml
-----------+------------+-----------+----------+-----------+-----
 appuser | 0 | 5 | 2 | 1 | 0
(1 row)

The following is a query on edb_sql_protect_queries :

edb=# SELECT * FROM sqlprotect.edb_sql_protect_queries;
-[RECORD 1]+---
 username | appuser
 ip_address |
 port |
 machine_name |
 date_time | 20-JUN-14 13:21:00 -04:00
 query | CREATE TABLE appuser_tab_2 (f1 INTEGER);
-[RECORD 2]+---
 username | appuser
 ip_address |
 port |
 machine_name |
 date_time | 20-JUN-14 13:22:00 -04:00
 query | INSERT INTO appuser_tab_2 VALUES (2);
-[RECORD 3]+---
 username | appuser
 ip_address | 192.168.2.6
 port | 50098
 machine_name |
 date_time | 20-JUN-14 13:39:00 -04:00
 query | CREATE TABLE appuser_tab_3 (f1 INTEGER);
-[RECORD 4]+---
 username | appuser
 ip_address | 192.168.2.6
 port | 50098
 machine_name |
 date_time | 20-JUN-14 13:39:00 -04:00
 query | INSERT INTO appuser_tab_2 VALUES (1);
-[RECORD 5]+---
 username | appuser
 ip_address | 192.168.2.6
 port | 50098
 machine_name |
 date_time | 20-JUN-14 13:39:00 -04:00
 query | SELECT * FROM appuser_tab_2 WHERE 'x' = 'x';

24.1.3 Common maintenance operations

The following describes how to perform other common operations.

You must be connected as a superuser to perform these operations and have included the sqlprotect schema in your search path.

Adding a role to the protected roles list

To add a role to the protected roles list run protect_role('rolename') as shown in the following example:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 914

edb=# SELECT protect_role('newuser');
 protect_role

(1 row)

Removing a role from the protected roles list

To remove a role from the protected roles list, use either of the following functions:

unprotect_role('rolename')

unprotect_role(roleoid)

The variation of the function using the OID is useful if you remove the role using the DROP ROLE or DROP USER SQL statement before removing the role from the protected roles list. If a query on
a SQL/Protect relation returns a value such as unknown (OID=16458) for the user name, use the unprotect_role(roleoid) form of the function to remove the entry for the deleted role
from the protected roles list.

Removing a role using these functions also removes the role’s protected relations list.

The statistics for a role that has been removed are not deleted until you use the drop_stats function.

The offending queries for a role that has been removed are not deleted until you use the drop_queries function.

The following is an example of the unprotect_role function:

edb=# SELECT unprotect_role('newuser');
 unprotect_role

(1 row)

Alternatively, the role could be removed by giving its OID of 16693 :

edb=# SELECT unprotect_role(16693);
 unprotect_role

(1 row)

Setting the types of protection for a role

You can change whether or not a role is protected from a certain type of SQL injection attack.

Change the Boolean value for the column in edb_sql_protect corresponding to the type of SQL injection attack for which protection of a role is to be disabled or enabled.

Be sure to qualify the following columns in your WHERE clause of the statement that updates edb_sql_protect :

dbid. OID of the database for which you are making the change
roleid. OID of the role for which you are changing the Boolean settings

For example, to allow a given role to issue utility commands, update the allow_utility_cmds column as follows:

UPDATE edb_sql_protect SET allow_utility_cmds = TRUE WHERE dbid =
13917 AND roleid = 16671;

You can verify the change was made by querying edb_sql_protect or list_protected_users . In the following query note that column allow_utility_cmds now contains t :

edb=# SELECT dbid, roleid, allow_utility_cmds FROM edb_sql_protect;
 dbid | roleid | allow_utility_cmds
--------+--------+--------------------
 13917 | 16671 | t
(1 row)

The updated rules take effect on new sessions started by the role since the change was made.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 915

Removing a relation from the protected relations list

If SQL/Protect has learned that a given relation is accessible for a given role, you can subsequently remove that relation from the role’s protected relations list.

Delete its entry from the edb_sql_protect_rel table using any of the following functions:

unprotect_rel('rolename', 'relname')
unprotect_rel('rolename', 'schema', 'relname')
unprotect_rel(roleoid, reloid)

If the relation given by relname is not in your current search path, specify the relation’s schema using the second function format.

The third function format allows you to specify the OIDs of the role and relation, respectively, instead of their text names.

The following example illustrates the removal of the public.emp relation from the protected relations list of the role appuser :

edb=# SELECT unprotect_rel('appuser', 'public', 'emp');
 unprotect_rel

(1 row)

The following query shows there is no longer an entry for the emp relation:

edb=# SELECT * FROM list_protected_rels;
 Database | Protected User | Schema | Name | Type | Owner
----------+----------------+--------+-------------+-------+--------------
 edb | appuser | public | dept | Table | enterprisedb
 edb | appuser | public | appuser_tab | Table | appuser
(2 rows)

SQL/Protect now issues a warning or completely blocks access (depending upon the setting of edb_sql_protect.level) whenever the role attempts to utilize that relation.

Deleting statistics

You can delete statistics from view edb_sql_protect_stats using either of the two following functions:

drop_stats('rolename')

drop_stats(roleoid)

The variation of the function using the OID is useful if you remove the role using the DROP ROLE or DROP USER SQL statement before deleting the role’s statistics using
drop_stats('rolename') . If a query on edb_sql_protect_stats returns a value such as unknown (OID=16458) for the user name, use the drop_stats(roleoid) form of the

function to remove the deleted role’s statistics from edb_sql_protect_stats .

The following is an example of the drop_stats function:

edb=# SELECT drop_stats('appuser');
 drop_stats

(1 row)

edb=# SELECT * FROM edb_sql_protect_stats;
 username | superusers | relations | commands | tautology | dml
-----------+------------+-----------+----------+-----------+-----
(0 rows)

The following is an example of using the drop_stats(roleoid) form of the function when a role is dropped before deleting its statistics:

edb=# SELECT * FROM edb_sql_protect_stats;
 username | superusers | relations | commands | tautology | dml
---------------------+------------+-----------+----------+-----------+-----
 unknown (OID=16693) | 0 | 5 | 3 | 1 | 0
 appuser | 0 | 5 | 2 | 1 | 0
(2 rows)

edb=# SELECT drop_stats(16693);
 drop_stats

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 916

(1 row)

edb=# SELECT * FROM edb_sql_protect_stats;
 username | superusers | relations | commands | tautology | dml
----------+------------+-----------+----------+-----------+-----
 appuser | 0 | 5 | 2 | 1 | 0
(1 row)

Deleting offending queries

You can delete offending queries from view edb_sql_protect_queries using either of the two following functions:

drop_queries('rolename')

drop_queries(roleoid)

The variation of the function using the OID is useful if you remove the role using the DROP ROLE or DROP USER SQL statement before deleting the role’s offending queries using
drop_queries('rolename') . If a query on edb_sql_protect_queries returns a value such as unknown (OID=16454) for the user name, use the drop_queries(roleoid) form

of the function to remove the deleted role’s offending queries from edb_sql_protect_queries .

The following is an example of the drop_queries function:

edb=# SELECT drop_queries('appuser');
 drop_queries

 5
(1 row)

edb=# SELECT * FROM edb_sql_protect_queries;
 username | ip_address | port | machine_name | date_time | query
-----------+------------+------+--------------+-----------+-------
(0 rows)

The following is an example of using the drop_queries(roleoid) form of the function when a role is dropped before deleting its queries:

edb=# SELECT username, query FROM edb_sql_protect_queries;
 username | query
---------------------+--
 unknown (OID=16454) | CREATE TABLE appuser_tab_2 (f1 INTEGER);
 unknown (OID=16454) | INSERT INTO appuser_tab_2 VALUES (2);
 unknown (OID=16454) | CREATE TABLE appuser_tab_3 (f1 INTEGER);
 unknown (OID=16454) | INSERT INTO appuser_tab_2 VALUES (1);
 unknown (OID=16454) | SELECT * FROM appuser_tab_2 WHERE 'x' = 'x';
(5 rows)

edb=# SELECT drop_queries(16454);
 drop_queries

 5
(1 row)

edb=# SELECT * FROM edb_sql_protect_queries;
 username | ip_address | port | machine_name | date_time | query
----------+------------+------+--------------+-----------+-------
(0 rows)

Disabling and enabling monitoring

If you wish to turn off SQL/Protect monitoring, modify the postgresql.conf file, setting the edb_sql_protect.enabled parameter to off . After saving the file, reload the server
configuration to apply the settings.

If you wish to turn on SQL/Protect monitoring, modify the postgresql.conf file, setting the edb_sql_protect.enabled parameter to on . After saving the file, reload the server
configuration to apply the settings.

24.1.4 Backing up and restoring a SQL/Protect database

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 917

Backing up a database that is configured with SQL/Protect, and then restoring the backup file to a new database requires additional considerations to what is normally associated with backup and
restore procedures. This is primarily due to the use of Object Identification numbers (OIDs) in the SQL/Protect tables as explained in this section.

Note

This section applies if your backup and restore procedures result in the re-creation of database objects in the new database with new OIDs such as is the case when using the pg_dump
backup program.

If you are backing up your EDB Postgres Advanced Server database server by simply using the operating system’s copy utility to create a binary image of the EDB Postgres Advanced Server data files (file
system backup method), then this section does not apply.

Object identification numbers in SQL/Protect tables

SQL/Protect uses two tables (edb_sql_protect and edb_sql_protect_rel) to store information on database objects such as databases, roles, and relations. References to these database
objects in these tables are done using the objects’ OIDs, and not the objects’ text names. The OID is a numeric data type used by EDB Postgres Advanced Server to uniquely identify each database object.

When a database object is created, EDB Postgres Advanced Server assigns an OID to the object, which is then used whenever a reference is needed to the object in the database catalogs. If you create
the same database object in two databases, such as a table with the same CREATE TABLE statement, each table is assigned a different OID in each database.

In a backup and restore operation that results in the re-creation of the backed up database objects, the restored objects end up with different OIDs in the new database than what they were assigned in
the original database. As a result, the OIDs referencing databases, roles, and relations stored in the edb_sql_protect and edb_sql_protect_rel tables are no longer valid when these tables
are simply dumped to a backup file and then restored to a new database.

The following sections describe two functions, export_sqlprotect and import_sqlprotect , that are used specifically for backing up and restoring SQL/Protect tables in order to ensure the
OIDs in the SQL/Protect tables reference the correct database objects after the tables are restored.

Backing up the database

The following steps back up a database that has been configured with SQL/Protect.

Step 1: Create a backup file using pg_dump .

The following example shows a plain-text backup file named /tmp/edb.dmp created from database edb using the pg_dump utility program:

$ cd /usr/edb/as14/bin
$./pg_dump -U enterprisedb -Fp -f /tmp/edb.dmp edb
Password:
$

Step 2: Connect to the database as a superuser and export the SQL/Protect data using the export_sqlprotect('sqlprotect_file') function (where sqlprotect_file is the fully
qualified path to a file where the SQL/Protect data is to be saved).

The enterprisedb operating system account (postgres if you installed EDB Postgres Advanced Server in PostgreSQL compatibility mode) must have read and write access to the directory
specified in sqlprotect_file .

edb=# SELECT sqlprotect.export_sqlprotect('/tmp/sqlprotect.dmp');
 export_sqlprotect

(1 row)

The files /tmp/edb.dmp and /tmp/sqlprotect.dmp comprise your total database backup.

Restoring From the Backup Files

Step 1: Restore the backup file to the new database.

The following example uses the psql utility program to restore the plain-text backup file /tmp/edb.dmp to a newly created database named newdb :

$ /usr/edb/as14/bin/psql -d newdb -U enterprisedb -f /tmp/edb.dmp
Password for user enterprisedb:
SET
SET
SET
SET
SET

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 918

COMMENT
CREATE SCHEMA
 .
 .
 .

Step 2: Connect to the new database as a superuser and delete all rows from the edb_sql_protect_rel table.

This step removes any existing rows in the edb_sql_protect_rel table that were backed up from the original database. These rows don't contain the correct OIDs relative to the database where
the backup file has been restored:

$ /usr/edb/as14/bin/psql -d newdb -U enterprisedb
Password for user enterprisedb:
psql.bin (14.0.0, server 14.0.0)
Type "help" for help.

newdb=# DELETE FROM sqlprotect.edb_sql_protect_rel;
DELETE 2

Step 3: Delete all rows from the edb_sql_protect table.

This step removes any existing rows in the edb_sql_protect table that were backed up from the original database. These rows don't contain the correct OIDs relative to the database where the
backup file has been restored:

newdb=# DELETE FROM sqlprotect.edb_sql_protect;
DELETE 1

Step 4: Delete any statistics that may exist for the database.

This step removes any existing statistics that may exist for the database to which you are restoring the backup. The following query displays any existing statistics:

newdb=# SELECT * FROM sqlprotect.edb_sql_protect_stats;
 username | superusers | relations | commands | tautology | dml
-----------+------------+-----------+----------+-----------+-----
(0 rows)

For each row that appears in the preceding query, use the drop_stats function specifying the role name of the entry.

For example, if a row appeared with appuser in the username column, issue the following command to remove it:

newdb=# SELECT sqlprotect.drop_stats('appuser');
 drop_stats

(1 row)

Step 5: Delete any offending queries that may exist for the database.

This step removes any existing queries that may exist for the database to which you are restoring the backup. The following query displays any existing queries:

edb=# SELECT * FROM sqlprotect.edb_sql_protect_queries;
 username | ip_address | port | machine_name | date_time | query
-----------+------------+------+--------------+-----------+-------
(0 rows)

For each row that appears in the preceding query, use the drop_queries function specifying the role name of the entry.

For example, if a row appeared with appuser in the username column, issue the following command to remove it:

edb=# SELECT sqlprotect.drop_queries('appuser');
 drop_queries

(1 row)

Step 6: Make sure the role names that were protected by SQL/Protect in the original database exist in the database server where the new database resides.

If the original and new databases reside in the same database server, then nothing needs to be done assuming you have not deleted any of these roles from the database server.

Step 7: Run the function import_sqlprotect('sqlprotect_file') where sqlprotect_file is the fully qualified path to the file you created in Step 2 of Backing Up the Database.

newdb=# SELECT sqlprotect.import_sqlprotect('/tmp/sqlprotect.dmp');

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 919

 import_sqlprotect

(1 row)

Tables edb_sql_protect and edb_sql_protect_rel are now populated with entries containing the OIDs of the database objects as assigned in the new database. The statistics view
edb_sql_protect_stats also now displays the statistics imported from the original database.

The SQL/Protect tables and statistics are now properly restored for this database. This is verified by the following queries on the EDB Postgres Advanced Server system catalogs:

newdb=# SELECT datname, oid FROM pg_database;
 datname | oid
-----------+-------
 template1 | 1
 template0 | 13909
 edb | 13917
 newdb | 16679
(4 rows)

newdb=# SELECT rolname, oid FROM pg_roles;
 rolname | oid
--------------+-------
 enterprisedb | 10
 appuser | 16671
 newuser | 16678
(3 rows)

newdb=# SELECT relname, oid FROM pg_class WHERE relname IN
('dept','emp','appuser_tab');
 relname | oid
-------------+-------
 appuser_tab | 16803
 dept | 16809
 emp | 16812
(3 rows)

newdb=# SELECT * FROM sqlprotect.edb_sql_protect;
 dbid | roleid | protect_relations | allow_utility_cmds | allow_tautology |
 allow_empty_dml
-------+--------+-------------------+--------------------+-----------------+--

 16679 | 16671 | t | t | f | f
(1 row)

newdb=# SELECT * FROM sqlprotect.edb_sql_protect_rel;
 dbid | roleid | relid
-------+--------+-------
 16679 | 16671 | 16809
 16679 | 16671 | 16803
(2 rows)

newdb=# SELECT * FROM sqlprotect.edb_sql_protect_stats;
 username | superusers | relations | commands | tautology | dml
----------+------------+-----------+----------+-----------+-----
 appuser | 0 | 5 | 2 | 1 | 0
(1 row)

newedb=# \x
Expanded display is on.
nwedb=# SELECT * FROM sqlprotect.edb_sql_protect_queries;
-[RECORD 1]+---
 username | appuser
 ip_address |
 port |
 machine_name |
 date_time | 20-JUN-14 13:21:00 -04:00
 query | CREATE TABLE appuser_tab_2 (f1 INTEGER);
-[RECORD 2]+---
 username | appuser
 ip_address |
 port |
 machine_name |
 date_time | 20-JUN-14 13:22:00 -04:00
 query | INSERT INTO appuser_tab_2 VALUES (2);
-[RECORD 3]+---
 username | appuser
 ip_address | 192.168.2.6
 port | 50098
 machine_name |

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 920

 date_time | 20-JUN-14 13:39:00 -04:00
 query | CREATE TABLE appuser_tab_3 (f1 INTEGER);
-[RECORD 4]+---
 username | appuser
 ip_address | 192.168.2.6
 port | 50098
 machine_name |
 date_time | 20-JUN-14 13:39:00 -04:00
 query | INSERT INTO appuser_tab_2 VALUES (1);
-[RECORD 5]+---
 username | appuser
 ip_address | 192.168.2.6
 port | 50098
 machine_name |
 date_time | 20-JUN-14 13:39:00 -04:00
 query | SELECT * FROM appuser_tab_2 WHERE 'x' = 'x';

Note the following about the columns in tables edb_sql_protect and edb_sql_protect_rel :

dbid. Matches the value in the oid column from pg_database for newdb
roleid. Matches the value in the oid column from pg_roles for appuser

Also note that in table edb_sql_protect_rel , the values in the relid column match the values in the oid column of pg_class for relations dept and appuser_tab .

Step 8: Verify that the SQL/Protect configuration parameters are set as desired in the postgresql.conf file for the database server running the new database. Restart the database server or reload
the configuration file as appropriate.

You can now monitor the database using SQL/Protect.

24.2 Virtual private database

Virtual Private Database is a type of fine-grained access control using security policies. Fine-grained access control means that access to data can be controlled down to specific rows as defined by the
security policy.

The rules that encode a security policy are defined in a policy function, which is an SPL function with certain input parameters and return value. The security policy is the named association of the policy
function to a particular database object, typically a table.

In EDB Postgres Advanced Server, the policy function can be written in any language supported by EDB Postgres Advanced Server such as SQL and PL/pgSQL in addition to SPL.

Note

The database objects currently supported by EDB Postgres Advanced Server Virtual Private Database are tables. Policies cannot be applied to views or synonyms.

The advantages of using Virtual Private Database are the following:

Provides a fine-grained level of security. Database object level privileges given by the GRANT command determine access privileges to the entire instance of a database object, while Virtual
Private Database provides access control for the individual rows of a database object instance.
A different security policy can be applied depending upon the type of SQL command (INSERT, UPDATE, DELETE, or SELECT).
The security policy can vary dynamically for each applicable SQL command affecting the database object depending upon factors such as the session user of the application accessing the
database object.
Invocation of the security policy is transparent to all applications that access the database object and thus, individual applications don't have to be modified to apply the security policy.
Once a security policy is enabled, it is not possible for any application (including new applications) to circumvent the security policy except by the system privilege noted by the following.
Even superusers cannot circumvent the security policy except by the system privilege noted by the following.

Note

The only way security policies can be circumvented is if the EXEMPT ACCESS POLICY system privilege has been granted to a user. The EXEMPT ACCESS POLICY privilege should be
granted with extreme care as a user with this privilege is exempted from all policies in the database.

The DBMS_RLS package provides procedures to create policies, remove policies, enable policies, and disable policies.

24.3 sslutils

sslutils is a Postgres extension that provides SSL certificate generation functions to EDB Postgres Advanced Server for use by the EDB Postgres Enterprise Manager server. sslutils is installed
by using the edb-asxx-server-sslutils RPM package where xx is the EDB Postgres Advanced Server version number.

The sslutils package provides the functions shown in the following sections.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 921

In these sections, each parameter in the function’s parameter list is described by parameter n under the Parameters subsection where n refers to the nth ordinal position (for example, first,
second, third, etc.) within the function’s parameter list.

openssl_rsa_generate_key

The openssl_rsa_generate_key function generates an RSA private key. The function signature is:

openssl_rsa_generate_key(<integer>) RETURNS <text>

When invoking the function, pass the number of bits as an integer value; the function returns the generated key.

openssl_rsa_key_to_csr

The openssl_rsa_key_to_csr function generates a certificate signing request (CSR). The signature is:

openssl_rsa_key_to_csr(<text>, <text>, <text>, <text>, <text>, <text>,
<text>) RETURNS <text>

The function generates and returns the certificate signing request.

Parameters

parameter 1

The name of the RSA key file.

parameter 2

The common name (e.g., agentN) of the agent to use the signing request.

parameter 3

The name of the country in which the server resides.

parameter 4

The name of the state in which the server resides.

parameter 5

The location (city) within the state in which the server resides.

parameter 6

The name of the organization unit requesting the certificate.

parameter 7

The email address of the user requesting the certificate.

openssl_csr_to_crt

The openssl_csr_to_crt function generates a self-signed certificate or a certificate authority certificate. The signature is:

openssl_csr_to_crt(<text>, <text>, <text>) RETURNS <text>

The function returns the self-signed certificate or certificate authority certificate.

Parameters

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 922

parameter 1

The name of the certificate signing the request.

parameter 2

The path to the certificate authority certificate, or NULL if generating a certificate authority certificate.

parameter 3

The path to the certificate authority’s private key or (if argument 2 is NULL) the path to a private key.

openssl_rsa_generate_crl

The openssl_rsa_generate_crl function generates a default certificate revocation list. The signature is:

openssl_rsa_generate_crl(<text>, <text>) RETURNS <text>

The function returns the certificate revocation list.

Parameters

parameter 1

The path to the certificate authority certificate.

parameter 2

The path to the certificate authority private key.

24.4 Data redaction

Data redaction limits sensitive data exposure by dynamically changing data as it is displayed for certain users.

For example, a social security number (SSN) is stored as 021-23-9567 . Privileged users can see the full SSN, while other users only see the last four digits xxx-xx-9567 .

Data redaction is implemented by defining a function for each field to which redaction is to be applied. The function returns the value that should be displayed to the users subject to the data redaction.

So for example, for the SSN field, the redaction function would return xxx-xx-9567 for an input SSN of 021-23-9567 .

For a salary field, a redaction function would always return $0.00 regardless of the input salary value.

These functions are then incorporated into a redaction policy by using the CREATE REDACTION POLICY command. This command specifies the table on which the policy applies, the table columns
to be affected by the specified redaction functions, expressions to determine which session users are to be affected, and other options.

The edb_data_redaction parameter in the postgresql.conf file then determines whether or not data redaction is to be applied.

By default, the parameter is enabled so the redaction policy is in effect and the following occurs:

Superusers and the table owner bypass data redaction and see the original data.
All other users get the redaction policy applied and see the reformatted data.

If the parameter is disabled by having it set to FALSE during the session, then the following occurs:

Superusers and the table owner bypass data redaction and see the original data.
All other users get an error.

A redaction policy can be changed by using the ALTER REDACTION POLICY command, or it can be eliminated using the DROP REDACTION POLICY command.

The redaction policy commands are described in more detail in the subsequent sections.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 923

CREATE REDACTION POLICY

CREATE REDACTION POLICY defines a new data redaction policy for a table.

Synopsis

CREATE REDACTION POLICY <name> ON <table_name>
 [FOR (<expression>)]
 [ADD [COLUMN] <column_name> USING <funcname_clause>
 [WITH OPTIONS ([<redaction_option>]
 [, <redaction_option>])
]
] [, ...]

where redaction_option is:

{ SCOPE <scope_value> |
 EXCEPTION <exception_value> }

Description

The CREATE REDACTION POLICY command defines a new column-level security policy for a table by redacting column data using redaction function. A newly created data redaction policy is
enabled by default. The policy can be disabled using ALTER REDACTION POLICY ... DISABLE .

FOR (expression)

This form adds a redaction policy expression.

ADD [COLUMN]

This optional form adds a column of the table to the data redaction policy. The USING specifies a redaction function expression. Multiple ADD [COLUMN] form can be used, if you want to add
multiple columns of the table to the data redaction policy being created. The optional WITH OPTIONS (...) clause specifies a scope and/or an exception to the data redaction policy to be
applied. If the scope and/or exception are not specified, the default values for scope and exception are query and none respectively.

Parameters

name

The name of the data redaction policy to be created. This must be distinct from the name of any other existing data redaction policy for the table.

table_name

The name (optionally schema-qualified) of the table the data redaction policy applies to.

expression

The data redaction policy expression. No redaction is applied if this expression evaluates to false.

column_name

Name of the existing column of the table on which the data redaction policy being created.

funcname_clause

The data redaction function which decides how to compute the redacted column value. Return type of the redaction function should be same as the column type on which data redaction policy being
added.

scope_value

The scope identified the query part where redaction to be applied for the column. Scope value could be query, top_tlist or top_tlist_or_error . If the scope is query then, the redaction
applied on the column irrespective of where it appears in the query. If the scope is top_tlist then, the redaction applied on the column only when it appears in the query’s top target list. If the scope
is top_tlist_or_error , the behavior is same as the top_tlist but throws an errors when the column appears anywhere else in the query.

exception_value

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 924

The exception identified the query part where redaction to be exempted. Exception value could be none, equal or leakproof . If exception is none then there is no exemption. If exception is
equal , then the column is not redacted when used in an equality test. If exception is leakproof , the column isn't redacted when a leakproof function is applied to it.

Notes

You must be the owner of a table to create or change data redaction policies for it.

The superuser and the table owner are exempt from the data redaction policy.

Examples

Below is an example of how this feature can be used in production environments. Create the components for a data redaction policy on the employees table:

CREATE TABLE employees (
 id integer GENERATED BY DEFAULT AS IDENTITY PRIMARY KEY,
 name varchar(40) NOT NULL,
 ssn varchar(11) NOT NULL,
 phone varchar(10),
 birthday date,
 salary money,
 email varchar(100)
);

-- Insert some data
INSERT INTO employees (name, ssn, phone, birthday, salary, email)
VALUES
('Sally Sample', '020-78-9345', '5081234567', '1961-02-02', 51234.34,
'sally.sample@enterprisedb.com'),
('Jane Doe', '123-33-9345', '6171234567', '1963-02-14', 62500.00,
'jane.doe@gmail.com'),
('Bill Foo', '123-89-9345', '9781234567','1963-02-14', 45350,
'william.foe@hotmail.com');

-- Create a user hr who can see all the data in employees
CREATE USER hr;
-- Create a normal user
CREATE USER alice;
GRANT ALL ON employees TO hr, alice;

-- Create redaction function in which actual redaction logic resides
CREATE OR REPLACE FUNCTION redact_ssn (ssn varchar(11)) RETURN varchar(11) IS
BEGIN
 /* replaces 020-12-9876 with xxx-xx-9876 */
 return overlay (ssn placing 'xxx-xx' from 1) ;
END;

CREATE OR REPLACE FUNCTION redact_salary () RETURN money IS BEGIN return
0::money;
END;

Now create a data redaction policy on employees to redact column ssn which should be accessible in equality condition and salary with default scope and exception. The redaction policy is
exempt for the hr user.

CREATE REDACTION POLICY redact_policy_personal_info ON employees FOR (session_user != 'hr')
ADD COLUMN ssn USING redact_ssn(ssn) WITH OPTIONS (SCOPE query, EXCEPTION equal),
ADD COLUMN salary USING redact_salary();

The visible data for the hr user is:

-- hr can view all columns data
edb=# \c edb hr
edb=> SELECT * FROM employees;
 id | name | ssn | phone | birthday |
 salary | email
----+--------------+-------------+------------+--------------------+---
--+---------------------
 1 | Sally Sample | 020-78-9345 | 5081234567 | 02-FEB-61 00:00:00 |
 $51,234.34 | sally.sample@enterprisedb.com
 2 | Jane Doe | 123-33-9345 | 6171234567 | 14-FEB-63 00:00:00 |
 $62,500.00 | jane.doe@gmail.com
 3 | Bill Foo | 123-89-9345 | 9781234567 | 14-FEB-63 00:00:00 |
 $45,350.00 | william.foe@hotmail.com

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 925

(3 rows)

The visible data for the normal user alice is:

-- Normal user cannot see salary and ssn number.
edb=> \c edb alice
edb=> SELECT * FROM employees;
id | name | ssn | phone | birthday | salary |
email
----+--------------+-------------+------------+--------------------+--------+-

 1 | Sally Sample | xxx-xx-9345 | 5081234567 | 02-FEB-61 00:00:00 | $0.00 |
 sally.sample@enterprisedb.com
 2 | Jane Doe | xxx-xx-9345 | 6171234567 | 14-FEB-63 00:00:00 | $0.00 |
 jane.doe@gmail.com
 3 | Bill Foo | xxx-xx-9345 | 9781234567 | 14-FEB-63 00:00:00 | $0.00 |
 william.foe@hotmail.com
(3 rows)

But ssn data is accessible when it used for equality check due to exception_value setting.

-- Get ssn number starting from 123
edb=> SELECT * FROM employees WHERE substring(ssn from 0 for 4) = '123';
 id | name | ssn | phone | birthday | salary |
 email
----+----------+-------------+------------+--------------------+--------+-----

 2 | Jane Doe | xxx-xx-9345 | 6171234567 | 14-FEB-63 00:00:00 | $0.00 |
 jane.doe@gmail.com
 3 | Bill Foo | xxx-xx-9345 | 9781234567 | 14-FEB-63 00:00:00 | $0.00 |
 william.foe@hotmail.com
(2 rows)

Caveats

1. The data redaction policy created on inheritance hierarchies aren't cascaded. For example, if the data redaction policy is created for a parent, it isn't be applied to the child table, which inherits it
and vice versa. Someone who has access to these child tables can see the non-redacted data. For information about inheritance hierarchies, see Inheritance in the PostgreSQL Core
Documentation available at:

https://www.postgresql.org/docs/current/static/ddl-inherit.html

2. If the superuser or the table owner has created any materialized view on the table and has provided the access rights GRANT SELECT on the table and the materialized view to any non-
superuser, then the non-superuser can access the non-redacted data through the materialized view.

3. The objects accessed in the redaction function body should be schema qualified otherwise pg_dump might fail.

Compatibility

CREATE REDACTION POLICY is an EDB extension.

See also

ALTER REDACTION POLICY, DROP REDACTION POLICY

ALTER REDACTION POLICY

ALTER REDACTION POLICY changes the definition of data redaction policy for a table.

Synopsis

ALTER REDACTION POLICY <name> ON <table_name> RENAME TO <new_name>

ALTER REDACTION POLICY <name> ON <table_name> FOR (<expression>)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 926

https://www.postgresql.org/docs/current/static/ddl-inherit.html

ALTER REDACTION POLICY <name> ON <table_name> { ENABLE | DISABLE}

ALTER REDACTION POLICY <name> ON <table_name>
 ADD [COLUMN] <column_name> USING <funcname_clause>
 [WITH OPTIONS ([<redaction_option>]
 [, <redaction_option>])
]

ALTER REDACTION POLICY <name> ON <table_name>
 MODIFY [COLUMN] <column_name>
 {
 [USING <funcname_clause>]
 |
 [WITH OPTIONS ([<redaction_option>]
 [, <redaction_option>])
]
 }

ALTER REDACTION POLICY <name> ON <table_name>
 DROP [COLUMN] <column_name>

where redaction_option is:

{ SCOPE <scope_value> |
 EXCEPTION <exception_value> }

Description

ALTER REDACTION POLICY changes the definition of an existing data redaction policy.

To use ALTER REDACTION POLICY , you must own the table that the data redaction policy applies to.

FOR (expression)

This form adds or replaces the data redaction policy expression.

ENABLE

Enables the previously disabled data redaction policy for a table.

DISABLE

Disables the data redaction policy for a table.

ADD [COLUMN]

This form adds a column of the table to the existing redaction policy. See CREATE REDACTION POLICY for the details.

MODIFY [COLUMN]

This form modifies the data redaction policy on the column of the table. You can update the redaction function clause and/or the redaction options for the column. The USING clause specifies the
redaction function expression to be updated and the WITH OPTIONS (...) clause specifies the scope and/or the exception. For more details on the redaction function clause, the redaction
scope and the redaction exception, see CREATE REDACTION POLICY .

DROP [COLUMN]

This form removes the column of the table from the data redaction policy.

Parameters

name

The name of an existing data redaction policy to alter.

table_name

The name (optionally schema-qualified) of the table that the data redaction policy is on.

new_name

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 927

The new name for the data redaction policy. This must be distinct from the name of any other existing data redaction policy for the table.

expression

The data redaction policy expression.

column_name

Name of existing column of the table on which the data redaction policy being altered or dropped.

funcname_clause

The data redaction function expression for the column. See CREATE REDACTION POLICY for details.

scope_value

The scope identified the query part where redaction to be applied for the column. See CREATE REDACTION POLICY for the details.

exception_value

The exception identified the query part where redaction to be exempted. See CREATE REDACTION POLICY for the details.

Examples

Update data redaction policy called redact_policy_personal_info on the table named employees :

ALTER REDACTION POLICY redact_policy_personal_info ON employees
FOR (session_user != 'hr' AND session_user != 'manager');

And to update data redaction function for the column ssn in the same policy:

ALTER REDACTION POLICY redact_policy_personal_info ON employees
MODIFY COLUMN ssn USING redact_ssn_new(ssn);

Compatibility

ALTER REDACTION POLICY is an EDB extension.

See also

CREATE REDACTION POLICY, DROP REDACTION POLICY

DROP REDACTION POLICY

DROP REDACTION POLICY removes a data redaction policy from a table.

Synopsis

DROP REDACTION POLICY [IF EXISTS] <name> ON <table_name>
 [CASCADE | RESTRICT]

Description

DROP REDACTION POLICY removes the specified data redaction policy from the table.

To use DROP REDACTION POLICY , you must own the table that the redaction policy applies to.

Parameters

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 928

IF EXISTS

Don't throw an error if the data redaction policy does not exist. A notice is issued in this case.

name

The name of the data redaction policy to drop.

table_name

The name (optionally schema-qualified) of the table that the data redaction policy is on.

CASCADE

RESTRICT

These keywords don't have any effect, since there are no dependencies on the data redaction policies.

Examples

To drop the data redaction policy called redact_policy_personal_info on the table named employees :

DROP REDACTION POLICY redact_policy_personal_info ON employees;

Compatibility

DROP REDACTION POLICY is an EDB extension.

See also

CREATE REDACTION POLICY, ALTER REDACTION POLICY

System Catalogs

This section describes the system catalogs that store the redaction policy information.

edb_redaction_column

The edb_redaction_column system catalog stores information about the data redaction policy attached to the columns of a table.

Column Type References Description

oid oid Row identifier (hidden attribute, must be explicitly selected)

rdpolicyid oid edb_redaction_policy.oid The data redaction policy applies to the described column

rdrelid oid pg_class.oid The table that the described column belongs to

rdattnum int2 pg_attribute.attnum The number of the described column

rdscope int2 The redaction scope: 1 = query, 2 = top_tlist, 4 = top_tlist_or_error

rdexception int2 The redaction exception: 8 = none, 16 = equal, 32 = leakproof

rdfuncexpr pg_node_tree Data redaction function expression

Note

The described column is redacted if the redaction policy edb_redaction_column.rdpolicyid on the table is enabled and the redaction policy expression
edb_redaction_policy.rdexpr evaluates to true .

edb_redaction_policy

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 929

The catalog edb_redaction_policy stores information about the redaction policies for tables.

Column Type References Description

oid oid Row identifier (hidden attribute, must be explicitly
selected)

rdname name The name of the data redaction policy

rdrelid oid pg_class.oid The table to which the data redaction policy applies

rdenable boolean Is the data redaction policy enabled?

rdexpr pg_node_tree The data redaction policy expression

Note

The data redaction policy applies for the table if it is enabled and the expression ever evaluated true.

25 EDB Postgres Advanced Server

EDB Postgres Advanced Server adds extended functionality to the open-source PostgreSQL database. The extended functionality supports database administration, enhanced SQL capabilities, database
and application security, performance monitoring and analysis, and application development utilities, including:

Enhanced compatibility features.
Database administration. These features and tools are helpful to the database administrator:

Index Advisor helps to determine the additional indexes needed on tables to improve application performance.
SQL Profiler locates and diagnoses poorly running SQL queries in applications.
pgsnmpd is an SNMP agent that returns hierarchical monitoring information regarding the current state of EDB Postgres Advanced Server.

EDB Resource Manager. This feature helps you to control system resource use by EDB Postgres Advanced Server processes.
Resource groups help you to create and maintain the groups on which you can define resource limits.
CPU usage throttling is a method for controlling CPU usage by EDB Postgres Advanced Server processes.
Dirty buffer throttling is a method for controlling the dirty rate of shared buffers by EDB Postgres Advanced Server processes.

The libpq C library, the C application programming interface (API) language for EDB Postgres Advanced Server.
The PL Debugger, a graphically oriented debugging tool for PL/pgSQL.
Performance analysis and tuning. Various tools are available for analyzing and improving application and database server performance:

Dynatune provides a quick and easy means for configuring EDB Postgres Advanced Server depending on the type of application use.
EDB wait states provides a way to capture wait events and other data for performance diagnosis.

The EDB clone schema feature lets you copy a schema and its database objects in a single database or from one database to another database.
Enhanced SQL and other features provide additional flexibility and convenience.
Additional system catalog tables are available for EDB Postgres Advanced Server-specific database objects.
EDB Postgres Advanced Server exception descriptions include the predefined exceptions, SQLstate values, associated redwood error code, and description of the exceptions.
EDB Postgres Advanced Server keywords are the words that EDB Postgres Advanced Server recognizes as keywords.

For information about the features that are shared by EDB Postgres Advanced Server and PostgreSQL, see the PostgreSQL core documentation.

25.1 Introduction

See the release notes for the features added in EDB Postgres Advanced Server 14.

Hard limits

The following table describes various hard limits of PostgreSQL. However, practical limits such as performance limitations or available disk space might apply before absolute hard limits are reached.

Item Upper limit Comment

database size unlimited

number of databases 4,294,950,911

relations per
database

1,431,650,303

relation size 32 TB with the default BLCKSZ of 8192 bytes

rows per table limited by the number of tuples that can fit onto 4,294,967,295 pages

columns per table 1600 further limited by tuple size fitting on a single page; see note
below

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 930

https://www.postgresql.org/docs/current/index.html

field size 1 GB

identifier length 63 bytes can be increased by recompiling PostgreSQL

indexes per table unlimited constrained by maximum relations per database

columns per index 32 can be increased by recompiling PostgreSQL

partition keys 32 can be increased by recompiling PostgreSQL

Item Upper limit Comment

Note

The maximum number of columns for a table is further reduced as the tuple being stored must fit in a single 8192-byte heap page. For example, excluding the tuple header, a tuple
made up of 1600 int columns consumes 6400 bytes and can be stored in a heap page. But a tuple of 1600 bigint columns consumes 12800 bytes and therefore doesn't fit inside a
heap page. Variable-length fields of types such as text , varchar , and char can have their values stored out of line in the table's TOAST table when the values are large enough
to require it. Only an 18-byte pointer must remain inside the tuple in the table's heap. For shorter length variable-length fields, either a 4-byte or 1-byte field header is used, and the
value is stored inside the heap tuple.

Columns that were dropped from the table also contribute to the maximum column limit. Moreover, although the dropped column values for newly created tuples are internally marked
as null in the tuple's null bitmap, the null bitmap also occupies space.

25.1.1 Conventions used

This information applies to both Linux and Windows systems. Directory paths are presented in the Linux format with forward slashes. When working on Windows systems, start the directory path with
the drive letter followed by a colon and substitute back slashes for forward slashes.

Some of this information might apply interchangeably to the PostgreSQL and EDB Postgres Advanced Server database systems. The term EDB Postgres Advanced Server is used to refer to EDB Postgres
Advanced Server. The term Postgres is used to generically refer to both PostgreSQL and EDB Postgres Advanced Server. When a distinction needs to be made between these two database systems, the
specific names—PostgreSQL or EDB Postgres Advanced Server—are used.

The installation directory path of the PostgreSQL or EDB Postgres Advanced Server products is referred to as POSTGRES_INSTALL_HOME.

For PostgreSQL Linux installations, the default is /opt/PostgreSQL/x.x for version 10 and earlier. For later versions, use the PostgreSQL community packages.
For EDB Postgres Advanced Server Linux installations performed using the interactive installer for version 10 and earlier, the default is /opt/edb/asx.x .
For EDB Postgres Advanced Server Linux installations performed using an RPM package, the default is /usr/edb/asxx .
For EDB Postgres Advanced Server Windows installations, the default is C:\Program Files\edb\asxx . The product version number is represented by x.x or by xx for version 10 and
later.

25.1.2 About the examples

The examples use the sample tables dept , emp , and jobhist , whcih are created and loaded when EDB Postgres Advanced Server is installed.

You can re-create the tables and programs in the sample database at any time by executing the following script:

/usr/edb/asxx/share/pg-sample.sql

Where xx is the EDB Postgres Advanced Server version number.

In addition, a script in the same directory contains the database objects created using syntax compatible with Oracle databases. This script file is edb-sample.sql . The script:

Creates the sample tables and programs in the currently connected database.
Grants all permissions on the tables to the PUBLIC group.

The tables and programs are created in the first schema of the search path in which the current user has permission to create tables and procedures. You can display the search path using the command:

SHOW SEARCH_PATH;

You can use PSQL commands to modify the search path.

Sample database description

The sample database represents employees in an organization. It contains three types of records: employees, departments, and historical records of employees.

Each employee has an identification number, name, hire date, salary, and manager. Some employees earn a commission in addition to their salary. All employee-related information is stored in the
emp table.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 931

The sample company is regionally diverse, so it tracks the locations of its departments. Each company employee is assigned to a department. Each department is identified by a unique department
number and a short name. Each department is associated with one location. All department-related information is stored in the dept table.

The company also tracks information about jobs held by the employees. Some employees have been with the company for a long time and have held different positions, received raises, switched
departments, and so on. When a change in employee status occurs, the company records the end date of the former position. A new job record is added with the start date and the new job title,
department, salary, and the reason for the status change. All employee history is maintained in the jobhist table.

The following is the pg-sample.sql script:

SET datestyle TO 'iso, dmy';

--
-- Script that creates the 'sample' tables, views
-- functions, triggers, etc.
--
-- Start new transaction - commit all or nothing
--
BEGIN;
--
-- Create and load tables used in the documentation examples.
--
-- Create the 'dept' table
--
CREATE TABLE dept (
 deptno NUMERIC(2) NOT NULL CONSTRAINT dept_pk PRIMARY KEY,
 dname VARCHAR(14) CONSTRAINT dept_dname_uq UNIQUE,
 loc VARCHAR(13)
);
--
-- Create the 'emp' table
--
CREATE TABLE emp (
 empno NUMERIC(4) NOT NULL CONSTRAINT emp_pk PRIMARY KEY,
 ename VARCHAR(10),
 job VARCHAR(9),
 mgr NUMERIC(4),
 hiredate DATE,
 sal NUMERIC(7,2) CONSTRAINT emp_sal_ck CHECK (sal > 0),
 comm NUMERIC(7,2),
 deptno NUMERIC(2) CONSTRAINT emp_ref_dept_fk
 REFERENCES dept(deptno)
);
--
-- Create the 'jobhist' table
--
CREATE TABLE jobhist (
 empno NUMERIC(4) NOT NULL,
 startdate TIMESTAMP(0) NOT NULL,
 enddate TIMESTAMP(0),
 job VARCHAR(9),
 sal NUMERIC(7,2),
 comm NUMERIC(7,2),
 deptno NUMERIC(2),
 chgdesc VARCHAR(80),
 CONSTRAINT jobhist_pk PRIMARY KEY (empno, startdate),
 CONSTRAINT jobhist_ref_emp_fk FOREIGN KEY (empno)
 REFERENCES emp(empno) ON DELETE CASCADE,
 CONSTRAINT jobhist_ref_dept_fk FOREIGN KEY (deptno)
 REFERENCES dept (deptno) ON DELETE SET NULL,
 CONSTRAINT jobhist_date_chk CHECK (startdate <= enddate)
);
--
-- Create the 'salesemp' view
--
CREATE OR REPLACE VIEW salesemp AS
 SELECT empno, ename, hiredate, sal, comm FROM emp WHERE job = 'SALESMAN';
--
-- Sequence to generate values for function 'new_empno'.
--
CREATE SEQUENCE next_empno START WITH 8000 INCREMENT BY 1;
--
-- Issue PUBLIC grants
--
--GRANT ALL ON emp TO PUBLIC;
--GRANT ALL ON dept TO PUBLIC;
--GRANT ALL ON jobhist TO PUBLIC;
--GRANT ALL ON salesemp TO PUBLIC;
--GRANT ALL ON next_empno TO PUBLIC;
--

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 932

-- Load the 'dept' table
--
INSERT INTO dept VALUES (10,'ACCOUNTING','NEW YORK');
INSERT INTO dept VALUES (20,'RESEARCH','DALLAS');
INSERT INTO dept VALUES (30,'SALES','CHICAGO');
INSERT INTO dept VALUES (40,'OPERATIONS','BOSTON');
--
-- Load the 'emp' table
--
INSERT INTO emp VALUES (7369,'SMITH','CLERK',7902,'17-DEC-80',800,NULL,20);
INSERT INTO emp VALUES (7499,'ALLEN','SALESMAN',7698,'20-FEB-81',1600,300,30);
INSERT INTO emp VALUES (7521,'WARD','SALESMAN',7698,'22-FEB-81',1250,500,30);
INSERT INTO emp VALUES (7566,'JONES','MANAGER',7839,'02-APR-81',2975,NULL,20);
INSERT INTO emp VALUES (7654,'MARTIN','SALESMAN',7698,'28-SEP-81',1250,1400,30);
INSERT INTO emp VALUES (7698,'BLAKE','MANAGER',7839,'01-MAY-81',2850,NULL,30);
INSERT INTO emp VALUES (7782,'CLARK','MANAGER',7839,'09-JUN-81',2450,NULL,10);
INSERT INTO emp VALUES (7788,'SCOTT','ANALYST',7566,'19-APR-87',3000,NULL,20);
INSERT INTO emp VALUES (7839,'KING','PRESIDENT',NULL,'17-NOV-81',5000,NULL,10);
INSERT INTO emp VALUES (7844,'TURNER','SALESMAN',7698,'08-SEP-81',1500,0,30);
INSERT INTO emp VALUES (7876,'ADAMS','CLERK',7788,'23-MAY-87',1100,NULL,20);
INSERT INTO emp VALUES (7900,'JAMES','CLERK',7698,'03-DEC-81',950,NULL,30);
INSERT INTO emp VALUES (7902,'FORD','ANALYST',7566,'03-DEC-81',3000,NULL,20);
INSERT INTO emp VALUES (7934,'MILLER','CLERK',7782,'23-JAN-82',1300,NULL,10);
--
-- Load the 'jobhist' table
--
INSERT INTO jobhist VALUES (7369,'17-DEC-80',NULL,'CLERK',800,NULL,20,'New Hire');
INSERT INTO jobhist VALUES (7499,'20-FEB-81',NULL,'SALESMAN',1600,300,30,'New Hire');
INSERT INTO jobhist VALUES (7521,'22-FEB-81',NULL,'SALESMAN',1250,500,30,'New Hire');
INSERT INTO jobhist VALUES (7566,'02-APR-81',NULL,'MANAGER',2975,NULL,20,'New Hire');
INSERT INTO jobhist VALUES (7654,'28-SEP-81',NULL,'SALESMAN',1250,1400,30,'New Hire');
INSERT INTO jobhist VALUES (7698,'01-MAY-81',NULL,'MANAGER',2850,NULL,30,'New Hire');
INSERT INTO jobhist VALUES (7782,'09-JUN-81',NULL,'MANAGER',2450,NULL,10,'New Hire');
INSERT INTO jobhist VALUES (7788,'19-APR-87','12-APR-88','CLERK',1000,NULL,20,'New Hire');
INSERT INTO jobhist VALUES (7788,'13-APR-88','04-MAY-89','CLERK',1040,NULL,20,'Raise');
INSERT INTO jobhist VALUES (7788,'05-MAY-90',NULL,'ANALYST',3000,NULL,20,'Promoted to Analyst');
INSERT INTO jobhist VALUES (7839,'17-NOV-81',NULL,'PRESIDENT',5000,NULL,10,'New Hire');
INSERT INTO jobhist VALUES (7844,'08-SEP-81',NULL,'SALESMAN',1500,0,30,'New Hire');
INSERT INTO jobhist VALUES (7876,'23-MAY-87',NULL,'CLERK',1100,NULL,20,'New Hire');
INSERT INTO jobhist VALUES (7900,'03-DEC-81','14-JAN-83','CLERK',950,NULL,10,'New Hire');
INSERT INTO jobhist VALUES (7900,'15-JAN-83',NULL,'CLERK',950,NULL,30,'Changed to Dept 30');
INSERT INTO jobhist VALUES (7902,'03-DEC-81',NULL,'ANALYST',3000,NULL,20,'New Hire');
INSERT INTO jobhist VALUES (7934,'23-JAN-82',NULL,'CLERK',1300,NULL,10,'New Hire');
--
-- Populate statistics table and view (pg_statistic/pg_stats)
--
ANALYZE dept;
ANALYZE emp;
ANALYZE jobhist;
--
-- Function that lists all employees' numbers and names
-- from the 'emp' table using a cursor.
--
CREATE OR REPLACE FUNCTION list_emp() RETURNS VOID
AS $$
DECLARE
 v_empno NUMERIC(4);
 v_ename VARCHAR(10);
 emp_cur CURSOR FOR
 SELECT empno, ename FROM emp ORDER BY empno;
BEGIN
 OPEN emp_cur;
 RAISE INFO 'EMPNO ENAME';
 RAISE INFO '----- -------';
 LOOP
 FETCH emp_cur INTO v_empno, v_ename;
 EXIT WHEN NOT FOUND;
 RAISE INFO '% %', v_empno, v_ename;
 END LOOP;
 CLOSE emp_cur;
 RETURN;
END;
$$ LANGUAGE 'plpgsql';
--
-- Function that selects an employee row given the employee
-- number and displays certain columns.
--
CREATE OR REPLACE FUNCTION select_emp (
 p_empno NUMERIC

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 933

) RETURNS VOID
AS $$
DECLARE
 v_ename emp.ename%TYPE;
 v_hiredate emp.hiredate%TYPE;
 v_sal emp.sal%TYPE;
 v_comm emp.comm%TYPE;
 v_dname dept.dname%TYPE;
 v_disp_date VARCHAR(10);
BEGIN
 SELECT INTO
 v_ename, v_hiredate, v_sal, v_comm, v_dname
 ename, hiredate, sal, COALESCE(comm, 0), dname
 FROM emp e, dept d
 WHERE empno = p_empno
 AND e.deptno = d.deptno;
 IF NOT FOUND THEN
 RAISE INFO 'Employee % not found', p_empno;
 RETURN;
 END IF;
 v_disp_date := TO_CHAR(v_hiredate, 'MM/DD/YYYY');
 RAISE INFO 'Number : %', p_empno;
 RAISE INFO 'Name : %', v_ename;
 RAISE INFO 'Hire Date : %', v_disp_date;
 RAISE INFO 'Salary : %', v_sal;
 RAISE INFO 'Commission: %', v_comm;
 RAISE INFO 'Department: %', v_dname;
 RETURN;
EXCEPTION
 WHEN OTHERS THEN
 RAISE INFO 'The following is SQLERRM : %', SQLERRM;
 RAISE INFO 'The following is SQLSTATE: %', SQLSTATE;
 RETURN;
END;
$$ LANGUAGE 'plpgsql';
--
-- A RECORD type used to format the return value of
-- function, 'emp_query'.
--
CREATE TYPE emp_query_type AS (
 empno NUMERIC,
 ename VARCHAR(10),
 job VARCHAR(9),
 hiredate DATE,
 sal NUMERIC
);
--
-- Function that queries the 'emp' table based on
-- department number and employee number or name. Returns
-- employee number and name as INOUT parameters and job,
-- hire date, and salary as OUT parameters. These are
-- returned in the form of a record defined by
-- RECORD type, 'emp_query_type'.
--
CREATE OR REPLACE FUNCTION emp_query (
 IN p_deptno NUMERIC,
 INOUT p_empno NUMERIC,
 INOUT p_ename VARCHAR,
 OUT p_job VARCHAR,
 OUT p_hiredate DATE,
 OUT p_sal NUMERIC
)
AS $$
BEGIN
 SELECT INTO
 p_empno, p_ename, p_job, p_hiredate, p_sal
 empno, ename, job, hiredate, sal
 FROM emp
 WHERE deptno = p_deptno
 AND (empno = p_empno
 OR ename = UPPER(p_ename));
END;
$$ LANGUAGE 'plpgsql';
--
-- Function to call 'emp_query_caller' with IN and INOUT
-- parameters. Displays the results received from INOUT and
-- OUT parameters.
--
CREATE OR REPLACE FUNCTION emp_query_caller() RETURNS VOID

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 934

AS $$
DECLARE
 v_deptno NUMERIC;
 v_empno NUMERIC;
 v_ename VARCHAR;
 v_rows INTEGER;
 r_emp_query EMP_QUERY_TYPE;
BEGIN
 v_deptno := 30;
 v_empno := 0;
 v_ename := 'Martin';
 r_emp_query := emp_query(v_deptno, v_empno, v_ename);
 RAISE INFO 'Department : %', v_deptno;
 RAISE INFO 'Employee No: %', (r_emp_query).empno;
 RAISE INFO 'Name : %', (r_emp_query).ename;
 RAISE INFO 'Job : %', (r_emp_query).job;
 RAISE INFO 'Hire Date : %', (r_emp_query).hiredate;
 RAISE INFO 'Salary : %', (r_emp_query).sal;
 RETURN;
EXCEPTION
 WHEN OTHERS THEN
 RAISE INFO 'The following is SQLERRM : %', SQLERRM;
 RAISE INFO 'The following is SQLSTATE: %', SQLSTATE;
 RETURN;
END;
$$ LANGUAGE 'plpgsql';
--
-- Function to compute yearly compensation based on semimonthly
-- salary.
--
CREATE OR REPLACE FUNCTION emp_comp (
 p_sal NUMERIC,
 p_comm NUMERIC
) RETURNS NUMERIC
AS $$
BEGIN
 RETURN (p_sal + COALESCE(p_comm, 0)) * 24;
END;
$$ LANGUAGE 'plpgsql';
--
-- Function that gets the next number from sequence, 'next_empno',
-- and ensures it is not already in use as an employee number.
--
CREATE OR REPLACE FUNCTION new_empno() RETURNS INTEGER
AS $$
DECLARE
 v_cnt INTEGER := 1;
 v_new_empno INTEGER;
BEGIN
 WHILE v_cnt > 0 LOOP
 SELECT INTO v_new_empno nextval('next_empno');
 SELECT INTO v_cnt COUNT(*) FROM emp WHERE empno = v_new_empno;
 END LOOP;
 RETURN v_new_empno;
END;
$$ LANGUAGE 'plpgsql';
--
-- Function that adds a new clerk to table 'emp'.
--
CREATE OR REPLACE FUNCTION hire_clerk (
 p_ename VARCHAR,
 p_deptno NUMERIC
) RETURNS NUMERIC
AS $$
DECLARE
 v_empno NUMERIC(4);
 v_ename VARCHAR(10);
 v_job VARCHAR(9);
 v_mgr NUMERIC(4);
 v_hiredate DATE;
 v_sal NUMERIC(7,2);
 v_comm NUMERIC(7,2);
 v_deptno NUMERIC(2);
BEGIN
 v_empno := new_empno();
 INSERT INTO emp VALUES (v_empno, p_ename, 'CLERK', 7782,
 CURRENT_DATE, 950.00, NULL, p_deptno);
 SELECT INTO
 v_empno, v_ename, v_job, v_mgr, v_hiredate, v_sal, v_comm, v_deptno

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 935

 empno, ename, job, mgr, hiredate, sal, comm, deptno
 FROM emp WHERE empno = v_empno;
 RAISE INFO 'Department : %', v_deptno;
 RAISE INFO 'Employee No: %', v_empno;
 RAISE INFO 'Name : %', v_ename;
 RAISE INFO 'Job : %', v_job;
 RAISE INFO 'Manager : %', v_mgr;
 RAISE INFO 'Hire Date : %', v_hiredate;
 RAISE INFO 'Salary : %', v_sal;
 RAISE INFO 'Commission : %', v_comm;
 RETURN v_empno;
EXCEPTION
 WHEN OTHERS THEN
 RAISE INFO 'The following is SQLERRM : %', SQLERRM;
 RAISE INFO 'The following is SQLSTATE: %', SQLSTATE;
 RETURN -1;
END;
$$ LANGUAGE 'plpgsql';
--
-- Function that adds a new salesman to table 'emp'.
--
CREATE OR REPLACE FUNCTION hire_salesman (
 p_ename VARCHAR,
 p_sal NUMERIC,
 p_comm NUMERIC
) RETURNS NUMERIC
AS $$
DECLARE
 v_empno NUMERIC(4);
 v_ename VARCHAR(10);
 v_job VARCHAR(9);
 v_mgr NUMERIC(4);
 v_hiredate DATE;
 v_sal NUMERIC(7,2);
 v_comm NUMERIC(7,2);
 v_deptno NUMERIC(2);
BEGIN
 v_empno := new_empno();
 INSERT INTO emp VALUES (v_empno, p_ename, 'SALESMAN', 7698,
 CURRENT_DATE, p_sal, p_comm, 30);
 SELECT INTO
 v_empno, v_ename, v_job, v_mgr, v_hiredate, v_sal, v_comm, v_deptno
 empno, ename, job, mgr, hiredate, sal, comm, deptno
 FROM emp WHERE empno = v_empno;
 RAISE INFO 'Department : %', v_deptno;
 RAISE INFO 'Employee No: %', v_empno;
 RAISE INFO 'Name : %', v_ename;
 RAISE INFO 'Job : %', v_job;
 RAISE INFO 'Manager : %', v_mgr;
 RAISE INFO 'Hire Date : %', v_hiredate;
 RAISE INFO 'Salary : %', v_sal;
 RAISE INFO 'Commission : %', v_comm;
 RETURN v_empno;
EXCEPTION
 WHEN OTHERS THEN
 RAISE INFO 'The following is SQLERRM : %', SQLERRM;
 RAISE INFO 'The following is SQLSTATE: %', SQLSTATE;
 RETURN -1;
END;
$$ LANGUAGE 'plpgsql';
--
-- Rule to INSERT into view 'salesemp'
--
CREATE OR REPLACE RULE salesemp_i AS ON INSERT TO salesemp
DO INSTEAD
 INSERT INTO emp VALUES (NEW.empno, NEW.ename, 'SALESMAN', 7698,
 NEW.hiredate, NEW.sal, NEW.comm, 30);
--
-- Rule to UPDATE view 'salesemp'
--
CREATE OR REPLACE RULE salesemp_u AS ON UPDATE TO salesemp
DO INSTEAD
 UPDATE emp SET empno = NEW.empno,
 ename = NEW.ename,
 hiredate = NEW.hiredate,
 sal = NEW.sal,
 comm = NEW.comm
 WHERE empno = OLD.empno;
--

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 936

-- Rule to DELETE from view 'salesemp'
--
CREATE OR REPLACE RULE salesemp_d AS ON DELETE TO salesemp
DO INSTEAD
 DELETE FROM emp WHERE empno = OLD.empno;
--
-- After statement-level trigger that displays a message after
-- an insert, update, or deletion to the 'emp' table. One message
-- per SQL command is displayed.
--
CREATE OR REPLACE FUNCTION user_audit_trig() RETURNS TRIGGER
AS $$
DECLARE
 v_action VARCHAR(24);
 v_text TEXT;
BEGIN
 IF TG_OP = 'INSERT' THEN
 v_action := ' added employee(s) on ';
 ELSIF TG_OP = 'UPDATE' THEN
 v_action := ' updated employee(s) on ';
 ELSIF TG_OP = 'DELETE' THEN
 v_action := ' deleted employee(s) on ';
 END IF;
 v_text := 'User ' || USER || v_action || CURRENT_DATE;
 RAISE INFO ' %', v_text;
 RETURN NULL;
END;
$$ LANGUAGE 'plpgsql';
CREATE TRIGGER user_audit_trig
 AFTER INSERT OR UPDATE OR DELETE ON emp
 FOR EACH STATEMENT EXECUTE PROCEDURE user_audit_trig();
--
-- Before row-level trigger that displays employee number and
-- salary of an employee that is about to be added, updated,
-- or deleted in the 'emp' table.
--
CREATE OR REPLACE FUNCTION emp_sal_trig() RETURNS TRIGGER
AS $$
DECLARE
 sal_diff NUMERIC(7,2);
BEGIN
 IF TG_OP = 'INSERT' THEN
 RAISE INFO 'Inserting employee %', NEW.empno;
 RAISE INFO '..New salary: %', NEW.sal;
 RETURN NEW;
 END IF;
 IF TG_OP = 'UPDATE' THEN
 sal_diff := NEW.sal - OLD.sal;
 RAISE INFO 'Updating employee %', OLD.empno;
 RAISE INFO '..Old salary: %', OLD.sal;
 RAISE INFO '..New salary: %', NEW.sal;
 RAISE INFO '..Raise : %', sal_diff;
 RETURN NEW;
 END IF;
 IF TG_OP = 'DELETE' THEN
 RAISE INFO 'Deleting employee %', OLD.empno;
 RAISE INFO '..Old salary: %', OLD.sal;
 RETURN OLD;
 END IF;
END;
$$ LANGUAGE 'plpgsql';
CREATE TRIGGER emp_sal_trig
 BEFORE DELETE OR INSERT OR UPDATE ON emp
 FOR EACH ROW EXECUTE PROCEDURE emp_sal_trig();
COMMIT;

25.2 Enhanced compatibility features

EDB Postgres Advanced Server includes extended functionality that provides compatibility for syntax supported by Oracle applications. See Database compatibility for Oracle developers for detailed
information about the compatibility features supported by EDB Postgres Advanced Server.

Enabling compatibility features

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 937

You can install EDB Postgres Advanced Server in several ways to take advantage of compatibility features:

Use the INITDBOPTS variable in the EDB Postgres Advanced Server service configuration file to specify --redwood-like before initializing your cluster.
When invoking initdb to initialize your cluster compatible with Oracle mode, include the --redwood-like or --no-redwood-compat option to initialize your cluster in Oracle non-
compatible mode.

See Configuration parameters compatible with Oracle databases and Managing an EDB Postgres Advanced Server installation for more information about the installation options supported by the EDB
Postgres Advanced Server installers.

Stored procedural language

EDB Postgres Advanced Server supports a highly productive procedural language that allows you to write custom procedures, functions, triggers, and packages. The procedural language:

Complements the SQL language and built-in packages.
Provides a seamless development and testing environment.
Allows you to create reusable code.

See Stored procedural language for more information.

Optimizer hints

When you invoke a DELETE , INSERT , SELECT , or UPDATE command, the server generates a set of execution plans. After analyzing those execution plans, the server selects a plan that generally
returns the result set in the least amount of time. The server's choice of plan depends on several factors:

The estimated execution cost of data-handling operations
Parameter values assigned in the Query Tuning section of the postgresql.conf file
Column statistics that are gathered by the ANALYZE command

As a rule, the query planner selects the least expensive plan. You can use an optimizer hint to influence the server as it selects a query plan. An optimizer hint is one or more directives embedded in a
comment-like syntax that immediately follows a DELETE , INSERT , SELECT , or UPDATE command. Keywords in the comment instruct the server to use or avoid a specific plan when producing the
result set. See Optimizer hints for more information.

Data dictionary views

EDB Postgres Advanced Server includes a set of views that provide information about database objects in a manner compatible with the Oracle data dictionary views. See Catalog views for detailed
information about the views available with EDB Postgres Advanced Server.

dblink_ora

dblink_ora provides an OCI-based database link that allows you to SELECT , INSERT , UPDATE , or DELETE data stored on an Oracle system from EDB Postgres Advanced Server. See dblink_ora for
detailed information about using dblink_ora and the supported functions and procedures.

Profile management

EDB Postgres Advanced Server supports compatible SQL syntax for profile management. Profile management commands allow a database superuser to create and manage named profiles. A profile is a
named set of attributes that allow you to easily manage a group of roles that share comparable authentication requirements. Each profile defines rules for password management that augment
password and md5 authentication. The rules in a profile can:

Count failed login attempts
Lock an account due to excessive failed login attempts
Mark a password for expiration
Define a grace period after a password expiration
Define rules for password complexity
Define rules that limit password reuse

After creating the profile, you can associate the profile with one or more users. If password requirements change, you can modify the profile to apply the new requirements to each user that's associated
with that profile.

When a user connects to the server, the server enforces the profile that's associated with their login role.

Profiles are shared by all databases in a cluster, but each cluster can have multiple profiles. A single user with access to multiple databases uses the same profile when connecting to each database in
the cluster.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 938

See Profile management for information about using profile management commands.

Built-in packages

EDB Postgres Advanced Server supports a number of built-in packages that provide compatibility with Oracle procedures and functions.

Package name Description

DBMS_ALERT The DBMS_ALERT package lets you register for, send, and receive alerts.

DBMS_AQ The DBMS_AQ package provides message queueing and processing for EDB Postgres Advanced Server.

DBMS_AQADM The DBMS_AQADM package provides supporting procedures for Advanced Queueing functionality.

DBMS_CRYPTO The DBMS_CRYPTO package provides functions and procedures that allow you to encrypt or decrypt RAW, BLOB, or CLOB data. You can also use DBMS_CRYPTO functions to
generate cryptographically strong random values.

DBMS_JOB The DBMS_JOB package provides for creating, scheduling, and managing jobs.

DBMS_LOB The DBMS_LOB package lets you operate on large objects.

DBMS_LOCK EDB Postgres Advanced Server provides support for the DBMS_LOCK.SLEEP procedure.

DBMS_MVIEW Use procedures in the DBMS_MVIEW package to manage and refresh materialized views and their dependencies.

DBMS_OUTPUT The DBMS_OUTPUT package lets you send messages to a message buffer or get messages from the message buffer.

DBMS_PIPE The DBMS_PIPE package lets you send messages through a pipe in or between sessions connected to the same database cluster.

DBMS_PROFILER The DBMS_PROFILER package collects and stores performance information about the PL/pgSQL and SPL statements that are executed during a performance profiling
session.

DBMS_RANDOM The DBMS_RANDOM package provides methods to generate random values.

DBMS_REDACT The DBMS_REDACT package enables redacting or masking data that's returned by a query.

DBMS_RLS The DBMS_RLS package enables implementating Virtual Private Database on certain EDB Postgres Advanced Server database objects.

DBMS_SCHEDULER The DBMS_SCHEDULER package lets you create and manage jobs, programs, and job schedules.

DBMS_SESSION EDB Postgres Advanced Server provides support for the DBMS_SESSION.SET_ROLE procedure.

DBMS_SQL The DBMS_SQL package provides an application interface to the EDB dynamic SQL functionality.

DBMS_UTILITY The DBMS_UTILITY package provides various utility programs.

UTL_ENCODE The UTL_ENCODE package provides a way to encode and decode data.

UTL_FILE The UTL_FILE package lets you read from and write to files on the operating system’s file system.

UTL_HTTP The UTL_HTTP package lets you use the HTTP or HTTPS protocol to retrieve information found at a URL.

UTL_MAIL The UTL_MAIL package lets you manage email.

UTL_RAW The UTL_RAW package allows you to manipulate or retrieve the length of raw data types.

UTL_SMTP The UTL_SMTP package lets you send emails over the Simple Mail Transfer Protocol (SMTP).

UTL_URL The UTL_URL package provides a way to escape illegal and reserved characters in a URL.

See Built-in packages for detailed information about the procedures and functions available in each package.

Open Client Library

The Open Client Library provides application interoperability with the Oracle Call Interface. An application that was formerly “locked in” can now work with either an EDB Postgres Advanced Server or an
Oracle database with minimal to no changes to the application code. The EDB implementation of the Open Client Library is written in C.

The following diagram compares the Open Client Library and Oracle Call Interface application stacks.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 939

For detailed information about the functions supported by the Open Client Library, see EDB OCL Connector.

Utilities

For detailed information about the compatible syntax supported by these utilities, see Tools, utilities, and components.

EDB*Plus

EDB*Plus is a utility program that provides a command line user interface to the EDB Postgres Advanced Server that's familiar to Oracle developers and users. EDB*Plus accepts SQL commands, SPL
anonymous blocks, and EDB*Plus commands.

EDB*Plus allows you to:

Query certain database objects
Execute stored procedures
Format output from SQL commands
Execute batch scripts
Execute OS commands
Record output

See EDB*Plus for more information.

EDB*Loader

EDB*Loader is a high-performance bulk data loader that provides an interface compatible with Oracle databases for EDB Postgres Advanced Server. The EDB*Loader command line utility loads data
from an input source, typically a file, into one or more tables using a subset of the parameters offered by Oracle SQL*Loader.

EDB*Loader features include:

Support for the Oracle SQL*Loader data loading methods—conventional path load, direct path load, and parallel direct path load
Oracle SQL*Loader-compatible syntax for control file directives
Input data with delimiter-separated or fixed-width fields
Bad file for collecting rejected records
Loading of multiple target tables
Discard file for collecting records that don't meet the selection criteria of any target table
Data loading from standard input and remote loading

EDB*Wrap

The EDB*Wrap utility protects proprietary source code and programs (functions, stored procedures, triggers, and packages) from unauthorized scrutiny. The EDB*Wrap program translates a file that
contains SPL or PL/pgSQL source code (the plaintext) into a file that contains the same code in a form that's nearly impossible to read. Once you have the obfuscated form of the code, you can send that
code to EDB Postgres Advanced Server, which stores those programs in obfuscated form. While EDB*Wrap does obscure code, table definitions are still exposed.

Everything you wrap is stored in obfuscated form. If you wrap an entire package, the package body source as well as the prototypes contained in the package header and the functions and procedures
contained in the package body are stored in obfuscated form.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 940

https://www.enterprisedb.com/docs/ocl_connector/latest/
https://www.enterprisedb.com/docs/edb_plus/latest/

Dynamic Runtime Instrumentation Tools Architecture (DRITA)

The Dynamic Runtime Instrumentation Tools Architecture (DRITA) allows a DBA to query catalog views to determine the wait events that affect the performance of individual sessions or the system as a
whole. DRITA records the number of times each event occurs as well as the time spent waiting. You can use this information to diagnose performance problems. DRITA offers this functionality while
consuming minimal system resources.

DRITA compares snapshots to evaluate the performance of a system. A snapshot is a saved set of system performance data at a given point in time. A unique ID number identifies each snapshot. You can
use snapshot ID numbers with DRITA reporting functions to return system performance statistics.

ECPGPlus

EDB enhanced ECPG (the PostgreSQL precompiler) to create ECPGPlus. ECPGPlus allows you to include embedded SQL commands in C applications. When you use ECPGPlus to compile an application
that contains embedded SQL commands, the SQL code is syntax checked and translated to C.

ECPGPlus supports Pro*C syntax in C programs when connected to an EDB Postgres Advanced Server database. ECPGPlus supports:

Oracle Dynamic SQL – Method 4 (ODS-M4)
Pro*C-compatible anonymous blocks
A CALL statement compatible with Oracle databases

See ECPGPlus for information.

Table partitioning

In a partitioned table, one logically large table is broken into smaller physical pieces. Partitioning can provide several benefits:

Query performance can be improved dramatically in certain situations, particularly when most of the heavily accessed rows of the table are in a single partition or a small number of partitions.
Partitioning allows you to omit the partition column from the front of an index, reducing index size and making it more likely that the heavily used parts of the index fit in memory.
When a query or update accesses a large percentage of a single partition, performance might improve because the server performs a sequential scan of the partition instead of using an index and
random access reads scattered across the whole table.
If you plan the requirement into the partitioning design, you can implement bulk load or unload by adding or removing partitions. ALTER TABLE is faster than a bulk operation. It also avoids the
VACUUM overhead caused by a bulk DELETE .

You can migrate seldom-used data to less expensive or slower storage media.

Table partitioning is worthwhile only when a table would otherwise be very large. The exact point at which a table benefits from partitioning depends on the application. A good estimation is when the
size of the table exceeds the physical memory of the database server.

For information about database compatibility features supported by EDB Postgres Advanced Server, see Table partitioning.

25.3 Database administration

Adminstration features help you to manage and administer EDB Postgres Advanced Server databases.

25.3.1 Configuration parameters

The EDB Postgres Advanced Server configuration parameters control various aspects of the database server’s behavior and environment such as data file and log file locations, connection,
authentication and security settings, resource allocation and consumption, archiving and replication settings, error logging and statistics gathering, optimization and performance tuning, and locale
and formatting settings

Configuration parameters that apply only to EDB Postgres Advanced Server are noted in the Summary of configuration parameters.

You can find more information about configuration parameters in the PostgreSQL core documentation.

25.3.1.1 Setting configuration parameters

Set each configuration parameter using a name/value pair. Parameter names are not case sensitive. The parameter name is typically separated from its value by an optional equals sign (=).

This an example shows some configuration parameter settings in the postgresql.conf file:

This is a comment

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 941

https://www.postgresql.org/docs/current/static/runtime-config.html

log_connections = yes
log_destination = 'syslog'
search_path = '"$user", public'
shared_buffers = 128MB

Parameter values are specified as one of five types:

Boolean. Acceptable values are on , off , true , false , yes , no , 1 , 0 , or any unambiguous prefix of these.
Integer. Number without a fractional part.
Floating point. Number with an optional fractional part separated by a decimal point.
String. Text value enclosed in single quotes if the value isn't a simple identifier or number, that is, the value contains special characters such as spaces or other punctuation marks.
Enum. Specific set of string values. The allowed values can be found in the system view pg_settings.enumvals . Enum values are not case sensitive.

Some settings specify a memory or time value. Each of these has an implicit unit, which is kilobytes, blocks (typically 8 kilobytes), milliseconds, seconds, or minutes. You can find default units by
referencing the system view pg_settings.unit . You can specify a different explicitly.

Valid memory units are kB (kilobytes), MB (megabytes), and GB (gigabytes). Valid time units are ms (milliseconds), s (seconds), min (minutes), h (hours), and d (days). The multiplier for
memory units is 1024.

You can set the configuration parameter settings in a number of different ways:

A number of parameter settings are set when the EDB Postgres Advanced Server database product is built. These are read-only parameters, and you can't change their values. A couple of
parameters are also permanently set for each database when the database is created. These parameters are read-only and you can't later change them for the database.

The initial settings for almost all configurable parameters across the entire database cluster are listed in the configuration file postgresql.conf . These settings are put into effect upon
database server start or restart. You can override some of these initial parameter settings. All configuration parameters have built-in default settings that are in effect if not explicitly overridden.

Configuration parameters in the postgresql.conf file are overridden when the same parameters are included in the postgresql.auto.conf file. The ALTER SYSTEM command is
used to manage the configuration parameters in the postgresql.auto.conf file.

You can modify parameter settings in the configuration file while the database server is running. If the configuration file is then reloaded (meaning a SIGHUP signal is issued), for certain
parameter types, the changed parameters settings immediately take effect. For some of these parameter types, the new settings are available in a currently running session immediately after the
reload. For other of these parameter types, you must start a new session to use the new settings. And yet for other parameter types, modified settings don't take effect until the database server is
stopped and restarted. See the PostgreSQL core documentation for information on how to reload the configuration file:

You can use the SQL commands ALTER DATABASE , ALTER ROLE , or ALTER ROLE IN DATABASE to modify certain parameter settings. The modified parameter settings take effect for
new sessions after you execute the command. ALTER DATABASE affects new sessions connecting to the specified database. ALTER ROLE affects new sessions started by the specified role.
ALTER ROLE IN DATABASE affects new sessions started by the specified role connecting to the specified database. Parameter settings established by these SQL commands remain in effect

indefinitely, across database server restarts, overriding settings established by the other methods. Parameter settings established using the ALTER DATABASE , ALTER ROLE , or ALTER
ROLE IN DATABASE commands can be changed only by either:

Reissuing these commands with a different parameter value.

Issuing these commands using either of the SET parameter TO DEFAULT clause or the RESET parameter clause. These clauses change the parameter back to using the setting
set by the other methods. See the PostgreSQL core documentation for the exact syntax of these SQL commands.

You can make changes for certain parameter settings for the duration of individual sessions using the PGOPTIONS environment variable or by using the SET command in the EDB-PSQL or
PSQL command-line programs. Parameter settings made this way override settings established using any of the methods descussed earlier, but only during that session.

Modifying the postgresql.conf file

The configuration parameters in the postgresql.conf file specify server behavior with regard to auditing, authentication, encryption, and other behaviors. On Linux and Windows hosts, the
postgresql.conf file resides in the data directory under your EDB Postgres Advanced Server installation.

Parameters that are preceded by a pound sign (#) are set to their default value. To change a parameter value, remove the pound sign and enter a new value. After setting or changing a parameter, you
must either reload or restart the server for the new parameter value to take effect.

In the postgresql.conf file, some parameters contain comments that indicate change requires restart . To view a list of the parameters that require a server restart, execute the
following query at the psql command line:

SELECT name FROM pg_settings WHERE context = 'postmaster';

Modifying the pg_hba.conf file

Appropriate authentication methods provide protection and security. Entries in the pg_hba.conf file specify the authentication methods that the server uses with connecting clients. Before
connecting to the server, you might need to modify the authentication properties specified in the pg_hba.conf file.

When you invoke the initdb utility to create a cluster, the utility creates a pg_hba.conf file for that cluster that specifies the type of authentication required from connecting clients. You can modify

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 942

https://www.postgresql.org/docs/current/config-setting.html
https://www.postgresql.org/docs/current/sql-commands.html

this file. After modifying the authentication settings in the pg_hba.conf file, restart the server and apply the changes.

For more information about authentication and modifying the pg_hba.conf file, see the PostgreSQL core documentation.

When the server receives a connection request, it verifies the credentials provided against the authentication settings in the pg_hba.conf file before allowing a connection to a database. To log the
pg_hba.conf file entry to authenticate a connection to the server, set the log_connections parameter to ON in the postgresql.conf file.

A record specifies a connection type, database name, user name, client IP address, and the authentication method to authorize a connection upon matching these parameters in the pg_hba.conf
file. Once the connection to a server is authorized, you can see the matched line number and the authentication record from the pg_hba.conf file.

This example shows a log detail for a valid pg_hba.conf entry after successful authentication:

2020-05-08 10:42:17 IST LOG: connection received: host=[local]
2020-05-08 10:42:17 IST LOG: connection authorized: user=u1 database=edb
application_name=psql
2020-05-08 10:42:17 IST DETAIL: Connection matched pg_hba.conf line 84:
"local all all md5"

25.3.1.2 Summary of configuration parameters

This summary table list all EDB Postgres Advanced Server configuration parameters along with a number of key attributes of the parameters.

These attributes are described by the following columns of the summary table:

Parameter. Configuration parameter name.

Scope of effect. Scope of effect of the configuration parameter setting:

Cluster . Setting affects the entire database cluster, that is, all databases managed by the database server instance.
Database . Setting can vary by database and is established when the database is created. Applies to a small number of parameters related to locale settings.
Session . Setting can vary down to the granularity of individual sessions.

In other words, different settings can be made for the following entities in which the latter settings in this list override prior ones:

- The entire database cluster
- Specific databases in the database cluster
- Specific roles
- Specific roles when connected to specific databases
- A specific session

When takes effect. When a changed parameter setting takes effect.

Preset . Established when the EDB Postgres Advanced Server product is built or a particular database is created. This is a read-only parameter and can't be changed.
Restart . You must restart the database server.
Reload . You must reload configuration file or restart the database server.
Immediate . Immediately effective in a session if the PGOPTIONS environment variable or the SET command is used to change the setting in the current session. Effective in new

sessions if ALTER DATABASE , ALTER ROLE , or ALTER ROLE IN DATABASE commands are used to change the setting.

Authorized user. Type of operating system account or database role that must be used to put the parameter setting into effect.

EPAS service account . EDB Postgres Advanced Server service account (enterprisedb for an installation compatible with Oracle databases, postgres for a PostgreSQL
compatible mode installation).
Superuser . Database role with superuser privileges.
User . Any database role with permissions on the affected database object, that is, the database or role to alter with the ALTER command.
n/a – No user can change the aarameter setting.

Description. Brief description of the configuration parameter.

EPAS only. Configuration parameter appllies to EDB Postgres Advanced Server only. No entry in this column indicates the configuration parameter applies to PostgreSQL as well.

Note

A number of parameters can never be altered. These are designated as Note: For internal use only in the Description column.

Parameter Scope of effect When takes effect
Authorized

user
Description

EP
AS
on
ly

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 943

https://www.postgresql.org/docs/current/static/auth-pg-hba-conf.html

allow_system_table_
mods

Cluster Restart EPAS service
account

Allows modifications of the structure of system tables.

application_name Session Immediate User Sets the application name to be reported in statistics and logs.

archive_command Cluster Reload EPAS service
account

Sets the shell command called to archive a WAL file.

archive_mode Cluster Restart EPAS service
account

Allows archiving of WAL files using archive_command .

archive_timeout Cluster Reload EPAS service
account

Forces a switch to the next xlog file if a new file has not been started within N seconds.

array_nulls Session Immediate User Enables input of NULL elements in arrays.

authentication_time
out

Cluster Reload EPAS service
account

Sets the maximum allowed time to complete client authentication.

autovacuum Cluster Reload EPAS service
account

Starts the autovacuum subprocess.

autovacuum_analyze_
scale_factor

Cluster Reload EPAS service
account

Number of tuple inserts, updates, or deletes prior to analyze as a fraction of reltuples .

autovacuum_analyze_
threshold

Cluster Reload EPAS service
account

Minimum number of tuple inserts, updates, or deletes prior to analyze.

autovacuum_freeze_m
ax_age

Cluster Restart EPAS service
account

Age at which to autovacuum a table to prevent transaction ID wraparound.

autovacuum_max_work
ers

Cluster Restart EPAS service
account

Sets the maximum number of simultaneously running autovacuum worker processes.

autovacuum_multixac
t_freeze_max_age

Cluster Restart EPAS service
account

Multixact age at which to autovacuum a table to prevent multixact wraparound.

autovacuum_naptime Cluster Reload EPAS service
account

Time to sleep between autovacuum runs.

autovacuum_vacuum_c
ost_delay

Cluster Reload EPAS service
account

Vacuum cost delay in milliseconds, for autovacuum.

autovacuum_vacuum_c
ost_limit

Cluster Reload EPAS service
account

Vacuum cost amount available before napping, for autovacuum.

autovacuum_vacuum_s
cale_factor

Cluster Reload EPAS service
account

Number of tuple updates or deletes prior to vacuum as a fraction of reltuples .

autovacuum_vacuum_t
hreshold

Cluster Reload EPAS service
account

Minimum number of tuple updates or deletes prior to vacuum.

autovacuum_work_mem Cluster Reload EPAS service
account

Sets the maximum memory to be used by each autovacuum worker process.

backslash_quote Session Immediate User Sets whether "\'" is allowed in string literals.

bgwriter_delay Cluster Reload EPAS service
account

Background writer sleep time between rounds.

bgwriter_lru_maxpag
es

Cluster Reload EPAS service
account

Background writer maximum number of LRU pages to flush per round.

bgwriter_lru_multip
lier

Cluster Reload EPAS service
account

Multiple of the average buffer usage to free per round.

block_size Cluster Preset n/a Shows the size of a disk block.

bonjour Cluster Restart EPAS service
account

Enables advertising the server via Bonjour.

bonjour_name Cluster Restart EPAS service
account

Sets the Bonjour service name.

bytea_output Session Immediate User Sets the output format for bytea .

check_function_bodi
es

Session Immediate User Checks function bodies during CREATE FUNCTION .

checkpoint_completi
on_target

Cluster Reload EPAS service
account

Time spent flushing dirty buffers during checkpoint, as fraction of checkpoint interval.

checkpoint_segments Deprecated Deprecated Deprecated Specifies a value for the parameter prevents the server from starting.

checkpoint_timeout Cluster Reload EPAS service
account

Sets the maximum time between automatic WAL checkpoints.

checkpoint_warning Cluster Reload EPAS service
account

Enables warnings if checkpoint segments are filled more frequently than this.

client_encoding Session Immediate User Sets the client's character set encoding.

client_min_messages Session Immediate User Sets the message levels that are sent to the client.

commit_delay Session Immediate Superuser Sets the delay in microseconds between transaction commit and flushing WAL to disk.

commit_siblings Session Immediate User Sets the minimum concurrent open transactions before performing commit_delay .

Parameter Scope of effect When takes effect
Authorized

user
Description

EP
AS
on
ly

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 944

config_file Cluster Restart EPAS service
account

Sets the server's main configuration file.

constraint_exclusio
n

Session Immediate User Enables the planner to use constraints to optimize queries.

cpu_index_tuple_cos
t

Session Immediate User Sets the planner's estimate of the cost of processing each index entry during an index scan.

cpu_operator_cost Session Immediate User Sets the planner's estimate of the cost of processing each operator or function call.

cpu_tuple_cost Session Immediate User Sets the planner's estimate of the cost of processing each tuple (row).

cursor_tuple_fracti
on

Session Immediate User Sets the planner's estimate of the fraction of a cursor's rows to retrieve.

custom_variable_cla
sses

Cluster Reload EPAS service
account

Deprecated in EDB Postgres Advanced Server 9.2. X

data_checksums Cluster Preset n/a Shows whether data checksums are turned on for this cluster.

data_directory Cluster Restart EPAS service
account

Sets the server's data directory.

datestyle Session Immediate User Sets the display format for date and time values.

db_dialect Session Immediate User Sets the precedence of built-in namespaces. X

dbms_alert.max_aler
ts

Cluster Restart EPAS service
account

Sets maximum number of alerts. X

dbms_pipe.total_mes
sage_buffer

Cluster Restart EPAS service
account

Specifies the total size of the buffer used for the DBMS_PIPE package. X

db_user_namespace Cluster Reload EPAS service
account

Enables per-database user names.

deadlock_timeout Session Immediate Superuser Sets the time to wait on a lock before checking for deadlock.

debug_assertions Cluster Preset n/a Turns on various assertion checks. (Not supported in EPAS builds.)

debug_pretty_print Session Immediate User Indents parse and plan tree displays.

debug_print_parse Session Immediate User Logs each query's parse tree.

debug_print_plan Session Immediate User Logs each query's execution plan.

debug_print_rewritt
en

Session Immediate User Logs each query's rewritten parse tree.

default_heap_fillfa
ctor

Session Immediate User Creates new tables with this heap fill factor by default. X

default_statistics_
target

Session Immediate User Sets the default statistics target.

default_tablespace Session Immediate User Sets the default tablespace to create tables and indexes in.

default_text_search
_config

Session Immediate User Sets default text search configuration.

default_transaction
_deferrable

Session Immediate User Sets the default deferrable status of new transactions.

default_transaction
_isolation

Session Immediate User Sets the transaction isolation level of each new transaction.

default_transaction
_read_only

Session Immediate User Sets the default read-only status of new transactions.

default_with_oids Session Immediate User Creates new tables with OIDs by default.

default_with_rowids Session Immediate User Creates new tables with ROWID support (ROWIDs with indexes) by default. X

dynamic_library_pat
h

Session Immediate Superuser Sets the path for dynamically loadable modules.

dynamic_shared_memo
ry_type

Cluster Restart EPAS service
account

Selects the dynamic shared memory implementation used.

edb_audit Cluster Reload EPAS service
account

Enables EDB Auditing to create audit reports in XML or CSV format. X

edb_audit_archiver Cluster Restart EPAS service
account

Enables audit log archiver process. X

edb_audit_archiver_
timeout

Cluster Reload EPAS service
account

Checks the audit log files based on the edb_audit_archiver_timeout parameter. X

edb_audit_archiver_
filename_prefix Cluster Reload

EPAS service
account

Determines audit log files with edb_audit_archiver_filename_prefix in
edb_audit_directory are eligible for compression and/or expiration; the parameter must

align with edb_audit_filename .
X

edb_audit_archiver_
compress_time_limit

Cluster Reload EPAS service
account

Shows time in seconds after which the audit logs are eligible for compression. X

Parameter Scope of effect When takes effect
Authorized

user
Description

EP
AS
on
ly

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 945

edb_audit_archiver_
compress_size_limit

Cluster Reload EPAS service
account

Shows total size in megabytes after which the audit logs are eligible for compression. X

edb_audit_archiver_
compress_command

Cluster Reload EPAS service
account

Compresses the audit log files. X

edb_audit_archiver_
compress_suffix

Cluster Reload EPAS service
account

Determines suffix for an already compressed log file. The parameter must align with
edb_audit_archiver_compress_command .

X

edb_audit_archiver_
expire_time_limit

Cluster Reload EPAS service
account

Shows time in seconds after which the audit logs are eligible for expiration. X

edb_audit_archiver_
expire_size_limit

Cluster Reload EPAS service
account

Shows total size in megabytes after which the audit logs are eligible for expiration. X

edb_audit_archiver_
expire_command

Cluster Reload EPAS service
account

Execute on an expired audit log before removing it. X

edb_audit_archiver_
sort_file

Cluster Reload EPAS service
account

Identifies the oldest log file and sorts them alphabetically or based on mtime . X

edb_audit_connect Cluster Reload EPAS service
account

Audits each successful connection. X

edb_audit_destinati
on

Cluster Reload EPAS service
account

Sets edb_audit_directory or syslog as the destination directory for audit files. The syslog
setting is only valid for a Linux system.

X

edb_audit_directory Cluster Reload EPAS service
account

Sets the destination directory for audit files. X

edb_audit_disconnec
t

Cluster Reload EPAS service
account

Audits end of a session. X

edb_audit_filename Cluster Reload EPAS service
account

Sets the file name pattern for audit files. X

edb_audit_rotation_
day

Cluster Reload EPAS service
account

Automatic rotation of log files based on day of week. X

edb_audit_rotation_
seconds

Cluster Reload EPAS service
account

Automatic log file rotation occurs after N seconds. X

edb_audit_rotation_
size

Cluster Reload EPAS service
account

Automatic log file rotation occurs after N Megabytes. X

edb_audit_statement Cluster Reload EPAS service
account

Sets the type of statements to audit. X

edb_audit_tag Session Immediate User Specifies a tag to include in the audit log. X

edb_connectby_order Session Immediate User Sorts results of CONNECT BY queries with no ORDER BY to depth-first order. Note: For internal
use only.

X

edb_data_redaction Session Immediate User Enables data redaction. X

edb_dynatune Cluster Restart EPAS service
account

Sets the edb utilization percentage. X

edb_dynatune_profil
e

Cluster Restart EPAS service
account

Sets the workload profile for dynatune. X

edb_enable_pruning Session Immediate User Enables the planner to early-prune partitioned tables. X

edb_log_every_bulk_
value

Session Immediate Superuser Sets the statements logged for bulk processing. X

edb_max_resource_gr
oups

Cluster Restart EPAS service
account

Specifies the maximum number of resource groups for simultaneous use. X

edb_max_spins_per_d
elay

Cluster Restart EPAS service
account

Specifies the number of times a session spins while waiting for a lock. X

edb_redwood_date Session Immediate User Determines whether DATE should behave like a TIMESTAMP or not. X

edb_redwood_greates
t_least

Session Immediate User Determines how GREATEST and LEAST functions should handle NULL parameters. X

edb_redwood_raw_nam
es

Session Immediate User Returns the unmodified name stored in the PostgreSQL system catalogs from Redwood interfaces. X

edb_redwood_strings Session Immediate User Treats NULL as an empty string when concatenated with a text value. X

edb_resource_group Session Immediate User Specifies the resource group to be used by the current process. X

edb_sql_protect.ena
bled

Cluster Reload EPAS service
account

Defines whether SQL/Protect should track queries or not. X

edb_sql_protect.lev
el

Cluster Reload EPAS service
account

Defines the behavior of SQL/Protect when an event is found. X

edb_sql_protect.max
_protected_relation
s

Cluster Restart
EPAS service
account Sets the maximum number of relations protected by SQL/Protect per role. X

Parameter Scope of effect When takes effect
Authorized

user
Description

EP
AS
on
ly

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 946

edb_sql_protect.max
_protected_roles

Cluster Restart EPAS service
account

Sets the maximum number of roles protected by SQL/Protect. X

edb_sql_protect.max
_queries_to_save

Cluster Restart EPAS service
account

Sets the maximum number of offending queries to save by SQL/Protect. X

edb_stmt_level_tx Session Immediate User Allows continuing on errors instead of requiring a transaction abort. X

edb_wait_states.dir
ectory

Cluster Restart EPAS service
account

Stores the EDB wait states logs in this directory. X

edb_wait_states.ret
ention_period

Cluster Reload EPAS service
account

Deletes EDB wait state log files after retention period. X

edb_wait_states.sam
pling_interval

Cluster Reload EPAS service
account

The interval between two EDB wait state sampling cycles. X

edbldr.empty_csv_fi
eld

Session Immediate Superuser Specifies how EDB*Loader handles empty strings. X

effective_cache_siz
e

Session Immediate User Sets the planner's assumption about the size of the disk cache.

effective_io_concur
rency

Session Immediate User Number of simultaneous requests that can be handled efficiently by the disk subsystem.

enable_bitmapscan Session Immediate User Enables the planner's use of bitmap-scan plans.

enable_hashagg Session Immediate User Enables the planner's use of hashed aggregation plans.

enable_hashjoin Session Immediate User Enables the planner's use of hash join plans.

enable_hints Session Immediate User Enables optimizer hints in SQL statements. X

enable_indexonlysca
n

Session Immediate User Enables the planner’s use of index-only-scan plans.

enable_indexscan Session Immediate User Enables the planner's use of index-scan plans.

enable_material Session Immediate User Enables the planner's use of materialization.

enable_mergejoin Session Immediate User Enables the planner's use of merge join plans.

enable_nestloop Session Immediate User Enables the planner's use of nested-loop join plans.

enable_seqscan Session Immediate User Enables the planner's use of sequential-scan plans.

enable_sort Session Immediate User Enables the planner's use of explicit sort steps.

enable_tidscan Session Immediate User Enables the planner's use of TID scan plans.

escape_string_warni
ng

Session Immediate User Warns about backslash escapes in ordinary string literals.

event_source Cluster Restart EPAS service
account

Sets the application name used to identify PostgreSQL messages in the event log.

exit_on_error Session Immediate User Terminates session on any error.

external_pid_file Cluster Restart EPAS service
account

Writes the postmaster PID to the specified file.

extra_float_digits Session Immediate User Sets the number of digits displayed for floating-point values.

from_collapse_limit Session Immediate User Sets the FROM -list size beyond which subqueries are not collapsed.

fsync Cluster Reload EPAS service
account

Forces synchronization of updates to disk.

full_page_writes Cluster Reload EPAS service
account

Writes full pages to WAL when first modified after a checkpoint.

geqo Session Immediate User Enables genetic query optimization.

geqo_effort Session Immediate User GEQO: effort is used to set the default for other GEQO parameters.

geqo_generations Session Immediate User GEQO: number of iterations of the algorithm.

geqo_pool_size Session Immediate User GEQO: number of individuals in the population.

geqo_seed Session Immediate User GEQO: seed for random path selection.

geqo_selection_bias Session Immediate User GEQO: selective pressure within the population.

geqo_threshold Session Immediate User Sets the threshold of FROM items beyond which GEQO is used.

gin_fuzzy_search_li
mit

Session Immediate User Sets the maximum allowed result for exact search by GIN.

hba_file Cluster Restart EPAS service
account

Sets the server's "hba" configuration file.

hot_standby Cluster Restart EPAS service
account

Allows connections and queries during recovery.

hot_standby_feedbac
k

Cluster Reload EPAS service
account

Allows feedback from a hot standby to the primary that avoids query conflicts.

Parameter Scope of effect When takes effect
Authorized

user
Description

EP
AS
on
ly

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 947

huge_pages Cluster Restart EPAS service
account

Uses huge pages on Linux.

icu_short_form Database Preset n/a Shows the ICU collation order configuration. X

ident_file Cluster Restart EPAS service
account

Sets the server's "ident" configuration file.

ignore_checksum_fai
lure

Session Immediate Superuser Continues processing after a checksum failure.

ignore_system_index
es

Cluster/Session Reload/Immediate EPAS service
account/User

Disables reading from system indexes. (Can also be set with PGOPTIONS at session start.)

index_advisor.enabl
ed

Session Immediate User Enables Index Advisor plugin. X

integer_datetimes Cluster Preset n/a Datetimes are integer based.

intervalStyle Session Immediate User Sets the display format for interval values.

join_collapse_limit Session Immediate User Sets the FROM -list size beyond which JOIN constructs are not flattened.

krb_caseins_users Cluster Reload EPAS service
account

Sets whether Kerberos and GSSAPI user names should be treated as case-insensitive.

krb_server_keyfile Cluster Reload EPAS service
account

Sets the location of the Kerberos server key file.

lc_collate Database Preset n/a Shows the collation order locale.

lc_ctype Database Preset n/a Shows the character classification and case conversion locale.

lc_messages Session Immediate Superuser Sets the language in which messages are displayed.

lc_monetary Session Immediate User Sets the locale for formatting monetary amounts.

lc_numeric Session Immediate User Sets the locale for formatting numbers.

lc_time Session Immediate User Sets the locale for formatting date and time values.

listen_addresses Cluster Restart EPAS service
account

Sets the host name or IP address(es) to listen to.

local_preload_libra
ries

Cluster/Session Reload/Immediate EPAS service
account/User

Lists shared libraries to preload into each backend. (Can also be set with PGOPTIONS at session
start.)

lock_timeout Session Immediate User Sets the maximum time allowed that a statement may wait for a lock.

lo_compat_privilege
s

Session Immediate Superuser Enables backward compatibility mode for privilege checks on large objects.

log_autovacuum_min_
duration

Cluster Reload EPAS service
account

Sets the minimum execution time above which autovacuum actions are logged.

log_checkpoints Cluster Reload EPAS service
account

Logs each checkpoint.

log_connections Cluster/Session Reload/Immediate EPAS service
account/User

Logs each successful connection. (Can also be set with PGOPTIONS at session start.)

log_destination Cluster Reload EPAS service
account

Sets the destination for server log output.

log_directory Cluster Reload EPAS service
account

Sets the destination directory for log files.

log_disconnections Cluster/Session Reload/Immediate EPAS service
account/User

Logs end of a session, including duration. (Can also be set with PGOPTIONS at session start.)

log_duration Session Immediate Superuser Logs the duration of each completed SQL statement.

log_error_verbosity Session Immediate Superuser Sets the verbosity of logged messages.

log_executor_stats Session Immediate Superuser Writes executor performance statistics to the server log.

log_file_mode Cluster Reload EPAS service
account

Sets the file permissions for log files.

log_filename Cluster Reload EPAS service
account

Sets the file name pattern for log files.

log_hostname Cluster Reload EPAS service
account

Logs the host name in the connection logs.

log_line_prefix Cluster Reload EPAS service
account

Controls information prefixed to each log line.

log_lock_waits Session Immediate Superuser Logs long lock waits.

log_min_duration_st
atement

Session Immediate Superuser Sets the minimum execution time above which statements are logged.

log_min_error_state
ment

Session Immediate Superuser Causes all statements generating error at or above this level to be logged.

log_min_messages Session Immediate Superuser Sets the message levels that are logged.

log_parser_stats Session Immediate Superuser Writes parser performance statistics to the server log.

Parameter Scope of effect When takes effect
Authorized

user
Description

EP
AS
on
ly

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 948

log_planner_stats Session Immediate Superuser Writes planner performance statistics to the server log.

log_rotation_age Cluster Reload EPAS service
account

Automatic log file rotation occurs after N minutes.

log_rotation_size Cluster Reload EPAS service
account

Automatic log file rotation occurs after N kilobytes.

log_statement Session Immediate Superuser Sets the type of statements logged.

log_statement_stats Session Immediate Superuser Writes cumulative performance statistics to the server log.

log_temp_files Session Immediate Superuser Logs the use of temporary files larger than this number of kilobytes.

log_timezone Cluster Reload EPAS service
account

Sets the time zone to use in log messages.

log_truncate_on_rot
ation

Cluster Reload EPAS service
account

Truncates existing log files of same name during log rotation.

logging_collector Cluster Restart EPAS service
account

Starts a subprocess to capture stderr output and/or csv logs into log files.

maintenance_work_me
m

Session Immediate User Sets the maximum memory to be used for maintenance operations.

max_connections Cluster Restart EPAS service
account

Sets the maximum number of concurrent connections.

max_files_per_proce
ss

Cluster Restart EPAS service
account

Sets the maximum number of simultaneously open files for each server process.

max_function_args Cluster Preset n/a Shows the maximum number of function arguments.

max_identifier_leng
th

Cluster Preset n/a Shows the maximum identifier length.

max_index_keys Cluster Preset n/a Shows the maximum number of index keys.

max_locks_per_trans
action

Cluster Restart EPAS service
account

Sets the maximum number of locks per transaction.

max_pred_locks_per_
transaction

Cluster Restart EPAS service
account

Sets the maximum number of predicate locks per transaction.

max_prepared_transa
ctions

Cluster Restart EPAS service
account

Sets the maximum number of simultaneously prepared transactions.

max_replication_slo
ts

Cluster Restart EPAS service
account

Sets the maximum number of simultaneously defined replication slots.

max_stack_depth Session Immediate Superuser Sets the maximum stack depth, in kilobytes.

max_standby_archive
_delay

Cluster Reload EPAS service
account

Sets the maximum delay before canceling queries when a hot standby server is processing archived
WAL data.

max_standby_streami
ng_delay

Cluster Reload EPAS service
account

Sets the maximum delay before canceling queries when a hot standby server is processing streamed
WAL data.

max_wal_senders Cluster Restart EPAS service
account

Sets the maximum number of simultaneously running WAL sender processes.

max_wal_size Cluster Reload EPAS service
account

Sets the maximum size to which the WAL grows between automatic WAL checkpoints. The default is
1GB.

max_worker_processe
s

Cluster Restart EPAS service
account

Maximum number of concurrent worker processes.

min_wal_size Cluster Reload EPAS service
account

Sets the threshold at which WAL logs is recycled rather than removed. The default is 80 MB.

nls_length_semantic
s

Session Immediate Superuser Sets the semantics to use for char, varchar, varchar2 and long columns. X

odbc_lib_path Cluster Restart EPAS service
account

Sets the path for ODBC library. X

optimizer_mode Session Immediate User Default optimizer mode. X

oracle_home Cluster Restart EPAS service
account

Sets the path for the Oracle home directory. X

password_encryption Session Immediate User Encrypts passwords.

pg_prewarm.autoprew
arm

Cluster Restart EPAS service
account

Enables the autoprewarm background worker. X

pg_prewarm.autoprew
arm_interval Cluster Reload EPAS service

account
Sets the minimum number of seconds after which autoprewarm dumps shared buffers. X

port Cluster Restart EPAS service
account

Sets the TCP port on which the server listens.

post_auth_delay Cluster/Session Reload/Immediate EPAS service
account/User

Waits N seconds on connection startup after authentication. (Can also be set with PGOPTIONS at
session start.)

Parameter Scope of effect When takes effect
Authorized

user
Description

EP
AS
on
ly

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 949

pre_auth_delay Cluster Reload EPAS service
account

Waits N seconds on connection startup before authentication.

qreplace_function Session Immediate Superuser The function to be used by Query Replace feature. Note: For internal use only. X

query_rewrite_enabl
ed

Session Immediate User Skils dhild table scans if their constraints guarantee that no rows match the query. X

query_rewrite_integ
rity

Session Immediate Superuser Sets the degree to which query rewriting must be enforced. X

quote_all_identifie
rs

Session Immediate User When generating SQL fragments, quotes all identifiers.

random_page_cost Session Immediate User Sets the planner's estimate of the cost of a nonsequentially fetched disk page.

restart_after_crash Cluster Reload EPAS service
account

Reinitializes server after backend crash.

search_path Session Immediate User Sets the schema search order for names that are not schema-qualified.

segment_size Cluster Preset n/a Shows the number of pages per disk file.

seq_page_cost Session Immediate User Sets the planner's estimate of the cost of a sequentially fetched disk page.

server_encoding Database Preset n/a Sets the server (database) character set encoding.

server_version Cluster Preset n/a Shows the server version.

server_version_num Cluster Preset n/a Shows the server version as an integer.

session_preload_lib
raries Session

Immediate but
only at connection
start

Superuser Lists shared libraries to preload into each backend.

session_replication
_role

Session Immediate Superuser Sets the session's behavior for triggers and rewrite rules.

shared_buffers Cluster Restart EPAS service
account

Sets the number of shared memory buffers used by the server.

shared_preload_libr
aries

Cluster Restart EPAS service
account

Lists shared libraries to preload into server.

sql_inheritance Session Immediate User Causes subtables to be included by default in various commands.

ssl Cluster Reload EPAS service
account

Enables SSL connections.

ssl_ca_file Cluster Reload EPAS service
account

Location of the SSL certificate authority file.

ssl_cert_file Cluster Reload EPAS service
account

Location of the SSL server certificate file.

ssl_ciphers Cluster Reload EPAS service
account

Sets the list of allowed SSL ciphers.

ssl_crl_file Cluster Reload EPAS service
account

Location of the SSL certificate revocation list file.

ssl_ecdh_curve Cluster Reload EPAS service
account

Sets the curve to use for ECDH.

ssl_key_file Cluster Reload EPAS service
account

Location of the SSL server private key file.

ssl_prefer_server_c
iphers

Cluster Reload EPAS service
account

Gives priority to server ciphersuite order.

ssl_renegotiation_l
imit Session Immediate User Sets the amount of traffic to send and receive before renegotiating the encryption keys.

standard_conforming
_strings

Session Immediate User Causes '...' strings to treat backslashes literally.

statement_timeout Session Immediate User Sets the maximum allowed duration of any statement.

stats_temp_director
y

Cluster Reload EPAS service
account

Writes temporary statistics files to the specified directory.

superuser_reserved_
connections

Cluster Restart EPAS service
account

Sets the number of connection slots reserved for superusers.

synchronize_seqscan
s

Session Immediate User Enables synchronized sequential scans.

synchronous_commit Session Immediate User Sets immediate fsync at commit.

synchronous_standby
_names

Cluster Reload EPAS service
account

Lists names of potential synchronous standbys.

syslog_facility Cluster Reload EPAS service
account

Sets the syslog "facility" to be used when syslog enabled.

syslog_ident Cluster Reload EPAS service
account

Sets the program name used to identify PostgreSQL messages in syslog.

Parameter Scope of effect When takes effect
Authorized

user
Description

EP
AS
on
ly

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 950

tcp_keepalives_coun
t

Session Immediate User Maximum number of TCP keepalive retransmits.

tcp_keepalives_idle Session Immediate User Time between issuing TCP keepalives.

tcp_keepalives_inte
rval

Session Immediate User Time between TCP keepalive retransmits.

temp_buffers Session Immediate User Sets the maximum number of temporary buffers used by each session.

temp_file_limit Session Immediate Superuser Limits the total size of all temporary files used by each session.

temp_tablespaces Session Immediate User Sets the tablespace(s) to use for temporary tables and sort files.

timed_statistics Session Immediate User Enables the recording of timed statistics. X

timezone Session Immediate User Sets the time zone for displaying and interpreting time stamps.

timezone_abbreviati
ons

Session Immediate User Selects a file of time zone abbreviations.

trace_hints Session Immediate User Emits debug info about hints being honored. X

trace_notify Session Immediate User Generates debugging output for LISTEN and NOTIFY .

trace_recovery_mess
ages

Cluster Reload EPAS service
account

Enables logging of recovery-related debugging information.

trace_sort Session Immediate User Emits information about resource usage in sorting.

track_activities Session Immediate Superuser Collects information about executing commands.

track_activity_quer
y_size

Cluster Restart EPAS service
account

Sets the size reserved for pg_stat_activity.current_query , in bytes.

track_counts Session Immediate Superuser Collects statistics on database activity.

track_functions Session Immediate Superuser Collects function-level statistics on database activity.

track_io_timing Session Immediate Superuser Collects timing statistics for database I/O activity.

transaction_deferra
ble

Session Immediate User Specifies whether to defer a read-only serializable transaction until it can be executed with no
possible serialization failures.

transaction_isolati
on

Session Immediate User Sets the current transaction's isolation level.

transaction_read_on
ly

Session Immediate User Sets the current transaction's read-only status.

transform_null_equa
ls

Session Immediate User Treats "expr=NULL" as "expr IS NULL" .

unix_socket_directo
ries

Cluster Restart EPAS service
account

Sets the directory where the Unix-domain socket is created.

unix_socket_group Cluster Restart EPAS service
account

Sets the owning group of the Unix-domain socket.

unix_socket_permiss
ions

Cluster Restart EPAS service
account

Sets the access permissions of the Unix-domain socket.

update_process_titl
e

Session Immediate Superuser Updates the process title to show the active SQL command.

utl_encode.uudecode
_redwood

Session Immediate User Allows decoding of Oracle-created uuencoded data. X

utl_file.umask Session Immediate User Umask used for files created through the UTL_FILE package. X

vacuum_cost_delay Session Immediate User Vacuum cost delay in milliseconds.

vacuum_cost_limit Session Immediate User Vacuum cost amount available before napping.

vacuum_cost_page_di
rty

Session Immediate User Vacuum cost for a page dirtied by vacuum.

vacuum_cost_page_hi
t

Session Immediate User Vacuum cost for a page found in the buffer cache.

vacuum_cost_page_mi
ss

Session Immediate User Vacuum cost for a page not found in the buffer cache.

vacuum_defer_cleanu
p_age

Cluster Reload EPAS service
account

Number of transactions by which VACUUM and HOT cleanup should be deferred, if any.

vacuum_freeze_min_a
ge

Session Immediate User Minimum age at which VACUUM should freeze a table row.

vacuum_freeze_table
_age

Session Immediate User Age at which VACUUM should scan whole table to freeze tuples.

vacuum_multixact_fr
eeze_min_age

Session Immediate User Minimum age at which VACUUM should freeze a MultiXactId in a table row.

Parameter Scope of effect When takes effect
Authorized

user
Description

EP
AS
on
ly

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 951

vacuum_multixact_fr
eeze_table_age

Session Immediate User Multixact age at which VACUUM should scan whole table to freeze tuples.

wal_block_size Cluster Preset n/a Shows the block size in the write ahead log.

wal_buffers Cluster Restart EPAS service
account

Sets the number of disk-page buffers in shared memory for WAL.

wal_keep_segments Cluster Reload EPAS service
account

Sets the number of WAL files held for standby servers.

wal_level Cluster Restart EPAS service
account

Set the level of information written to the WAL.

wal_log_hints Cluster Restart
EPAS service
account Writes full pages to WAL when first modified after a checkpoint, even for non-critical modifications.

wal_receiver_status
_interval

Cluster Reload EPAS service
account

Sets the maximum interval between WAL receiver status reports to the primary.

wal_receiver_timeou
t

Cluster Reload EPAS service
account

Sets the maximum wait time to receive data from the primary.

wal_segment_size Cluster Preset n/a Shows the number of pages per write ahead log segment.

wal_sender_timeout Cluster Reload EPAS service
account

Sets the maximum time to wait for WAL replication.

wal_sync_method Cluster Reload EPAS service
account

Selects the method used for forcing WAL updates to disk.

wal_writer_delay Cluster Reload EPAS service
account

WAL writer sleep time between WAL flushes.

work_mem Session Immediate User Sets the maximum memory to be used for query workspaces.

xloginsert_locks Cluster Restart EPAS service
account

Sets the number of locks used for concurrent xlog insertions.

xmlbinary Session Immediate User Sets how binary values are to be encoded in XML.

xmloption Session Immediate User Sets whether XML data in implicit parsing and serialization operations is to be considered as
documents or content fragments.

zero_damaged_pages Session Immediate Superuser Continues processing past damaged page headers.

Parameter Scope of effect When takes effect
Authorized

user
Description

EP
AS
on
ly

25.3.1.3 Configuration parameters by functionality

The description of each group of parameters includes this list of attributes:

Parameter type. Type of values the parameter can accept. See Setting configuration parameters for a discussion of parameter type values.
Default value. Default setting if a value isn't explicitly set in the configuration file.
Range. Allowed range of values.
Minimum scope of effect. Smallest scope for which a distinct setting can be made. Generally, the minimal scope of a distinct setting is either:

The entire cluster, meaning the setting is the same for all databases in the cluster and its sessions
per session , which means the setting might vary by role, database, or individual session. This attribute has the same meaning as the Scope of effect column in the table of

Summary of configuration parameters.

When value changes take effect. Least invasive action required to activate a change to a parameter’s value. All parameter setting changes made in the configuration file can be put into effect by
restarting the database server. However, certain parameters require a database server restart . Some parameter setting changes can be put into effect with a reload of the configuration
file without stopping the database server. Finally, other parameter setting changes can be put into effect with some client-side action whose result is immediate . This attribute has the same
meaning as the When takes effect column in the table of Summary of configuration parameters.
Required authorization to activate. The type of user authorization to activate a change to a parameter’s setting. If a database server restart or a configuration file reload is required, then the user
must be an EDB Postgres Advanced Server service account (enterprisedb or postgres , depending on the EDB Postgres Advanced Server compatibility installation mode). This attribute
has the same meaning as the Authorized user column in the table of Summary of configuration parameters.

25.3.1.3.1 Top performance-related parameters

These configuration parameters have the most immediate impact on performance.

25.3.1.3.1.1 shared_buffers

Parameter type: Integer

Default value: 32MB

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 952

Range: 128kB to system dependent

Minimum scope of effect: Cluster

When value changes take effect: Restart

Required authorization to activate: EPAS service account

Sets the amount of memory the database server uses for shared memory buffers. The default is typically 32MB but might be less if your kernel settings don't support it, as determined during initdb .
This setting must be at least 128kB. (Nondefault values of BLCKSZ change the minimum.) However, you usually need settings significantly higher than the minimum for good performance.

If you have a dedicated database server with 1GB or more of RAM, a reasonable starting value for shared_buffers is 25% of the memory in your system. For some workloads, even large settings for
shared_buffers are effective. However, because EDB Postgres Advanced Server also relies on the operating system cache, allocating more than 40% of RAM to shared_buffers isn't likely to

work better than a smaller amount.

On systems with less than 1GB of RAM, a smaller percentage of RAM is appropriate to leave space for the operating system. Fifteen percent of memory is more typical in these situations. Also, on
Windows, large values for shared_buffers aren't as effective. You might have better results keeping the setting relatively low and using the operating system cache more instead. The useful range
for shared_buffers on Windows systems is generally from 64MB to 512MB.

Increasing this parameter might cause EDB Postgres Advanced Server to request more System V shared memory than your operating system's default configuration allows. See Shared Memory and
Semaphores in the PostgreSQL core documentation for information on how to adjust those parameters.

25.3.1.3.1.2 work_mem

Parameter type: Integer

Default value: 1MB

Range: 64kB to 2097151kB

Minimum scope of effect: Per session

When value changes take effect: Immediate

Required authorization to activate: Session user

Specifies the amount of memory for internal sort operations and hash tables to use before writing to temporary disk files.

For a complex query, several sort or hash operations might run in parallel. Each operation is allowed to use as much memory as this value specifies before it starts to write data into temporary files. Also,
several running sessions might perform such operations concurrently. Therefore, the total memory used might be many times the value of work_mem . Keep this information in mind when choosing the
value.

Sort operations are used for ORDER BY , DISTINCT , and merge joins. Hash tables are used in hash joins, hash-based aggregation, and hash-based processing of IN subqueries.

Reasonable values are typically between 4MB and 64MB, depending on the size of your machine, how many concurrent connections you expect (determined by max_connections), and the
complexity of your queries.

25.3.1.3.1.3 maintenance_work_mem

Parameter type: Integer

Default value: 16MB

Range: 1024kB to 2097151kB

Minimum scope of effect: Per session

When value changes take effect: Immediate

Required authorization to activate: Session user

Specifies the maximum amount of memory used by maintenance operations such as VACUUM , CREATE INDEX , and ALTER TABLE ADD FOREIGN KEY . It defaults to 16MB. Since a database
session can execute only one of these operations at a time, and an installation normally doesn't have many of them running concurrently, it's safe to set this value significantly larger than work_mem .
Larger settings might improve performance for vacuuming and for restoring database dumps.

When autovacuum runs, you can allocate up to autovacuum_max_workers times, so be careful not to set the default value too high.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 953

https://www.postgresql.org/docs/15/kernel-resources.html#SYSVIPC

A good rule of thumb is to set this to about 5% of system memory but not more than about 512MB. Larger values don't necessarily improve performance.

25.3.1.3.1.4 wal_buffers

Parameter type: Integer

Default value: 64kB

Range: 32kB to system dependent

Minimum scope of effect: Cluster

When value changes take effect: Restart

Required authorization to activate: EPAS service account

The amount of memory used in shared memory for WAL data. Because the data is written out to disk at every transaction commit, the setting must be large enough only to hold the amount of WAL data
generated by one typical transaction.

Increasing this parameter might cause EDB Postgres Advanced Server to request more System V shared memory than your operating system's default configuration allows. See Shared Memory and
Semaphores in the PostgreSQL core documentation for information on how to adjust those parameters.

Although even this very small setting doesn't always cause a problem, in some situations it can result in extra fsync calls and degrade overall system throughput. Increasing this value to about 1MB
can address this problem. On very busy systems, you might need an even higher value, up to a maximum of about 16MB. Like shared_buffers , this parameter increases EDB Postgres Advanced
Server’s initial shared memory allocation. If increasing it causes an EDB Postgres Advanced Server start failure, increase the operating system limit.

25.3.1.3.1.5 checkpoint_segments

Deprecated. This parameter isn't supported by EDB Postgres Advanced Server.

25.3.1.3.1.6 checkpoint_completion_target

Parameter type: Floating point

Default value: 0.5

Range: 0 to 1

Minimum scope of effect: Cluster

When value changes take effect: Reload

Required authorization to activate: EPAS service account

Specifies the target of checkpoint completion as a fraction of total time between checkpoints. This parameter spreads out the checkpoint writes while the system starts working toward the next
checkpoint.

The default of 0.5 aims to finish the checkpoint writes when 50% of the next checkpoint is ready. A value of 0.9 aims to finish the checkpoint writes when 90% of the next checkpoint is done. This value
throttles the checkpoint writes over a larger amount of time and avoids spikes of performance bottlenecking.

25.3.1.3.1.7 checkpoint_timeout

Parameter type: Integer

Default value: 5min

Range: 30s to 3600s

Minimum scope of effect: Cluster

When value changes take effect: Reload

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 954

https://www.postgresql.org/docs/15/kernel-resources.html#SYSVIPC

Required authorization to activate: EPAS service account

Maximum time between automatic WAL checkpoints, in seconds. Increasing this parameter can increase the amount of time needed for crash recovery.

Increasing checkpoint_timeout to a larger value, such as 15 minutes, can reduce the I/O load on your system, especially when using large values for shared_buffers .

The downside of making these adjustments to the checkpoint parameters is that your system uses a modest amount of additional disk space and takes longer to recover in the event of a crash. However,
for most users, this is worth it for a significant performance improvement.

25.3.1.3.1.8 max_wal_size

Parameter type: Integer

Default value: 1 GB

Range: 2 to 2147483647

Minimum scope of effect: Cluster

When value changes take effect: Reload

Required authorization to activate: EPAS service account

max_wal_size specifies the maximum size for the WAL to reach between automatic WAL checkpoints. This is a soft limit. WAL size can exceed max_wal_size under special circumstances, such
as when under a heavy load, with a failing archive_command, or with a high wal_keep_segments setting.

Increasing this parameter can increase the amount of time needed for crash recovery. You can set this parameter in the postgresql.conf file or on the server command line.

25.3.1.3.1.9 min_wal_size

Parameter type: Integer

Default value: 80 MB

Range: 2 to 2147483647

Minimum scope of effect: Cluster

When value changes take effect: Reload

Required authorization to activate: EPAS service account

If WAL disk usage stays below the value specified by min_wal_size , old WAL files are recycled for future use at a checkpoint rather than removed. This feature ensures that enough WAL space is
reserved to handle spikes in WAL usage, like when running large batch jobs. You can set this parameter in the postgresql.conf file or on the server command line.

25.3.1.3.1.10 bgwriter_delay

Parameter type: Integer

Default value: 200ms

Range: 10ms to 10000ms

Minimum scope of effect: Cluster

When value changes take effect: Reload

Required authorization to activate: EPAS service account

Specifies the delay between activity rounds for the background writer. In each round, the writer issues writes for some number of dirty buffers. (You can control the number of dirty buffers using the
bgwriter_lru_maxpages and bgwriter_lru_multiplier parameters.) It then sleeps for bgwriter_delay milliseconds, and repeats.

On many systems, the effective resolution of sleep delays is 10ms. Setting bgwriter_delay to a value that isn't a multiple of 10 might have the same results as setting it to the next higher multiple

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 955

of 10.

Typically, when tuning bgwriter_delay , you reduce it from its default value. This parameter is rarely increased. Saving on power consumption on a system with very low use is one case when you
might increase the value.

25.3.1.3.1.11 seq_page_cost

Parameter type: Floating point

Default value: 1

Range: 0 to 1.79769e+308

Minimum scope of effect: Per session

When value changes take effect: Immediate

Required authorization to activate: Session user

Sets the planner's estimate of the cost of a disk page fetch that's part of a series of sequential fetches. You can override this value for a particular tablespace by setting the tablespace parameter of the
same name. See ALTER TABLESPACE in the PostgreSQL core documentation.

The default value assumes very little caching, so it's often a good idea to reduce it. Even if your database is significantly larger than physical memory, you might want to try setting this parameter to
something lower than the default value of 1 to see if you get better query plans that way. If your database fits entirely in memory, you can lower this value much more, for example, to 0.1.

25.3.1.3.1.12 random_page_cost

Parameter type: Floating point

Default value: 4

Range: 0 to 1.79769e+308

Minimum scope of effect: Per session

When value changes take effect: Immediate

Required authorization to activate: Session user

Sets the planner's estimate of the cost of a nonsequentially fetched disk page. You can override the default for a particular tablespace by setting the tablespace parameter of the same name. See
ALTER TABLESPACE in the PostgreSQL core documentation.

Reducing this value relative to seq_page_cost causes the system to prefer index scans. Raising it makes index scans look relatively more expensive. You can raise or lower both values together to
change the importance of disk I/O costs relative to CPU costs, which are described by the cpu_tuple_cost and cpu_index_tuple_cost parameters.

The default value assumes very little caching, so it's often a good idea to reduce it. Even if your database is significantly larger than physical memory, you might want to try setting this parameter to 2
(that is, lower than the default) to see whether you get better query plans that way. If your database fits entirely in memory, you can lower this value much more, for example, to 0.1.

Although the system allows it, never set random_page_cost less than seq_page_cost . However, setting them equal or very close to equal makes sense if the database fits mostly or entirely in
memory, since in that case there's no penalty for touching pages out of sequence. Also, in a heavily cached database, lower both values relative to the CPU parameters, since the cost of fetching a page
already in RAM is much smaller than it normally is.

25.3.1.3.1.13 effective_cache_size

Parameter type: Integer

Default value: 128MB

Range: 8kB to 17179869176kB

Minimum scope of effect: Per session

When value changes take effect: Immediate

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 956

https://www.postgresql.org/docs/current/sql-altertablespace.html
https://www.postgresql.org/docs/current/sql-altertablespace.html

Required authorization to activate: Session user

Sets the planner's assumption about the effective size of the disk cache that's available to a single query. This assumption is factored into estimates of the cost of using an index. A higher value makes it
more likely index scans are used. A lower value makes it more likely sequential scans are used.

When setting this parameter, consider both EDB Postgres Advanced Server’s shared buffers and the portion of the kernel's disk cache that are used for EDB Postgres Advanced Server data files. Also,
consider the expected number of concurrent queries on different tables, since they have to share the available space.

This parameter doesn't affect the size of shared memory allocated by EDB Postgres Advanced Server, and it doesn't reserve kernel disk cache. Use it only for estimating.

If this parameter is set too low, the planner might decide not to use an index even when it's helpful to do so. Setting effective_cache_size to 50% of physical memory is a normal, conservative
setting. A more aggressive setting is approximately 75% of physical memory.

25.3.1.3.1.14 synchronous_commit

Parameter type: Boolean

Default value: true

Range: {true | false}

Minimum scope of effect: Per session

When value changes take effect: Immediate

Required authorization to activate: Session user

Specifies whether a transaction commit waits for WAL records to be written to disk before the command returns a success indication to the client. The safe setting is on, which is the default. When
off, there can be a delay between when success is reported to the client and when the transaction is really guaranteed to be safe against a server crash. (The maximum delay is three times
wal_writer_delay .)

Unlike fsync , setting this parameter to off does not create any risk of database inconsistency. An operating system or database crash might result in some recent "allegedly committed" transactions
being lost. However, the database state is the same as if those transactions aborted cleanly.

So, turning synchronous_commit off can be a useful alternative when performance is more important than exact certainty about the durability of a transaction. See Asynchronous Commit in
the PostgreSQL core documentation for information.

You can change this parameter at any time. The behavior for any one transaction is determined by the setting in effect when it commits. It's therefore possible and useful to have some transactions
commit synchronously and others asynchronously. For example, to make a single multistatement transaction commit asynchronously when the default is the opposite, issue SET LOCAL
synchronous_commit TO OFF in the transaction.

25.3.1.3.1.15 edb_max_spins_per_delay

Parameter type: Integer

Default value: 1000

Range: 10 to 1000

Minimum scope of effect: Per cluster

When value changes take effect: Restart

Required authorization to activate: EPAS service account

Specifies the maximum number of times that a session spins while waiting for a spin lock. If a lock isn't acquired, the session sleeps.

This parameter can be useful for systems that use non-uniform memory access (NUMA) architecture.

25.3.1.3.1.16 pg_prewarm.autoprewarm

Parameter type: Boolean

Default value: true

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 957

https://www.postgresql.org/docs/current/wal-async-commit.html

Range: {true | false}

Minimum scope of effect: Cluster

When value changes take effect: Restart

Required authorization to activate: EPAS service account

Controls whether the database server runs autoprewarm , a background worker process that dumps shared buffers to disk before a shutdown. It then prewarms the shared buffers the next time the
server is started, meaning it loads blocks from the disk back into the buffer pool.

The advantage to this parameter is that it shortens the warmup times after the server restarts by loading the data that was dumped to disk before shutdown.

Set pg_prewarm.autoprewarm to on to enable the autoprewarm worker. Set it to off to disable autoprewarm .

Before you can use autoprewarm , you must add $libdir/pg_prewarm to the libraries listed in the shared_preload_libraries configuration parameter of the postgresql.conf
file, as this example shows:

shared_preload_libraries = '$libdir/dbms_pipe,$libdir/edb_gen,$libdir/dbms_aq,$libdir/pg_prewarm'

After modifying the shared_preload_libraries parameter, restart the database server. After the restart, the autoprewarm background worker launches immediately after the server reaches
a consistent state.

The autoprewarm process starts loading blocks that were previously recorded in $PGDATA/autoprewarm.blocks until no free buffer space is left in the buffer pool. In this manner, any new
blocks that were loaded either by the recovery process or by the querying clients aren't replaced.

Once the autoprewarm process finishes loading buffers from disk, it periodically dumps shared buffers to disk at the interval specified by the pg_prewarm.autoprewarm_interval
parameter. At the next server restart, the autoprewarm process prewarms shared buffers with the blocks that were last dumped to disk.

See pg_prewarm.autoprewarm_interval for information on the autoprewarm background worker.

25.3.1.3.1.17 pg_prewarm.autoprewarm_interval

Parameter type: Integer

Default value: 300s

Range: 0s to 2147483s

Minimum scope of effect: Cluster

When value changes take effect: Reload

Required authorization to activate: EPAS service account

The minimum number of seconds after which the autoprewarm background worker dumps shared buffers to disk. If set to 0, shared buffers aren't dumped at regular intervals. They're dumped only
when you shut down the server.

See the pg_prewarm.autoprewarm for information on the autoprewarm background worker.

25.3.1.3.2 Resource usage/memory

These configuration parameters control resource use pertaining to memory.

edb_dynatune

Parameter type: Integer

Default value: 0

Range: 0 to 100

Minimum scope of effect: Cluster

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 958

When value changes take effect: Restart

Required authorization to activate: EPAS service account

Determines how much of the host system’s resources for the database server to use based on the host machine’s total available resources and the intended use of the host machine.

When you first install EDB Postgres Advanced Server, you set edb_dynatune according to the use of the host machine on which it was installed, that is, development machine, mixed-use machine, or
dedicated server. For most purposes, the database administrator doesn't need to adjust the various configuration parameters in the postgresql.conf file to improve performance.

You can set the edb_dynatune parameter to any integer value from 0 to 100. A value of 0 turns off the dynamic tuning feature, which leaves the database server resource use under the control of the
other configuration parameters in the postgresql.conf file.

A low, non-zero value, for example, 1 to 33, dedicates the least amount of the host machine’s resources to the database server. These values are suitable for a development machine where many other
applications are being used.

A value in the range of 34 to 66 dedicates a moderate amount of resources to the database server. This setting might be used for a dedicated application server that has a fixed number of other
applications running on the same machine as EDB Postgres Advanced Server.

The highest values of 67 to 100 dedicate most of the server’s resources to the database server. Use settings in this range for a host machine that's dedicated to running EDB Postgres Advanced Server.

After you select a value for edb_dynatune , you can further fine-tune database server performance by adjusting the other configuration parameters in the postgresql.conf file. Any adjusted
setting overrides the corresponding value chosen by edb_dynatune . To change the value of a parameter, uncomment the configuration parameter, specify the desired value, and restart the database
server.

edb_dynatune_profile

Parameter type: Enum

Default value: oltp

Range: {oltp | reporting | mixed}

Minimum scope of effect: Cluster

When value changes take effect: Restart

Required authorization to activate: EPAS service account

Controls tuning aspects based on the expected workload profile on the database server.

The following are the possible values:

oltp . Recommended when the database server is processing heavy online transaction processing workloads.
reporting . Recommended for database servers used for heavy data reporting.
mixed . Recommended for servers that provide a mix of transaction processing and data reporting.

25.3.1.3.3 Resource usage/EDB Resource Manager

These configuration parameters control resource use through EDB Resource Manager.

edb_max_resource_groups

Parameter type: Integer

Default value: 16

Range: 0 to 65536

Minimum scope of effect: Cluster

When value changes take effect: Restart

Required authorization to activate: EPAS service account

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 959

Controls the maximum number of resource groups that EDB Resource Manager can use simultaneously. You can create more resource groups than the value specified by
edb_max_resource_groups . However, the number of resource groups in active use by processes in these groups can't exceed this value.

Set this parameter large enough to handle the number of groups you expect to maintain.

edb_resource_group

Parameter type: String

Default value: none

Range: n/a

Minimum scope of effect: Per session

When value changes take effect: Immediate

Required authorization to activate: Session user

The name of the resource group for EDB Resource Manager to control in the current session according to the group’s resource type settings.

If you don't set this parameter, then the current session doesn't use EDB Resource Manager.

25.3.1.3.4 Query tuning

These configuration parameters are used for optimizer hints.

enable_hints

Parameter type: Boolean

Default value: true

Range: {true | false}

Minimum scope of effect: Per session

When value changes take effect: Immediate

Required authorization to activate: Session user

Enables optimizer hints embedded in SQL commands. Optimizer hints are ignored when this parameter is off.

25.3.1.3.5 Query tuning/planner method configuration

These configuration parameters are used for planner method configuration.

edb_enable_pruning

Parameter type: Boolean

Default value: true

Range: {true | false}

Minimum scope of effect: Per session

When value changes take effect: Immediate

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 960

Required authorization to activate: Session user

Allows the query planner to early prune partitioned tables. Early pruning means that the query planner can "prune" (that is, ignore) partitions that aren't searched in a query before generating query
plans. This setting helps improve performance because it prevents generating query plans of partitions that aren't searched.

Conversely, late pruning means that the query planner prunes partitions after generating query plans for each partition. The constraint_exclusion configuration parameter controls late
pruning.

The ability to early prune depends on the nature of the query in the WHERE clause. You can use early pruning in only simple queries with constraints like WHERE column = literal , for example,
WHERE deptno = 10 .

Don't use early pruning for more complex queries such as WHERE column = expression , for example, WHERE deptno = 10 + 5 .

25.3.1.3.6 Reporting and logging/what to log

These configuration parameters control reporting and logging.

trace_hints

Parameter type: Boolean

Default value: false

Range: {true | false}

Minimum scope of effect: Per session

When value changes take effect: Immediate

Required Aauthorization to activate: Session user

Use with the optimizer hints feature to provide more detailed information about whether the planner used a hint. Set the client_min_messages and trace_hints configuration parameters as
follows:

SET client_min_messages TO info;
SET trace_hints TO true;

This example shows how the SELECT command with the NO_INDEX hint displays the added information produced when you set those configuration parameters:

EXPLAIN SELECT /*+ NO_INDEX(accounts accounts_pkey) */ * FROM accounts
WHERE aid = 100;

INFO: [HINTS] Index Scan of [accounts].[accounts_pkey] rejected because
of NO_INDEX hint.

INFO: [HINTS] Bitmap Heap Scan of [accounts].[accounts_pkey] rejected
because of NO_INDEX hint.

 QUERY PLAN

Seq Scan on accounts (cost=0.00..14461.10 rows=1 width=97)
 Filter: (aid = 100)
(2 rows)

edb_log_every_bulk_value

Parameter type: Boolean

Default value: false

Range: {true | false}

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 961

Minimum scope of effect: Per session

When value changes take effect: Immediate

Required authorization to activate: Superuser

Bulk processing logs the resulting statements into both the EDB Postgres Advanced Server log file and the EDB Audit log file. However, logging every statement in bulk processing is costly. You can
control the bulk processing statements that are logged with the edb_log_every_bulk_value configuration parameter.

When this parameter is set to true , every statement in bulk processing is logged. During bulk execution, when edb_log_every_bulk_value is set to false , a log message is recorded once
per bulk processing along with the number of rows processed. The duration is emitted once per bulk processing.

25.3.1.3.7 Auditing settings

These configuration parameters are for use with the EDB Postgres Advanced Server database auditing feature.

25.3.1.3.7.1 edb_audit

Parameter type: Enum

Default value: none

Range: {none | csv | xml}

Minimum scope of effect: Cluster

When value changes take effect: Reload

Required authorization to activate: EPAS service account

Enables or disables database auditing. The values xml or csv enable database auditing. These values determine the file format in which to capture auditing information. none disables database
auditing.

25.3.1.3.7.2 edb_audit_directory

Parameter type: String

Default value: edb_audit

Range: n/a

Minimum scope of effect: Cluster

When value changes take effect: Reload

Required authorization to activate: EPAS service account

Specifies the directory where the audit log files are created. Specify either an absolute path or a path relative to the EDB Postgres Advanced Server data directory.

25.3.1.3.7.3 edb_audit_filename

Parameter type: String

Default value: audit-%Y%m%d_%H%M%S

Range: n/a

Minimum scope of effect: Cluster

When value changes take effect: Reload

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 962

Required authorization to activate: EPAS service account

Specifies the file name of the audit file where the auditing information is stored. The default file name is audit-%Y%m%d_%H%M%S . The escape sequences, such as %Y and %m , are replaced by the
appropriate current values of the system date and time.

25.3.1.3.7.4 edb_audit_rotation_day

Parameter type: String

Default value: every

Range: {none | every | sun | mon | tue | wed | thu | fri | sat} ...

Minimum scope of effect: Cluster

When value changes take effect: Reload

Required authorization to activate: EPAS service account

Specifies the day of the week on which to rotate the audit files. Valid values are sun , mon , tue , wed , thu , fri , sat , every , and none . To disable rotation, set the value to none . To
rotate the file every day, set the edb_audit_rotation_day value to every . To rotate the file on a specific day of the week, set the value to the desired day of the week.

25.3.1.3.7.5 edb_audit_rotation_size

Parameter type: Integer

Default value: 0MB

Range: 0MB to 5000MB

Minimum scope of effect: Cluster

When value changes take effect: Reload

Required authorization to activate: EPAS service account

Specifies a file size threshold in megabytes when file rotation occurs. If the parameter is commented out or set to 0, rotating the file based on size doesn't occur.

25.3.1.3.7.6 edb_audit_rotation_seconds

Parameter type: Integer

Default value: 0s

Range: 0s to 2147483647s

Minimum scope of effect: Cluster

When value changes take effect: Reload

Required authorization to activate: EPAS service account

Specifies the rotation time in seconds when a new log file is created. To disable this feature, leave this parameter set to 0.

25.3.1.3.7.7 edb_audit_connect

Parameter type: Enum

Default value: failed

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 963

Range: {none | failed | all}

Minimum scope of effect: Cluster

When value changes take effect: Reload

Required authorization to activate: EPAS service account

Enables auditing of database connection attempts by users. To disable auditing of all connection attempts, set edb_audit_connect to none . To audit all failed connection attempts, set the value
to failed . To audit all connection attempts, set the value to all .

25.3.1.3.7.8 edb_audit_disconnect

Parameter type: Enum

Default value: none

Range: {none | all}

Minimum scope of effect: Cluster

When value changes take effect: Reload

Required authorization to activate: EPAS service account

Enables auditing of database disconnections by connected users. To enable auditing of disconnections, set the value to all . To disable, set the value to none .

25.3.1.3.7.9 edb_audit_statement

Parameter type: String

Default value: ddl, error

Range: {none | ddl | dml | insert | update | delete | truncate | select | error | create | drop | alter | grant | revoke | rollback | set |
all | { select | update | delete | insert }@groupname} ...

Minimum scope of effect: Cluster

When value changes take effect: Reload

Required authorization to activate: EPAS service account

Specifies auditing of different categories of SQL statements as well as statements related to specific SQL commands.

To log errors, set the parameter value to error .
To audit all DDL statements, such as CREATE TABLE and ALTER TABLE , set the parameter value to ddl .
To audit specific types of DDL statements, the parameter values can include those specific SQL commands (create , drop , or alter). In addition, you can specify the object type following
the command, such as create table , create view , and drop role .
To audit all modification statements, such as INSERT , UPDATE , DELETE , or TRUNCATE , set edb_audit_statement to dml .
To audit specific types of DML statements, the parameter values can include the specific SQL commands insert , update , delete , or truncate . Include parameter values select ,
grant , revoke , or rollback to audit statements regarding those SQL commands.

To audit SET statements, include the parameter value SET .
To audit every statement, set the value to all .
To disable this feature, set the value to none .

The per-object level auditing audits the operations permitted by object privileges, such as SELECT , UPDATE , DELETE , and INSERT statements, including (@) and excluding (-) groups on a
given table. To audit a specific type of object, specify the name of the object group to audit. The edb_audit_statement parameter can include the specific SQL commands (select , update ,
delete , or insert) associated with a group name with (@) include and (-) exclude symbol.

25.3.1.3.7.10 edb_audit_tag

Parameter type: String

Default value: none

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 964

Minimum scope of effect: Session

When value changes take effect: Immediate

Required authorization to activate: User

Specifies a string value to include in the audit log when the edb_audit parameter is set to csv or xml .

25.3.1.3.7.11 edb_audit_destination

Parameter type: Enum

Default value: file

Range: {file | syslog}

Minimum scope of effect: Cluster

When value changes take effect: Reload

Required authorization to activate: EPAS service account

Specifies whether to record the audit log information in the directory as given by the edb_audit_directory parameter or to the directory and file managed by the syslog process. Set to file
to use the directory specified by edb_audit_directory .

Set to syslog to use the syslog process and its location as configured in the /etc/syslog.conf file. The syslog setting is valid only for EDB Postgres Advanced Server running on a Linux host.
It isn't supported on Windows systems.

Note

In recent Linux versions, syslog was replaced with rsyslog , and the configuration file is in /etc/rsyslog.conf .

25.3.1.3.7.12 edb_log_every_bulk_value

For information on edb_log_every_bulk_value , see edb_log_every_bulk_value.

25.3.1.3.8 Client connection defaults/locale and formatting

These configuration parameters affect locale and formatting.

icu_short_form

Parameter type: String

Default value: none

Range: n/a

Minimum scope of effect: Database

When value changes take effect: n/a

Required authorization to activate: n/a

Contains the default ICU short-form name assigned to a database or to the EDB Postgres Advanced Server instance. See Unicode collation algorithm for general information about the ICU short form
and the Unicode collation algorithm.

Set this configuration parameter either when:

Using the CREATE DATABASE command with the ICU_SHORT_FORM parameter. In this case, set the specified short-form name. It appears in the icu_short_form configuration
parameter when connected to this database.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 965

Creating an EDB Postgres Advanced Server instance with the initdb command used with the --icu_short_form option. In this case, set the specified short-form name. It appears in the
icu_short_form configuration parameter when connected to a database in that EDB Postgres Advanced Server instance. The database doesn't override it with its own ICU_SHORT_FORM

parameter and a different short form.

Once you set this parameter, you can't change it.

25.3.1.3.9 Client connection defaults/statement behavior

These configuration parameters affect statement behavior.

default_heap_fillfactor

Parameter type: Integer

Default value: 100

Range: 10 to 100

Minimum scope of effect: Per session

When value changes take effect: Immediate

Required authorization to activate: Session user

Sets the fill factor for a table when the FILLFACTOR storage parameter is omitted from a CREATE TABLE command.

The fill factor for a table is a percentage from 10 to 100, where 100 is complete packing. When you specify a smaller fill factor, INSERT operations pack table pages only to the indicated percentage.
The remaining space on each page is reserved for updating rows on that page. This approach gives UPDATE a chance to place the updated copy of a row on the same page as the original, which is more
efficient than placing it on a different page.

For a table whose entries are never updated, complete packing is the best choice. In heavily updated tables, use smaller fill factors.

edb_data_redaction

Parameter type: Boolean

Default value: true

Range: {true | false}

Minimum scope of effect: Per session

When value changes take effect: Immediate

Required authorization to activate: Session user

Data redaction is the support of policies to limit the exposure of certain sensitive data to certain users by altering the displayed information.

When set to TRUE , the data redaction is applied to all users except for superusers and the table owner:

Superusers and table owner bypass data redaction.
All other users get the redaction policy applied and see the reformatted data.

When set to FALSE , the following occurs:

Superusers and table owner still bypass data redaction.
All other users get an error.

For information on data redaction, see EDB Postgres Advanced Server Security Features.

25.3.1.3.10 Client connection defaults/other defaults

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 966

These parameters set miscellaneous client connection defaults.

oracle_home

Parameter type: String

Default value: none

Range: n/a

Minimum scope of effect: Cluster

When value changes take effect: Restart

Required authorization to activate: EPAS service account

Before creating a link to an Oracle server, you must direct EDB Postgres Advanced Server to the correct Oracle home directory. Set the LD_LIBRARY_PATH environment variable on Linux or PATH
on Windows to the lib directory of the Oracle client installation directory.

Alternatively, you can set the value of the oracle_home configuration parameter in the postgresql.conf file. The value specified in the oracle_home configuration parameter overrides the
LD_LIBRARY_PATH environment variable in Linux and PATH environment variable in Windows.

Note

The oracle_home configuration parameter must provide the correct path to the Oracle client, that is, OCI library.

To set the oracle_home configuration parameter in the postgresql.conf file, add the following line:

oracle_home = '<lib_directory>'

<lib_directory> is the name of the oracle_home path to the Oracle client installation directory that contains libclntsh.so in Linux and oci.dll in Windows.

After setting the oracle_home configuration parameter, you must restart the server for the changes to take effect. Restart the server:

On Linux, using the systemctl command or pg_ctl services

On Windows, from the Windows Services console

odbc_lib_path

Parameter type: String

Default value: none

Range: n/a

Minimum scope of effect: Cluster

When value changes take effect: Restart

Required authorization to activate: EPAS service account

If you're using an ODBC driver manager and if it's installed in a nonstandard location, specify the location by setting the odbc_lib_path configuration parameter in the postgresql.conf file:

odbc_lib_path = 'complete_path_to_libodbc.so'

The configuration file must include the complete pathname to the driver manager shared library, which is typically libodbc.so .

25.3.1.3.11 Compatibility options

These configuration parameters control various database compatibility features.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 967

edb_redwood_date

Parameter type: Boolean

Default value: false

Range: {true | false}

Minimum scope of effect: Per session

When value changes take effect: Immediate

Required authorization to activate: Session user

Translates DATE to TIMESTAMP when DATE appears as the data type of a column in the commands and the table definition is stored in the database. A time component is stored in the column along
with the date.

If edb_redwood_date is set to FALSE , the column’s data type in a CREATE TABLE or ALTER TABLE command remains as a native PostgreSQL DATE data type and is stored as such in the
database. The PostgreSQL DATE data type stores only the date without a time component in the column.

Regardless of the setting of edb_redwood_date , when DATE appears as a data type in any other context, it's always internally translated to a TIMESTAMP . It can thus handle a time component if
present. Examples of these contexts include:

The data type of a variable in an SPL declaration section
The data type of a formal parameter in an SPL procedure or SPL function
The return type of an SPL function

edb_redwood_greatest_least

Parameter type: Boolean

Default value: true

Range: {true | false}

Minimum scope of effect: Per session

When value changes take effect: Immediate

Required authorization to activate: Session user

The GREATEST function returns the parameter with the greatest value from its list of parameters. The LEAST function returns the parameter with the least value from its list of parameters.

When edb_redwood_greatest_least is set to TRUE , the GREATEST and LEAST functions return null when at least one of the parameters is null.

SET edb_redwood_greatest_least TO on;

SELECT GREATEST(1, 2, NULL, 3);

greatest

(1 row)

When edb_redwood_greatest_least is set to FALSE , null parameters are ignored except when all parameters are null. In that case, the functions return null.

SET edb_redwood_greatest_least TO off;

SELECT GREATEST(1, 2, NULL, 3);

greatest

 3
(1 row)

SELECT GREATEST(NULL, NULL, NULL);

greatest

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 968

(1 row)

edb_redwood_raw_names

Parameter type: Boolean

Default value: false

Range: {true | false}

Minimum scope of effect: Per session

When value changes take effect: Immediate

Required authorization to activate: Session user

When edb_redwood_raw_names is set to FALSE , database object names such as table names, column names, trigger names, program names, and user names appear in uppercase letters when
viewed from Redwood catalogs (that is, system catalogs prefixed by ALL_ , DBA_ , or USER_). In addition, quotation marks enclose names that were created with enclosing quotation marks.

When edb_redwood_raw_names is set to TRUE , the database object names are displayed as they're stored in the PostgreSQL system catalogs when viewed from the Redwood catalogs. Names
created without quotation marks around them appear in lower case as expected in PostgreSQL. Names created enclosed by quotation marks appear as they were created but without the quotation
marks.

For example, the following user name is created, and then a session is started with that user:

CREATE USER reduser IDENTIFIED BY password;
edb=# \c - reduser
Password for user reduser:
You are now connected to database "edb" as user "reduser".

When connected to the database as reduser , the following tables are created:

CREATE TABLE all_lower (col INTEGER);
CREATE TABLE ALL_UPPER (COL INTEGER);
CREATE TABLE "Mixed_Case" ("Col" INTEGER);

When viewed from the Redwood catalog USER_TABLES , with edb_redwood_raw_names set to the default value FALSE , the names appear in upper case. The exception is the Mixed_Case
name, which appears as created and also enclosed by quotation marks.

edb=> SELECT * FROM USER_TABLES;
 schema_name | table_name | tablespace_name | status | temporary
--------------+--------------+------------------+---------+-----------
 REDUSER | ALL_LOWER | | VALID | N
 REDUSER | ALL_UPPER | | VALID | N
 REDUSER | "Mixed_Case" | | VALID | N
(3 rows)

When viewed with edb_redwood_raw_names set to TRUE , the names appear in lower case except for the Mixed_Case name, which appears as created but without quotation marks.

edb=> SET edb_redwood_raw_names TO true;
SET
edb=> SELECT * FROM USER_TABLES;
 schema_name | table_name | tablespace_name | status | temporary
-------------+------------+------------------+--------+-----------
reduser | all_lower | | VALID | N
reduser | all_upper | | VALID | N
reduser | Mixed_Case | | VALID | N
(3 rows)

These names now match the case when viewed from the PostgreSQL pg_tables catalog:

edb=> SELECT schemaname, tablename, tableowner FROM pg_tables WHERE
tableowner = 'reduser';
 schemaname | tablename | tableowner
------------+------------+------------
reduser | all_lower | reduser
reduser | all_upper | reduser

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 969

reduser | Mixed_Case | reduser
(3 rows)

edb_redwood_strings

Parameter type: Boolean

Default value: false

Range: {true | false}

Minimum scope of effect: Per session

When value changes take effect: Immediate

Required authorization to activate: Session user

If the edb_redwood_strings parameter is set to TRUE , when a string is concatenated with a null variable or null column, the result is the original string. If edb_redwood_strings is set to
FALSE , the native PostgreSQL behavior is maintained, which is the concatenation of a string with a null variable or null column that gives a null result.

This example shows the difference. The sample application contains a table of employees. This table has a column named comm that's null for most employees. The following query is run with
edb_redwood_string set to FALSE . Concatenating a null column with non-empty strings produces a final result of null, so only employees that have a commission appear in the query result. The

output line for all other employees is null.

SET edb_redwood_strings TO off;

SELECT RPAD(ename,10) || ' ' || TO_CHAR(sal,'99,999.99') || ' ' ||
TO_CHAR(comm,'99,999.99') "EMPLOYEE COMPENSATION" FROM emp;

 EMPLOYEE COMPENSATION

 ALLEN 1,600.00 300.00
 WARD 1,250.00 500.00

 MARTIN 1,250.00 1,400.00

 TURNER 1,500.00 .00

(14 rows)

The following is the same query executed when edb_redwood_strings is set to TRUE . Here, the value of a null column is treated as an empty string. Concatenating an empty string with a non-
empty string produces the non-empty string.

SET edb_redwood_strings TO on;

SELECT RPAD(ename,10) || ' ' || TO_CHAR(sal,'99,999.99') || ' ' ||
TO_CHAR(comm,'99,999.99') "EMPLOYEE COMPENSATION" FROM emp;

 EMPLOYEE COMPENSATION

 SMITH 800.00
 ALLEN 1,600.00 300.00
 WARD 1,250.00 500.00
 JONES 2,975.00
 MARTIN 1,250.00 1,400.00
 BLAKE 2,850.00
 CLARK 2,450.00
 SCOTT 3,000.00
 KING 5,000.00
 TURNER 1,500.00 .00
 ADAMS 1,100.00
 JAMES 950.00
 FORD 3,000.00
 MILLER 1,300.00
(14 rows)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 970

edb_stmt_level_tx

Parameter type: Boolean

Default value: false

Range: {true | false}

Minimum scope of effect: Per session

When value changes take effect: Immediate

Required authorization to activate: Session user

The term statement-level transaction isolation describes the behavior in which a runtime error occurs in a SQL command, and all the updates on the database caused by that single command are rolled
back. For example, if a single UPDATE command successfully updates five rows, but an attempt to update a sixth row results in an exception, the updates to all six rows made by this UPDATE
command are rolled back. The effects of prior SQL commands that haven't yet been committed or rolled back are pending until a COMMIT or ROLLBACK command is executed.

In EDB Postgres Advanced Server, if an exception occurs while executing a SQL command, all the updates on the database since the start of the transaction are rolled back. In addition, the transaction
is left in an aborted state, and either a COMMIT or ROLLBACK command must be issued before another transaction can start.

If edb_stmt_level_tx is set to TRUE , then an exception doesn't roll back prior uncommitted database updates. If edb_stmt_level_tx is set to FALSE , then an exception rolls back
uncommitted database updates.

Note

Use edb_stmt_level_tx set to TRUE only when necessary, as it can have have a negative performance impact.

This example, run in PSQL, shows that when edb_stmt_level_tx is FALSE , the abort of the second INSERT command also rolls back the first INSERT command. In PSQL, you must issue the
command \set AUTOCOMMIT off . Otherwise every statement commits automatically, which doesn't show the effect of edb_stmt_level_tx .

\set AUTOCOMMIT off
SET edb_stmt_level_tx TO off;

INSERT INTO emp (empno,ename,deptno) VALUES (9001, 'JONES', 40);
INSERT INTO emp (empno,ename,deptno) VALUES (9002, 'JONES', 00);
ERROR: insert or update on table "emp" violates foreign key constraint
"emp_ref_dept_fk"
DETAIL: Key (deptno)=(0) is not present in table "dept".

COMMIT;
SELECT empno, ename, deptno FROM emp WHERE empno > 9000;

empno | ename | deptno
-------+-------+--------
(0 rows)

In this example, with edb_stmt_level_tx set to TRUE , the first INSERT command wasn't rolled back after the error on the second INSERT command. At this point, the first INSERT command
can either be committed or rolled back.

\set AUTOCOMMIT off
SET edb_stmt_level_tx TO on;

INSERT INTO emp (empno,ename,deptno) VALUES (9001, 'JONES', 40);
INSERT INTO emp (empno,ename,deptno) VALUES (9002, 'JONES', 00);
ERROR: insert or update on table "emp" violates foreign key constraint
"emp_ref_dept_fk"
DETAIL: Key (deptno)=(0) is not present in table "dept"

SELECT empno, ename, deptno FROM emp WHERE empno > 9000;

empno | ename | deptno
-------+-------+--------
 9001 | JONES | 40
(1 row)

COMMIT;

If a ROLLBACK command is issued instead of the COMMIT command, the insert of employee number 9001 is rolled back as well.

db_dialect

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 971

Parameter type: Enum

Default value: postgres

Range: {postgres | redwood}

Minimum scope of effect: Per session

When value changes take effect: Immediate

Required authorization to activate: Session user

In addition to the native PostgreSQL system catalog pg_catalog , EDB Postgres Advanced Server contains an extended catalog view. This is the sys catalog for the expanded catalog view. The
db_dialect parameter controls the order in which these catalogs are searched for name resolution.

When set to postgres , the namespace precedence is pg_catalog and then sys , giving the PostgreSQL catalog the highest precedence. When set to redwood , the namespace precedence is
sys and then pg_catalog , giving the expanded catalog views the highest precedence.

default_with_rowids

Parameter type: Boolean

Default value: false

Range: {true | false}

Minimum scope of effect: Per session

When value changes take effect: Immediate

Required authorization to activate: Session user

When set to on , CREATE TABLE includes a ROWID column in newly created tables, which you can then reference in SQL commands. In earlier versions of EDB Postgres Advanced Server,
ROWIDs were mapped to OIDs . With EDB Postgres Advanced Server version 12 and later, the ROWID is an autoincrementing value based on a sequence that starts with 1. It's assigned to each row

of a table created with the ROWIDs option. By default, a unique index is created on a ROWID column.

The ALTER and DROP operations are restricted on a ROWID column.

To restore a database with ROWIDs with EDB Postgres Advanced Server 11 or an earlier version, you must perform the following:

pg_dump : If a table includes OIDs then specify --convert-oids-to-rowids to dump a database. Otherwise, ignore the OIDs to continue table creation on EDB Postgres Advanced
Server version 12 and later.
pg_upgrade : Errors out. But if a table includes OIDs or ROWIDs , then you must perform the following:

1. Take a dump of the tables by specifying the --convert-oids-to-rowids option.
2. Drop the tables, and then perform the upgrade.
3. After the upgrade is successful, restore the dump into a new cluster that contains the dumped tables into a target database.

optimizer_mode

Parameter type: Enum

Default value: choose

Range: {choose | ALL_ROWS | FIRST_ROWS | FIRST_ROWS_10 | FIRST_ROWS_100 | FIRST_ROWS_1000}

Minimum scope of effect: Per session

When value changes take effect: Immediate

Required authorization to activate: Session user

Sets the default optimization mode for analyzing optimizer hints.

The following table shows the possible values.

Hint Description

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 972

ALL_ROWS Optimizes for retrieval of all rows of the result set.

CHOOSE Does no default optimization based on assumed number of rows to retrieve from the result set. This is the default.

FIRST_ROWS Optimizes for retrieval of only the first row of the result set.

FIRST_ROWS_10 Optimizes for retrieval of the first 10 rows of the results set.

FIRST_ROWS_100 Optimizes for retrieval of the first 100 rows of the result set.

FIRST_ROWS_1000 Optimizes for retrieval of the first 1000 rows of the result set.

Hint Description

These optimization modes are based on the assumption that the client submitting the SQL command is interested in viewing only the first n rows of the result set and then abandons the rest of the
result set. Resources allocated to the query are adjusted as such.

25.3.1.3.12 Customized options

custom_variable_classes

The custom_variable_classes parameter was deprecated in EDB Postgres Advanced Server 9.2. Parameters that previously depended on this parameter no longer require its support. In previous
releases of EDB Postgres Advanced Server, custom_variable_classes was required by parameters not normally known to be added by add-on modules, such as procedural languages.

dbms_alert.max_alerts

Parameter type: Integer

Default value: 100

Range: 0 to 500

Minimum scope of effect: Cluster

When value changes take effect: Restart

Required authorization to activate: EPAS service account

Specifies the maximum number of concurrent alerts allowed on a system using the DBMS_ALERTS package.

dbms_pipe.total_message_buffer

Parameter type: Integer

Default value: 30 Kb

Range: 30 Kb to 256 Kb

Minimum scope of effect: Cluster

When value changes take effect: Restart

Required authorization to activate: EPAS service account

Specifies the total size of the buffer used for the DBMS_PIPE package.

index_advisor.enabled

Parameter type: Boolean

Default value: true

Range: {true | false}

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 973

Minimum scope of effect: Per session

When value changes take effect: Immediate

Required authorization to activate: Session user

Temporarily suspends Index Advisor in an EDB-PSQL or PSQL session. To use this configuration parameter, the Index Advisor plugin index_advisor must be loaded in the EDB-PSQL or PSQL
session.

You can load the Index Advisor plugin as follows:

$ psql -d edb -U enterprisedb
Password for user enterprisedb:
psql (14.0.0)
Type "help" for help.

edb=# LOAD 'index_advisor';
LOAD

Use the SET command to change the parameter setting to control whether Index Advisor generates an alternative query plan:

edb=# SET index_advisor.enabled TO off;
SET
edb=# EXPLAIN SELECT * FROM t WHERE a < 10000;
 QUERY PLAN

 Seq Scan on t (cost=0.00..1693.00 rows=9864 width=8)
 Filter: (a < 10000)
(2 rows)

edb=# SET index_advisor.enabled TO on;
SET
edb=# EXPLAIN SELECT * FROM t WHERE a < 10000;
 QUERY PLAN

 Seq Scan on t (cost=0.00..1693.00 rows=9864 width=8)
 Filter: (a < 10000)
 Result (cost=0.00..327.88 rows=9864 width=8)
 One-Time Filter: '===[HYPOTHETICAL PLAN]==='::text
 -> Index Scan using "<hypothetical-index>:1" on t (cost=0.00..327.88
 rows=9864 width=8)
 Index Cond: (a < 10000)
(6 rows)

edb_sql_protect.enabled

Parameter type: Boolean

Default value: false

Range: {true | false}

Minimum scope of effect: Cluster

When value changes take effect: Reload

Required authorization to activate: EPAS service account

Controls whether SQL/Protect is actively monitoring protected roles by analyzing SQL statements issued by those roles and reacting according to the setting of edb_sql_protect.level . When
you're ready to begin monitoring with SQL/Protect, set this parameter to on .

edb_sql_protect.level

Parameter type: Enum

Default value: passive

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 974

Range: {learn | passive | active}

Minimum scope of effect: Cluster

When value changes take effect: Reload

Required authorization to activate: EPAS service account

Sets the action taken by SQL/Protect when a SQL statement is issued by a protected role.

You can set this parameter to one of the following values to use learn mode, passive mode, or active mode:

learn . Tracks the activities of protected roles and records the relations used by the roles. Use this value when initially configuring SQL/Protect so the expected behaviors of the protected
applications are learned.
passive . Issues warnings if protected roles are breaking the defined rules but doesn't stop any SQL statements from executing. This is the next step after SQL/Protect learns the expected

behavior of the protected roles. This essentially behaves in intrusion detection mode. You can run it in production if you monitor it.
active . Stops all invalid statements for a protected role. This behavior acts as a SQL firewall that prevents dangerous queries from running. This is particularly effective against early

penetration testing when the attacker is trying to determine the vulnerability point and the type of database behind the application. Not only does SQL/Protect close those vulnerability points, it
tracks the blocked queries. This behavior can alert administrators before the attacker finds an alternative method of penetrating the system.

If you're using SQL/Protect for the first time, set edb_sql_protect.level to learn .

edb_sql_protect.max_protected_relations

Parameter type: Integer

Default value: 1024

Range: 1 to 2147483647

Minimum scope of effect: Cluster

When value changes take effect: Restart

Required authorization to activate: EPAS service account

Sets the maximum number of relations that can be protected per role. The total number of protected relations for the server is the number of protected relations times the number of protected roles.
Every protected relation consumes space in shared memory. The space for the maximum possible protected relations is reserved during database server startup.

If the server is started when edb_sql_protect.max_protected_relations is set to a value outside of the valid range (for example, a value of 2,147,483,648), then a warning message is
logged in the database server log file:

2014-07-18 16:04:12 EDT WARNING: invalid value for parameter
"edb_sql_protect.max_protected_relations": "2147483648"
2014-07-18 16:04:12 EDT HINT: Value exceeds integer range.

The database server starts successfully but with edb_sql_protect.max_protected_relations set to the default value of 1024.

Although the upper range for the parameter is listed as the maximum value for an integer data type, the practical setting depends on how much shared memory is available and the parameter value used
during database server startup.

As long as the space required can be reserved in shared memory, the value is acceptable. If the value is such that the space in shared memory can't be reserved, the database server startup fails with an
error message like the following:

2014-07-18 15:22:17 EDT FATAL: could not map anonymous shared memory:
Cannot allocate memory
2014-07-18 15:22:17 EDT HINT: This error usually means that PostgreSQL's
request for a shared memory segment exceeded available memory, swap
space or huge pages. To reduce the request size (currently 2070118400
bytes), reduce PostgreSQL's shared memory usage, perhaps by reducing
shared_buffers or max_connections.

In this case, reduce the parameter value until you can start the database server successfully.

edb_sql_protect.max_protected_roles

Parameter type: Integer

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 975

Default value: 64

Range: 1 to 2147483647

Minimum scope of effect: Cluster

When value changes take effect: Restart

Required authorization to activate: EPAS service account

Sets the maximum number of roles that can be protected.

Every protected role consumes space in shared memory. The server reserves space for the number of protected roles times the number of protected relations
(edb_sql_protect.max_protected_relations). The space for the maximum possible protected roles is reserved during database server startup.

If the database server is started when edb_sql_protect.max_protected_roles is set to a value outside of the valid range (for example, a value of 2,147,483,648), then a warning message is
logged in the database server log file:

2014-07-18 16:04:12 EDT WARNING: invalid value for parameter
"edb_sql_protect.max_protected_roles": "2147483648"
2014-07-18 16:04:12 EDT HINT: Value exceeds integer range.

The database server starts successfully but with edb_sql_protect.max_protected_roles set to the default value of 64.

Although the upper range for the parameter is listed as the maximum value for an integer data type, the practical setting depends on how much shared memory is available and the parameter value used
during database server startup.

As long as the space required can be reserved in shared memory, the value is acceptable. If the value is such that the space in shared memory can't be reserved, the database server startup fails with an
error message such as the following:

2014-07-18 15:22:17 EDT FATAL: could not map anonymous shared memory:
Cannot allocate memory
2014-07-18 15:22:17 EDT HINT: This error usually means that PostgreSQL's
request for a shared memory segment exceeded available memory, swap
space or huge pages. To reduce the request size (currently 2070118400
bytes), reduce PostgreSQL's shared memory usage, perhaps by reducing
shared_buffers or max_connections.

In this cases, reduce the parameter value until you can start the database server successfully.

edb_sql_protect.max_queries_to_save

Parameter type: Integer

Default value: 5000

Range: 100 to 2147483647

Minimum scope of effect: Cluster

When value changes take effect: Restart

Required authorization to activate: EPAS service account

Sets the maximum number of offending queries to save in the view edb_sql_protect_queries .

Every saved query consumes space in shared memory. The space for the maximum possible queries that can be saved is reserved during database server startup.

If the database server is started when edb_sql_protect.max_queries_to_save is set to a value outside of the valid range (for example, a value of 10), then a warning message is logged in the
database server log file:

2014-07-18 13:05:31 EDT WARNING: 10 is outside the valid range for
parameter "edb_sql_protect.max_queries_to_save" (100 .. 2147483647)

The database server starts successfully but with edb_sql_protect.max_queries_to_save set to the default value of 5000.

Although the upper range for the parameter is listed as the maximum value for an integer data type, the practical setting depends on how much shared memory is available and the parameter value used
during database server startup.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 976

As long as the space required can be reserved in shared memory, the value is acceptable. If the value is such that the space in shared memory can't be reserved, the database server startup fails with an
error message like the following:

2014-07-18 15:22:17 EDT FATAL: could not map anonymous shared memory:
Cannot allocate memory
2014-07-18 15:22:17 EDT HINT: This error usually means that PostgreSQL's
request for a shared memory segment exceeded available memory, swap
space or huge pages. To reduce the request size (currently 2070118400
bytes), reduce PostgreSQL's shared memory usage, perhaps by reducing
shared_buffers or max_connections.

In this case, reduce the parameter value until you can start the database server successfully.

edb_wait_states.directory

Parameter type: String

Default value: edb_wait_states

Range: n/a

Minimum scope of effect: Cluster

When value changes take effect: Restart

Required authorization to activate: EPAS service account

Sets the directory path where the EDB wait states log files are stored. Use a full, absolute path, not a relative path. However, the default setting is edb_wait_states , which makes
$PGDATA/edb_wait_states the default directory location. For information on EDB wait states, see EDB wait states under Performance analysis and tuning.

edb_wait_states.retention_period

Parameter type: Integer

Default value: 604800s

Range: 86400s to 2147483647s

Minimum scope of effect: Cluster

When value changes take effect: Reload

Required authorization to activate: EPAS service account

Sets the time to wait before deleting the log files for EDB wait states. The default is 604,800 seconds, which is 7 days. For information on EDB wait states, see EDB wait dtates under Performance
analysis and tuning.

edb_wait_states.sampling_interval

Parameter type: Integer

Default value: 1s

Range: 1s to 2147483647s

Minimum scope of effect: Cluster

When value changes take effect: Reload

Required authorization to activate: EPAS service account

Sets the timing interval between two sampling cycles for EDB wait states. The default setting is 1 second. For information on EDB wait states, see EDB wait states under Performance analysis and
tuning.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 977

edbldr.empty_csv_field

Parameter type: Enum

Default value: NULL

Range: {NULL | empty_string | pgsql}

Minimum scope of effect: Per session

When value changes take effect: Immediate

Required authorization to activate: Session user

Use the edbldr.empty_csv_field parameter to specify how EDB*Loader treats an empty string. The table shows the valid values for the edbldr.empty_csv_field parameter.

Parameter setting EDB*Loader behavior

NULL An empty field is treated as NULL .

empty_string An empty field is treated as a string of length zero.

pgsql An empty field is treated as a NULL if it doesn't contain quotes and as an empty string if it contains
quotes.

For more information about the edbldr.empty_csv_field parameter in EDB*Loader, see the Tools, utilities, and components.

utl_encode.uudecode_redwood

Parameter type: Boolean

Default value: false

Range: {true | false}

Minimum scope of effect: Per session

When value changes take effect: Immediate

Required authorization to activate: Session user

When set to TRUE , EDB Postgres Advanced Server’s UTL_ENCODE.UUDECODE function can decode uuencoded data that was created by the Oracle implementation of the
UTL_ENCODE.UUENCODE function.

When set to FALSE , EDB Postgres Advanced Server’s UTL_ENCODE.UUDECODE function can decode uuencoded data created by EDB Postgres Advanced Server’s UTL_ENCODE.UUENCODE
function.

utl_file.umask

Parameter type: String

Default value: 0077

Range: Octal digits for umask settings

Minimum scope of effect: Per session

When value changes take effect: Immediate

Required authorization to activate: Session user

The utl_file.umask parameter sets the file mode creation mask in a manner similar to the Linux umask command. This is for use only within the EDB Postgres Advanced Server UTL_FILE
package.

Note

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 978

The utl_file.umask parameter isn't supported on Windows systems.

The value specified for utl_file.umask is a three- or four-character octal string that's valid for the Linux umask command. The setting determines the permissions on files created by the
UTL_FILE functions and procedures.

The following shows the results of the default utl_file.umask setting of 0077. All permissions are denied on users belonging to the enterprisedb group as well as all other users. Only the
user enterprisedb has read and write permissions on the file.

-rw------- 1 enterprisedb enterprisedb 21 Jul 24 16:08 utlfile

25.3.1.3.13 Ungrouped

These configuration parameters apply only to EDB Postgres Advanced Server and are for a specific, limited purpose.

nls_length_semantics

Parameter type: Enum

Default value: byte

Range: {byte | char}

Minimum scope of effect: Per session

When value changes take effect: Immediate

Required authorization to activate: Superuser

This parameter has no effect in EDB Postgres Advanced Server. For example, this form of the ALTER SESSION command is accepted in EDB Postgres Advanced Server without throwing a syntax error.
However, it doesn't alter the session environment.

ALTER SESSION SET nls_length_semantics = char;

Note

Since setting this parameter has no effect on the server environment, it doesn't appear in the system view pg_settings .

query_rewrite_enabled

Parameter type: Enum

Default value: false

Range: {true | false | force}

Minimum scope of effect: Per session

When value changes take effect: Immediate

Required authorization to activate: Session user

This parameter has no effect in EDB Postgres Advanced Server. For example, this form of the ALTER SESSION command is accepted in EDB Postgres Advanced Server without throwing a syntax error.
However, it doesn't alter the session environment.

ALTER SESSION SET query_rewrite_enabled = force;

Note

Since setting this parameter has no effect on the server environment, it doesn't appear in the system view pg_settings .

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 979

query_rewrite_integrity

Parameter type: Enum

Default value: enforced

Range: {enforced | trusted | stale_tolerated}

Minimum scope of effect: Per session

When value changes take effect: Immediate

Required authorization to activate: Superuser

This parameter has no effect in EDB Postgres Advanced Server. For example, this form of the ALTER SESSION command is accepted in EDB Postgres Advanced Server without throwing a syntax error.
However, it doesn't alter the session environment.

ALTER SESSION SET query_rewrite_integrity = stale_tolerated;

Note

Since setting this parameter has no effect on the server environment, it doesn't appear in the system view pg_settings .

timed_statistics

Parameter type: Boolean

Default value: true

Range: {true | false}

Minimum scope of effect: Per session

When value changes take effect: Immediate

Required authorization to activate: Session user

Controls collecting timing data for the Dynamic Runtime Instrumentation Tools Architecture (DRITA) feature. When set to on , timing data is collected.

Note

When EDB Postgres Advanced Server is installed, the postgresql.conf file contains an explicit entry that setts timed_statistics to off . If this entry is commented out and the
configuration file is reloaded, timed statistics collection uses the default value, which is on .

25.3.1.3.14 Audit archiver

These configuration parameters are used by the EDB Postgres Advanced Server database audit archiving feature.

edb_audit_archiver

Parameter type: Enum

Default value: false

Range: {true | false}

Minimum scope of effect: Cluster

When value changes take effect: Restart

Required authorization to activate: EPAS service account

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 980

Enables or disables database audit archiving.

edb_audit_archiver_timeout

Parameter type: Integer

Default value: 300s

Range: 30s to 1d

Minimum scope of effect: Cluster

When value changes take effect: Reload

Required authorization to activate: EPAS service account

Enforces a timeout in seconds when a database attempts to archive a log file.

edb_audit_archiver_filename_prefix

Parameter type: String

Default value: audit-

Range: n/a

Minimum scope of effect: Cluster

When value changes take effect: Reload

Required authorization to activate: EPAS service account

Specifies the file name of an audit log file that needs to be archived. The file name must align with the edb_audit_filename parameter. The audit files with
edb_audit_archiver_filename_prefix in the edb_audit_directory are eligible for compression or expiration.

edb_audit_archiver_compress_time_limit

Parameter type: Integer

Default value: -1

Allowed value: 0, -1, or any positive number value in seconds

Minimum scope of effect: Cluster

When value changes take effect: Reload

Required authorization to activate: EPAS service account

Specifies the time in seconds after which audit logs are eligible for compression. The possible values to set this parameter are:

0 . Compression starts as soon as the log file isn't a current file.
-1 . Compression of the log file on a timely basis doesn't occur.

edb_audit_archiver_compress_size_limit

Parameter type: Integer

Default value: -1

Allowed value: 0, -1, or any positive number value in megabytes

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 981

Minimum scope of effect: Cluster

When value changes take effect: Reload

Required authorization to activate: EPAS service account

Specifies a file size threshold in megabytes, after which audit logs are eligible for compression. If the parameter is set to -1, no compression of the log file occurs based on size.

edb_audit_archiver_compress_command

Parameter type: String

Default value: gzip %p

Range: n/a

Minimum scope of effect: Cluster

When value changes take effect: Reload

Required authorization to activate: EPAS service account

Specifies the command to execute compressing of the audit log files. The default value for edb_audit_archiver_compress_command is gzip %p . The gzip provides a standard method of
compressing files. The %p in the string is replaced by the path name of the file to archive.

edb_audit_archiver_compress_suffix

Parameter type: String

Default value: .gz

Range: n/a

Minimum scope of effect: Cluster

When value changes take effect: Reload

Required authorization to activate: EPAS service account

Specifies the file name of an already compressed log file. The file name must align with edb_audit_archiver_compress_command . The default file name is .gz .

edb_audit_archiver_expire_time_limit

Parameter type: Integer

Default value: -1

Allowed value: 0, -1, or any positive number value in seconds

Minimum scope of effect: Cluster

When value changes take effect: Reload

Required authorization to activate: EPAS service account

Specifies the time in seconds after which audit logs are eligible to expire. The possible values to set this parameter are:

0 . Expiration starts as soon as the log file isn't a current file.
-1 . Expiration of the log file on a timely basis doesn't occur.

edb_audit_archiver_expire_size_limit

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 982

Parameter type: Integer

Default value: -1

Allowed value: 0, -1, or any positive number value in megabytes

Minimum scope of effect: Cluster

When value changes take effect: Reload

Required authorization to activate: EPAS service account

Specifies a file size threshold in megabytes, after which audit logs are eligible to expire. If the parameter is set to -1, no expiration of a log file based on size occurs.

edb_audit_archiver_expire_command

Parameter type: String

Default value: ''

Range: n/a

Minimum scope of effect: Cluster

When value changes take effect: Reload

Required authorization to activate: EPAS service account

Specifies the command to execute on an expired audit log file before removal.

edb_audit_archiver_sort_file

Parameter type: String

Default value: mtime

Range: n/a

Minimum scope of effect: Cluster

When value changes take effect: Reload

Required authorization to activate: EPAS service account

Identifies the oldest log file to sort alphabetically or based on mtime .

mtime sorts files based on file modification time.
alphabetic sorts files alphabetically based on the file name.

25.3.2 Index Advisor

The Index Advisor utility helps determine the columns to index to improve performance in a given workload. Index Advisor considers B-tree (single-column or composite) index types. It doesn't identify
other index types, that is, GIN, GiST, and Hash, that might improve performance. Index Advisor is installed with EDB Postgres Advanced Server.

Index Advisor works with EDB Postgres Advanced Server's query planner by creating hypothetical indexes that the query planner uses to calculate execution costs as if such indexes were available.
Index Advisor identifies the indexes by analyzing SQL queries supplied in the workload.

You can use Index Advisor to analyze SQL queries in any of these ways:

Invoke the Index Advisor utility program, supplying a text file containing the SQL queries that you want to analyze. Index Advisor generates a text file with CREATE INDEX statements for the
recommended indexes.
Provide queries at the EDB-PSQL command line that you want Index Advisor to analyze.
Access Index Advisor through the Postgres Enterprise Manager (PEM) client. When accessed using the PEM client, Index Advisor works with SQL Profiler, providing indexing recommendations on
code captured in SQL traces. For more information about using SQL Profiler and Index Advisor with PEM, see Using the Index Advisor in the PEM documentation.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 983

https://www.enterprisedb.com/docs/pem/latest/profiling_workloads/index_advisor/

Index Advisor attempts to make indexing recommendations on INSERT , UPDATE , DELETE , and SELECT statements. When invoking Index Advisor, you supply the workload in the form of either:

If you're providing the command in an SQL file, a set of queries
If you're specifying the SQL statement at the psql command line, an EXPLAIN statement

Index Advisor displays the query plan and estimated execution cost for the supplied query but doesn't execute the query.

During the analysis, Index Advisor compares the query execution costs with and without hypothetical indexes. If the execution cost using a hypothetical index is less than the execution cost without it:

Both plans are reported in the EXPLAIN statement output.
Metrics that quantify the improvement are calculated.
Index Advisor generates the CREATE INDEX statement needed to create the index.

If no hypothetical index can be found that reduces the execution cost, Index Advisor displays only the original query plan output of the EXPLAIN statement.

Note

Index Advisor doesn't create indexes on the tables. Use the CREATE INDEX statements supplied by Index Advisor to add any recommended indexes to your tables.

An extension supplied with EDB Postgres Advanced Server creates the table in which Index Advisor stores the indexing recommendations generated by the analysis. The extension also creates a function
and a view of the table to simplify retrieving and interpreting the results.

If you choose to forgo running the script, Index Advisor logs recommendations in a temporary table that's available only for the current Index Advisor session.

25.3.2.1 Index Advisor components

The Index Advisor shared library interacts with the query planner to make indexing recommendations.

On Windows, the EDB Postgres Advanced Server installer creates the shared library in the libdir subdirectory of your EDB Postgres Advanced Server home directory. The shared library is:

index_advisor.dll

For Linux, install the edb-asxx-server-indexadvisor RPM package, where xx is the EDB Postgres Advanced Server version number. The shared library is:

index_advisor.so

Only a superuser can load libraries in the libdir directory. A database administrator can allow a non-superuser to use Index Advisor by manually copying the Index Advisor file from the libdir
directory into the libdir/plugins directory under your EDB Postgres Advanced Server home directory. Only allow a trusted non-superuser to have access to the plugin. This is an unsafe practice in
a production environment.

The installer also creates the Index Advisor utility program and setup script:

pg_advise_index

A utility program that reads a user-supplied input file containing SQL queries and produces a text file containing CREATE INDEX statements. You can use these statements to create the indexes
recommended by the Index Advisor. The pg_advise_index program is located in the bin subdirectory of the EDB Postgres Advanced Server home directory.

Note

pg_advise_index asks the backend process to load the index_advisor plugin first from $libdir/plugins . If not found, then it writes the error in the server log file and attempts to
load from $libdir .

index_advisor_log

Index Advisor logs indexing recommendations in the index_advisor_log table. If Index Advisor doesn't find the index_advisor_log table in the user's search path, it stores any indexing
recommendations in a temporary table of the same name. The temporary table exists only for rest of the current session.

show_index_recommendations()

A PL/pgSQL function that interprets and displays the recommendations made during a specific Index Advisor session, as identified by its backend process ID.

index_recommendations

Index Advisor creates the index_recommendations view based on information stored in the index_advisor_log table during a query analysis. The view produces output in the same format as
the show_index_recommendations() function but contains Index Advisor recommendations for all stored sessions. The result set returned by the show_index_recommendations()
function is limited to a specified session.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 984

25.3.2.2 Index Advisor configuration

Index Advisor doesn't require configuration to generate recommendations that are available only for rest of the current session. To store the results of multiple sessions, you must create the
index_advisor_log table, where EDB Postgres Advanced Server stores Index Advisor recommendations. To create the index_advisor_log table, run the index_advisor.sql script.

When selecting a storage schema for the Index Advisor table, function, and view, keep in mind that all users that invoke Index Advisor and query the result set must have USAGE privileges on the
schema. The schema must be in the search path of all users that are interacting with Index Advisor.

1. Place the selected schema at the start of your search_path parameter. For example, suppose your search path is currently:

search_path=public, accounting

If you want to create the Index Advisor objects in a schema named advisor , use the command:

SET search_path = advisor, public, accounting;

2. Create the index_advisor extension, which creates the database objects. Connect to the database as the database superuser using psql, and enter the command:

Note

If you're using Index Advisor in an earlier version of EDB Postgres Advanced Server and upgrading to the latest version, then use this command to create the index_advisor extension:

This command creates the extension and links any of the old database objects to it.

3. Grant privileges on the index_advisor_log table to all Index Advisor users. This step isn't necessary if the Index Advisor user is a superuser or the owner of these database objects.

Grant SELECT and INSERT privileges on the index_advisor_log table to allow a user to invoke Index Advisor.
Grant DELETE privileges on the index_advisor_log table to allow the specified user to delete the table contents.
Grant SELECT privilege on the index_recommendations view.

This example shows creating Index Advisor database objects in a schema named ia . The schema is accessible to an Index Advisor user with user name ia_user .

While using Index Advisor, the specified schema (ia) must be included in the ia_user search_path parameter.

25.3.2.3 Using Index Advisor

When you invoke Index Advisor, you must supply a workload. The workload is either a query specified at the command line or a file that contains a set of queries. These queries are executed by the
pg_advise_index() function. After analyzing the workload, Index Advisor stores the result set in either a temporary table or in a permanent table. You can review the indexing recommendations

generated by Index Advisor and use the CREATE INDEX statements generated by Index Advisor to create the recommended indexes.

Note

Don't run Index Advisor in read-only transactions.

The following examples assume that superuser enterprisedb is the Index Advisor user. The Index Advisor database objects were created in a schema in the search_path of superuser

running as the database superuser using psql
create extension index_advisor
;

running as the database superuser using psql
create extension index_advisor version 1.1;

running as enterprisedb user
edb-psql -d edb -U
enterprisedb

running commands inside
psql
CREATE SCHEMA
ia;
SET search_path TO
ia;
CREATE EXTENSION
index_advisor;
GRANT USAGE ON SCHEMA ia TO
ia_user;
GRANT SELECT, INSERT, DELETE ON index_advisor_log TO
ia_user;
GRANT SELECT ON index_recommendations TO
ia_user;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 985

enterprisedb .

The examples use the table created with this statement:

CREATE TABLE t(a INT, b INT);
INSERT INTO t SELECT s, 99999 - s FROM generate_series(0,99999) AS s;
ANALYZE t;

The resulting table contains the following rows:

a | b
-------+-------
 0 | 99999
 1 | 99998
 2 | 99997
 3 | 99996
 .
 .
 .
99997 | 2
99998 | 1
99999 | 0

Using the pg_advise_index utility

When invoking the pg_advise_index utility, you must include the name of a file that contains the queries executed by pg_advise_index . The queries can be on the same line or on separate
lines, but each query must be terminated by a semicolon. Queries in the file can't begin with the EXPLAIN keyword.

This example shows the contents of a sample workload.sql file:

SELECT * FROM t WHERE a = 500;
SELECT * FROM t WHERE b < 1000;

Run the pg_advise_index program:

$ pg_advise_index -d edb -h localhost -U enterprisedb -s 100M -o advisory.sql
workload.sql
poolsize = 102400 KB
load workload from file 'workload.sql'
Analyzing queries .. done.
size = 2184 KB, benefit = 1684.720000
size = 2184 KB, benefit = 1655.520000
/* 1. t(a): size=2184 KB, benefit=1684.72 */
/* 2. t(b): size=2184 KB, benefit=1655.52 */
/* Total size = 4368KB */

In the code sample, the -d , -h , and -U options are psql connection options.

-s

An optional parameter that limits the maximum size of the indexes recommended by Index Advisor. If Index Advisor doesn't return a result set, -s might be set too low.

-o

The recommended indexes are written to the file specified after the -o option.

The information displayed by the pg_advise_index program is logged in the index_advisor_log table. In response to the command shown in the example, Index Advisor writes the following
CREATE INDEX statements to the advisory.sql output file:

create index idx_t_1 on t (a);
create index idx_t_2 on t (b);

You can create the recommended indexes at the psql command line with the CREATE INDEX statements in the file. Or you can create the indexes by executing the advisory.sql script.

$ edb-psql -d edb -h localhost -U enterprisedb -e -f advisory.sql
create index idx_t_1 on t (a);
CREATE INDEX
create index idx_t_2 on t (b);

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 986

CREATE INDEX

Note

pg_advise_index asks the backend process to load the index_advisor plugin first from $libdir/plugins . If not found, then it writes the error in the server log file and attempts to load
from $libdir .

Using Index Advisor at the psql command line

You can use Index Advisor to analyze SQL statements entered at the edb-psql or psql command line.

To load the Index Advisor plugin and using Index Advisor:

1. Connect to the server with the edb-psql command line utility, and load the Index Advisor plugin:

$ edb-psql -d edb -U enterprisedb
...
edb=# LOAD 'index_advisor';
LOAD

2. Use the edb-psql command line to invoke each SQL command that you want Index Advisor to analyze. Index Advisor stores any recommendations for the queries in the
index_advisor_log table. If the index_advisor_log table doesn't exist in the user's search_path , a temporary table is created with the same name. This temporary table exists

only for the rest of the user's current session.

After you load the Index Advisor plugin, Index Advisor analyzes all SQL statements and logs any indexing recommendations for the rest of the session.

If you want Index Advisor to analyze a query and make indexing recommendations without executing the query, preface the SQL statement with the EXPLAIN keyword.

If you don't preface the statement with the EXPLAIN keyword, Index Advisor analyzes the statement while the statement executes. It writes the indexing recommendations to the
index_advisor_log table for later review.

In this example, the EXPLAIN statement displays the normal query plan. It's followed by the query plan of the same query if the query were using the recommended hypothetical index:

edb=# EXPLAIN SELECT * FROM t WHERE a < 10000;

 QUERY PLAN

Seq Scan on t (cost=0.00..1693.00 rows=10105 width=8)
 Filter: (a < 10000)
Result (cost=0.00..337.10 rows=10105 width=8)
 One-Time Filter: '===[HYPOTHETICAL PLAN]==='::text
 -> Index Scan using "<hypothetical-index>:1" on t
 (cost=0.00..337.10 rows=10105 width=8)
 Index Cond: (a < 10000)
(6 rows)

edb=# EXPLAIN SELECT * FROM t WHERE a = 100;
 QUERY PLAN

Seq Scan on t (cost=0.00..1693.00 rows=1 width=8)
 Filter: (a = 100)
Result (cost=0.00..8.28 rows=1 width=8)
 One-Time Filter: '===[HYPOTHETICAL PLAN]==='::text
 -> Index Scan using "<hypothetical-index>:3" on t
 (cost=0.00..8.28 rows=1 width=8)
 Index Cond: (a = 100)
(6 rows)

After loading the Index Advisor plugin, the default value of index_advisor.enabled is on . The Index Advisor plugin must be loaded to use a SET or SHOW command to display the current
value of index_advisor.enabled .

You can use the index_advisor.enabled parameter to temporarily disable Index Advisor without interrupting the psql session:

edb=# SET index_advisor.enabled TO off;
SET

To enable Index Advisor, set the parameter to on :

edb=# SET index_advisor.enabled TO on;
SET

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 987

25.3.2.4 Reviewing the Index Advisor recommendations

You can review the index recommendations generated by Index Advisor in several ways. You can:

Query the index_advisor_log table.
Run the show_index_recommendations function.
Query the index_recommendations view.

Using the show_index_recommendations() function

To review the recommendations of the Index Advisor utility using the show_index_recommendations() function, call the function, specifying the process ID of the session:

SELECT show_index_recommendations(pid);

Where pid is the process ID of the current session. If you don't know the process ID of your current session, passing a value of NULL also returns a result set for the current session.

This code fragment shows an example of a row in a result set:

edb=# SELECT show_index_recommendations(null);
 show_index_recommendations

create index idx_t_a on t(a);/* size: 2184 KB, benefit: 3040.62,
gain: 1.39222666981456 */
(1 row)

In the example, create index idx_t_a on t(a) is the SQL statement needed to create the index suggested by Index Advisor. Each row in the result set shows:

The command required to create the recommended index.
The maximum estimated size of the index.
The calculated benefit of using the index.
The estimated gain that results from implementing the index.

You can display the results of all Index Advisor sessions from the following view:

SELECT * FROM index_recommendations;

Querying the index_advisor_log table

Index Advisor stores indexing recommendations in a table named index_advisor_log . Each row in the index_advisor_log table contains the result of a query where Index Advisor
determines it can recommend a hypothetical index to reduce the execution cost of that query.

Column Type Description

reloid oid OID of the base table for the index

relname name Name of the base table for the index

attrs integer[] Recommended index columns (identified by column number)

benefit real Calculated benefit of the index for this query

index_size integer Estimated index size in disk-pages

backend_pid integer Process ID of the process generating this recommendation

timestamp timestamp Date/time when the recommendation was generated

You can query the index_advisor_log table at the psql command line. This example shows the index_advisor_log table entries resulting from two Index Advisor sessions. Each session
contains two queries and can be identified in the table by a different backend_pid value. For each session, Index Advisor generated two index recommendations.

edb=# SELECT * FROM index_advisor_log;
 reloid | relname | attrs | benefit | index_size | backend_pid | timestamp
---------+---------+-------+---------+------------+-------------+------------

 16651 | t | {1} | 1684.72 | 2184 | 3442 | 22-MAR-11
16:44:32.712638 -04:00
 16651 | t | {2} | 1655.52 | 2184 | 3442 | 22-MAR-11
16:44:32.759436 -04:00
 16651 | t | {1} | 1355.9 | 2184 | 3506 | 22-MAR-11

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 988

16:48:28.317016 -04:00
 16651 | t | {1} | 1684.72 | 2184 | 3506 | 22-MAR-11
16:51:45.927906 -04:00
(4 rows)

Index Advisor added the first two rows to the table after analyzing the following two queries executed by the pg_advise_index utility:

SELECT * FROM t WHERE a = 500;
SELECT * FROM t WHERE b < 1000;

The value of 3442 in column backend_pid identifies these results as coming from the session with process ID 3442 .

The value of 1 in column attrs in the first row indicates that the hypothetical index is on the first column of the table (column a of table t).

The value of 2 in column attrs in the second row indicates that the hypothetical index is on the second column of the table (column b of table t).

Index Advisor added the last two rows to the table after analyzing the following two queries executed at the psql command line:

edb=# EXPLAIN SELECT * FROM t WHERE a < 10000;
 QUERY PLAN
--

Seq Scan on t (cost=0.00..1693.00 rows=10105 width=8)
 Filter: (a < 10000)
Result (cost=0.00..337.10 rows=10105 width=8)
 One-Time Filter: '===[HYPOTHETICAL PLAN]==='::text
 -> Index Scan using "<hypothetical-index>:1" on t (cost=0.00..337.10
rows=10105 width=8)
 Index Cond: (a < 10000)
(6 rows)

edb=# EXPLAIN SELECT * FROM t WHERE a = 100;
 QUERY PLAN
--

Seq Scan on t (cost=0.00..1693.00 rows=1 width=8)
 Filter: (a = 100)
Result (cost=0.00..8.28 rows=1 width=8)
 One-Time Filter: '===[HYPOTHETICAL PLAN]==='::text
 -> Index Scan using "<hypothetical-index>:3" on t (cost=0.00..8.28
rows=1 width=8)
 Index Cond: (a = 100)
(6 rows)

The values in the benefit column of the index_advisor_log table are calculated using the following formula:

benefit = (normal execution cost) - (execution cost with hypothetical index)

The value of the benefit column for the last row of the index_advisor_log table shown in the example is calculated using the query plan for the following SQL statement:

EXPLAIN SELECT * FROM t WHERE a = 100;

The execution costs of the different execution plans are evaluated and compared:

benefit = (Seq Scan on t cost) - (Index Scan using <hypothetical-index>)

The benefit is added to the table:

benefit = 1693.00 - 8.28

benefit = 1684.72

You can delete rows from the index_advisor_log table when you no longer need to review the results of the queries stored in the row.

Querying the index_recommendations view

The index_recommendations view contains the calculated metrics and the CREATE INDEX statements to create the recommended indexes for all sessions whose results are currently in the
index_advisor_log table. You can display the results of all stored Index Advisor sessions by querying the index_recommendations view:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 989

SELECT * FROM index_recommendations;

Using the example shown in Querying the index_advisor_log table , the index_recommendations view displays the following:

edb=# SELECT * FROM index_recommendations;
 backend_pid | show_index_recommendations
-------------+---

 3442 | create index idx_t_a on t(a);/* size: 2184 KB, benefit:
1684.72, gain: 0.771392654586624 */
 3442 | create index idx_t_b on t(b);/* size: 2184 KB, benefit:
1655.52, gain: 0.758021539820856 */
 3506 | create index idx_t_a on t(a);/* size: 2184 KB, benefit:
3040.62, gain: 1.39222666981456 */
(3 rows)

In each session, the results of all queries that benefit from the same recommended index are combined to produce one set of metrics per recommended index, reflected in the fields named benefit
and gain .

The formulas for the fields are:

size = MAX(index size of all queries)
benefit = SUM(benefit of each query)
gain = SUM(benefit of each query) / MAX(index size of all queries)

So, for example, using the following query results from the process with a backend_pid of 3506 :

 reloid | relname | attrs | benefit | index_size | backend_pid | timestamp
---------+---------+-------+---------+------------+-------------+------------

 16651 | t | {1} | 1355.9 | 2184 | 3506 | 22-MAR-11
16:48:28.317016 -04:00
 16651 | t | {1} | 1684.72 | 2184 | 3506 | 22-MAR-11
16:51:45.927906 -04:00

The metrics displayed from the index_recommendations view for backend_pid 3506 are:

backend_pid | show_index_recommendations
-------------+---

 3506 | create index idx_t_a on t(a);/* size: 2184 KB, benefit:
3040.62, gain: 1.39222666981456 */

The metrics from the view are calculated like this:

benefit = (benefit from 1st query) + (benefit from 2nd query)
benefit = 1355.9 + 1684.72
benefit = 3040.62

As well as the following:

gain = ((benefit from 1st query) + (benefit from 2nd query)) / MAX(index
size of all queries)
gain = (1355.9 + 1684.72) / MAX(2184, 2184)
gain = 3040.62 / 2184
gain = 1.39223

The gain metric is useful when comparing the relative advantage of the different recommended indexes derived during a given session. The larger the gain value, the better the cost effectiveness
derived from the index weighed against the possible disk space consumption of the index.

25.3.2.5 Index Advisor limitations

Index Advisor doesn't consider Index Only scans. It does consider Index scans when making recommendations.

Index Advisor ignores any computations found in the WHERE clause. Effectively, the index field in the recommendations isn't any kind of expression. The field is a simple column name.

Index Advisor doesn't consider inheritance when recommending hypothetical indexes. If a query references a parent table, Index Advisor doesn't make any index recommendations on child tables.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 990

Suppose you're restoring a pg_dump backup file that includes the index_advisor_log table or any tables for which indexing recommendations were made and stored in the
index_advisor_log table. Changes in object identifiers (OIDs) can result in "broken links" between the index_advisor_log table and the restored tables referenced by rows in the
index_advisor_log table.

If you need to display the recommendations made prior to the backup, you can replace the old OIDs in the reloid column of the index_advisor_log table with the new OIDs of the referenced
tables using the SQL UPDATE statement:

UPDATE index_advisor_log SET reloid = new_oid WHERE reloid = old_oid;

25.3.3 SQL Profiler

Inefficient SQL code is a leading cause of database performance problems. The challenge for database administrators and developers is locating and then optimizing this code in large, complex systems.

SQL Profiler helps you locate and optimize poorly running SQL code.

Specific features and benefits of SQL Profiler include:

On-demand traces. You can capture SQL traces at any time by manually setting up your parameters and starting the trace.
Scheduled traces. If the current time isn't convenient, you can also specify your trace parameters and schedule them to run later.
Save traces. Execute your traces and save them for later review.
Trace filters. Selectively filter SQL captures by database and by user, or capture every SQL statement sent by all users against all databases.
Trace output analyzer. A graphical table lets you quickly sort and filter queries by duration or statement. A graphical or text-based EXPLAIN plan lays out your query paths and joins.
Index Advisor integration. After you find your slow queries and optimize them, you can also let Index Advisor recommend the creation of underlying table indices to further improve performance.

Installation

The following describes the installation process.

1. Install SQL Profiler

SQL Profiler is installed by the EDB Postgres Advanced Server installer on Windows or from the edb-asxx-server-sqlprofiler package along with the edb-asxx-server package
installation, where xx is the EDB Postgres Advanced Server version number.

2. Add the SQL Profiler library

To include the SQL Profiler library in the shared_preload_libraries configuration parameter, modify the postgresql.conf parameter file for the instance.

For Linux installations, the parameter value must include:

$libdir/sql-profiler

On Windows, the parameter value must include:

$libdir\sql-profiler.dll

3. Create the SQL Profiler extension

Create the SQL Profiler extension in your database with the following command:

4. Stop and restart the servers

For the changes to take affect, you must stop and restart the servers. After configuring SQL Profiler, it's ready to use with all databases that reside on the server. You can take advantage of SQL Profiler
functionality with EDB Postgres Enterprise Manager. For more information about Postgres Enterprise Manager, see the PEM documentation.

25.3.4 pgsnmpd

CREATE EXTENSION sql_profiler;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 991

https://www.enterprisedb.com/docs/pem/latest

Note

'pgsnnmpd' is deprecated as of EDB Postgres Advanced Server v14. It isn't included in EDB Postgres Advanced Server v15 and later.

pgsnmpd is an SNMP agent that can return hierarchical information about the current state of EDB Postgres Advanced Server on a Linux system. pgsnmpd is distributed and installed using the
edb-asxx-pgsnmpd RPM package, where xx is the EDB Postgres Advanced Server version number. The pgsnmpd agent can operate as a standalone SNMP agent, as a pass-through subagent, or

as an AgentX subagent.

After installing EDB Postgres Advanced Server, you must update the LD_LIBRARY_PATH variable:

$ export LD_LIBRARY_PATH=/usr/edb/as14/lib:$LD_LIBRARY_PATH

This command doesn't persistently alter the value of LD_LIBRARY_PATH . See the documentation for your distribution of Linux for information about persistently setting the value of
LD_LIBRARY_PATH .

The examples that follow show the simplest use of pgsnmpd , implementing read-only access. pgsnmpd is based on the net-snmp library. For more information about net-snmp, see the net-snmp
documentation.

Configuring pgsnmpd

The pgsnmpd configuration file is named snmpd.conf . For information about the directives that you can specify in the configuration file, see the snmpd.conf man page (man snmpd.conf).

You can create the configuration file by hand, or you can use the snmpconf perl script to create the configuration file. The perl script is distributed with the net-snmp package. net-snmp is an open-
source package available from http://www.net-snmp.org/.

To use the snmpconf configuration file wizard, download and install net-snmp. When the installation completes, at the command line, enter:

snmpconf

When the configuration file wizard opens, it might prompt you to read in an existing configuration file. Enter none to generate a new configuration file that isn't based on a previously existing
configuration file.

snmpconf is a menu-driven wizard. Select the menu item 1: snmpd.conf to start the configuration wizard. As you select each top-level menu option displayed by snmpconf , the wizard walks
you through a series of questions, prompting you for information required to build the configuration file. After you provide information in each category relevant to your system, enter Finished to
generate a configuration file named snmpd.conf . Copy the file to:

/usr/edb/as14/share/

Setting the listener address

By default, pgsnmpd listens on port 161 . If the listener port is already being used by another service, you might receive the following error:

Error opening specified endpoint "udp:161".

You can specify an alternative listener port by adding the following line to your snmpd.conf file:

agentaddress $host_address:2000

This example instructs pgsnmpd to listen on UDP port 2000 , where $host_address is the IP address of the server (e.g., 127.0.0.1).

Before invoking pgsnmpd , you must create the pgsnmpd schema and set the search path to create tables in the pgsnmpd schema using the following commands:

CREATE SCHEMA pgsnmpd;
SET search_path = pgsnmpd;
\i pgsnmpd.sql

Invoking pgsnmpd

Ensure that an instance of EDB Postgres Advanced Server is up and running. (pgsnmpd connects to this server.) Open a command line and assume superuser privileges. Then, invoke pgsnmpd with a
command in the following form:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 992

http://net-snmp.sourceforge.net/
http://www.net-snmp.org/

POSTGRES_INSTALL_HOME/bin/pgsnmpd -b
 -c POSTGRES_INSTALL_HOME/share/snmpd.conf
 -C "user=enterprisedb dbname=edb password=safe_password
 port=5444"

Where POSTGRES_INSTALL_HOME specifies the EDB Postgres Advanced Server installation directory.

Include the -b option to specify for pgsnmpd to run in the background.

Include the -c option, specifying the path and name of the pgsnmpd configuration file.

After the -C option, include connection information for your installation of EDB Postgres Advanced Server in the form of a libpq connection string.

Viewing pgsnmpd help

Include the --help option when invoking the pgsnmpd utility to view other pgsnmpd command line options:

pgsnmpd --help
 Version PGSQL-SNMP-Ver1.0
 usage: pgsnmpd [-s] [-b] [-c FILE] [-x address] [-g] [-C "Connect String"]
 -s : run as AgentX sub-agent of an existing snmpd process
 -b : run in the background
 -c : configuration file name
 -g : use syslog
 -C : libpq connection string
 -x : address:port of a network interface
 -V : display version strings

Requesting information from pgsnmpd

You can use net-snmp commands to query the pgsnmpd service. For example:

snmpgetnext -v 2c -c public localhost .1.3.6.1.4.1.5432.1.4.2.1.1.0

Where:

-v 2c option instructs the snmpgetnext client to send the request in SNMP version 2c format.

-c public specifies the community name.

localhost indicates the host machine running the pgsnmpd server.

.1.3.6.1.4.1.5432.1.4.2.1.1.0 is the identity of the requested object. To see a list of all databases, increment the last digit by one (for example, .1.1, .1.2, .1.3).

The encodings required to query any given object are defined in the management information base (MIB). An SNMP client can monitor a variety of servers. The server type determines the information
exposed by a given server. Each SNMP server describes the exposed data in the form of a MIB. By default, pgsnmpd searches for MIBs in the following locations:

/usr/share/snmp/mibs

$HOME/.snmp/mibs

25.3.5 EDB audit logging

EDB Postgres Advanced Server allows database and security administrators, auditors, and operators to track and analyze database activities using EDB audit logging. EDB audit logging generates audit
log files, which contain all of the relevant information. You can configure the audit logs to record information such as:

When a role establishes a connection to an EDB Postgres Advanced Server database
The database objects a role creates, modifies, or deletes when connected to EDB Postgres Advanced Server
When any failed authentication attempts occur

The parameters specified in the configuration files postgresql.conf or postgresql.auto.conf control the information included in the audit logs.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 993

25.3.5.1 Audit logging configuration parameters

Use the following configuration parameters to control database auditing. See Summary of configuration parameters to determine if a change to the configuration parameter:

Takes effect immediately
Requires reloading the configuration
Requires restarting the database server

edb_audit

Enables or disables database auditing. The values xml or csv enable database auditing. These values represent the file format in which to capture auditing information. none disables database
auditing and is the default.

Note

Set the logging_collector parameter to on to enable the edb_audit parameter.

edb_audit_archiver

Enables or disables database audit archiving.

edb_audit_archiver_timeout

Enforces a timeout in seconds when a database attempts to archive a log file. The valid range is 30 seconds to one day.

edb_audit_archiver_filename_prefix

Specifies the file name of an audit log file that needs to be archived. The file name must align with the edb_audit_filename parameter. The default value for
edb_audit_archiver_filename_prefix is audit- . The audit files with edb_audit_archiver_filename_prefix in the edb_audit_directory are eligible for compression and

expiration.

edb_audit_archiver_compress_time_limit

Specifies the time in seconds after which audit logs are eligible for compression. The possible values are:

- `0` — Compression starts as soon as the log file isn't a current file.
- `-1` — Compression of the log file on a timely basis doesn't occur.

edb_audit_archiver_compress_size_limit

Specifies a file size threshold, in megabytes, after which audit logs are eligible for compression. If the parameter is set to -1 , compression of the log file on a size basis doesn't occur.

edb_audit_archiver_compress_command

Specifies the command to execute compression of the audit log files. The default value for edb_audit_archiver_compress_command is gzip %p . The gzip provides a standard method of
compressing files. The %p in the string is replaced with the path name of the file to archive.

edb_audit_archiver_compress_suffix

Specifies the file name of an already compressed log file. The file name must align with edb_audit_archiver_compress_command . The default file name is .gz .

edb_audit_archiver_expire_time_limit

Specifies the time, in seconds, after which audit logs are eligible to expire. The possible values to set this parameter are:

- `0` — Expiration starts as soon as the log file isn't a current file.
- `-1` — Expiration of the log file on a timely basis doesn't occur.

edb_audit_archiver_expire_size_limit

Specifies a file size threshold in megabytes, after which audit logs are eligible to expire. If the parameter is set to -1 , the expiration of a log file on the size basis doesn't occur.

edb_audit_archiver_expire_command

Specifies the command to execute on an expired audit log file before removal.

edb_audit_archiver_sort_file

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 994

Identifies the oldest log file to sort alphabetically or based on mtime . mtime indicates sorting of files based on file modification time. alphabetic indicates sorting of files alphabetically based
on the file name.

edb_audit_directory

Specifies the directory where the log files are created. The path of the directory can be relative to the data folder or absolute. The default is the PGDATA/edb_audit directory.

edb_audit_filename

Specifies the file name of the audit file where the auditing information are stored. The default file name is audit-%Y%m%d_%H%M%S . The escape sequences %Y , %m , and so on are replaced by the
appropriate current values according to the system date and time.

edb_audit_rotation_day

Specifies the day of the week on which to rotate the audit files. Valid values are sun , mon , tue , wed , thu , fri , sat , every , and none . To disable rotation, set the value to none . To
rotate the file every day, set the edb_audit_rotation_day value to every . To rotate the file on a specific day of the week, set the value to the desired day of the week. every is the default
value.

edb_audit_rotation_size

Specifies a file size threshold, in megabytes, when file rotation is forced to occur. The default value is 0 MB. If the parameter is commented out or set to 0, rotation of the file on a size basis doesn't
occur.

edb_audit_rotation_seconds

Specifies the rotation time in seconds to create a log file. To disable this feature, set this parameter to 0 , which is the default.

edb_audit_connect

Enables auditing of database connection attempts by users. To disable auditing of all connection attempts, set edb_audit_connect to none . To audit all connection attempts, set the value to
all . To audit all failed connection attempts, set the value to failed , which is the default.

edb_audit_disconnect

Enables auditing of database disconnections by connected users. To enable auditing of disconnections, set the value to all . To disable, set the value to none , which is the default.

edb_audit_statement

Specifies auditing of different categories of SQL statements. You can specify various combinations of the following values: none , dml , insert , update , delete , truncate , select ,
error , rollback , ddl , create , drop , alter , grant , revoke , set , all , and { select | update | delete | insert }@groupname . The default is ddl and
error . See Selecting SQL statements to audit for information about setting this parameter.

edb_audit_tag

Specifies a string value to include in the audit log file for each entry as a tracking tag.

edb_log_every_bulk_value

Bulk processing logs the resulting statements into both the EDB Postgres Advanced Server log file and the EDB Audit log file. However, logging every statement in bulk processing is costly. You can
control this with the edb_log_every_bulk_value configuration parameter. When set to true , every statement in bulk processing is logged. During bulk execution, when
edb_log_every_bulk_value is set to false , a log message is recorded once per bulk processing along with the number of rows processed. In addition, the duration is emitted once per bulk

processing. Default is false .

edb_audit_destination

Specifies whether to record the audit log information in the directory as given by the edb_audit_directory parameter or to the directory and file managed by the syslog process. Set to file
to use the directory specified by edb_audit_directory , which is the default setting.

Set to syslog to use the syslog process and its location as configured in the /etc/syslog.conf file. The syslog setting is valid for EDB Postgres Advanced Server running on a Linux host and
isn't supported on Windows systems.

!!! Note In recent Linux versions, syslog was replaced with rsyslog , and the configuration file is in /etc/rsyslog.conf .

Note

EDB Postgres Advanced Server allows administrative users associated with administrative privileges to audit statements by any user, group, or role. By auditing specific users, you can
minimize the number of audit records generated. For information, see the examples under Selecting SQL statements to audit.

25.3.5.2 Selecting SQL statements to audit

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 995

The edb_audit_statement permits inclusion of one or more comma-separated values to control the SQL statements to audit. The following is the general format:

edb_audit_statement = 'value_1[, value_2]...'

The comma-separated values can include or omit space characters following the comma. You can specify the values in any combination of lowercase or uppercase letters.

The basic parameter values are the following:

all — Audit and log every statement including any error messages on statements.
none — Disable all auditing and logging. A value of none overrides any other value included in the list.
ddl — Audit all data definition language (DDL) statements (CREATE , ALTER , and DROP) as well as GRANT and REVOKE data control language (DCL) statements.
dml — Audit all data manipulation language (DML) statements (INSERT , UPDATE , DELETE , and TRUNCATE).
select — Audit SELECT statements.
set — Audit SET statements.
rollback — Audit ROLLBACK statements.
error — Log all error messages that occur. Otherwise, no messages about errors that occur on SQL statements related to any of the other preceding parameter values are logged except when
all is used.
{ select | update | delete | insert }@groupname — Selectively audit objects for specific DML statements (SELECT , UPDATE , DELETE , and INSERT) including (@) and

excluding (-) groups on a given table. For more information, see Object auditing.

DDL and DCL statements describes additional parameter values for selecting particular DDL or DCL statements for auditing. DML statements describes additional parameter values for selecting
particular DML statements for auditing.

If an unsupported value is included in the edb_audit_statement parameter, then an error occurs when applying the setting to the database server. See the database server log file for the error
such as in the following example in which create materialized vw results in the error. The correct value is create materialized view .

2017-07-16 11:20:39 EDT LOG: invalid value for parameter
"edb_audit_statement": "create materialized vw, create sequence, grant"
2017-07-16 11:20:39 EDT FATAL: configuration file "/var/lib/edb/as14/data/
postgresql.conf" contains errors

DDL and DCL statements

When auditing DDL and DCL statements, the following general rules apply to the values that can be included in the edb_audit_statement parameter:

If the edb_audit_statement parameter includes ddl or all , then all DDL statements are audited. In addition, the DCL statements GRANT and REVOKE are audited.
If the edb_audit_statement is set to none , then no DDL nor DCL statements are audited.
You can choose specific types of DDL and DCL statements for auditing by including a combination of values in the edb_audit_statement parameter.

Use the following syntax to specify an edb_audit_statement parameter value for DDL statements:

{ create | alter | drop } [<object_type>]

object_type is any of the following:

ACCESS METHOD

AGGREGATE

CAST

COLLATION

CONVERSION

DATABASE

EVENT TRIGGER

EXTENSION

FOREIGN TABLE

FUNCTION

INDEX

LANGUAGE

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 996

LARGE OBJECT

MATERIALIZED VIEW

OPERATOR

OPERATOR CLASS

OPERATOR FAMILY

POLICY

PUBLICATION

ROLE

RULE

SCHEMA

SEQUENCE

SERVER

SUBSCRIPTION

TABLE

TABLESPACE

TEXT SEARCH CONFIGURATION

TEXT SEARCH DICTIONARY

TEXT SEARCH PARSER

TEXT SEARCH TEMPLATE

TRANSFORM

TRIGGER

TYPE

USER MAPPING

VIEW

Descriptions of object types as used in SQL commands can be found in the PostgreSQL core documentation.

If object_type is omitted from the parameter value, then all of the specified command statements (create , alter , or drop) are audited.

Use the following syntax to specify an edb_audit_statement parameter value for DCL statements:

{ grant | revoke }

Examples

In this example, edb_audit_connect and edb_audit_statement are set with the following non-default values:

logging_collector = 'on'
edb_audit_connect = 'all'
edb_audit_statement = 'create, alter, error'

Thus, only SQL statements invoked by the CREATE and ALTER commands are audited. Error messages are also included in the audit log.

The following is the database session that occurs:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 997

https://www.postgresql.org/docs/current/static/sql-commands.html

$ psql edb enterprisedb
Password for user enterprisedb:
psql.bin (14.0.0)
Type "help" for help.

edb=# SHOW edb_audit_connect;
 edb_audit_connect

 all
(1 row)

edb=# SHOW edb_audit_statement;
 edb_audit_statement

 create, alter, error
(1 row)

edb=# CREATE ROLE adminuser;
CREATE ROLE
edb=# ALTER ROLE adminuser WITH LOGIN, SUPERUSER, PASSWORD 'password';
ERROR: syntax error at or near ","
LINE 1: ALTER ROLE adminuser WITH LOGIN, SUPERUSER, PASSWORD 'passwo...
 ^
edb=# ALTER ROLE adminuser WITH LOGIN SUPERUSER PASSWORD 'password';
ALTER ROLE
edb=# CREATE DATABASE auditdb;
CREATE DATABASE
edb=# ALTER DATABASE auditdb OWNER TO adminuser;
ALTER DATABASE
edb=# \c auditdb adminuser
Password for user adminuser:
You are now connected to database "auditdb" as user "adminuser".
auditdb=# CREATE SCHEMA edb;
CREATE SCHEMA
auditdb=# SET search_path TO edb;
SET
auditdb=# CREATE TABLE department (
auditdb(# deptno NUMBER(2) NOT NULL CONSTRAINT dept_pk PRIMARY KEY,
auditdb(# dname VARCHAR2(14) CONSTRAINT dept_dname_uq UNIQUE,
auditdb(# loc VARCHAR2(13)
auditdb(#);
CREATE TABLE
auditdb=# DROP TABLE department;
DROP TABLE
auditdb=# CREATE TABLE dept (
auditdb(# deptno NUMBER(2) NOT NULL CONSTRAINT dept_pk PRIMARY KEY,
auditdb(# dname VARCHAR2(14) CONSTRAINT dept_dname_uq UNIQUE,
auditdb(# loc VARCHAR2(13)
auditdb(#);
CREATE TABLE

The resulting audit log file contains the following. (Each audit log entry was split and displays across multiple lines. A blank line was inserted between the audit log entries for visual clarity.)

2020-05-25 12:32:22.799 IST,"enterprisedb","edb",72518,"[local]",5ecb6d7e.
11b46,1,"authentication",2020-05-25 12:32:22 IST,4/19,0,AUDIT,00000,
"connection authorized:user=enterprisedb database=edb",,,,,,,,,"","client
backend","","connect"

2020-05-25 12:34:05.843 IST,"enterprisedb","edb",72518,"[local]",5ecb6d7e.
11b46,2,"idle",2020-05-25 12:32:22 IST,4/23,0,AUDIT,00000,"statement: CREATE
ROLE adminuser;",,,,,,,,,"psql","client backend","CREATE ROLE","create"

2020-05-25 12:34:16.617 IST,"enterprisedb","edb",72518,"[local]",5ecb6d7e.
11b46,3,"idle",2020-05-25 12:32:22 IST,4/24,0,ERROR,42601,"syntax error at or
near "",""",,,,,,"ALTER ROLE adminuser WITH LOGIN, SUPERUSER, PASSWORD
'password';",32,,"psql","client backend","","error"

2020-05-25 12:34:29.954 IST,"enterprisedb","edb",72518,"[local]",5ecb6d7e.
11b46,4,"idle",2020-05-25 12:32:22 IST,4/25,0,AUDIT,00000,"statement: ALTER
ROLE adminuser WITH LOGIN SUPERUSER PASSWORD 'password';",,,,,,,,,"psql",
"client backend","ALTER ROLE","alter"

2020-05-25 12:34:40.114 IST,"enterprisedb","edb",72518,"[local]",5ecb6d7e.
11b46,5,"idle",2020-05-25 12:32:22 IST,4/26,0,AUDIT,00000,"statement: CREATE
DATABASE auditdb;",,,,,,,,,"psql","client backend","CREATE DATABASE","create"

2020-05-25 12:34:50.591 IST,"enterprisedb","edb",72518,"[local]",5ecb6d7e.
11b46,6,"idle",2020-05-25 12:32:22 IST,4/27,0,AUDIT,00000,"statement: ALTER

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 998

DATABASE auditdb OWNER TO adminuser;",,,,,,,,,"psql","client backend","ALTER
DATABASE","alter"

2020-05-25 12:35:01.554 IST,"adminuser","auditdb",75531,"[local]",5ecb6e1d.
1270b,1,"authentication",2020-05-25 12:35:01 IST,5/11,0,AUDIT,00000,
"connection authorized:user=adminuser database=auditdb",,,,,,,,,"","client
backend","","connect"

2020-05-25 12:35:12.931 IST,"adminuser","auditdb",75531,"[local]",5ecb6e1d.
1270b,2,"idle",2020-05-25 12:35:01 IST,5/13,0,AUDIT,00000,"statement: CREATE
SCHEMA edb;",,,,,,,,,"psql","client backend","CREATE SCHEMA","create"

2020-05-25 12:37:18.547 IST,"adminuser","auditdb",75531,"[local]",5ecb6e1d.
1270b,3,"idle",2020-05-25 12:35:01 IST,5/15,0,AUDIT,00000,"statement: CREATE
TABLE department
(
 deptno NUMBER(2) NOT NULL CONSTRAINT dept_pk PRIMARY KEY,
 dname VARCHAR2(14) CONSTRAINT dept_dname_uq UNIQUE,
 loc VARCHAR2(13)
);",,,,,,,,,"psql","client backend","CREATE TABLE","create"

2020-05-25 12:39:09.065 IST,"adminuser","auditdb",75531,"[local]",5ecb6e1d.
1270b,4,"idle",2020-05-25 12:35:01 IST,5/17,0,AUDIT,00000,"statement: CREATE
TABLE dept (
 deptno NUMBER(2) NOT NULL CONSTRAINT dept_pk PRIMARY KEY,
 dname VARCHAR2(14) CONSTRAINT dept_dname_uq UNIQUE,
 loc VARCHAR2(13)
);",,,,,,,,,"psql","client backend","CREATE TABLE","create"

The CREATE and ALTER statements for the adminuser role and auditdb database are audited. Because error is included in the edb_audit_statement parameter, the error for the
ALTER ROLE adminuser statement is also logged.

Similarly, the CREATE statements for schema edb and tables department and dept are audited.

There's no edb_audit_statement setting that results in auditing successfully processed DROP statements such as ddl , all , or drop . Thus the DROP TABLE department statement
isn't in the audit log.

In this example, edb_audit_connect and edb_audit_statement are set with the following non-default values:

logging_collector = 'on'
edb_audit_connect = 'all'
edb_audit_statement = 'create view,create materialized view,create sequence,grant'

Thus, only SQL statements invoked by the CREATE VIEW , CREATE MATERIALIZED VIEW , CREATE SEQUENCE and GRANT commands are audited.

The following is the database session that occurs:

$ psql auditdb adminuser
Password for user adminuser:
psql.bin (14.0.0)
Type "help" for help.

auditdb=# SHOW edb_audit_connect;
 edb_audit_connect

 all
(1 row)

auditdb=# SHOW edb_audit_statement;
 edb_audit_statement
--
 create view,create materialized view,create sequence,grant
(1 row)

auditdb=# SET search_path TO edb;
SET
auditdb=# CREATE TABLE emp (
auditdb(# empno NUMBER(4) NOT NULL CONSTRAINT emp_pk PRIMARY KEY,
auditdb(# ename VARCHAR2(10),
auditdb(# job VARCHAR2(9),
auditdb(# mgr NUMBER(4),
auditdb(# hiredate DATE,
auditdb(# sal NUMBER(7,2) CONSTRAINT emp_sal_ck CHECK (sal > 0),
auditdb(# comm NUMBER(7,2),
auditdb(# deptno NUMBER(2) CONSTRAINT emp_ref_dept_fk
auditdb(# REFERENCES dept(deptno)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 999

auditdb(#);
CREATE TABLE
auditdb=# CREATE VIEW salesemp AS
auditdb-# SELECT empno, ename, hiredate, sal, comm FROM emp WHERE job =
'SALESMAN';
CREATE VIEW
auditdb=# CREATE MATERIALIZED VIEW managers AS
auditdb-# SELECT empno, ename, hiredate, sal, comm FROM emp WHERE job =
'MANAGER';
SELECT 0
auditdb=# CREATE SEQUENCE next_empno START WITH 8000 INCREMENT BY 1;
CREATE SEQUENCE
auditdb=# GRANT ALL ON dept TO PUBLIC;
GRANT
auditdb=# GRANT ALL ON emp TO PUBLIC;
GRANT

The resulting audit log file contains the following. (Each audit log entry was split and displays across multiple lines. A blank line was inserted between the audit log entries for visual clarity.)

2020-05-25 14:05:29.163 IST,"adminuser","auditdb",40810,"[local]",5ecb8351.
9f6a,1,"authentication",2020-05-25 14:05:29 IST,4/28,0,AUDIT,00000,
"connection authorized:user=adminuser database=auditdb",,,,,,,,,"","client
backend","","connect"

2020-05-25 14:12:06.318 IST,"adminuser","auditdb",40810,"[local]",5ecb8351.
9f6a,2,"idle",2020-05-25 14:05:29 IST,4/34,0,AUDIT,00000,"statement: CREATE
VIEW salesemp AS SELECT empno, ename, hiredate, sal, comm FROM emp WHERE job
= 'SALESMAN';",,,,,,,,,"psql","client backend","CREATE VIEW","create"

2020-05-25 14:13:26.657 IST,"adminuser","auditdb",40810,"[local]",5ecb8351.
9f6a,3,"idle",2020-05-25 14:05:29 IST,4/36,0,AUDIT,00000,"statement: CREATE
MATERIALIZED VIEW managers AS SELECT empno, ename, hiredate, sal, comm FROM
emp WHERE job = 'MANAGER';",,,,,,,,,"psql","client backend","CREATE
MATERIALIZED VIEW","create"

2020-05-25 14:13:38.928 IST,"adminuser","auditdb",40810,"[local]",5ecb8351.
9f6a,4,"idle",2020-05-25 14:05:29 IST,4/37,0,AUDIT,00000,"statement: CREATE
SEQUENCE next_empno START WITH 8000 INCREMENT BY 1;",,,,,,,,,"psql","client
backend","CREATE SEQUENCE","create"

2020-05-25 14:13:51.434 IST,"adminuser","auditdb",40810,"[local]",5ecb8351.
9f6a,5,"idle",2020-05-25 14:05:29 IST,4/38,0,AUDIT,00000,"statement: GRANT
ALL ON dept TO PUBLIC;",,,,,,,,,"psql","client backend","GRANT","grant"

2020-05-25 14:14:03.737 IST,"adminuser","auditdb",40810,"[local]",5ecb8351.
9f6a,6,"idle",2020-05-25 14:05:29 IST,4/39,0,AUDIT,00000,"statement: GRANT
ALL ON emp TO PUBLIC;",,,,,,,,,"psql","client backend","GRANT","grant"

The CREATE VIEW and CREATE MATERIALIZED VIEW statements are audited. The prior CREATE TABLE emp statement isn't audited because none of the values create , create
table , ddl , nor all are included in the edb_audit_statement parameter.

The CREATE SEQUENCE and GRANT statements are audited because those values are included in the edb_audit_statement parameter.

In this example, edb_audit_connect and edb_audit_statement are set with the following non-default values:

logging_collector = 'on'
edb_audit_connect = 'all'
edb_audit_statement = 'none'

The session for users who connect as ADMIN or SYSDBA can be fully audited. An admin user is connected to a database auditdb as ADMINUSER . The following ALTER USER command
specifies to audit ADMINUSER .

ALTER USER adminuser SET edb_audit_statement = "all";

Setting the edb_audit_statement parameter to all allows auditing of all of the SQL statements for an admin user.

The following is the database session that occurs:

$ psql auditdb adminuser
Password for user adminuser:
psql.bin (14.0.0)
Type "help" for help.

auditdb=# SHOW edb_audit_connect;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1000

 edb_audit_connect

 all
(1 row)

auditdb=# SHOW edb_audit_statement;
 edb_audit_statement

 all
(1 row)

auditdb=# SET search_path TO edb;
SET
auditdb=> CREATE TABLE dept
auditdb-> (deptno NUMBER(2),
auditdb(> dname VARCHAR2(14),
auditdb(> loc VARCHAR2(13));
CREATE TABLE
auditdb=> INSERT INTO dept VALUES (10, 'ACCOUNTING', 'NEW YORK');
INSERT 0 1
auditdb=> INSERT INTO dept VALUES (20, 'RESEARCH', 'DALLAS');
INSERT 0 1
auditdb=> INSERT INTO dept VALUES (30, 'SALES', 'CHICAGO');
INSERT 0 1
auditdb=> UPDATE dept SET loc = 'BEDFORD' WHERE deptno = 20;
UPDATE 1
auditdb=> SELECT * FROM dept;
 deptno | dname | loc
--------+------------+----------
 10 | ACCOUNTING | NEW YORK
 30 | SALES | CHICAGO
 20 | RESEARCH | BEDFORD
(3 rows)

auditdb=> DELETE FROM emp WHERE deptno = 40;
ERROR: relation "emp" does not exist
LINE 1: DELETE FROM emp WHERE deptno = 40;
 ^
auditdb=> DELETE FROM dept WHERE deptno = 10;
DELETE 1
auditdb=> SELECT * FROM dept;
 deptno | dname | loc
--------+----------+---------
 30 | SALES | CHICAGO
 20 | RESEARCH | BEDFORD
(2 rows)

The resulting audit log file contains the following. (Each audit log entry was split and displays across multiple lines. A blank line was inserted between the audit log entries for visual clarity.)

2021-06-23 06:06:59.027 IST,"adminuser","auditdb",60218,"[local]",60d3083b.
eb3a,1,"authentication",2021-06-23 06:06:59 IST,4/19,0,AUDIT,00000,"connection authorized:
user=adminuser database=auditdb",,,,,,,,,"","client backend",,"","","connect"

2021-06-23 06:07:33.192 IST,"adminuser","auditdb",66316,"[local]",60daab0c.
1030c,2,"idle",2021-06-23 06:07:33 IST,4/16,0,AUDIT,00000,"statement: SHOW edb_audit_connect;
",,,,,,,,,"psql","client backend",,"SHOW","","sql statement"

2021-06-23 06:08:12.474 IST,"adminuser","auditdb",66316,"[local]",60daab0c.
1030c,3,"idle",2021-06-23 06:08:12 IST,4/17,0,AUDIT,00000,"statement: SHOW edb_audit_statement;
",,,,,,,,,"psql","client backend",,"SHOW","","sql statement"

2021-06-23 06:08:20.519 IST,"adminuser","auditdb",66922,"[local]",60dab036.
1056a,4,"idle",2021-06-23 06:08:20 IST,4/15,0,AUDIT,00000,"statement: SET search_path TO edb;
",,,,,,,,,"psql","client backend",,"SET","","set"

2021-06-23 06:09:27.613 IST,"adminuser","auditdb",60218,"[local]",60dab117.
10602,5,"idle",2021-06-23 06:09:59 IST,4/21,0,AUDIT,00000,"statement: CREATE TABLE dept
 (deptno NUMBER(2),
 dname VARCHAR2(14),
 loc VARCHAR2(13));",,,,,,,,,"psql","client backend",,"CREATE TABLE","","create"

2021-06-23 06:09:39.238 IST,"adminuser","auditdb",60218,"[local]",60d3083b.
eb3a,6,"idle",2021-06-23 06:09:29 IST,4/22,0,AUDIT,00000,"statement: INSERT INTO
dept VALUES (10, 'ACCOUNTING', 'NEW YORK');",,,,,,,,,"psql","client backend",,"INSERT","","insert"

2021-06-23 06:09:39.242 IST,"adminuser","auditdb",60218,"[local]",60d3083b.
eb3a,7,"idle",2021-06-23 06:09:29 IST,4/23,0,AUDIT,00000,"statement: INSERT INTO
dept VALUES (20, 'RESEARCH', 'DALLAS');",,,,,,,,,"psql","client backend",,"INSERT","","insert"

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1001

2021-06-23 06:09:39.247 IST,"adminuser","auditdb",60218,"[local]",60d3083b.
eb3a,8,"idle",2021-06-23 06:08:35 IST,4/24,0,AUDIT,00000,"statement: INSERT INTO
dept VALUES (30, 'SALES', 'CHICAGO');",,,,,,,,,"psql","client backend",,"INSERT","","insert"

2021-06-23 06:10:04.849 IST,"adminuser","auditdb",60218,"[local]",60d3083b.
eb3a,9,"idle",2021-06-23 06:08:59 IST,4/25,0,AUDIT,00000,"statement: UPDATE dept SET loc = 'BEDFORD'
WHERE deptno = 20;",,,,,,,,,"psql","client backend",,"UPDATE","","update"

2021-06-23 06:10:16.045 IST,"adminuser","auditdb",60218,"[local]",60d3083b.
eb3a,10,"idle",2021-06-23 06:08:59 IST,4/26,0,AUDIT,00000,"statement: SELECT * FROM dept;",,,,,,,,,
"psql","client backend",,"SELECT","","select"

2021-06-23 06:10:40.593 IST,"adminuser","auditdb",60218,"[local]",60d3083b.
eb3a,11,"idle",2021-06-23 06:08:59 IST,4/27,0,AUDIT,00000,"statement: DELETE FROM emp WHERE deptno = 40;
",,,,,,,,,"psql","client backend",,"DELETE","","delete"

2021-06-23 06:10:40.594 IST,"adminuser","auditdb",60218,"[local]",60d3083b.
eb3a,12,"DELETE",2021-06-23 06:08:59 IST,4/27,0,ERROR,42P01,"relation ""emp"" does not exist",,,,,,
"DELETE FROM emp WHERE deptno = 40;",13,,"psql","client backend",,"DELETE","","error"

2021-06-23 06:11:02.563 IST,"adminuser","auditdb",60218,"[local]",60d3083b.
eb3a,13,"idle",2021-06-23 06:08:59 IST,4/28,0,AUDIT,00000,"statement: DELETE FROM dept WHERE deptno = 10;
",,,,,,,,,"psql","client backend",,"DELETE","","delete"

2021-06-23 06:11:14.585 IST,"adminuser","auditdb",60218,"[local]",60d3083b.
eb3a,14,"idle",2021-06-23 06:08:59 IST,4/29,0,AUDIT,00000,"statement: SELECT * FROM dept;",,,,,,,,,
"psql","client backend",,"SELECT","","select"

In this example, edb_audit_connect and edb_audit_statement are set with the following non-default values:

logging_collector = 'on'
edb_audit_connect = 'all'
edb_audit_statement = 'all'

The audit session for a user carol can be fully blocked by the database administrators using the ALTER USER command:

ALTER USER carol SET edb_audit_statement = "none";

Note

The database administrator can allow a specific user to audit any SQL statements by specifying the ALTER USER command and setting the edb_audit_statement parameter to any
value.

The following is the database session that occurs:

$ psql auditdb carol
Password for user carol:
psql.bin (14.0.0)
Type "help" for help.

auditdb=# SHOW edb_audit_connect;
 edb_audit_connect

 all
(1 row)

auditdb=# SHOW edb_audit_statement;
 edb_audit_statement

 none
(1 row)

auditdb=# SET search_path TO edb;
SET
auditdb=> CREATE TABLE salgrade
auditdb-> (grade NUMBER,
auditdb(> losal NUMBER,
auditdb(> hisal NUMBER);
CREATE TABLE
INSERT INTO salgrade VALUES (1, 700, 1200);
INSERT INTO salgrade VALUES (2, 1201, 1400);
INSERT INTO salgrade VALUES (3, 1401, 2000);

The resulting audit log file contains only the connection authentication information. Setting the edb_audit_statement parameter to none doesn't allow the auditing of SQL statements for

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1002

carol , so no audit logs are generated.

(Each audit log entry was split and displays across multiple lines. A blank line was inserted between the audit log entries for visual clarity.)

2021-06-29 02:27:26.240 IST,"carol","auditdb",68072,"[local]",60dabd4e.
109e8,1,"authentication",2021-06-29 02:27:26 IST,4/13,0,AUDIT,00000,"connection authorized: user=carol
database=auditdb",,,,,,,,,"","client backend",,"","","connect"

DML statements

When auditing DML statements, the following general rules apply to the values that can be included in the edb_audit_statement parameter:

If the edb_audit_statement parameter includes dml or all , then all DML statements are audited.
If the edb_audit_statement is set to none , then no DML statements are audited.
You can choose specific types of DML statements for auditing by including a combination of values in the edb_audit_statement parameter.

Use the following syntax to specify an edb_audit_statement parameter value for SQL INSERT , UPDATE , DELETE , or TRUNCATE statements:

{ insert | update | delete | truncate }

Example

In this example, edb_audit_connect and edb_audit_statement are set with the following non-default values:

logging_collector = 'on'
edb_audit_connect = 'all'
edb_audit_statement = 'UPDATE, DELETE, error'

Thus, only SQL statements invoked by the UPDATE and DELETE commands are audited. All errors are also included in the audit log, including errors not related to the UPDATE and DELETE
commands.

The following is the database session that occurs:

$ psql auditdb adminuser
Password for user adminuser:
psql.bin (14.0.0)
Type "help" for help.

auditdb=# SHOW edb_audit_connect;
 edb_audit_connect

 all
(1 row)

auditdb=# SHOW edb_audit_statement;
 edb_audit_statement

 UPDATE, DELETE, error
(1 row)

auditdb=# SET search_path TO edb;
SET
auditdb=# INSERT INTO dept VALUES (10,'ACCOUNTING','NEW YORK');
INSERT 0 1
auditdb=# INSERT INTO dept VALUES (20,'RESEARCH','DALLAS');
INSERT 0 1
auditdb=# INSERT INTO dept VALUES (30,'SALES','CHICAGO');
INSERT 0 1
auditdb=# INSERT INTO dept VALUES (40,'OPERATIONS','BOSTON');
INSERT 0 1
auditdb=# INSERT INTO emp VALUES (7369,'SMITH','CLERK',7902,'17-DEC-80',800,NULL,20);
INSERT 0 1
auditdb=# INSERT INTO emp VALUES (7499,'ALLEN','SALESMAN',7698,'20-FEB-81',1600,300,30);
INSERT 0 1
auditdb=# INSERT INTO emp VALUES (7521,'WARD','SALESMAN',7698,'22-FEB-81',1250,500,30);
INSERT 0 1
 .
 .
 .
auditdb=# INSERT INTO emp VALUES (7934,'MILLER','CLERK',7782,'23-JAN-82',1300,NULL,10);

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1003

INSERT 0 1
auditdb=# UPDATE dept SET loc = 'BEDFORD' WHERE deptno = 40;
UPDATE 1
auditdb=# SELECT * FROM dept;
 deptno | dname | loc
--------+------------+----------
 10 | ACCOUNTING | NEW YORK
 20 | RESEARCH | DALLAS
 30 | SALES | CHICAGO
 40 | OPERATIONS | BEDFORD
(4 rows)

auditdb=# DELETE FROM emp WHERE deptno = 10;
DELETE 3
auditdb=# TRUNCATE employee;
ERROR: relation "employee" does not exist
auditdb=# TRUNCATE emp;
TRUNCATE TABLE
auditdb=# \q

The resulting audit log file contains the following. (Each audit log entry was split and displays across multiple lines. A blank line was inserted between the audit log entries for visual clarity.)

2020-05-25 15:17:16.392 IST,"adminuser","auditdb",123420,"[local]",5ecb9424.
1e21c,1,"authentication",2020-05-25 15:17:16 IST,5/3,0,AUDIT,00000,
"connection authorized:user=adminuser database=auditdb",,,,,,,,,"","client
backend","",connect"

2020-05-25 15:19:18.066 IST,"adminuser","auditdb",123420,"[local]",5ecb9424.
1e21c,2,"idle",2020-05-25 15:17:16 IST,5/14,0,AUDIT,00000,"statement: UPDATE
dept SET loc = 'BEDFORD' WHERE deptno = 40;",,,,,,,,,"psql","client backend",
"UPDATE","update"

2020-05-25 15:19:38.524 IST,"adminuser","auditdb",123420,"[local]",5ecb9424.
1e21c,3,"idle",2020-05-25 15:17:16 IST,5/16,0,AUDIT,00000,"statement: DELETE
FROM emp WHERE deptno = 10;",,,,,,,,,"psql","client backend","DELETE","delete"

2020-05-25 15:19:48.149 IST,"adminuser","auditdb",123420,"[local]",5ecb9424.
1e21c,4,"TRUNCATE TABLE",2020-05-25 15:17:16 IST,5/17,0,ERROR,42P01,"relation
""employee""does not exist",,,,,,"TRUNCATE employee;",,,"psql","client backend
","TRUNCATE TABLE","error"

The UPDATE dept and DELETE FROM emp statements are audited. All of the prior INSERT statements aren't audited because the values insert , dml , or all aren't included in the
edb_audit_statement parameter.

The SELECT * FROM dept statement isn't audited because select and all aren't included in the edb_audit_statement parameter.

Because error is specified in the edb_audit_statement parameter but not the truncate value, the error on the TRUNCATE employee statement is logged in the audit file. But the
successful TRUNCATE emp statement isn't.

25.3.5.3 Enabling audit logging

You can configure EDB Postgres Advanced Server to log all connections, disconnections, DDL statements, DCL statements, DML statements, and any statements resulting in an error.

Enable auditing by setting the edb_audit parameter to xml or csv .
Set the file rotation day when the new file is created by setting the parameter edb_audit_rotation_day to the desired value.
To audit all connections, set the parameter edb_audit_connect to all .
To audit all disconnections, set the parameter edb_audit_disconnect to all .
To audit DDL, DCL, DML and other statements, set the parameter edb_audit_statement according to the instructions in Selecting SQL statements to audit.

Setting the edb_audit_statement parameter in the configuration file affects the entire database cluster.

You can further refine the type of statements that are audited. The type is controlled by the edb_audit_statement parameter according to the database in use as well as the database role running
the session:

You can set the edb_audit_statement parameter as an attribute of a specified database with the ALTER DATABASE dbname SET edb_audit_statement command. This setting
overrides the edb_audit_statement parameter in the configuration file for statements executed when connected to database dbname .
You can set the edb_audit_statement parameter as an attribute of a specified role with the ALTER ROLE rolename SET edb_audit_statement command. This setting overrides
the edb_audit_statement parameter in the configuration file as well as any setting assigned to the database by the ALTER DATABASE command when the specified role is running the
current session.
You can set the edb_audit_statement parameter as an attribute of a specified role when using a specified database with the ALTER ROLE rolename IN DATABASE dbname SET
edb_audit_statement command. This setting overrides the edb_audit_statement parameter in the configuration file. It also overrides any setting assigned to the database by the
ALTER DATABASE command and as any setting assigned to the role with the ALTER ROLE command without the IN DATABASE clause.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1004

Examples

The following are examples of this technique.

The database cluster is established with edb_audit_statement set to all as shown in its postgresql.conf file:

logging_collector = 'on'
edb_audit_statement = 'all' # Statement type to be audited:
 # none, dml, insert, update, delete, truncate,
 # select, error, rollback, ddl, create, drop,
 # alter, grant, revoke, set, all
 # {select | update | delete | insert}@groupname

A database and role are established with the following settings for the edb_audit_statement parameter:

Database auditdb with ddl , insert , update , and delete
Role admin with select , truncate , and set
Role admin in database auditdb with create table , insert , and update

The following shows creating and altering the database and role:

$ psql edb enterprisedb
Password for user enterprisedb:
psql.bin (14.0.0)
Type "help" for help.

edb=# SHOW edb_audit_statement;
 edb_audit_statement

 all
(1 row)

edb=# CREATE DATABASE auditdb;
CREATE DATABASE
edb=# ALTER DATABASE auditdb SET edb_audit_statement TO 'ddl, insert, update, delete';
ALTER DATABASE
edb=# CREATE ROLE admin WITH LOGIN SUPERUSER PASSWORD 'password';
CREATE ROLE
edb=# ALTER ROLE admin SET edb_audit_statement TO 'select, truncate';
ALTER ROLE
edb=# ALTER ROLE admin IN DATABASE auditdb SET edb_audit_statement TO 'create table, insert, update';
ALTER ROLE

The following shows the changes made and the resulting audit log file for three cases.

Case 1: Changes made in database auditdb by role enterprisedb

Only ddl , insert , update , and delete statements are audited:

$ psql auditdb enterprisedb
Password for user enterprisedb:
psql.bin (14.0.0)
Type "help" for help.

auditdb=# SHOW edb_audit_statement;
 edb_audit_statement

 ddl, insert, update, delete
(1 row)

auditdb=# CREATE TABLE audit_tbl (f1 INTEGER PRIMARY KEY, f2 TEXT);
CREATE TABLE
auditdb=# INSERT INTO audit_tbl VALUES (1, 'Row 1');
INSERT 0 1
auditdb=# UPDATE audit_tbl SET f2 = 'Row A' WHERE f1 = 1;
UPDATE 1
auditdb=# SELECT * FROM audit_tbl; <== Should not be audited
 f1 | f2
----+-------
 1 | Row A
(1 row)

auditdb=# TRUNCATE audit_tbl; <== Should not be audited

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1005

TRUNCATE TABLE

The following audit log file shows entries only for the CREATE TABLE , INSERT INTO audit_tbl , and UPDATE audit_tbl statements. The SELECT * FROM audit_tbl and
TRUNCATE audit_tbl statements weren't audited. (Each audit log entry was split and displays across multiple lines. A blank line was inserted between the audit log entries for visual clarity.)

2020-05-25 15:59:12.332 IST,"enterprisedb","auditdb",41837,"[local]",5ecb9dee.a36d,2,
"idle",2020-05-25 15:59:02 IST,5/7,0,AUDIT,00000,"statement: CREATE TABLE
audit_tbl(f1 INTEGER PRIMARY KEY, f2 TEXT);",,,,,,,,,"psql","client backend","CREATE TABLE","","create"

2020-05-25 15:59:22.419 IST,"enterprisedb","auditdb",41837,"[local]",5ecb9dee.a36d,3,
"idle",2020-05-25 15:59:02 IST,5/8,0,AUDIT,00000,"statement: INSERT INTO
audit_tbl VALUES (1, 'Row 1');",,,,,,,,,"psql","client backend","INSERT","","insert"

2020-05-25 15:59:32.180 IST,"enterprisedb","auditdb",41837,"[local]",5ecb9dee.a36d,4,
"idle",2020-05-25 15:59:02 IST,5/9,0,AUDIT,00000,"statement: UPDATE
audit_tbl SET f2 = 'Row A' WHERE f1 = 1;",,,,,,,,,"psql","client backend","UPDATE","","update"

Case 2: Changes made in database edb by role admin

Only select , truncate , and set statements are audited:

$ psql edb admin
Password for user admin:
psql.bin (14.0.0)
Type "help" for help.

edb=# SHOW edb_audit_statement;
 edb_audit_statement

 select, truncate, set
(1 row)

edb=# SET default_with_rowids TO TRUE;
SET

edb=# CREATE TABLE edb_tbl (f1 INTEGER PRIMARY KEY, f2 TEXT); <== Should not be audited
CREATE TABLE
edb=# INSERT INTO edb_tbl VALUES (1, 'Row 1'); <== Should not be audited
INSERT 0 1
edb=# SELECT * FROM edb_tbl;
 f1 | f2
----+-------
 1 | Row 1
(1 row)

edb=# TRUNCATE edb_tbl;
TRUNCATE TABLE

Continuation of the audit log file now appears as follows. The last two entries representing the second case show only the SET default_with_rowids TO TRUE , SELECT * FROM edb_tbl ,
and TRUNCATE edb_tbl statements. The CREATE TABLE edb_tbl and INSERT INTO edb_tbl statements weren't audited.

2020-05-25 15:59:12.332 IST,"enterprisedb","auditdb",41837,"[local]",5ecb9dee.a36d,2,
"idle",2020-05-25 15:59:02 IST,5/7,0,AUDIT,00000,"statement: CREATE TABLE
audit_tbl(f1 INTEGER PRIMARY KEY, f2 TEXT);",,,,,,,,,"psql","client backend","CREATE TABLE","","create"

2020-05-25 15:59:22.419 IST,"enterprisedb","auditdb",41837,"[local]",5ecb9dee.a36d,3,
"idle",2020-05-25 15:59:02 IST,5/8,0,AUDIT,00000,"statement: INSERT INTO
audit_tbl VALUES (1, 'Row 1');",,,,,,,,,"psql","client backend","INSERT","","insert"

2020-05-25 15:59:32.180 IST,"enterprisedb","auditdb",41837,"[local]",5ecb9dee.a36d,4,
"idle",2020-05-25 15:59:02 IST,5/9,0,AUDIT,00000,"statement: UPDATE
audit_tbl SET f2 = 'Row A' WHERE f1 = 1;",,,,,,,,,"psql","client backend","UPDATE","","update"

2021-02-18 08:04:57.434 IST,"admin","edb",3182,"[local]",602e65dc.c6e,1,
"idle",2021-02-18 08:04:28 IST,4/22,0,AUDIT,00000,"statement: SET default_with_rowids TO TRUE;
",,,,,,,,,"psql","client backend","SET","","set"

2021-02-18 08:06:01.662 IST,"admin","edb",3182,"[local]",602e65dc.c6e,2,
"idle",2021-02-18 08:04:28 IST,4/27,0,AUDIT,00000,"statement: SELECT * FROM edb_tbl;
",,,,,,,,,"psql","client backend","SELECT","","select"

2021-02-18 08:06:11.125 IST,"admin","edb",3182,"[local]",602e65dc.c6e,3,
"idle",2021-02-18 08:04:28 IST,4/28,0,AUDIT,00000,"statement: TRUNCATE edb_tbl;
",,,,,,,,,"psql","client backend","TRUNCATE TABLE","","truncate"

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1006

Case 3: Changes made in database auditdb by role admin

Only create table , insert , and update statements are audited:

$ psql auditdb admin
Password for user admin:
psql.bin (14.0.0)
Type "help" for help.

auditdb=# SHOW edb_audit_statement;
 edb_audit_statement

 create table, insert, update
(1 row)

auditdb=# CREATE TABLE audit_tbl_2 (f1 INTEGER PRIMARY KEY, f2 TEXT);
CREATE TABLE
auditdb=# INSERT INTO audit_tbl_2 VALUES (1, 'Row 1');
INSERT 0 1
auditdb=# SELECT * FROM audit_tbl_2; <== Should not be audited
 f1 | f2
----+-------
 1 | Row 1
(1 row)

auditdb=# TRUNCATE audit_tbl_2; <== Should not be audited
TRUNCATE TABLE

Continuation of the audit log file now appears as follows. The next-to-last two entries representing the third case show only CREATE TABLE audit_tbl_2 and INSERT INTO audit_tbl_2
statements. The SELECT * FROM audit_tbl_2 and TRUNCATE audit_tbl_2 statements weren't audited.

2020-05-25 15:59:12.332 IST,"enterprisedb","auditdb",41837,"[local]",5ecb9dee.a36d,2,
"idle",2020-05-25 15:59:02 IST,5/7,0,AUDIT,00000,"statement: CREATE TABLE
audit_tbl(f1 INTEGER PRIMARY KEY, f2 TEXT);",,,,,,,,,"psql","client backend","CREATE TABLE","","create"

2020-05-25 15:59:22.419 IST,"enterprisedb","auditdb",41837,"[local]",5ecb9dee.a36d,3,
"idle",2020-05-25 15:59:02 IST,5/8,0,AUDIT,00000,"statement: INSERT INTO
audit_tbl VALUES (1, 'Row 1');",,,,,,,,,"psql","client backend","INSERT","","insert"

2020-05-25 15:59:32.180 IST,"enterprisedb","auditdb",41837,"[local]",5ecb9dee.a36d,4,
"idle",2020-05-25 15:59:02 IST,5/9,0,AUDIT,00000,"statement: UPDATE
audit_tbl SET f2 = 'Row A' WHERE f1 = 1;",,,,,,,,,"psql","client backend","UPDATE","","update"

2021-02-18 08:04:57.434 IST,"admin","edb",3182,"[local]",602e65dc.c6e,1,
"idle",2021-02-18 08:04:28 IST,4/22,0,AUDIT,00000,"statement: SET default_with_rowids TO TRUE;
",,,,,,,,,"psql","client backend","SET","","set"

2021-02-18 08:06:01.662 IST,"admin","edb",3182,"[local]",602e65dc.c6e,2,
"idle",2021-02-18 08:04:28 IST,4/27,0,AUDIT,00000,"statement: SELECT * FROM edb_tbl;
",,,,,,,,,"psql","client backend","SELECT","","select"

2021-02-18 08:06:11.125 IST,"admin","edb",3182,"[local]",602e65dc.c6e,3,
"idle",2021-02-18 08:04:28 IST,4/28,0,AUDIT,00000,"statement: TRUNCATE edb_tbl;
",,,,,,,,,"psql","client backend","TRUNCATE TABLE","","truncate"

2020-05-25 17:30:59.057 IST,"admin","auditdb",122093,"[local]",5ecbb370.1dced,2,
"idle",2020-05-25 17:30:48 IST,5/11,0,AUDIT,00000,"statement: CREATE TABLE
audit_tbl_2 (f1 INTEGER PRIMARY KEY, f2 TEXT);",,,,,,,,,"psql","client backend","CREATE TABLE","","create"

2020-05-25 17:31:08.866 IST,"admin","auditdb",122093,"[local]",5ecbb370.1dced,3,
"idle",2020-05-25 17:30:48 IST,5/12,0,AUDIT,00000,"statement: INSERT INTO
audit_tbl_2 VALUES (1, 'Row 1');",,,,,,,,,"psql","client backend","INSERT","","insert"

25.3.5.4 Audit log file

You can generate the audit log file in CSV or XML format. The format is determined by the edb_audit configuration parameter.

The information in the audit log is based on the logging performed by PostgreSQL, as described in "Using CSV-Format Log Output” under “Error Reporting and Logging” in the PostgreSQL core
documentation.

The following table lists the fields in the order they appear in the CSV audit log format. The table contains the following information:

Field. Name of the field as shown in the sample table definition in the PostgreSQL documentation.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1007

https://www.postgresql.org/docs/current/static/runtime-config-logging.html

XML element/attribute. For the XML format, name of the XML element and its attribute (if used), referencing the value.
Data type. Data type of the field as given by the PostgreSQL sample table definition.
Description. Description of the field.

The fields that don't have any values for logging appear as consecutive commas (,,) in the CSV format.

Field XML element/attribute Data type Description

log_time event/log_time timestamp with
time zone

Log date/time of the statement.

user_name event/user text Database user who executed the statement.

database_name event/database text Database in which the statement was executed.

process_id event/process_id integer Operating system process ID in which the statement was executed.

connection_from event/remote_host text Host and port location from where the statement was executed.

session_id event/session_id text Session ID in which the statement was executed.

session_line_num event/session_line_num bigint Order of the statement within the session.

process_status event/process_status text Processing status.

session_start_tim
e

event/session_start_ti
me

timestamp with
time zone

Date/time when the session was started.

virtual_transacti
on_id

event/virtual_transact
ion_id

text Virtual transaction ID of the statement.

transaction_id event/transaction_id bigint Regular transaction ID of the statement.

error_severity error_severity text Statement severity. Values are AUDIT for audited statements and ERROR for any resulting error
messages.

sql_state_code event/sql_state_code text SQL state code returned for the statement. The sql_state_code isn't logged when its value is
00000 for XML log format.

message message text The SQL statement that was attempted for execution.

detail detail text Error message detail.

hint hint text Hint for error.

internal_query internal_query text Internal query that led to the error, if any.

internal_query_po
s

internal_query_pos integer Character count of the error position therein.

context context text Error context.

query query text User query that led to the error. For errors only.

query_pos query_pos integer Character count of the error position therein. For errors only.

location location text Location of the error in the source code. The location field is populated if log_error_verbosity
is set to verbose.

application_name event/application_name text Name of the application from which the statement was executed, for example, psql.bin .

backend_type event/backend_type text The backend_type corresponds to what pg_stat_activity.backend_type shows and is
added as a column to the csv log.

leader_pid See note at bottom of the page integer Process ID of leader for active parallel workers.

query_id See note at bottom of the page long Identifier of this backend's most recent query.

command_tag event/command_tag text SQL command of the statement.

audit_tag event/audit_tag text Value specified by the audit_tag parameter in the configuration file.

type event/type text Determines the audit event_type to identify messages in the log.

The following examples are generated in the CSV and XML formats.

The non-default audit settings in the postgresql.conf file are as follows:

logging_collector = 'on'
edb_audit = 'csv'
edb_audit_connect = 'all'
edb_audit_disconnect = 'all'
edb_audit_statement = 'ddl, dml, select, error'
edb_audit_tag = 'edbaudit'

The edb_audit parameter is changed to xml when generating the XML format.

The following is the audited session:

$ psql edb enterprisedb
Password for user enterprisedb:
psql.bin (14.0.0)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1008

Type "help" for help.

edb=# CREATE SCHEMA edb;
CREATE SCHEMA
edb=# SET search_path TO edb;
SET
edb=# CREATE TABLE dept (
edb(# deptno NUMBER(2) NOT NULL CONSTRAINT dept_pk PRIMARY KEY,
edb(# dname VARCHAR2(14) CONSTRAINT dept_dname_uq UNIQUE,
edb(# loc VARCHAR2(13)
edb(#);
CREATE TABLE
edb=# INSERT INTO dept VALUES (10,'ACCOUNTING','NEW YORK');
INSERT 0 1
edb=# UPDATE department SET loc = 'BOSTON' WHERE deptno = 10;
ERROR: relation "department" does not exist
LINE 1: UPDATE department SET loc = 'BOSTON' WHERE deptno = 10;
 ^
edb=# UPDATE dept SET loc = 'BOSTON' WHERE deptno = 10;
UPDATE 1
edb=# SELECT * FROM dept;
 deptno | dname | loc
--------+------------+--------
 10 | ACCOUNTING | BOSTON
(1 row)

edb=# \q

CSV audit log file

The following is the CSV format of the audit log file. (Each audit log entry was split and displays across multiple lines. A blank line was inserted between the audit log entries for visual clarity.)

2022-12-14 12:19:01.035 UTC,"enterprisedb","edb",9290,"[local]",
6399bf35.244a,1,"authentication",2022-12-14 12:19:01 UTC,4/19,0,
AUDIT,00000,"connection authorized: user=enterprisedb database=edb",
,,,,,,,,"","client backend",,0,"","edbaudit","connect"

2022-12-14 12:19:12.599 UTC,"enterprisedb","edb",9293,"[local]",
6399bf40.244d,1,"authentication",2022-12-14 12:19:12 UTC,5/1,0,
AUDIT,00000,"connection authorized: user=enterprisedb database=edb",
,,,,,,,,"","client backend",,0,"","edbaudit","connect"

2022-12-14 12:19:21.351 UTC,"enterprisedb","edb",9293,"[local]",
6399bf40.244d,2,"idle",2022-12-14 12:19:12 UTC,5/3,0,AUDIT,00000,
"statement: CREATE SCHEMA edb;",,,,,,,,,"psql","client backend",,
0,"CREATE SCHEMA","edbaudit","create"

2022-12-14 12:19:27.817 UTC,"enterprisedb","edb",9293,"[local]",
6399bf40.244d,3,"idle",2022-12-14 12:19:12 UTC,5/4,0,AUDIT,00000,
"statement: CREATE SCHEMA edb;",,,,,,,,,"psql","client backend",,
0,"CREATE SCHEMA","edbaudit","create"

2022-12-14 12:19:27.820 UTC,"enterprisedb","edb",9293,"[local]",
6399bf40.244d,4,"CREATE SCHEMA",2022-12-14 12:19:12 UTC,5/4,0,ERROR,
42P06,"schema ""edb"" already exists",,,,,,"CREATE SCHEMA edb;",,,
"psql","client backend",,0,"CREATE SCHEMA","edbaudit","error"

2022-12-14 12:20:15.407 UTC,"enterprisedb","edb",9293,"[local]",
6399bf40.244d,5,"idle",2022-12-14 12:19:12 UTC,5/6,0,AUDIT,00000,
"statement: CREATE TABLE dept (
 deptno NUMBER(2) NOT NULL CONSTRAINT dept_pk PRIMARY KEY,
 dname VARCHAR2(14) CONSTRAINT dept_dname_uq UNIQUE,
 loc VARCHAR2(13)
);",,,,,,,,,"psql","client backend",,0,"CREATE TABLE","edbaudit",
 "create"

2022-12-14 12:20:24.433 UTC,"enterprisedb","edb",9293,"[local]",
6399bf40.244d,6,"idle",2022-12-14 12:19:12 UTC,5/7,0,AUDIT,00000,
"statement: INSERT INTO dept VALUES (10,'ACCOUNTING','NEW YORK');",
,,,,,,,,"psql","client backend",,0,"INSERT","edbaudit","insert"

2022-12-14 12:20:34.393 UTC,"enterprisedb","edb",9293,"[local]",
6399bf40.244d,7,"idle",2022-12-14 12:19:12 UTC,5/8,0,AUDIT,00000,
"statement: UPDATE department SET loc = 'BOSTON' WHERE deptno = 10;",
,,,,,,,,"psql","client backend",,0,"UPDATE","edbaudit","update"

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1009

2022-12-14 12:20:34.394 UTC,"enterprisedb","edb",9293,"[local]",
6399bf40.244d,8,"UPDATE",2022-12-14 12:19:12 UTC,5/8,0,ERROR,
42P01,"relation ""department"" does not exist",,,,,,
"UPDATE department SET loc = 'BOSTON' WHERE deptno = 10;",8,,
"psql","client backend",,0,"UPDATE","edbaudit","error"

2022-12-14 12:20:43.721 UTC,"enterprisedb","edb",9293,"[local]",
6399bf40.244d,9,"idle",2022-12-14 12:19:12 UTC,5/9,0,AUDIT,00000,
"statement: UPDATE dept SET loc = 'BOSTON' WHERE deptno = 10;",
,,,,,,,,"psql","client backend",,0,"UPDATE","edbaudit","update"

2022-12-14 12:20:51.231 UTC,"enterprisedb","edb",9293,"[local]",
6399bf40.244d,10,"idle",2022-12-14 12:19:12 UTC,5/10,0,AUDIT,00000,
"statement: SELECT * FROM dept;",,,,,,,,,"psql","client backend",,0,
"SELECT","edbaudit","select"

2022-12-14 12:20:53.940 UTC,"enterprisedb","edb",9293,"[local]",
6399bf40.244d,11,"idle",2022-12-14 12:19:12 UTC,,0,AUDIT,00000,
"disconnection: session time: 0:01:41.344 user=enterprisedb database=edb
host=[local]",,,,,,,,,"psql","client backend",,0,"","edbaudit","disconnect"

XML audit log file

The following is the XML format of the audit log file. (The output was formatted for visual clarity.)

<event user="enterprisedb" database="edb" process_id="5941" remote_host=
"[local]"
 session_id="5ec7ac4d.1735" session_line_num="1" process_status=
 "authentication"
 session_start_time="2020-05-22 16:11:17 IST" log_time="2020-05-22
 16:11:17.806 IST"
 virtual_transaction_id="4/19" type="connect" audit_tag="edbaudit"
 backend_type="client backend">
 <error_severity>AUDIT</error_severity>
 <message>connection authorized: user=enterprisedb database=edb</
 message>
</event>
<event user="enterprisedb" database="edb" process_id="5941" remote_host=
"[local]"
 session_id="5ec7ac4d.1735" session_line_num="2" process_status="idle"
 session_start_time="2020-05-22 16:11:17 IST" log_time="2020-05-22
 16:11:32.558 IST"
 virtual_transaction_id="4/21" type="create" command_tag="CREATE SCHEMA
 " audit_tag="edbaudit" application_name="psql" backend_type="client
 backend">
 <error_severity>AUDIT</error_severity>
 <message>statement: CREATE SCHEMA edb;</message>
</event>
<event user="enterprisedb" database="edb" process_id="5941" remote_host=
"[local]"
 session_id="5ec7ac4d.1735" session_line_num="3" process_status="idle"
 session_start_time="2020-05-22 16:11:17 IST" log_time="2020-05-22
 16:12:00.199 IST"
 virtual_transaction_id="4/23" type="create" command_tag="CREATE TABLE"
 audit_tag="edbaudit" application_name="psql" backend_type="client
 backend">
 <error_severity>AUDIT</error_severity>
 <message>statement: CREATE TABLE dept (
 deptno NUMBER(2) NOT NULL CONSTRAINT dept_pk PRIMARY KEY,
 dname VARCHAR2(14) CONSTRAINT dept_dname_uq UNIQUE,
 loc VARCHAR2(13));
 </message>
</event>
<event user="enterprisedb" database="edb" process_id="5941" remote_host=
"[local]"
 session_id="5ec7ac4d.1735" session_line_num="4" process_status="idle"
 session_start_time="2020-05-22 16:11:17 IST" log_time="2020-05-22
 16:12:10.992 IST"
 virtual_transaction_id="4/24" type="insert" command_tag="INSERT" audit_
 tag="edbaudit" application_name="psql" backend_type="client backend">
 <error_severity>AUDIT</error_severity>
 <message>statement: INSERT INTO dept VALUES
 (10,'ACCOUNTING','NEW YORK'
);

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1010

 </message>
</event>
<event user="enterprisedb" database="edb" process_id="5941" remote_host=
"[local]"
 session_id="5ec7ac4d.1735" session_line_num="5" process_status="idle"
 session_start_time="2020-05-22 16:11:17 IST" log_time="2020-05-22
 16:12:21.764 IST"
 virtual_transaction_id="4/25" type="update" command_tag="UPDATE" audit_
 tag="edbaudit" application_name="psql" backend_type="client backend">
 <error_severity>AUDIT</error_severity>
 <message>statement: UPDATE department SET loc = 'BOSTON'
 WHERE deptno = 10;
 </message>
</event>
<event user="enterprisedb" database="edb" process_id="5941" remote_host=
"[local]"
 session_id="5ec7ac4d.1735" session_line_num="6" process_status="UPDATE"
 session_start_time="2020-05-22 16:11:17 IST" log_time="2020-05-22
 16:12:21.765 IST"
 virtual_transaction_id="4/25" type="error" sql_state_code="42P01"
 command_tag="UPDATE" audit_tag="edbaudit" application_name="psql"
 backend_type="client backend">
 <error_severity>ERROR</error_severity>
 <message>relation "department" does not exist</message>
 <query>UPDATE department SET loc = 'BOSTON' WHERE deptno =
 10;</query>
 <query_pos>8</query_pos>
</event>
<event user="enterprisedb" database="edb" process_id="5941" remote_host=
"[local]"
 session_id="5ec7ac4d.1735" session_line_num="7" process_status="idle"
 session_start_time="2020-05-22 16:11:17 IST" log_time="2020-05-22
 16:12:34.878 IST"
 virtual_transaction_id="4/26" type="update" command_tag="UPDATE" audit_
 tag="edbaudit" application_name="psql" backend_type="client backend">
 <error_severity>AUDIT</error_severity>
 <message>statement: UPDATE dept SET loc = 'BOSTON' WHERE
 deptno = 10;
 </message>
</event>
<event user="enterprisedb" database="edb" process_id="5941" remote_host=
"[local]"
 session_id="5ec7ac4d.1735" session_line_num="8" process_status="idle"
 session_start_time="2020-05-22 16:11:17 IST" log_time="2020-05-22
 16:12:45.471 IST"
 virtual_transaction_id="4/27" type="select" command_tag="SELECT" audit_
 tag="edbaudit" application_name="psql" backend_type="client backend">
 <error_severity>AUDIT</error_severity>
 <message>statement: SELECT * FROM dept;</message>
</event>
<event user="enterprisedb" database="edb" process_id="5941" remote_host=
"[local]"
 session_id="5ec7ac4d.1735" session_line_num="9" process_status="idle"
 session_start_time="2020-05-22 16:11:17 IST" log_time="2020-05-22
 16:12:53.048 IST"
 type="disconnect" audit_tag="edbaudit" application_name="psql" backend_
 type="client backend">
 <error_severity>AUDIT</error_severity>
 <message>disconnection: session time: 0:01:35.243 user=enterprisedb
 database=edb host=[local]</message>
</event>

Note

The XML audit log file currently doesn't capture the leader PID and query ID fields. The fields will be added to the XML file in a future minor release.

25.3.5.5 Using error codes to filter audit logs

EDB Postgres Advanced Server includes an extension that you can use to exclude from the EDB Postgres Advanced Server log files entries that include a user-specified error code. To filter audit log
entries, you must first enable the extension by modifying the postgresql.conf file. Add the following value to those specified in the shared_preload_libraries parameter:

$libdir/edb_filter_log

Then, use the edb_filter_log.errcodes parameter to specify any error codes you want to omit from the log files:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1011

edb_filter_log.errcode = 'error_code'

Where error_code specifies one or more error codes that you want to omit from the log file. Provide multiple error codes in a comma-delimited list.

For example, if edb_filter_log is enabled, and edb_filter_log.errcode is set to '23505,23502,22012' , any log entries that return one of the following SQLSTATE errors are
omitted from the log file:

23505 (for violating a unique constraint)

23502 (for violating a not-null constraint)

22012 (for dividing by zero)

For a complete list of the error codes supported by EDB Postgres Advanced Server audit log filtering, see the Postgres core documentation.

25.3.5.6 Using command tags to filter audit logs

Each entry in the log file contains a command tag, except for entries that display an error message. A command tag is the SQL command executed for that log entry. The command tag makes it possible
to use tools later to scan the log file to find entries related to a SQL command.

This example is in XML form, formatted for easier review. The command tag is displayed as the command_tag attribute of the event element with values CREATE ROLE , ALTER ROLE , and
DROP ROLE .

<event user="enterprisedb" database="edb" process_id="64234" remote_host=
"[local]"
 session_id="5ecbc7e6.faea" session_line_num="2" process_status="idle"
 session_start_time="2020-05-25 18:58:06 IST" log_time="2020-05-25
 18:58:21.147 IST"
 virtual_transaction_id="4/30" type="create" command_tag="CREATE ROLE"
 application_name="psql" backend_type="client backend">
 <error_severity>AUDIT</error_severity>
 <message>statement: CREATE ROLE newuser WITH LOGIN;</message>
</event>
<event user="enterprisedb" database="edb" process_id="64234" remote_host=
"[local]"
 session_id="5ecbc7e6.faea" session_line_num="3" process_status="idle"
 session_start_time="2020-05-25 18:58:06 IST" log_time="2020-05-25
 18:58:34.142 IST"
 virtual_transaction_id="4/31" type="error" sql_state_code="42601"
 application_name="psql" backend_type="client backend">
 <error_severity>ERROR</error_severity>
 <message>unrecognized role option "super"</message>
 <query>ALTER ROLE newuser WITH SUPER USER;</query>
 <query_pos>25</query_pos>
</event>
<event user="enterprisedb" database="edb" process_id="64234" remote_host=
"[local]"
 session_id="5ecbc7e6.faea" session_line_num="4" process_status="idle"
 session_start_time="2020-05-25 18:58:06 IST" log_time="2020-05-25
 18:58:44.680 IST"
 virtual_transaction_id="4/32" type="alter" command_tag="ALTER ROLE"
 application_name="psql" backend_type="client backend">
 <error_severity>AUDIT</error_severity>
 <message>statement: ALTER ROLE newuser WITH SUPERUSER;</message>
</event>
<event user="enterprisedb" database="edb" process_id="64234" remote_host=
"[local]"
 session_id="5ecbc7e6.faea" session_line_num="5" process_status="idle"
 session_start_time="2020-05-25 18:58:06 IST" log_time="2020-05-25
 18:58:58.173 IST"
 virtual_transaction_id="4/33" type="drop" command_tag="DROP ROLE"
 application_name="psql" backend_type="client backend">
 <error_severity>AUDIT</error_severity>
 <message>statement: DROP ROLE newuser;</message>
</event>

The following is the same example in CSV form. The command tag is the next-to-last column of each entry. In the listing, the column that appears empty (""), is the value of the edb_audit_tag
parameter, if provided.

(Each audit log entry was split and displays across multiple lines. A blank line was inserted between the audit log entries for visual clarity.)

2020-05-25 19:09:32.105 IST,"enterprisedb","edb",77212,"[local]",5ecbca7b.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1012

https://www.postgresql.org/docs/current/static/errcodes-appendix.html

12d9c,2,"idle",2020-05-25 19:09:07 IST,4/30,0,AUDIT,00000,"statement: CREATE
ROLE newuser WITH LOGIN;",,,,,,,,,"psql","client backend","CREATE ROLE","",
"create"

2020-05-25 19:09:50.975 IST,"enterprisedb","edb",77212,"[local]",5ecbca7b.
12d9c,3,"idle",2020-05-25 19:09:07 IST,4/31,0,ERROR,42601,"unrecognized role
option ""super""",,,,,,"ALTER ROLE newuser WITH SUPER USER;",25,,"psql",
"client backend","","","error"

2020-05-25 19:10:04.128 IST,"enterprisedb","edb",77212,"[local]",5ecbca7b.
12d9c,4,"idle",2020-05-25 19:09:07 IST,4/32,0,AUDIT,00000,"statement: ALTER
ROLE newuser WITH SUPERUSER;",,,,,,,,,"psql","client backend","ALTER ROLE","",
"alter"

2020-05-25 19:10:15.959 IST,"enterprisedb","edb",77212,"[local]",5ecbca7b.
12d9c,5,"idle",2020-05-25 19:09:07 IST,4/33,0,AUDIT,00000,"statement: DROP
ROLE newuser;",,,,,,,,,"psql","client backend","DROP ROLE","","drop"

25.3.5.7 Redacting passwords in audit logs

You can use the GUC parameter edb_filter_log.redact_password_commands under the postgresql.conf file to redact stored passwords in the log file.

The syntax is:

{CREATE|ALTER} {USER|ROLE|GROUP} identifier { [WITH] [ENCRYPTED] PASSWORD
'nonempty_string_literal' | IDENTIFIED BY { 'nonempty_string_literal' |
bareword } } [REPLACE { 'nonempty_string_literal' | bareword }]

To enable password redaction, you must first enable the parameter by modifying the postgresql.conf file. Add the following value to those specified in the shared_preload_libraries
parameter:

$libdir/edb_filter_log

Then, set edb_filter_log.redact_password_commands to true :

edb_filter_log.redact_password_commands = true

After modifying the postgresql.conf file, you must restart the server for the changes to take effect.

Examples

When the following statement is logged by log_statement , the server redacts the password to x . For example, this command is added to the log file:

CREATE USER carol with login PASSWORD '1safepwd';

It appears as:

2021-05-17 05:01:46.841 IST,"enterprisedb","edb",18415,"[local]",60a230f0.47ef,1,"idle",2021-05-17 05:01:36
IST,3/3,0,AUDIT,00000,"statement: CREATE USER carol with login PASSWORD 'x';",,,,,,,,,"psql","client backend","CREATE ROLE","","create"

When the following statement is logged by log_statement , the server identifies the new password, replace, and redact the password to x . For example, this command is added to the log file:

ALTER USER carol IDENTIFIED BY 'new_pass' REPLACE '1safepwd';

It appears as:

2021-05-19 04:41:45.718 IST,"enterprisedb","edb",19354,"[local]",60a23a72.4b9a,1,"idle",2021-05-19 04:41:23
IST,3/3,0,AUDIT,00000,"statement: ALTER USER carol IDENTIFIED BY 'x' REPLACE 'x';",,,,,,,,,"psql","client backend","ALTER ROLE","","alter"

The statement that includes a password is logged. The server redacts the password text to x . When the statement is logged as context for some other message, the server omits the statement from the
context.

25.3.5.8 Audit log archiving

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1013

EDB audit log archiving enables database administrators to control the space consumed by the audit log directory and helps manage the audit log files. The Audit Archiver is responsible for the
compression, execution, and expiration of log files with edb_audit_archiver_filename_prefix present in the audit directory. The edb_audit_archiver_timeout parameter triggers
the compression or expiration of audit log files at an appropriate time. For more information about audit archiving configuration parameters, see Audit logging configuration parameters.

The audit archiver helps to:

Prepare a list of log files from the audit log directory for compression.
Determine the log files for compression based on the parameters edb_audit_archiver_compress_time_limit and edb_audit_archiver_compress_size_limit .
Perform compression of the log files by specifying the compression command based on the edb_audit_archiver_compress_command parameter.
Determine the log files to remove based on the edb_audit_archiver_expire_time_limit and edb_audit_archiver_expire_size_limit parameter.
Execute the expiration command specified in the edb_audit_archiver_expire_command parameter to remove the log files.

To rotate out the older audit log files, you can set the log file rotation day when the new file is created. To do so, set the parameter edb_audit_rotation_day to the desired value. The audit log
records are overwritten on a first-in, first-out basis if space isn't available for more audit log records.

To configure EDB Postgres Advanced Server to enable compression and expiration of the log files:

1. Enable audit log archiving by setting the edb_audit_archiver parameter to on in the postgresql.conf file.
2. To enable compression of log files, set the parameter edb_audit_archiver_compress_size_limit and edb_audit_archiver_compress_time_limit to the values you want.
3. To enable expiration of log files, set the parameter edb_audit_archiver_expire_size_limit and edb_audit_archiver_expire_time_limit to the values you want.
4. To enable both compression and expiration, set the parameters edb_audit_archiver_compress_size_limit , edb_audit_archiver_compress_time_limit ,

edb_audit_archiver_expire_size_limit , edb_audit_archiver_expire_time_limit , and edb_audit_archiver_expire_command to the values you want.

The following is an example of the configuration parameter settings in the postgresql.conf file.

Setting the edb_audit_archiver parameter in the configuration file affects the entire database cluster. The database cluster is established with edb_audit_archiver set to on , as shown in
the postgresql.conf file. The audit log file is generated in CSV format based on the setting of the edb_audit configuration parameter.

logging_collector = 'on'
edb_audit = 'csv'
edb_audit_archiver = 'on' # (Change requires restart)

Examples

In this example, edb_audit_archiver , edb_audit_archiver_compress_size_limit , and edb_audit_archiver_compress_time_limit are set to enable compression of the
audit log files greater than 10MB.

edb_audit_archiver = 'on'
edb_audit_archiver_compress_size_limit = 10
edb_audit_archiver_compress_time_limit = 0

Before compression, the audit log file appears as follows:

-rw-------. 1 enterprisedb edb 2097276 Jun 4 11:42 audit-20200811_114237.csv <== Shows non-compressed audit log files
-rw-------. 1 enterprisedb edb 2097278 Jun 4 11:42 audit-20200811_114243.csv
-rw-------. 1 enterprisedb edb 2097289 Jun 4 11:42 audit-20200811_114245.csv
-rw-------. 1 enterprisedb edb 2097330 Jun 4 11:42 audit-20200811_114246.csv
-rw-------. 1 enterprisedb edb 2097343 Jun 4 11:42 audit-20200811_114248.csv
-rw-------. 1 enterprisedb edb 2097338 Jun 4 11:42 audit-20200811_114249.csv

The edb_audit_archiver parameter checks the log files, excluding the latest file. It retains at least 10MB of log files in the audit log directory and compresses the remaining log files. The .gz
specifies the name of an already compressed log file. After compression, the audit log file appears as follows:

-rw-------. 1 enterprisedb edb 64119 Jun 4 11:42 audit-20200811_114237.csv.gz <== Shows compressed audit log files
-rw-------. 1 enterprisedb edb 64323 Jun 4 11:42 audit-20200811_114243.csv.gz
-rw-------. 1 enterprisedb edb 64091 Jun 4 11:42 audit-20200811_114245.csv.gz
-rw-------. 1 enterprisedb edb 64152 Jun 4 11:42 audit-20200811_114246.csv.gz
-rw-------. 1 enterprisedb edb 2097343 Jun 4 11:42 audit-20200811_114248.csv <== Shows non-compressed audit log files
-rw-------. 1 enterprisedb edb 2097338 Jun 4 11:42 audit-20200811_114249.csv

In this example, edb_audit_archiver , edb_audit_archiver_expire_size_limit , and edb_audit_archiver_expire_time_limit are set to enable expiration of the audit log
files older than one hour.

edb_audit_archiver = 'on'
edb_audit_archiver_expire_size_limit = 0
edb_audit_archiver_expire_time_limit = 3600

Before compression, the audit log file appears as follows:

-rw-------. 1 enterprisedb edb 2097367 Jun 4 13:23 audit-20200811_132352.csv <== Shows non-compressed audit log files scheduled for

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1014

expiration/removal
-rw-------. 1 enterprisedb edb 2097395 Jun 4 13:24 audit-20200811_132353.csv
-rw-------. 1 enterprisedb edb 2097328 Jun 4 14:35 audit-20200811_143438.csv
-rw-------. 1 enterprisedb edb 2097276 Jun 4 14:35 audit-20200811_143502.csv
-rw-------. 1 enterprisedb edb 2097211 Jun 4 14:35 audit-20200811_143503.csv
-rw-------. 1 enterprisedb edb 2097152 Jun 4 14:35 audit-20200811_143504.csv

The edb_audit_archiver parameter checks the log files, excluding the latest file. It removes the log files older than one hour. After expiration, the audit log file appears as follows:

-rw-------. 1 enterprisedb edb 2097328 Jun 4 14:35 audit-20200811_143438.csv
-rw-------. 1 enterprisedb edb 2097276 Jun 4 14:35 audit-20200811_143502.csv
-rw-------. 1 enterprisedb edb 2097211 Jun 4 14:35 audit-20200811_143503.csv
-rw-------. 1 enterprisedb edb 2097152 Jun 4 14:35 audit-20200811_143504.csv

In this example, edb_audit_archiver , edb_audit_archiver_compress_size_limit , edb_audit_archiver_compress_time_limit ,
edb_audit_archiver_expire_size_limit , edb_audit_archiver_expire_time_limit , and edb_audit_archiver_expire_command are set to enable both compression and

expiration of the audit log files.

edb_audit_archiver = 'on'
edb_audit_archiver_compress_size_limit = 4
edb_audit_archiver_compress_time_limit = 0
edb_audit_archiver_expire_size_limit = 5
edb_audit_archiver_expire_time_limit = 0
edb_audit_archiver_expire_command = 'cp %p /home/edb_audit/backup-log/'

Before compression, the audit log file appears as follows:

-rw-------. 1 enterprisedb edb 2097522 Jun 4 13:02 audit-20200811_125816.csv <== Shows non-compressed audit log files ready to be
removed/expired
-rw-------. 1 enterprisedb edb 2097510 Jun 4 13:02 audit-20200811_130215.csv
-rw-------. 1 enterprisedb edb 2097336 Jun 4 13:10 audit-20200811_130947.csv
-rw-------. 1 enterprisedb edb 2097271 Jun 4 13:10 audit-20200811_131034.csv
-rw-------. 1 enterprisedb edb 2097246 Jun 4 13:10 audit-20200811_131035.csv
-rw-------. 1 enterprisedb edb 2097289 Jun 4 13:10 audit-20200811_131036.csv

The edb_audit_archiver parameter checks the log files, excluding the latest file. It retains at least 4MB of log files in the audit log directory and compresses the remaining log files. While
checking the log files for expiration, edb_audit_archiver retains at least 5MB of log files in the audit log directory and removes the remaining log files. After compression and expiration, the
audit log file appears as follows:

-rw-------. 1 enterprisedb edb 63854 Jun 4 13:10 audit-20200811_131034.csv.gz
-rw-------. 1 enterprisedb edb 63513 Jun 4 13:10 audit-20200811_131035.csv.gz
-rw-------. 1 enterprisedb edb 63738 Jun 4 13:10 audit-20200811_131036.csv.gz

The expiration command is specified as edb_audit_archiver_expire_command = 'cp %p /home/edb_audit/backup-log/' in the postgresql.conf file. The
edb_audit_archiver executes this command and copies the log files to a backup log directory before deleting them from the audit log directory. After compression and expiration, the backup log

directory appears as follows:

-rw-------. 1 enterprisedb edb 2097522 Jun 4 13:02 audit-20200811_125816.csv.gz
-rw-------. 1 enterprisedb edb 2097510 Jun 4 13:02 audit-20200811_130215.csv.gz
-rw-------. 1 enterprisedb edb 2097336 Jun 4 13:10 audit-20200811_130947.csv.gz

25.3.5.9 Object auditing

Object-level auditing allows selective auditing of objects for specific data manipulation language (DML) statements, such as SELECT , UPDATE , DELETE , and INSERT , on a given table. Object-
level auditing also lets you include or exclude specific groups by specifying (@) or (-) with the edb_audit_statement parameter. For more information about DML statements, see Selecting
SQL statements to audit.

Use the following syntax to specify an edb_audit_statement parameter value for SELECT , UPDATE , DELETE , or INSERT statements:

{ select | update | delete | insert }{@ | -}groupname

Example

In this example, edb_audit_connect and edb_audit_statement are set with the following non-default values:

logging_collector = 'on'

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1015

edb_audit_connect = 'all'
edb_audit = 'csv'
edb_audit_statement = 'select, insert, update, delete'

The SQL statements invoked by the SELECT , INSERT , UPDATE , and DELETE commands are audited.

The following is the database session that occurs:

$ psql edb enterprisedb
Password for user enterprisedb:
psql.bin (14.0.0)
Type "help" for help.

edb=# SHOW edb_audit_connect;
 edb_audit_connect

 all
(1 row)

edb=# SHOW edb_audit_statement;
 edb_audit_statement

 select, insert, update, delete
(1 row)

edb=# CREATE TABLE emp
edb-# (empno NUMBER(4) NOT NULL,
edb(# ename VARCHAR2(10),
edb(# job VARCHAR2(9),
edb(# mgr NUMBER(4),
edb(# hiredate DATE,
edb(# sal NUMBER(7, 2),
edb(# comm NUMBER(7, 2),
edb(# deptno NUMBER(2));
CREATE TABLE

edb=# ALTER TABLE emp SET (edb_audit_group = 'low_security');
ALTER TABLE

edb=# CREATE TABLE dept
edb-# (deptno NUMBER(2),
edb(# dname VARCHAR2(14),
edb(# loc VARCHAR2(13)) with (edb_audit_group = 'low_security');
CREATE TABLE

edb=# CREATE TABLE bonus
edb-# (ename VARCHAR2(10),
edb(# job VARCHAR2(9),
edb(# sal NUMBER,
edb(# comm NUMBER) with (edb_audit_group = 'high_security');
CREATE TABLE

edb=# CREATE TABLE sal
edb-# (grade NUMBER,
edb(# losal NUMBER,
edb(# hisal NUMBER) with (edb_audit_group = 'high_security');
CREATE TABLE

edb=# SET edb_audit_statement = 'select@low_security@high_security, insert@high_security-low_security, update-low_security@high_security,
delete@low_security-high_security';
SET

edb=# SELECT reloptions FROM pg_class WHERE relname IN('emp', 'dept', 'bonus', 'sal');
 reloptions

 {edb_audit_group=low_security}
 {edb_audit_group=low_security}
 {edb_audit_group=high_security}
 {edb_audit_group=high_security}
(4 rows)

edb=# SELECT setting FROM pg_settings WHERE name = 'edb_audit_statement';
 setting
--
 select@low_security@high_security, insert@high_security-low_security, update-low_security@high_security, delete@low_security-high_security
(1 row)

edb=# SELECT * FROM emp;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1016

 empno | ename | job | mgr | hiredate | sal | comm | deptno
-------+-------+-----+-----+----------+-----+------+--------
(0 rows)

edb=# SELECT * FROM dept;
 deptno | dname | loc
--------+-------+-----
(0 rows)

edb=# SELECT * FROM bonus;
 ename | job | sal | comm
-------+-----+-----+------
(0 rows)

edb=# SELECT * FROM sal;
 grade | losal | hisal
-------+-------+-------
(0 rows)

edb=# INSERT INTO emp VALUES (7369, 'SMITH', 'CLERK', 7902, TO_DATE('17-DEC-1980', 'DD-MON-YYYY'), 800, NULL, 10);
INSERT 0 1
edb=# INSERT INTO emp VALUES (7788, 'SCOTT', 'ANALYST', 7566, TO_DATE('09-DEC-1982', 'DD-MON-YYYY'), 3000, NULL, 20);
INSERT 0 1
edb=# INSERT INTO emp VALUES (7566, 'JONES', 'MANAGER', 7839, TO_DATE('2-APR-1981', 'DD-MON-YYYY'), 2975, NULL, 30);
INSERT 0 1

edb=# INSERT INTO dept VALUES (10, 'ACCOUNTING', 'NEW YORK');
INSERT 0 1
edb=# INSERT INTO dept VALUES (20, 'RESEARCH', 'DALLAS');
INSERT 0 1
edb=# INSERT INTO dept VALUES (30, 'SALES', 'CHICAGO');
INSERT 0 1
edb=# INSERT INTO dept VALUES (40, 'OPERATIONS', 'BOSTON');
INSERT 0 1

edb=# INSERT INTO bonus VALUES ('SMITH', 'CLERK', 800, NULL);
INSERT 0 1
edb=# INSERT INTO bonus VALUES ('SCOTT', 'ANALYST', 3000, NULL);
INSERT 0 1
edb=# INSERT INTO bonus VALUES ('JONES', 'MANAGER', 2975, 300);
INSERT 0 1

edb=# INSERT INTO sal VALUES (3, 800, 1500);
INSERT 0 1
edb=# INSERT INTO sal VALUES (2, 2975, 4000);
INSERT 0 1
edb=# INSERT INTO sal VALUES (1, 3000, 5000);
INSERT 0 1

edb=# UPDATE emp SET sal = '5500' WHERE deptno = 10;
UPDATE 1
edb=# UPDATE dept SET loc = 'BEDFORD' WHERE deptno = 20;
UPDATE 1
edb=# UPDATE bonus SET sal = '4000' WHERE ename = 'SMITH';
UPDATE 1
edb=# UPDATE sal SET losal = '5000';
UPDATE 3

edb=# DELETE FROM emp WHERE deptno = 10;
DELETE 1
edb=# DELETE FROM dept WHERE deptno = 20;
DELETE 1
edb=# DELETE FROM bonus WHERE sal = 4000;
DELETE 1
edb=# DELETE FROM sal WHERE losal = 5000;
DELETE 3

Setting the edb_audit_statement parameter to 'select@low_security@high_security, insert@high_security-low_security, update-
low_security@high_security, delete@low_security-high_security' for the enterprisedb user and edb database allows auditing of SELECT , INSERT , UPDATE or
DELETE statements including (@) and excluding - for a group in the audit log file.

For a table in the log file:

select@low_security@high_security audits SELECT statements of the low_security and high_security audit groups.
insert@high_security-low_security audits INSERT statements of high_security and excludes the insert statements of low_security audit group.
update-low_security@high_security audits UPDATE statements of high_security and excludes the update statements of the low_security audit group.
delete@low_security-high_security audits DELETE statements of low_security and excludes the delete statements of high_security audit group for a table in the log

file.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1017

The resulting audit log file contains the following. (Each audit log entry was split and displays across multiple lines. A blank line was inserted between the audit log entries for visual clarity.)

2021-07-20 01:45:27.077 IST,"enterprisedb","edb",87490,"[local]",60f662f7.
155c2,1,"authentication",2021-07-20 01:45:27 IST,5/1,0,AUDIT,00000,"connection authorized: user=enterprisedb
database=edb",,,,,,,,,"","client backend",,"","","connect"

2021-07-20 01:50:40.125 IST,"enterprisedb","edb",87490,"[local]",60f662f7.
155c2,2,"SELECT",2021-07-20 01:45:27 IST,5/13,0,AUDIT,00000,"statement: SELECT * FROM emp;",,,,,,,,,
"psql","client backend",,"SELECT","","select"

2021-07-20 01:50:53.778 IST,"enterprisedb","edb",87490,"[local]",60f662f7.
155c2,3,"SELECT",2021-07-20 01:45:27 IST,5/14,0,AUDIT,00000,"statement: SELECT * FROM dept;",,,,,,,,,
"psql","client backend",,"SELECT","","select"

2021-07-20 01:51:05.306 IST,"enterprisedb","edb",87490,"[local]",60f662f7.
155c2,4,"SELECT",2021-07-20 01:45:27 IST,5/15,0,AUDIT,00000,"statement: SELECT * FROM bonus;",,,,,,,,,
"psql","client backend",,"SELECT","","select"

2021-07-20 01:51:14.874 IST,"enterprisedb","edb",87490,"[local]",60f662f7.
155c2,5,"SELECT",2021-07-20 01:45:27 IST,5/16,0,AUDIT,00000,"statement: SELECT * FROM sal;",,,,,,,,,
"psql","client backend",,"SELECT","","select"

2021-07-20 01:52:53.413 IST,"enterprisedb","edb",87490,"[local]",60f662f7.
155c2,6,"INSERT",2021-07-20 01:45:27 IST,5/24,0,AUDIT,00000,"statement: INSERT INTO bonus VALUES ('SMITH', 'CLERK', 800, NULL);
",,,,,,,,,"psql","client backend",,"INSERT","","insert"

2021-07-20 01:53:02.945 IST,"enterprisedb","edb",87490,"[local]",60f662f7.
155c2,7,"INSERT",2021-07-20 01:45:27 IST,5/25,0,AUDIT,00000,"statement: INSERT INTO bonus VALUES ('SCOTT', 'ANALYST', 3000, NULL);
",,,,,,,,,"psql","client backend",,"INSERT","","insert"

2021-07-20 01:53:12.064 IST,"enterprisedb","edb",87490,"[local]",60f662f7.
155c2,8,"INSERT",2021-07-20 01:45:27 IST,5/26,0,AUDIT,00000,"statement: INSERT INTO bonus VALUES ('JONES', 'MANAGER', 2975, 300);
",,,,,,,,,"psql","client backend",,"INSERT","","insert"

2021-07-20 01:53:23.836 IST,"enterprisedb","edb",87490,"[local]",60f662f7.
155c2,9,"INSERT",2021-07-20 01:45:27 IST,5/27,0,AUDIT,00000,"statement: INSERT INTO sal VALUES (3, 800, 1500);
",,,,,,,,,"psql","client backend",,"INSERT","","insert"

2021-07-20 01:53:33.280 IST,"enterprisedb","edb",87490,"[local]",60f662f7.
155c2,10,"INSERT",2021-07-20 01:45:27 IST,5/28,0,AUDIT,00000,"statement: INSERT INTO sal VALUES (2, 2975, 4000);
",,,,,,,,,"psql","client backend",,"INSERT","","insert"

2021-07-20 01:53:42.388 IST,"enterprisedb","edb",87490,"[local]",60f662f7.
155c2,11,"INSERT",2021-07-20 01:45:27 IST,5/29,0,AUDIT,00000,"statement: INSERT INTO sal VALUES (1, 3000, 5000);
",,,,,,,,,"psql","client backend",,"INSERT","","insert"

2021-07-20 01:54:17.126 IST,"enterprisedb","edb",87490,"[local]",60f662f7.
155c2,12,"UPDATE",2021-07-20 01:45:27 IST,5/32,0,AUDIT,00000,"statement: UPDATE bonus SET sal = '4000' WHERE ename = 'SMITH';
",,,,,,,,,"psql","client backend",,"UPDATE","","update"

2021-07-20 01:54:34.344 IST,"enterprisedb","edb",87490,"[local]",60f662f7.
155c2,13,"UPDATE",2021-07-20 01:45:27 IST,5/33,0,AUDIT,00000,"statement: UPDATE sal SET losal = '5000';
",,,,,,,,,"psql","client backend",,"UPDATE","","update"

2021-07-20 01:54:45.887 IST,"enterprisedb","edb",87490,"[local]",60f662f7.
155c2,14,"DELETE",2021-07-20 01:45:27 IST,5/34,0,AUDIT,00000,"statement: DELETE FROM emp WHERE deptno = 10;
",,,,,,,,,"psql","client backend",,"DELETE","","delete"

2021-07-20 01:54:54.513 IST,"enterprisedb","edb",87490,"[local]",60f662f7.
155c2,15,"DELETE",2021-07-20 01:45:27 IST,5/35,0,AUDIT,00000,"statement: DELETE FROM dept WHERE deptno = 20;
",,,,,,,,,"psql","client backend",,"DELETE","","delete"

25.3.6 Unicode Collation Algorithm

The Unicode Collation Algorithm (UCA) is a specification (Unicode Technical Report #10) that defines a customizable method of collating and comparing Unicode data. Collation means how data is
sorted, as with a SELECT … ORDER BY clause. Comparison is relevant for searches that use ranges with less than, greater than, or equal to operators.

Customizability is an important factor for various reasons such as:

Unicode supports many languages. Letters that might be common to several languages might collate in different orders depending on the language.
Characters that appear with letters in certain languages, such as accents or umlauts, have an impact on the expected collation depending on the language.
In some languages, combinations of several consecutive characters are treated as a single character with regard to their collation sequence.
There might be certain preferences as to collating letters according to case. For example, the lowercase form of a letter might collate before the uppercase form of the same letter or vice versa.
There might be preferences as to whether punctuation marks like underscore characters, hyphens, or space characters are considered in the collating sequence or whether they're ignored.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1018

Given all of these variations with the many languages supported by Unicode, a method is needed to select the specific criteria for determining a collating sequence. This is what the Unicode Collation
Algorithm defines.

Note

Another advantage for using ICU collations (the implementation of the Unicode Collation Algorithm) is for performance. Sorting tasks, including B-tree index creation, can complete in less
than half the time it takes with a non-ICU collation. The exact performance gain depends on your operating system version, the language of your text data, and other factors.

Basic Unicode Collation Algorithm concepts

The official information for the Unicode Collation Algorithm is specified in Unicode Technical Report #10.

The International Components for Unicode (ICU) also provides useful information. You can find an explanation of the collation concepts on the ICU website.

The basic concept behind the Unicode Collation Algorithm is the use of multilevel comparison. This means that a number of levels are defined, which are listed as level 1 through level 5 in the following
bullet points. Each level defines a type of comparison. Strings are first compared using the primary level, also called level 1.

If the order can be determined based on the primary level, then the algorithm is done. If the order can't be determined based on the primary level, then the secondary level, level 2, is applied. If the order
can be determined based on the secondary level, then the algorithm is done, otherwise the tertiary level is applied, and so on. There is typically a final, tie-breaking level to determine the order if it can't
be resolved by the prior levels.

Level 1 – Primary level for base characters. The order of basic characters such as letters and digits determines the difference, such as A < B .
Level 2 – Secondary level for accents. If there are no primary level differences, then the presence or absence of accents and other such characters determines the order, such as a < á .
Level 3 – Tertiary level for case. If there are no primary level or secondary level differences, then a difference in case determines the order, such as a < A .
Level 4 – Quaternary level for punctuation. If there are no primary, secondary, or tertiary level differences, then the presence or absence of white-space characters, control characters, and
punctuation determine the order, such as -A < A .
Level 5 – Identical level for tie breaking. If there are no primary, secondary, tertiary, or quaternary level differences, then some other difference such as the code point values determines the
order.

International components for Unicode

The Unicode Collation Algorithm is implemented by open source software provided by the International Components for Unicode (ICU). The software is a set of C/C++ and Java libraries.

When you use EDB Postgres Advanced Server to create a collation that invokes the ICU components to produce the collation, the result is referred to as an ICU collation.

Locale collations

When creating a collation for a locale, a predefined ICU short form name for the given locale is typically provided. An ICU short form is a method of specifying collation attributes, which are the
properties of a collation. See Collation attributes for more information.

There are predefined ICU short forms for locales. The ICU short form for a locale incorporates the collation attribute settings typically used for the given locale. The short form simplifies the collation
creation process by eliminating the need to specify the entire list of collation attributes for that locale.

The system catalog pg_catalog.pg_icu_collate_names contains a list of the names of the ICU short forms for locales. The ICU short form name is listed in column icu_short_form .

edb=# SELECT icu_short_form, valid_locale FROM pg_icu_collate_names ORDER BY
valid_locale;
 icu_short_form | valid_locale
----------------+--------------
 LAF | af
 LAR | ar
 LAS | as
 LAZ | az
 LBE | be
 LBG | bg
 LBN | bn
 LBS | bs
 LBS_ZCYRL | bs_Cyrl
 LROOT | ca
 LROOT | chr
 LCS | cs
 LCY | cy
 LDA | da
 LROOT | de
 LROOT | dz
 LEE | ee
 LEL | el
 LROOT | en
 LROOT | en_US

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1019

http://www.unicode.org/reports/tr10/
http://userguide.icu-project.org/collation/concepts

 LEN_RUS_VPOSIX | en_US_POSIX
 LEO | eo
 LES | es
 LET | et
 LFA | fa
 LFA_RAF | fa_AF
 .
 .
 .

If needed, you can override the default characteristics of an ICU short form for a given locale by specifying the collation attributes to override that property.

Collation attributes

When creating an ICU collation, you must specify the desired characteristics of the collation. As discussed in Locale collations, you can typically do this with an ICU short form for the desired locale.
However, if you need more specific information, you can specify the collation properties using collation attributes.

Collation attributes define the rules of how to compare characters for determining the collation sequence of text strings. As Unicode covers many languages in numerous variations according to
country, territory, and culture, these collation attributes are complex.

For the complete and precise meaning and usage of collation attributes, see “Collator Naming Scheme” on the ICU – International Components for Unicode website.

Each collation attribute is represented by an uppercase letter. The possible valid values for each attribute are given by codes shown in the parentheses. Some codes have general meanings for all
attributes. X means to set the attribute off. O means to set the attribute on. D means to set the attribute to its default value.

A – Alternate (N, S, D). Handles treatment of variable characters such as white spaces, punctuation marks, and symbols. When set to non-ignorable (N), differences in variable characters are
treated with the same importance as differences in letters. When set to shifted (S), then differences in variable characters are of minor importance (that is, the variable character is ignored when
comparing base characters).
C – Case first (X, L, U, D). Controls whether a lowercase letter sorts before the same uppercase letter (L), or the uppercase letter sorts before the same lowercase letter (U). You typically specify off
(X) when you want lowercase first (L).
E – Case level (X, O, D). Set in combination with the Strength attribute, use the Case Level attribute when you want to ignore accents but not case.
F – French collation (X, O, D). When set to on, secondary differences (presence of accents) are sorted from the back of the string as done in the French Canadian locale.
H – Hiragana quaternary (X, O, D). Introduces an additional level to distinguish between the Hiragana and Katakana characters for compatibility with the JIS X 4061 collation of Japanese
character strings.
N – Normalization checking (X, O, D). Controls whether text is thoroughly normalized for comparison. Normalization deals with the issue of canonical equivalence of text whereby different code
point sequences represent the same character. This occurrence then presents issues when sorting or comparing such characters. For languages such as Arabic, ancient Greek, Hebrew, Hindi,
Thai, or Vietnamese, set normalization checking to on.
S – Strength (1, 2, 3, 4, I, D). Maximum collation level used for comparison. Influences whether accents or case are taken into account when collating or comparing strings. Each number
represents a level. A setting of I represents identical strength (that is, level 5).
T – Variable top (hexadecimal digits). Applies only when the Alternate attribute isn't set to non-ignorable (N). The hexadecimal digits specify the highest character sequence to consider ignorable.
For example, if white space is ignorable but visible variable characters aren't, then set Variable Top to 0020 along with the Alternate attribute set to S and the Strength attribute set to 3. (The
space character is hexadecimal 0020. Other nonvisible variable characters, such as backspace, tab, line feed, and carriage return, have values less than 0020. All visible punctuation marks have
values greater than 0020.)

A set of collation attributes and their values is represented by a text string consisting of the collation attribute letter concatenated with the desired attribute value. Each attribute/value pair is joined to
the next pair with an underscore character:

AN_CX_EX_FX_HX_NO_S3

You can specify collation attributes with a locale’s ICU short form name to override those default attribute settings of the locale.

In this example, the ICU short form named LROOT is modified with a number of other collation attribute/value pairs:

AN_CX_EX_LROOT_NO_S3

The Alternate attribute (A) is set to non-ignorable (N). The Case First attribute (C) is set to off (X). The Case Level attribute (E) is set to off (X). The Normalization attribute (N) is set to on (O).
The Strength attribute (S) is set to the tertiary level 3 . LROOT is the ICU short form to which these other attributes are applying modifications.

Using a collation

You can use a newly defined ICU collation anywhere you can use the COLLATION "collation_name" clause in a SQL command. For example, you can use it in the column specifications of the
CREATE TABLE command or appended to an expression in the ORDER BY clause of a SELECT command.

The following are some examples of creating and using ICU collations based on the English language in the United States (en_US.UTF8). In these examples, ICU collations are created with the
following characteristics:

Collation icu_collate_lowercase forces the lowercase form of a letter to sort before its uppercase counterpart (CL).

Collation icu_collate_uppercase forces the uppercase form of a letter to sort before its lowercase counterpart (CU).

Collation icu_collate_ignore_punct causes variable characters (white space and punctuation marks) to be ignored during sorting (AS).

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1020

http://userguide.icu-project.org/collation/concepts

Collation icu_collate_ignore_white_sp causes white space and other nonvisible variable characters to be ignored during sorting, but visible variable characters (punctuation marks)
aren't ignored (AS , T0020).

CREATE COLLATION icu_collate_lowercase (
 LOCALE = 'en_US.UTF8',
 ICU_SHORT_FORM = 'AN_CL_EX_NX_LROOT'
);

CREATE COLLATION icu_collate_uppercase (
 LOCALE = 'en_US.UTF8',
 ICU_SHORT_FORM = 'AN_CU_EX_NX_LROOT'
);

CREATE COLLATION icu_collate_ignore_punct (
 LOCALE = 'en_US.UTF8',
 ICU_SHORT_FORM = 'AS_CX_EX_NX_LROOT_L3'
);

CREATE COLLATION icu_collate_ignore_white_sp (
 LOCALE = 'en_US.UTF8',
 ICU_SHORT_FORM = 'AS_CX_EX_NX_LROOT_L3_T0020'
);

Note

When creating collations, ICU might generate notice and warning messages when attributes are given to modify the LROOT collation.

The following psql command lists the collations:

edb=# \dO
 List of collations
 Schema | Name | Collate | Ctype | ICU
--------------+-----------------------------+------------+------------+----------------------------
 enterprisedb | icu_collate_ignore_punct | en_US.UTF8 | en_US.UTF8 | AS_CX_EX_NX_LROOT_L3
 enterprisedb | icu_collate_ignore_white_sp | en_US.UTF8 | en_US.UTF8 |
 AS_CX_EX_NX_LROOT_L3_T0020
 enterprisedb | icu_collate_lowercase | en_US.UTF8 | en_US.UTF8 | AN_CL_EX_NX_LROOT
 enterprisedb | icu_collate_uppercase | en_US.UTF8 | en_US.UTF8 | AN_CU_EX_NX_LROOT
(4 rows)

The following table is created and populated:

CREATE TABLE collate_tbl (
 id INTEGER,
 c2 VARCHAR(2)
);

INSERT INTO collate_tbl VALUES (1, 'A');
INSERT INTO collate_tbl VALUES (2, 'B');
INSERT INTO collate_tbl VALUES (3, 'C');
INSERT INTO collate_tbl VALUES (4, 'a');
INSERT INTO collate_tbl VALUES (5, 'b');
INSERT INTO collate_tbl VALUES (6, 'c');
INSERT INTO collate_tbl VALUES (7, '1');
INSERT INTO collate_tbl VALUES (8, '2');
INSERT INTO collate_tbl VALUES (9, '.B');
INSERT INTO collate_tbl VALUES (10, '-B');
INSERT INTO collate_tbl VALUES (11, ' B');

The following query sorts on column c2 using the default collation. Variable characters (white space and punctuation marks) with id column values of 9 , 10 , and 11 are ignored and sort with the
letter B .

edb=# SELECT * FROM collate_tbl ORDER BY c2;
 id | c2
-----+----
 7 | 1
 8 | 2
 4 | a
 1 | A
 5 | b
 2 | B
 11 | B
 10 | -B
 9 | .B
 6 | c

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1021

 3 | C
(11 rows)

The following query sorts on column c2 using collation icu_collate_lowercase . This collation forces the lowercase form of a letter to sort before the uppercase form of the same base letter.
The AN attribute forces the sort order to include variable characters at the same level when comparing base characters. Thus rows with id values of 9 , 10 , and 11 appear at the beginning of the
sort list before all letters and numbers.

edb=# SELECT * FROM collate_tbl ORDER BY c2 COLLATE "icu_collate_lowercase";
 id | c2
----+----
 11 | B
 10 | -B
 9 | .B
 7 | 1
 8 | 2
 4 | a
 1 | A
 5 | b
 2 | B
 6 | c
 3 | C
(11 rows)

The following query sorts on column c2 using collation icu_collate_uppercase . This collations forces the uppercase form of a letter to sort before the lowercase form of the same base letter.

edb=# SELECT * FROM collate_tbl ORDER BY c2 COLLATE "icu_collate_uppercase";
 id | c2
----+----
 11 | B
 10 | -B
 9 | .B
 7 | 1
 8 | 2
 1 | A
 4 | a
 2 | B
 5 | b
 3 | C
 6 | c
(11 rows)

The following query sorts on column c2 using collation icu_collate_ignore_punct . This collation causes variable characters to be ignored so rows with id values of 9 , 10 , and 11 sort with
the letter B , the character immediately following the ignored variable character.

edb=# SELECT * FROM collate_tbl ORDER BY c2 COLLATE
"icu_collate_ignore_punct";
 id | c2
-----+----
 7 | 1
 8 | 2
 4 | a
 1 | A
 5 | b
 11 | B
 2 | B
 9 | .B
 10 | -B
 6 | c
 3 | C
(11 rows)

The following query sorts on column c2 using collation icu_collate_ignore_white_sp . The AS and T0020 attributes of the collation cause variable characters with code points less than or
equal to hexadecimal 0020 to be ignored while variable characters with code points greater than hexadecimal 0020 are included in the sort.

The row with id value of 11 , which starts with a space character (hexadecimal 0020), sorts with the letter B . The rows with id values of 9 and 10 , which start with visible punctuation marks
greater than hexadecimal 0020 , appear at the beginning of the sort list. These particular variable characters are included in the sort order at the same level when comparing base characters.

edb=# SELECT * FROM collate_tbl ORDER BY c2 COLLATE
"icu_collate_ignore_white_sp";
 id | c2
----+----
 10 | -B
 9 | .B
 7 | 1
 8 | 2

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1022

 4 | a
 1 | A
 5 | b
 11 | B
 2 | B
 6 | c
 3 | C
(11 rows)

25.4 EDB Resource Manager

EDB Resource Manager is an EDB Postgres Advanced Server feature that lets you control the use of operating system resources used by EDB Postgres Advanced Server processes.

This capability allows you to protect the system from processes that might uncontrollably overuse and monopolize certain system resources.

The following are some key points about using EDB Resource Manager:

The basic component of EDB Resource Manager is a resource group. A resource group is a named, global group. It's available to all databases in an EDB Postgres Advanced Server instance, and
you can define various resource usage limits on it. EDB Postgres Advanced Server processes that are assigned as members of a given resource group are then controlled by EDB Resource
Manager. This configuration keeps the aggregate resource use of all processes in the group near the limits defined on the group.
Data definition language commands are used to create, alter, and drop resource groups. Only a database user with superuser privileges can use these commands.
Resource type parameters define the desired aggregate consumption level of all processes belonging to a resource group. You use different resource type parameters for the different types of
system resources currently supported by EDB Resource Manager.
You can create multiple resource groups, each with different settings for its resource type parameters, which defines different consumption levels for each resource group.
EDB Resource Manager throttles processes in a resource group to keep resource consumption near the limits defined by the resource type parameters. If multiple resource type parameters have
defined settings in a resource group, the actual resource consumption might be significantly lower for certain resource types than their defined resource type parameter settings. This lower
consumption happens because EDB Resource Manager throttles processes, attempting to keep all resources with defined resource type settings within their defined limits.
The definitions of available resource groups and their resource type settings are stored in a shared global system catalog. Thus, all databases in a given EDB Postgres Advanced Server instance
can use resource groups.
The edb_max_resource_groups configuration parameter sets the maximum number of resource groups that can be active at the same time as running processes. The default setting is 16
resource groups. Changes to this parameter take effect when you restart the database server.
Use the SET edb_resource_group TO group_name command to assign the current process to a specified resource group. Use the RESET edb_resource_group command or SET
edb_resource_group to DEFAULT to remove the current process from a resource group.
You can assign a default resource group to a role using the ALTER ROLE ... SET command or to a database using the ALTER DATABASE ... SET command. You can assign the entire
database server instance a default resource group by setting the parameter in the postgresql.conf file.
To include resource groups in a backup file of the database server instance, use the pg_dumpall backup utility with default settings. That is, don't specify any of the --globals-only , --
roles-only , or --tablespaces-only options.

Creating and managing resource groups

Use these data definition language commands to create and manage resource groups.

CREATE RESOURCE GROUP

Use the CREATE RESOURCE GROUP command to create a new resource group.

CREATE RESOURCE GROUP <group_name>;

Description

The CREATE RESOURCE GROUP command creates a resource group with the specified name. You can then define resource limits on the group with the ALTER RESOURCE GROUP command. The
resource group is accessible from all databases in the EDB Postgres Advanced Server instance.

To use the CREATE RESOURCE GROUP command, you must have superuser privileges.

Parameters

group_name

The name of the resource group.

Example

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1023

This example creates three resource groups named resgrp_a , resgrp_b , and resgrp_c :

edb=# CREATE RESOURCE GROUP resgrp_a;
CREATE RESOURCE GROUP
edb=# CREATE RESOURCE GROUP resgrp_b;
CREATE RESOURCE GROUP
edb=# CREATE RESOURCE GROUP resgrp_c;
CREATE RESOURCE GROUP

This query shows the entries for the resource groups in the edb_resource_group catalog:

edb=# SELECT * FROM edb_resource_group;
 rgrpname | rgrpcpuratelimit | rgrpdirtyratelimit
-----------+------------------+--------------------
 resgrp_a | 0 | 0
 resgrp_b | 0 | 0
 resgrp_c | 0 | 0
(3 rows)

ALTER RESOURCE GROUP

Use the ALTER RESOURCE GROUP command to change the attributes of an existing resource group. The command syntax comes in three forms.

This form renames the resource group:

ALTER RESOURCE GROUP <group_name> RENAME TO <new_name>;

This form assigns a resource type to the resource group:

ALTER RESOURCE GROUP <group_name> SET
 <resource_type> { TO | = } { <value> | DEFAULT };

This form resets the assignment of a resource type to its default in the group:

ALTER RESOURCE GROUP <group_name> RESET <resource_type>;

Description

The ALTER RESOURCE GROUP command changes certain attributes of an existing resource group.

The form with the RENAME TO clause assigns a new name to an existing resource group.

The form with the SET resource_type TO clause assigns the specified literal value to a resource type. Or, when you specify DEFAULT , it resets the resource type. Resetting a resource type
means that the resource group has no defined limit on that resource type.

The form with the RESET resource_type clause resets the resource type for the group.

To use the ALTER RESOURCE GROUP command, you must have superuser privileges.

Parameters

group_name

The name of the resource group to alter.

new_name

The new name to assign to the resource group.

resource_type

Specifies the type of resource to which to set a usage value.

value | DEFAULT

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1024

When value is specified, the literal value to assign to resource_type . Specify DEFAULT to reset the assignment of resource_type for the resource group.

Example

These examples show the use of the ALTER RESOURCE GROUP command:

edb=# ALTER RESOURCE GROUP resgrp_a RENAME TO newgrp;
ALTER RESOURCE GROUP
edb=# ALTER RESOURCE GROUP resgrp_b SET cpu_rate_limit = .5;
ALTER RESOURCE GROUP
edb=# ALTER RESOURCE GROUP resgrp_b SET dirty_rate_limit = 6144;
ALTER RESOURCE GROUP
edb=# ALTER RESOURCE GROUP resgrp_c RESET cpu_rate_limit;
ALTER RESOURCE GROUP

This query shows the results of the ALTER RESOURCE GROUP commands to the entries in the edb_resource_group catalog:

edb=# SELECT * FROM edb_resource_group;
 rgrpname | rgrpcpuratelimit | rgrpdirtyratelimit
-----------+------------------+--------------------
 newgrp | 0 | 0
 resgrp_b | 0.5 | 6144
 resgrp_c | 0 | 0
(3 rows)

DROP RESOURCE GROUP

Use the DROP RESOURCE GROUP command to remove a resource group.

DROP RESOURCE GROUP [IF EXISTS] <group_name>;

Description

The DROP RESOURCE GROUP command removes a resource group with the specified name.

To use the DROP RESOURCE GROUP command, you must have superuser privileges.

Parameters

group_name

The name of the resource group to remove.

IF EXISTS

Don't throw an error if the resource group doesn't exist. Instead, issue a notice.

Example

This example removes the resource group newgrp :

edb=# DROP RESOURCE GROUP newgrp;
DROP RESOURCE GROUP

Assigning a process to a resource group

Use the SET edb_resource_group TO group_name command to assign the current process to a specified resource group:

edb=# SET edb_resource_group TO resgrp_b;
SET
edb=# SHOW edb_resource_group;
 edb_resource_group

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1025

 resgrp_b
(1 row)

The resource type settings of the group take effect on the current process immediately. If you use the command to change the resource group assigned to the current process, the resource type settings
of the newly assigned group take effect immediately.

You can include processes in a resource group by default by assigning a default resource group to roles, databases, or an entire database server instance.

You can assign a default resource group to a role using the ALTER ROLE ... SET command. For more information about the ALTER ROLE command, see the PostgreSQL core documentation.

You can assign a default resource group to a database by using the ALTER DATABASE ... SET command. For more information about the ALTER DATABASE command, see the PostgreSQL core
documentation.

You can assign the entire database server instance a default resource group by setting the edb_resource_group configuration parameter in the postgresql.conf file:

- EDB Resource Manager -
#edb_max_resource_groups = 16 # 0-65536 (change requires restart)
edb_resource_group = 'resgrp_b'

If you change edb_resource_group in the postgresql.conf file, reload the configuration file to make it take effect on the database server instance.

Removing a process from a resource group

Set edb_resource_group to DEFAULT or use RESET edb_resource_group to remove the current process from a resource group:

edb=# SET edb_resource_group TO DEFAULT;
SET
edb=# SHOW edb_resource_group;
 edb_resource_group

(1 row)

To remove a default resource group from a role, use the ALTER ROLE ... RESET form of the ALTER ROLE command.

To remove a default resource group from a database, use the ALTER DATABASE ... RESET form of the ALTER DATABASE command.

To remove a default resource group from the database server instance, set the edb_resource_group configuration parameter to an empty string in the postgresql.conf file. Then, reload the
configuration file.

Monitoring processes in resource groups

After you create resource groups, you can get the number of processes actively using these resource groups from the view edb_all_resource_groups .

The following are the columns in edb_all_resource_groups :

group_name. Name of the resource group.
active_processes. Number of active processes in the resource group.
cpu_rate_limit. The value of the CPU rate limit resource type assigned to the resource group.
per_process_cpu_rate_limit. The CPU rate limit that applies to an individual active process in the resource group.
dirty_rate_limit. The value of the dirty rate limit resource type assigned to the resource group.
per_process_dirty_rate_limit. The dirty rate limit that applies to an individual active process in the resource group.

Note

Columns per_process_cpu_rate_limit and per_process_dirty_rate_limit don't show the actual resource consumption used by the processes. They indicate how EDB
Resource Manager sets the resource limit for an individual process based on the number of active processes in the resource group.

This example shows edb_all_resource_groups when resource group resgrp_a contains no active processes, resource group resgrp_b contains two active processes, and resource group
resgrp_c contains one active process:

edb=# SELECT * FROM edb_all_resource_groups ORDER BY group_name;
-[RECORD 1]-----------------+------------------
 group_name | resgrp_a
 active_processes | 0
 cpu_rate_limit | 0.5
 per_process_cpu_rate_limit |
 dirty_rate_limit | 12288
 per_process_dirty_rate_limit |

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1026

https://www.postgresql.org/docs/current/static/sql-alterrole.html
https://www.postgresql.org/docs/current/static/sql-alterdatabase.html

-[RECORD 2]-----------------+------------------
 group_name | resgrp_b
 active_processes | 2
 cpu_rate_limit | 0.4
 per_process_cpu_rate_limit | 0.195694289022895
 dirty_rate_limit | 6144
 per_process_dirty_rate_limit | 3785.92924684337
-[RECORD 3]-----------------+------------------
 group_name | resgrp_c
 active_processes | 1
 cpu_rate_limit | 0.3
 per_process_cpu_rate_limit | 0.292342129631091
 dirty_rate_limit | 3072
 per_process_dirty_rate_limit | 3072

The CPU rate limit and dirty rate limit settings that are assigned to these resource groups are:

edb=# SELECT * FROM edb_resource_group;
 rgrpname | rgrpcpuratelimit | rgrpdirtyratelimit
-----------+------------------+--------------------
 resgrp_a | 0.5 | 12288
 resgrp_b | 0.4 | 6144
 resgrp_c | 0.3 | 3072
(3 rows)

In the edb_all_resource_groups view, the per_process_cpu_rate_limit and per_process_dirty_rate_limit values are roughly the corresponding CPU rate limit and dirty
rate limit divided by the number of active processes.

CPU usage throttling

Control CPU use of a resource group by setting the cpu_rate_limit resource type parameter.

Set the cpu_rate_limit parameter to the fraction of CPU time over wall-clock time to which the combined, simultaneous CPU usage of all processes in the group must not exceed. The value
assigned to cpu_rate_limit is typically less than or equal to 1.

On multicore systems, you can apply the cpu_rate_limit to more than one CPU core by setting it to greater than 1. For example, if cpu_rate_limit is set to 2.0, you use 100% of two CPUs.

The valid range of the cpu_rate_limit parameter is 0 to 1.67772e+07. A setting of 0 means no CPU rate limit was set for the resource group.

When the value is multiplied by 100, you can also interpret the cpu_rate_limit as the CPU usage percentage for a resource group.

EDB Resource Manager uses CPU throttling to keep the aggregate CPU usage of all processes in the group within the limit specified by the cpu_rate_limit parameter. A process in the group might
be interrupted and put into sleep mode for a short time to maintain the defined limit. When and how such interruptions occur is defined by a proprietary algorithm used by EDB Resource Manager.

Setting the CPU rate limit for a resource group

Use the ALTER RESOURCE GROUP command with the SET cpu_rate_limit clause to set the CPU rate limit for a resource group.

In this example, the CPU usage limit is set to 50% for resgrp_a , 40% for resgrp_b , and 30% for resgrp_c . This means that the combined CPU usage of all processes assigned to resgrp_a
is maintained at approximately 50%. Similarly, for all processes in resgrp_b , the combined CPU usage is kept to approximately 40%, and so on.

edb=# ALTER RESOURCE GROUP resgrp_a SET cpu_rate_limit TO .5;
ALTER RESOURCE GROUP
edb=# ALTER RESOURCE GROUP resgrp_b SET cpu_rate_limit TO .4;
ALTER RESOURCE GROUP
edb=# ALTER RESOURCE GROUP resgrp_c SET cpu_rate_limit TO .3;
ALTER RESOURCE GROUP

This query shows the settings of cpu_rate_limit in the catalog:

edb=# SELECT rgrpname, rgrpcpuratelimit FROM edb_resource_group;
 rgrpname | rgrpcpuratelimit
----------+------------------
 resgrp_a | 0.5
 resgrp_b | 0.4
 resgrp_c | 0.3
(3 rows)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1027

Changing the cpu_rate_limit of a resource group affects new processes that are assigned to the group. It also immediately affects any currently running processes that are members of the group.
That is, if the cpu_rate_limit is changed from .5 to .3, currently running processes in the group are throttled downward so that the aggregate group CPU usage is near 30% instead of 50%.

To show the effect of setting the CPU rate limit for resource groups, the following psql command-line examples use a CPU-intensive calculation of 20000 factorial (multiplication of 20000 * 19999 *
19998, and so on) performed by the query SELECT 20000! .

The resource groups with the CPU rate limit settings shown in the previous query are used in these examples.

Example: Single process in a single group

This example shows that the current process is set to use resource group resgrp_b . The factorial calculation then starts.

edb=# SET edb_resource_group TO resgrp_b;
SET
edb=# SHOW edb_resource_group;
 edb_resource_group

 resgrp_b
(1 row)
edb=# SELECT 20000!;

In a second session, the Linux top command is used to display the CPU usage as shown under the %CPU column. The following is a snapshot at an arbitrary point in time, as the top command
output periodically changes:

$ top
top - 16:37:03 up 4:15, 7 users, load average: 0.49, 0.20, 0.38
Tasks: 202 total, 1 running, 201 sleeping, 0 stopped, 0 zombie
Cpu(s): 42.7%us, 2.3%sy, 0.0%ni, 55.0%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0
Mem: 1025624k total, 791160k used, 234464k free, 23400k buffers
Swap: 103420k total, 13404k used, 90016k free, 373504k cached

 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
28915 enterpri 20 0 195m 5900 4212 S 39.9 0.6 3:36.98 edb-postgres
 1033 root 20 0 171m 77m 2960 S 1.0 7.8 3:43.96 Xorg
 3040 user 20 0 278m 22m 14m S 1.0 2.2 3:41.72 knotify4
 .
 .
 .

The row where edb-postgres appears under the COMMAND column shows the psql session performing the factorial calculation. The CPU usage of the session shown under the %CPU column is
39.9, which is close to the 40% CPU limit set for resource group resgrp_b .

By contrast, if the psql session is removed from the resource group and the factorial calculation is performed again, the CPU usage is much higher.

edb=# SET edb_resource_group TO DEFAULT;
SET
edb=# SHOW edb_resource_group;
 edb_resource_group

(1 row)

edb=# SELECT 20000!;

Under the %CPU column for edb-postgres , the CPU usage is now 93.6, which is significantly higher than the 39.9 when the process was part of the resource group:

$ top
top - 16:43:03 up 4:21, 7 users, load average: 0.66, 0.33, 0.37
Tasks: 202 total, 5 running, 197 sleeping, 0 stopped, 0 zombie
Cpu(s): 96.7%us, 3.3%sy, 0.0%ni, 0.0%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0
Mem: 1025624k total, 791228k used, 234396k free, 23560k buffers
Swap: 103420k total, 13404k used, 90016k free, 373508k cached

 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
28915 enterpri 20 0 195m 5900 4212 R 93.6 0.6 5:01.56 edb-postgres
 1033 root 20 0 171m 77m 2960 S 1.0 7.8 3:48.15 Xorg
 2907 user 20 0 98.7m 11m 9100 S 0.3 1.2 0:46.51 vmware-user-lo
 .
 .
 .

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1028

Example: Multiple processes in a single group

As stated previously, the CPU rate limit applies to the aggregate of all processes in the resource group. This concept is shown in the following example.

The factorial calculation is performed simultaneously in two separate psql sessions, each of which was added to resource group resgrp_b that has cpu_rate_limit set to .4 (CPU usage of
40%).

Session 1

edb=# SET edb_resource_group TO resgrp_b;
SET
edb=# SHOW edb_resource_group;
 edb_resource_group

 resgrp_b
(1 row)

edb=# SELECT 20000!;

Session 2

edb=# SET edb_resource_group TO resgrp_b;
SET
edb=# SHOW edb_resource_group;
 edb_resource_group

 resgrp_b
(1 row)

edb=# SELECT 20000!;

A third session monitors the CPU usage:

$ top
top - 16:53:03 up 4:31, 7 users, load average: 0.31, 0.19, 0.27
Tasks: 202 total, 1 running, 201 sleeping, 0 stopped, 0 zombie
Cpu(s): 41.2%us, 3.0%sy, 0.0%ni, 55.8%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0
Mem: 1025624k total, 792020k used, 233604k free, 23844k buffers
Swap: 103420k total, 13404k used, 90016k free, 373508k cached

 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
29857 enterpri 20 0 195m 4708 3312 S 19.9 0.5 0:57.35 edb-postgres
28915 enterpri 20 0 195m 5900 4212 S 19.6 0.6 5:35.49 edb-postgres
 3040 user 20 0 278m 22m 14m S 1.0 2.2 3:54.99 knotify4
 1033 root 20 0 171m 78m 2960 S 0.3 7.8 3:55.71 Xorg
 .
 .
 .

Two new processes named edb-postgres have %CPU values of 19.9 and 19.6. The sum is close to the 40% CPU usage set for resource group resgrp_b .

This command sequence displays the sum of all edb-postgres processes sampled over half-second time intervals. This example shows how the total CPU usage of the processes in the resource
group changes over time as EDB Resource Manager throttles the processes to keep the total resource group CPU usage near 40%.

$ while [[1 -eq 1]]; do top -d0.5 -b -n2 | grep edb-postgres | awk '{ SUM
+= $9} END { print SUM / 2 }'; done
37.2
39.1
38.9
38.3
44.7
39.2
42.5
39.1
39.2
39.2
41
42.85
46.1
 .
 .
 .

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1029

Example: Multiple processes in multiple groups

In this example, two additional psql sessions are used along with the previous two sessions. The third and fourth sessions perform the same factorial calculation in resource group resgrp_c with a
cpu_rate_limit of .3 (30% CPU usage).

Session 3

edb=# SET edb_resource_group TO resgrp_c;
SET
edb=# SHOW edb_resource_group;
 edb_resource_group

 resgrp_c
(1 row)

edb=# SELECT 20000!;

Session 4

edb=# SET edb_resource_group TO resgrp_c;
SET
edb=# SHOW edb_resource_group;
 edb_resource_group

 resgrp_c
(1 row)
edb=# SELECT 20000!;

The top command displays the following output:

$ top
top - 17:45:09 up 5:23, 8 users, load average: 0.47, 0.17, 0.26
Tasks: 203 total, 4 running, 199 sleeping, 0 stopped, 0 zombie
Cpu(s): 70.2%us, 0.0%sy, 0.0%ni, 29.8%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0
Mem: 1025624k total, 806140k used, 219484k free, 25296k buffers
Swap: 103420k total, 13404k used, 90016k free, 374092k cached

 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
29857 enterpri 20 0 195m 4820 3324 S 19.9 0.5 4:25.02 edb-postgres
28915 enterpri 20 0 195m 5900 4212 R 19.6 0.6 9:07.50 edb-postgres
29023 enterpri 20 0 195m 4744 3248 R 16.3 0.5 4:01.73 edb-postgres
11019 enterpri 20 0 195m 4120 2764 R 15.3 0.4 0:04.92 edb-postgres
 2907 user 20 0 98.7m 12m 9112 S 1.3 1.2 0:56.54 vmware-user-lo
 3040 user 20 0 278m 22m 14m S 1.3 2.2 4:38.73 knotify4

The two resource groups in use have CPU usage limits of 40% and 30%. The sum of the %CPU column for the first two edb-postgres processes is 39.5 (approximately 40%, which is the limit for
resgrp_b). The sum of the %CPU column for the third and fourth edb-postgres processes is 31.6 (approximately 30%, which is the limit for resgrp_c).

The sum of the CPU usage limits of the two resource groups to which these processes belong is 70%. The following output shows that the sum of the four processes borders around 70%:

$ while [[1 -eq 1]]; do top -d0.5 -b -n2 | grep edb-postgres | awk '{ SUM
+= $9} END { print SUM / 2 }'; done
61.8
76.4
72.6
69.55
64.55
79.95
68.55
71.25
74.85
62
74.85
76.9
72.4
65.9
74.9
68.25

By contrast, if three sessions are processing. where two sessions remain in resgrp_b but the third session doesn't belong to any resource group, the top command shows the following output:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1030

$ top
top - 17:24:55 up 5:03, 7 users, load average: 1.00, 0.41, 0.38
Tasks: 199 total, 3 running, 196 sleeping, 0 stopped, 0 zombie
Cpu(s): 99.7%us, 0.3%sy, 0.0%ni, 0.0%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0
Mem: 1025624k total, 797692k used, 227932k free, 24724k buffers
Swap: 103420k total, 13404k used, 90016k free, 374068k cached

 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
29023 enterpri 20 0 195m 4744 3248 R 58.6 0.5 2:53.75 edb-postgres
28915 enterpri 20 0 195m 5900 4212 S 18.9 0.6 7:58.45 edb-postgres
29857 enterpri 20 0 195m 4820 3324 S 18.9 0.5 3:14.85 edb-postgres
 1033 root 20 0 174m 81m 2960 S 1.7 8.2 4:26.50 Xorg
 3040 user 20 0 278m 22m 14m S 1.0 2.2 4:21.20 knotify4

The second and third edb-postgres processes belonging to the resource group where the CPU usage is limited to 40% have a total CPU usage of 37.8. However, the first edb-postgres process
has a 58.6% CPU usage, as it isn't within a resource group. It basically uses the remaining available CPU resources on the system.

Likewise, the following output shows the sum of all three sessions is around 95%, since one of the sessions has no set limit on its CPU usage:

$ while [[1 -eq 1]]; do top -d0.5 -b -n2 | grep edb-postgres | awk '{ SUM
+= $9} END { print SUM / 2 }'; done
96
90.35
92.55
96.4
94.1
90.7
95.7
95.45
93.65
87.95
96.75
94.25
95.45
97.35
92.9
96.05
96.25
94.95
 .
 .
 .

Dirty buffer throttling

To control writing to shared buffers, set the dirty_rate_limit resource type parameter.

Set the dirty_rate_limit parameter to the number of kilobytes per second for the combined rate at which all the processes in the group write to, or “dirty”, the shared buffers. An example setting
is 3072 kilobytes per seconds.

The valid range of the dirty_rate_limit parameter is 0 to 1.67772e+07. A setting of 0 means no dirty rate limit was set for the resource group.

EDB Resource Manager uses dirty buffer throttling to keep the aggregate shared buffer writing rate of all processes in the group near the limit specified by the dirty_rate_limit parameter. A
process in the group might be interrupted and put into sleep mode for a short time to maintain the defined limit. When and how such interruptions occur is defined by a proprietary algorithm used by
EDB Resource Manager.

Setting the dirty rate limit for a resource group

Use the ALTER RESOURCE GROUP command with the SET dirty_rate_limit clause to set the dirty rate limit for a resource group.

In this example, the dirty rate limit is set to 12288 kilobytes per second for resgrp_a , 6144 kilobytes per second for resgrp_b , and 3072 kilobytes per second for resgrp_c . This means that the
combined writing rate to the shared buffer of all processes assigned to resgrp_a is maintained at approximately 12288 kilobytes per second. Similarly, for all processes in resgrp_b , the
combined writing rate to the shared buffer is kept to approximately 6144 kilobytes per second, and so on.

edb=# ALTER RESOURCE GROUP resgrp_a SET dirty_rate_limit TO 12288;
ALTER RESOURCE GROUP
edb=# ALTER RESOURCE GROUP resgrp_b SET dirty_rate_limit TO 6144;
ALTER RESOURCE GROUP
edb=# ALTER RESOURCE GROUP resgrp_c SET dirty_rate_limit TO 3072;
ALTER RESOURCE GROUP

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1031

This query shows the settings of dirty_rate_limit in the catalog;

edb=# SELECT rgrpname, rgrpdirtyratelimit FROM edb_resource_group;
 rgrpname | rgrpdirtyratelimit
-----------+--------------------
 resgrp_a | 12288
 resgrp_b | 6144
 resgrp_c | 3072
(3 rows)

Changing the dirty_rate_limit of a resource group affects new processes that are assigned to the group. Any currently running processes that are members of the group are also immediately
affected by the change. That is, if the dirty_rate_limit is changed from 12288 to 3072, currently running processes in the group are throttled downward so that the aggregate group dirty rate is
near 3072 kilobytes per second instead of 12288 kilobytes per second.

To show the effect of setting the dirty rate limit for resource groups, the examples use the following table for intensive I/O operations:

CREATE TABLE t1 (c1 INTEGER, c2 CHARACTER(500)) WITH (FILLFACTOR = 10);

The FILLFACTOR = 10 clause results in INSERT commands packing rows up to only 10% per page. The result is a larger sampling of dirty shared blocks for the purpose of these examples.

The pg_stat_statements module is used to display the number of shared buffer blocks that are dirtied by a SQL command and the amount of time the command took to execute. This information
is used to calculate the actual kilobytes per second writing rate for the SQL command and thus compare it to the dirty rate limit set for a resource group.

To use the pg_stat_statements module:

1. In the postgresql.conf file, add $libdir/pg_stat_statements to the shared_preload_libraries configuration parameter:

shared_preload_libraries = '$libdir/dbms_pipe,$libdir/edb_gen,$libdir/pg_stat_statements'

2. Restart the database server.

3. Use the CREATE EXTENSION command to finish creating the pg_stat_statements module:

edb=# CREATE EXTENSION pg_stat_statements SCHEMA public;
CREATE EXTENSION

The pg_stat_statements_reset() function clears out the pg_stat_statements view for clarity of each example.

The resource groups with the dirty rate limit settings shown in the previous query are used in these examples.

Example: Single process in a single group

This sequence of commands creates table t1 . The current process is set to use resource group resgrp_b . The pg_stat_statements view is cleared out by running the
pg_stat_statements_reset() function.

The INSERT command then generates a series of integers from 1 to 10,000 to populate the table and dirty approximately 10,000 blocks:

edb=# CREATE TABLE t1 (c1 INTEGER, c2 CHARACTER(500)) WITH (FILLFACTOR = 10);
CREATE TABLE
edb=# SET edb_resource_group TO resgrp_b;
SET
edb=# SHOW edb_resource_group;
 edb_resource_group

 resgrp_b
(1 row)

edb=# SELECT pg_stat_statements_reset();
 pg_stat_statements_reset

(1 row)

edb=# INSERT INTO t1 VALUES (generate_series (1,10000), 'aaa');
INSERT 0 10000

The following shows the results from the INSERT command:

edb=# SELECT query, rows, total_time, shared_blks_dirtied FROM

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1032

pg_stat_statements;
-[RECORD 1]--------+--
 query | INSERT INTO t1 VALUES (generate_series (?,?), ?);
 rows | 10000
 total_time | 13496.184
 shared_blks_dirtied | 10003

The actual dirty rate is calculated as follows:

The number of blocks dirtied per millisecond (ms) is 10003 blocks / 13496.184 ms, which yields 0.74117247 blocks per millisecond.
Multiply the result by 1000 to give the number of shared blocks dirtied per second (1 second = 1000 ms), which yields 741.17247 blocks per second.
Multiply the result by 8.192 to give the number of kilobytes dirtied per second (1 block = 8.192 kilobytes), which yields approximately 6072 kilobytes per second.

The actual dirty rate of 6072 kilobytes per second is close to the dirty rate limit for the resource group, which is 6144 kilobytes per second.

By contrast, if you repeat the steps without the process belonging to any resource group, the dirty buffer rate is much higher:

edb=# CREATE TABLE t1 (c1 INTEGER, c2 CHARACTER(500)) WITH (FILLFACTOR = 10);
CREATE TABLE
edb=# SHOW edb_resource_group;
 edb_resource_group

(1 row)

edb=# SELECT pg_stat_statements_reset();
 pg_stat_statements_reset

(1 row)

edb=# INSERT INTO t1 VALUES (generate_series (1,10000), 'aaa');
INSERT 0 10000

The following shows the results from the INSERT command without the use of a resource group:

edb=# SELECT query, rows, total_time, shared_blks_dirtied FROM
pg_stat_statements;
-[RECORD 1]--------+--
 query | INSERT INTO t1 VALUES (generate_series (?,?), ?);
 rows | 10000
 total_time | 2432.165
 shared_blks_dirtied | 10003

The total time was only 2432.165 milliseconds, compared to 13496.184 milliseconds when using a resource group with a dirty rate limit set to 6144 kilobytes per second.

The actual dirty rate without the use of a resource group is calculated as follows:

The number of blocks dirtied per millisecond (ms) is 10003 blocks / 2432.165 ms, which yields 4.112797 blocks per millisecond.
Multiply the result by 1000 to give the number of shared blocks dirtied per second (1 second = 1000 ms), which yields 4112.797 blocks per second.
Multiply the result by 8.192 to give the number of kilobytes dirtied per second (1 block = 8.192 kilobytes), which yields approximately 33692 kilobytes per second.

The actual dirty rate of 33692 kilobytes per second is much higher than when the resource group with a dirty rate limit of 6144 kilobytes per second was used.

Example: Multiple processes in a single group

As stated previously, the dirty rate limit applies to the aggregate of all processes in the resource group. This concept is illustrated in the following example.

For this example. the inserts are performed simultaneously on two different tables in two separate psql sessions, each of which was added to resource group resgrp_b that has a
dirty_rate_limit set to 6144 kilobytes per second.

Session 1

edb=# CREATE TABLE t1 (c1 INTEGER, c2 CHARACTER(500)) WITH (FILLFACTOR = 10);
CREATE TABLE
edb=# SET edb_resource_group TO resgrp_b;
SET
edb=# SHOW edb_resource_group;
 edb_resource_group

 resgrp_b

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1033

(1 row)

edb=# INSERT INTO t1 VALUES (generate_series (1,10000), 'aaa');
INSERT 0 10000

Session 2

edb=# CREATE TABLE t2 (c1 INTEGER, c2 CHARACTER(500)) WITH (FILLFACTOR = 10);
CREATE TABLE
edb=# SET edb_resource_group TO resgrp_b;
SET
edb=# SHOW edb_resource_group;
 edb_resource_group

 resgrp_b
(1 row)

edb=# SELECT pg_stat_statements_reset();
 pg_stat_statements_reset

(1 row)

edb=# INSERT INTO t2 VALUES (generate_series (1,10000), 'aaa');
INSERT 0 10000

Note

The INSERT commands in session 1 and session 2 started after the SELECT pg_stat_statements_reset() command in session 2 ran.

The following shows the results from the INSERT commands in the two sessions. RECORD 3 shows the results from session 1. RECORD 2 shows the results from session 2.

edb=# SELECT query, rows, total_time, shared_blks_dirtied FROM
pg_stat_statements;
-[RECORD 1]--------+--
 query | SELECT pg_stat_statements_reset();
 rows | 1
 total_time | 0.43
 shared_blks_dirtied | 0
-[RECORD 2]--------+--
 query | INSERT INTO t2 VALUES (generate_series (?,?), ?);
 rows | 10000
 total_time | 30591.551
 shared_blks_dirtied | 10003
-[RECORD 3]--------+--
 query | INSERT INTO t1 VALUES (generate_series (?,?), ?);
 rows | 10000
 total_time | 33215.334
 shared_blks_dirtied | 10003

The total time was 33215.334 milliseconds for session 1 and 30591.551 milliseconds for session 2. When only one session was active in the same resource group, as shown in the first example, the time
was 13496.184 milliseconds. Thus, more active processes in the resource group result in a slower dirty rate for each active process in the group. The following calculations show this.

The actual dirty rate for session 1 is calculated as follows:

The number of blocks dirtied per millisecond (ms) is 10003 blocks / 33215.334 ms, which yields 0.30115609 blocks per millisecond.
Multiply the result by 1000 to give the number of shared blocks dirtied per second (1 second = 1000 ms), which yields 301.15609 blocks per second.
Multiply the result by 8.192 to give the number of kilobytes dirtied per second (1 block = 8.192 kilobytes), which yields approximately 2467 kilobytes per second.

The actual dirty rate for session 2 is calculated as follows:

The number of blocks dirtied per millisecond (ms) is 10003 blocks / 30591.551 ms, which yields 0.32698571 blocks per millisecond.
Multiply the result by 1000 to give the number of shared blocks dirtied per second (1 second = 1000 ms), which yields 326.98571 blocks per second.
Multiply the result by 8.192 to give the number of kilobytes dirtied per second (1 block = 8.192 kilobytes), which yields approximately 2679 kilobytes per second.

The combined dirty rate from session 1 (2467 kilobytes per second) and from session 2 (2679 kilobytes per second) yields 5146 kilobytes per second, which is below the set dirty rate limit of the
resource group (6144 kilobytes per seconds).

Example: Multiple processes in multiple groups

In this example, two additional psql sessions are used along with the previous two sessions. The third and fourth sessions perform the same INSERT command in resource group resgrp_c with a
dirty_rate_limit of 3072 kilobytes per second.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1034

Sessions 1 and 2 are repeated as shown in the prior example using resource group resgrp_b with a dirty_rate_limit of 6144 kilobytes per second.

Session 3

edb=# CREATE TABLE t3 (c1 INTEGER, c2 CHARACTER(500)) WITH (FILLFACTOR = 10);
CREATE TABLE
edb=# SET edb_resource_group TO resgrp_c;
SET
edb=# SHOW edb_resource_group;
 edb_resource_group

resgrp_c
(1 row)

edb=# INSERT INTO t3 VALUES (generate_series (1,10000), 'aaa');
INSERT 0 10000

Session 4

edb=# CREATE TABLE t4 (c1 INTEGER, c2 CHARACTER(500)) WITH (FILLFACTOR = 10);
CREATE TABLE
edb=# SET edb_resource_group TO resgrp_c;
SET
edb=# SHOW edb_resource_group;
 edb_resource_group

 resgrp_c
(1 row)

edb=# SELECT pg_stat_statements_reset();
 pg_stat_statements_reset

(1 row)

edb=# INSERT INTO t4 VALUES (generate_series (1,10000), 'aaa');
INSERT 0 10000

Note

The INSERT commands in all four sessions started after the SELECT pg_stat_statements_reset() command in session 4 ran.

The following shows the results from the INSERT commands in the four sessions:

RECORD 3 shows the results from session 1. RECORD 2 shows the results from session 2.

RECORD 4 shows the results from session 3. RECORD 5 shows the results from session 4.

edb=# SELECT query, rows, total_time, shared_blks_dirtied FROM
pg_stat_statements;
-[RECORD 1]--------+--
 query | SELECT pg_stat_statements_reset();
 rows | 1
 total_time | 0.467
 shared_blks_dirtied | 0
-[RECORD 2]--------+--
 query | INSERT INTO t2 VALUES (generate_series (?,?), ?);
 rows | 10000
 total_time | 31343.458
 shared_blks_dirtied | 10003
-[RECORD 3]--------+--
 query | INSERT INTO t1 VALUES (generate_series (?,?), ?);
 rows | 10000
 total_time | 28407.435
 shared_blks_dirtied | 10003
-[RECORD 4]--------+--
 query | INSERT INTO t3 VALUES (generate_series (?,?), ?);
 rows | 10000
 total_time | 52727.846
 shared_blks_dirtied | 10003

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1035

-[RECORD 5]--------+--
 query | INSERT INTO t4 VALUES (generate_series (?,?), ?);
 rows | 10000
 total_time | 56063.697
 shared_blks_dirtied | 10003

The times of session 1 (28407.435) and session 2 (31343.458) are close to each other, as they are both in the same resource group with dirty_rate_limit set to 6144. These times differe from
the times of session 3 (52727.846) and session 4 (56063.697), which are in the resource group with dirty_rate_limit set to 3072. The latter group has a slower dirty rate limit, so the expected
processing time is longer, as is the case for sessions 3 and 4.

The actual dirty rate for session 1 is calculated as follows:

The number of blocks dirtied per millisecond (ms) is 10003 blocks / 28407.435 ms, which yields 0.35212612 blocks per millisecond.
Multiply the result by 1000 to give the number of shared blocks dirtied per second (1 second = 1000 ms), which yields 352.12612 blocks per second.
Multiply the result by 8.192 to give the number of kilobytes dirtied per second (1 block = 8.192 kilobytes), which yields approximately 2885 kilobytes per second.

The actual dirty rate for session 2 is calculated as follows:

The number of blocks dirtied per millisecond (ms) is 10003 blocks / 31343.458 ms, which yields 0.31914156 blocks per millisecond.
Multiply the result by 1000 to give the number of shared blocks dirtied per second (1 second = 1000 ms), which yields 319.14156 blocks per second.
Multiply the result by 8.192 to give the number of kilobytes dirtied per second (1 block = 8.192 kilobytes), which yields approximately 2614 kilobytes per second.

The combined dirty rate from session 1 (2885 kilobytes per second) and from session 2 (2614 kilobytes per second) yields 5499 kilobytes per second, which is near the set dirty rate limit of the resource
group (6144 kilobytes per seconds).

The actual dirty rate for session 3 is calculated as follows:

The number of blocks dirtied per millisecond (ms) is 10003 blocks / 52727.846 ms, which yields 0.18971001 blocks per millisecond.
Multiply the result by 1000 to give the number of shared blocks dirtied per second (1 second = 1000 ms), which yields 189.71001 blocks per second.
Multiply the result by 8.192 to give the number of kilobytes dirtied per second (1 block = 8.192 kilobytes), which yields approximately 1554 kilobytes per second.

The actual dirty rate for session 4 is calculated as follows:

The number of blocks dirtied per millisecond (ms) is 10003 blocks / 56063.697 ms, which yields 0.17842205 blocks per millisecond.
Multiply the result by 1000 to give the number of shared blocks dirtied per second (1 second = 1000 ms), which yields 178.42205 blocks per second.
Multiply the result by 8.192 to give the number of kilobytes dirtied per second (1 block = 8.192 kilobytes), which yields approximately 1462 kilobytes per second.

The combined dirty rate from session 3 (1554 kilobytes per second) and from session 4 (1462 kilobytes per second) yields 3016 kilobytes per second, which is near the set dirty rate limit of the resource
group (3072 kilobytes per seconds).

This example shows how EDB Resource Manager keeps the aggregate dirty rate of the active processes in its groups close to the dirty rate limit set for each group.

System catalogs

System catalogs store the resource group information used by EDB Resource Manager.

edb_all_resource_groups

The following table lists the information available in the edb_all_resource_groups catalog.

Column Type Description

group_name name The name of the resource group.

active_processes integer Number of currently active processes in the resource group.

cpu_rate_limit float8 Maximum CPU rate limit for the resource group. 0 means no limit.

per_process_cpu_rate_limit float8 Maximum CPU rate limit per currently active process in the resource group.

dirty_rate_limit float8 Maximum dirty rate limit for a resource group. 0 means no limit.

per_process_dirty_rate_limit float8 Maximum dirty rate limit per currently active process in the resource
group.

edb_resource_group

The following table lists the information available in the edb_resource_group catalog.

Column Type Description

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1036

rgrpname name The name of the resource group.

rgrpcpuratelimit float8 Maximum CPU rate limit for a resource group. 0 means no limit.

rgrpdirtyratelimit float8 Maximum dirty rate limit for a resource group. 0 means no
limit.

Column Type Description

25.5 libpq C library

libpq is the C application programmer’s interface to EDB Postgres Advanced Server. libpq is a set of library functions that allow client programs to pass queries to the EDB Postgres Advanced Server and
to receive the results of these queries.

libpq is also the underlying engine for several other EDB application interfaces, including those written for C++, Perl, Python, Tcl, and ECPG. Some aspects of libpq’s behavior are important to you if you
are using one of those packages.

Client programs that use libpq must include the header file libpq-fe.h and must link with the libpq library.

Using libpq with EDB SPL

You can use the EDB SPL language with the libpq interface library, providing support for:

Procedures, functions, packages
Prepared statements
REFCURSORs

Static cursors
structs and typedefs

Arrays
DML and DDL operations
IN / OUT / IN OUT parameters

REFCURSOR support

In earlier releases, EDB Postgres Advanced Server provided support for REFCURSORs through the following libpq functions. These functions are now deprecated:

PQCursorResult()
PQgetCursorResult()
PQnCursor()

You can now use PQexec() and PQgetvalue() to retrieve a REFCURSOR returned by an SPL (or PL/pgSQL) function. A REFCURSOR is returned in the form of a null-terminated string
indicating the name of the cursor. Once you have the name of the cursor, you can execute one or more FETCH statements to retrieve the values exposed through the cursor.

Note

The examples that follow don't include the error-handling code required in a real-world client application.

Returning a single REFCURSOR

This example shows an SPL function that returns a value of type REFCURSOR :

CREATE OR REPLACE FUNCTION getEmployees(p_deptno NUMERIC)
RETURN REFCURSOR AS
 result REFCURSOR;
BEGIN
 OPEN result FOR SELECT * FROM emp WHERE deptno = p_deptno;

 RETURN result;
END;

This function expects a single parameter, p_deptno , and returns a REFCURSOR that holds the result set for the SELECT query shown in the OPEN statement. The OPEN statement executes the
query and stores the result set in a cursor. The server constructs a name for that cursor and stores the name in a variable named result . The function then returns the name of the cursor to the caller.

To call this function from a C client using libpq, you can use PQexec() and PQgetvalue() :

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1037

#include <stdio.h>
#include <stdlib.h>
#include "libpq-fe.h"

static void fetchAllRows(PGconn *conn,
 const char *cursorName,
 const char *description);
static void fail(PGconn *conn, const char *msg);

int
main(int argc, char *argv[])
{
 PGconn *conn = PQconnectdb(argv[1]);
 PGresult *result;

 if (PQstatus(conn) != CONNECTION_OK)
 fail(conn, PQerrorMessage(conn));

 result = PQexec(conn, "BEGIN TRANSACTION");

 if (PQresultStatus(result) != PGRES_COMMAND_OK)
 fail(conn, PQerrorMessage(conn));

 PQclear(result);

 result = PQexec(conn, "SELECT * FROM getEmployees(10)");

 if (PQresultStatus(result) != PGRES_TUPLES_OK)
 fail(conn, PQerrorMessage(conn));

 fetchAllRows(conn, PQgetvalue(result, 0, 0), "employees");

 PQclear(result);

 PQexec(conn, "COMMIT");

 PQfinish(conn);

 exit(0);
}

static void
fetchAllRows(PGconn *conn,
 const char *cursorName,
 const char *description)
{
 size_t commandLength = strlen("FETCH ALL FROM ") +
 strlen(cursorName) + 3;

 char *commandText = malloc(commandLength);
 PGresult *result;
 int row;

 sprintf(commandText, "FETCH ALL FROM \"%s\"", cursorName);

 result = PQexec(conn, commandText);

 if (PQresultStatus(result) != PGRES_TUPLES_OK)
 fail(conn, PQerrorMessage(conn));

 printf("-- %s --\n", description);

 for (row = 0; row < PQntuples(result); row++)
 {
 const char *delimiter = "\t";
 int col;

 for (col = 0; col < PQnfields(result); col++)
 {
 printf("%s%s", delimiter, PQgetvalue(result, row, col));
 delimiter = ",";
 }

 printf("\n");
 }

 PQclear(result);
 free(commandText);
}

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1038

static void
fail(PGconn *conn, const char *msg)
{
 fprintf(stderr, "%s\n", msg);

 if (conn != NULL)
 PQfinish(conn);

 exit(-1);
}

The code sample contains a line of code that calls the getEmployees() function and returns a result set that contains all of the employees in department 10 :

result = PQexec(conn, "SELECT * FROM getEmployees(10)");

The PQexec() function returns a result set handle to the C program. The result set contains one value: the name of the cursor returned by getEmployees() .

Once you have the name of the cursor, you can use the SQL FETCH statement to retrieve the rows in that cursor. The function fetchAllRows() builds a FETCH ALL statement, executes that
statement, and then prints the result set of the FETCH ALL statement.

The output of this program is:

-- employees --
 7782,CLARK,MANAGER,7839,09-JUN-81 00:00:00,2450.00,,10
 7839,KING,PRESIDENT,,17-NOV-81 00:00:00,5000.00,,10
 7934,MILLER,CLERK,7782,23-JAN-82 00:00:00,1300.00,,10

Returning multiple REFCURSORs

The next example returns two REFCURSORs :

The first REFCURSOR contains the name of a cursor (employees) that contains all employees who work in a department in the range specified by the caller.
The second REFCURSOR contains the name of a cursor (departments) that contains all of the departments in the range specified by the caller.

In this example, instead of returning a single REFCURSOR , the function returns a SETOF REFCURSOR , which means 0 or more REFCURSORS . One other important difference is that the libpq
program must not expect a single REFCURSOR in the result set. It must expect two rows, each of which contains a single value. The first row contains the name of the employees cursor, and the
second row contains the name of the departments cursor.

CREATE OR REPLACE FUNCTION getEmpsAndDepts(p_min NUMERIC,
 p_max NUMERIC)
RETURN SETOF REFCURSOR AS
 employees REFCURSOR;
 departments REFCURSOR;
BEGIN
 OPEN employees FOR
 SELECT * FROM emp WHERE deptno BETWEEN p_min AND p_max;
 RETURN NEXT employees;

 OPEN departments FOR
 SELECT * FROM dept WHERE deptno BETWEEN p_min AND p_max;
 RETURN NEXT departments;
END;

As in the previous example, you can use PQexec() and PQgetvalue() to call the SPL function:

#include <stdio.h>
#include <stdlib.h>
#include "libpq-fe.h"

static void fetchAllRows(PGconn *conn,
 const char *cursorName,
 const char *description);
static void fail(PGconn *conn, const char *msg);

int
main(int argc, char *argv[])
{
 PGconn *conn = PQconnectdb(argv[1]);
 PGresult *result;

 if (PQstatus(conn) != CONNECTION_OK)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1039

 fail(conn, PQerrorMessage(conn));

 result = PQexec(conn, "BEGIN TRANSACTION");

 if (PQresultStatus(result) != PGRES_COMMAND_OK)
 fail(conn, PQerrorMessage(conn));

 PQclear(result);

 result = PQexec(conn, "SELECT * FROM getEmpsAndDepts(20, 30)");

 if (PQresultStatus(result) != PGRES_TUPLES_OK)
 fail(conn, PQerrorMessage(conn));

 fetchAllRows(conn, PQgetvalue(result, 0, 0), "employees");
 fetchAllRows(conn, PQgetvalue(result, 1, 0), "departments");

 PQclear(result);

 PQexec(conn, "COMMIT");

 PQfinish(conn);

 exit(0);
}

static void
fetchAllRows(PGconn *conn,
 const char *cursorName,
 const char *description)
{
 size_t commandLength = strlen("FETCH ALL FROM ") +
 strlen(cursorName) + 3;
 char *commandText = malloc(commandLength);
 PGresult *result;
 int row;

 sprintf(commandText, "FETCH ALL FROM \"%s\"", cursorName);

 result = PQexec(conn, commandText);

 if (PQresultStatus(result) != PGRES_TUPLES_OK)
 fail(conn, PQerrorMessage(conn));

 printf("-- %s --\n", description);

 for (row = 0; row < PQntuples(result); row++)
 {
 const char *delimiter = "\t";
 int col;

 for (col = 0; col < PQnfields(result); col++)
 {
 printf("%s%s", delimiter, PQgetvalue(result, row, col));
 delimiter = ",";
 }

 printf("\n");
 }

 PQclear(result);
 free(commandText);
}

static void
fail(PGconn *conn, const char *msg)
{
 fprintf(stderr, "%s\n", msg);

 if (conn != NULL)
 PQfinish(conn);

 exit(-1);
}

If you call getEmpsAndDepts(20, 30) , the server returns a cursor that contains all employees who work in department 20 or 30 and a second cursor containing the description of departments 20
and 30.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1040

-- employees --
 7369,SMITH,CLERK,7902,17-DEC-80 00:00:00,800.00,,20
 7499,ALLEN,SALESMAN,7698,20-FEB-81 00:00:00,1600.00,300.00,30
 7521,WARD,SALESMAN,7698,22-FEB-81 00:00:00,1250.00,500.00,30
 7566,JONES,MANAGER,7839,02-APR-81 00:00:00,2975.00,,20
 7654,MARTIN,SALESMAN,7698,28-SEP-81 00:00:00,1250.00,1400.00,30
 7698,BLAKE,MANAGER,7839,01-MAY-81 00:00:00,2850.00,,30
 7788,SCOTT,ANALYST,7566,19-APR-87 00:00:00,3000.00,,20
 7844,TURNER,SALESMAN,7698,08-SEP-81 00:00:00,1500.00,0.00,30
 7876,ADAMS,CLERK,7788,23-MAY-87 00:00:00,1100.00,,20
 7900,JAMES,CLERK,7698,03-DEC-81 00:00:00,950.00,,30
 7902,FORD,ANALYST,7566,03-DEC-81 00:00:00,3000.00,,20
-- departments --
 20,RESEARCH,DALLAS
 30,SALES,CHICAGO

Array binding

EDB Postgres Advanced Server's array binding functionality allows you to send an array of data across the network in a single round trip. When the back end receives the bulk data, it can use the data to
perform insert or update operations.

Perform bulk operations with a prepared statement. Use the following function to prepare the statement:

PGresult *PQprepare(PGconn *conn,
 const char *stmtName,
 const char *query,
 int nParams,
 const Oid *paramTypes);

You can find details of PQprepare() in the prepared statement section.

You can use the following functions to perform bulk operations:

PQBulkStart
PQexecBulk
PQBulkFinish
PQexecBulkPrepared

PQBulkStart

PQBulkStart() initializes bulk operations on the server. You must call this function before sending bulk data to the server. PQBulkStart() initializes the prepared statement specified in
stmtName to receive data in a format specified by paramFmts .

API definition

PGresult *PQBulkStart(PGconn *conn,
 const char *Stmt_Name,
 unsigned int nCol,
 const int *paramFmts);

PQexecBulk

Use PQexecBulk() to supply data (paramValues) for a statement that was previously initialized for bulk operation using PQBulkStart() .

You can use this function more than once after PQBulkStart() to send multiple blocks of data.

API definition

PGresult *PQexecBulk(PGconn *conn,
 unsigned int nRows,
 const char *const * paramValues,
 const int *paramLengths);

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1041

PQBulkFinish

This function completes the current bulk operation. You can use the prepared statement again without preparing it again.

API definition

PGresult *PQBulkFinish(PGconn *conn);

PQexecBulkPrepared

Alternatively, you can use the PQexecBulkPrepared() function to perform a bulk operation with a single function call. PQexecBulkPrepared() sends a request to execute a prepared
statement with the given parameters and waits for the result. This function combines the functionality of PQbulkStart() , PQexecBulk() , and PQBulkFinish() . When using this function,
you don't need to initialize or terminate the bulk operation. This function starts the bulk operation, passes the data to the server, and terminates the bulk operation.

Specify a previously prepared statement in the place of stmtName . Commands that are used repeatedly are parsed and planned just once, rather than each time they're executed.

API definition

PGresult *PQexecBulkPrepared(PGconn *conn,
 const char *stmtName,
 unsigned int nCols,
 unsigned int nRows,
 const char *const *paramValues,
 const int *paramLengths,
 const int *paramFormats);

Example code (Using PQBulkStart, PQexecBulk, PQBulkFinish)

This example uses PGBulkStart , PQexecBulk , and PQBulkFinish :

void InsertDataUsingBulkStyle(PGconn *conn)
{
 PGresult *res;
 Oid paramTypes[2];
 char *paramVals[5][2];
 int paramLens[5][2];
 int paramFmts[2];
 int i;

 int a[5] = { 10, 20, 30, 40, 50 };
 char b[5][10] = { "Test_1", "Test_2", "Test_3",
"Test_4", "Test_5" };

 paramTypes[0] = 23;
 paramTypes[1] = 1043;
 res = PQprepare(conn, "stmt_1", "INSERT INTO testtable1 values($1, $2
)", 2, paramTypes);
 PQclear(res);

 paramFmts[0] = 1; /* Binary format */
 paramFmts[1] = 0;

 for(i = 0; i < 5; i++)
 {
 a[i] = htonl(a[i]);
 paramVals[i][0] = &(a[i]);
 paramVals[i][1] = b[i];

 paramLens[i][0] = 4;
 paramLens[i][1] = strlen(b[i]);
 }

 res = PQBulkStart(conn, "stmt_1", 2, paramFmts);
 PQclear(res);
 printf("< -- PQBulkStart -- >\n");

 res = PQexecBulk(conn, 5, (const char *const *)paramVals, (const
 int*)paramLens);

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1042

 PQclear(res);
 printf("< -- PQexecBulk -- >\n");

 res = PQexecBulk(conn, 5, (const char *const *)paramVals, (const
 int*)paramLens);
 PQclear(res);
 printf("< -- PQexecBulk -- >\n");

 res = PQBulkFinish(conn);
 PQclear(res);
 printf("< -- PQBulkFinish -- >\n");
}

Example code (Using PQexecBulkPrepared)

This example uses PQexecBulkPrepared :

void InsertDataUsingBulkStyleCombinedVersion(PGconn *conn)
{
 PGresult *res;
 Oid paramTypes[2];
 char *paramVals[5][2];
 int paramLens[5][2];
 int paramFmts[2];
 int i;

 int a[5] = { 10, 20, 30, 40, 50 };
 char b[5][10] = { "Test_1", "Test_2", "Test_3",
"Test_4", "Test_5" };

 paramTypes[0] = 23;
 paramTypes[1] = 1043;
 res = PQprepare(conn, "stmt_2", "INSERT INTO testtable1 values(
 $1, $2)", 2, paramTypes);
 PQclear(res);

 paramFmts[0] = 1; /* Binary format */
 paramFmts[1] = 0;

 for(i = 0; i < 5; i++)
 {
 a[i] = htonl(a[i]);
 paramVals[i][0] = &(a[i]);
 paramVals[i][1] = b[i];

 paramLens[i][0] = 4;
 paramLens[i][1] = strlen(b[i]);
 }

res = PQexecBulkPrepared(conn, "stmt_2", 2, 5, (const char *const
*)paramVals,(const int *)paramLens, (const int *)paramFmts);
 PQclear(res);
}

25.6 Debugger

The debugger gives developers and DBAs the ability to test and debug server-side programs using a graphical, dynamic environment. The types of programs that you can debug are SPL stored
procedures, functions, triggers, and packages as well as PL/pgSQL functions and triggers.

The debugger is integrated with pgAdmin 4 and EDB Postgres Enterprise Manager. If you installed EDB Postgres Advanced Server on a Windows host, pgAdmin 4 is automatically installed. The pgAdmin
4 icon is in the Windows Start menu.

If your EDB Postgres Advanced Server host is on a CentOS or Linux system, you can use yum to install pgAdmin4. Open a command line, assume superuser privileges, and enter:

yum install edb-pgadmin4*

On Linux, you must also install the edb-asxx-server-pldebugger RPM package, where xx is the EDB Postgres Advanced Server version number. Information about pgAdmin 4 is available at
https://www.pgadmin.org/.

The RPM installation adds the pgAdmin4 icon to your Applications menu.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1043

https://www.pgadmin.org/

You can use the debugger in two basic ways to test programs:

Standalone debugging. Use the debugger to start the program to test. Supply any input parameter values required by the program. You can immediately observe and step through the code of the
program. Standalone debugging is the typical method used for new programs and for initial problem investigation.

In-context debugging. In-context debugging is useful if it's difficult to reproduce a problem using standalone debugging due to complex interaction with the calling application. Using this
approach, the program to test is started by an application other than the debugger. You set a global breakpoint on the program to test. The application that makes the first call to the program
encounters the global breakpoint. Then the application suspends execution. At that point, the debugger takes control of the called program. You can then observe and step through the code of the
called program as it runs in the context of the calling application.

After you have completely stepped through the code of the called program in the debugger, the suspended application resumes executing.

The debugging tools and operations are the same whether using standalone or in-context debugging. The difference is in how to invoke the program being debugged.

These instructions use the standalone debugging method. To start the debugger for in-context debugging, see Setting global breakpoint for in-context debugging.

Configuring the debugger

Before using the debugger, edit the postgresql.conf file (located in the data subdirectory of your EDB Postgres Advanced Server home directory). Add $libdir/plugin_debugger to the
libraries listed in the shared_preload_libraries configuration parameter:

shared_preload_libraries = '$libdir/dbms_pipe,$libdir/edb_gen,$libdir/plugin_debugger'

On Linux, the postgresql.conf file is located in: /var/lib/edb/asxx/data
On Windows, the postgresql.conf file is located in: C:\Program Files\edb\asxx\data

Where xx is the version of EDB Postgres Advanced Server.

After modifying the shared_preload_libraries parameter, restart the database server.

Starting the debugger

Use pgAdmin 4 to access the debugger for standalone debugging. To open the debugger:

1. Select the name of the stored procedure or function you want to debug in the pgAdmin 4 Browser panel. Or, to debug a package, select the specific procedure or function under the package node
of the package you want to debug.

2. Select Object > Debugging > Debug.

You can't debug triggers using standalone debugging. You must use in-context debugging. See Setting global breakpoint for in-context debugging for information.

The Debugger window

You can use the Debugger window to pass parameter values when you are standalone debugging a program that expects parameters. When you start the debugger, the Debugger window opens to
display any IN or IN OUT parameters the program expects. If the program declares no IN or IN OUT parameters, the Debugger window doesn't open.

Use the fields on the Debugger window to provide a value for each parameter:

The Name field contains the formal parameter name.
The Type field contains the parameter data type.
Select the Null? check box to indicate that the parameter is a NULL value.
Select the Expression? check box if the Value field contains an expression.
The Value field contains the parameter value that's passed to the program.
Select the Use Default? check box to indicate for the program to use the value in the Default Value field.
The Default Value field contains the default value of the parameter.

If you're debugging a procedure or function that's a member of a package that has an initialization section, select the Debug Package Initializer check box to step into the package initialization section,
This setting allows you to debug the initialization section code before debugging the procedure or function. If you don't select the check box, the debugger executes the package initialization section
without allowing you to see or step through the individual lines of code as they execute.

After entering the desired parameter values, select Debug to start the debugging process.

Note

The Debugger window doesn't open during in-context debugging. Instead, the application calling the program to debug must supply any required input parameter values.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1044

After you complete a full debugging cycle by stepping through the program code, the Debugger window reopens. You can enter new parameter values and repeat the debugging cycle or end the
debugging session.

Main debugger window

The main debugger window contains two panels:

The top Program Body panel displays the program source code.
The bottom Tabs panel provides a set of tabs for different information.

Use the tool bar icons located at the top panel to access debugging functions.

The Program Body panel

The Program Body panel displays the source code of the program that's being debugged. The figure shows that the debugger is about to execute the SELECT statement. The blue indicator in the
program body highlights the next statement to execute.

The Tabs panel

You can use the bottom Tabs panel to view or modify parameter values or local variables or to view messages generated by RAISE INFO and function results.

The following is the information displayed by the tabs in the panel:

The Parameters tab displays the current parameter values.
The Local variables tab displays the value of any variables declared in the program.
The Messages tab displays any results returned by the program as it executes.
The Results tab displays any program results, such as the value from the RETURN statement of a function.
The Stack tab displays the call stack.

The Stack tab

The Stack tab displays a list of programs that are currently on the call stack, that is, programs that were invoked but that haven't yet completed. When a program is called, the name of the program is
added to the top of the list displayed in the Stack tab. When the program ends, its name is removed from the list.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1045

The Stack tab also displays information about program calls. The information includes:

The location of the call in the program
The call arguments
The name of the program being called

Reviewing the call stack can help you trace the course of execution through a series of nested programs. The figure shows that emp_query_caller is about to call a subprogram named
emp_query . emp_query_caller is currently at the top of the call stack.

After the call to emp_query executes, emp_query is displayed at the top of the Stack tab, and its code is displayed in the Program Body panel.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1046

After completing execution of the subprogram, control returns to the calling program (emp_query_caller), now displayed at the top of the Stack tab.

Debugging a program

You can perform the following operations to debug a program:

Step through the program one line at a time.
Execute the program until you reach a breakpoint.
View and change local variable values within the program.

Stepping through the code

Use the tool bar icons to step through a program with the debugger. The icons serve the following purposes:

Step into. Execute the currently highlighted line of code.
Step over. Execute a line of code, stepping over any subfunctions invoked by the code. The subfunction executes but is debugged only if it contains a breakpoint.
Continue/Start. Execute the highlighted code and continue until the program encounters a breakpoint or completes.
Stop. Halt a program.

Using breakpoints

As the debugger executes a program, it pauses when it reaches a breakpoint. When the debugger pauses, you can observe or change local variables or navigate to an entry in the call stack to observe
variables or set other breakpoints. The next step into, step over, or continue operation forces the debugger to resume executing with the next line of code following the breakpoint.

These are the two types of breakpoints:

Local breakpoint — You can set a local breakpoint at any executable line of code in a program. The debugger pauses execution when it reaches a line where a local breakpoint was set.

Global breakpoint — A global breakpoint triggers when any session reaches that breakpoint. Set a global breakpoint if you want to perform in-context debugging of a program. When you set a
global breakpoint on a program, the debugging session that set the global breakpoint waits until that program is invoked in another session. Only a superuser can set a global breakpoint.

To create a local breakpoint, select the grey shaded margin to the left of the line of code where you want the local breakpoint set. The spot you select must be close to the right side of the margin as in
the spot where the breakpoint dot is shown on source code line 12. When the breakpoint is created, the debugger displays a dark dot in the margin, indicating a breakpoint was set at the selected line of
code.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1047

You can set as many local breakpoints as you want. Local breakpoints remain in effect for the rest of a debugging session until you remove them.

Removing a local breakpoint

To remove a local breakpoint, select the breakpoint dot. The dot disappears.

To remove all of the breakpoints from the program that currently appears in the Program Body frame, select the Clear all breakpoints icon.

Note

When you perform any of these actions, only the breakpoints in the program that currently appears in the Program Body panel are removed. Breakpoints in called subprograms or breakpoints
in programs that call the program currently appearing in the Program Body panel aren't removed.

Setting a global breakpoint for in-context debugging

To set a global breakpoint for in-context debugging:

1. In the Browser panel, select the stored procedure, function, or trigger on which you want to set the breakpoint.

2. Select Object > Debugging > Set Breakpoint.

To set a global breakpoint on a trigger:

1. Expand the table node that contains the trigger.

2. Select the specific trigger you want to debug.

3. Select Object > Debugging > Set Breakpoint.

To set a global breakpoint in a package:

1. Select the specific procedure or function under the package node of the package you want to debug.

2. Select Object > Debugging > Set Breakpoint.

After you select Set Breakpoint, the Debugger window opens and waits for an application to call the program to debug.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1048

The PSQL client invokes the select_emp function on which a global breakpoint was set.

$ psql edb enterprisedb
psql.bin (14.0.0, server 14.0.0)
Type "help" for help.

edb=# SELECT select_emp(7900);

The select_emp function doesn't finish until you step through the program in the debugger.

You can now debug the program using the operations like step into, step over, and continue. Or you can set local breakpoints. After you step through executing the program, the calling application
(PSQL) regains control, the select_emp function finishes executing, and its output is displayed.

$ psql edb enterprisedb
psql.bin (14.0.0, server 14.0.0)
Type "help" for help.

edb=# SELECT select_emp(7900);
INFO: Number : 7900
INFO: Name : JAMES
INFO: Hire Date : 12/03/1981
INFO: Salary : 950.00
INFO: Commission: 0.00
INFO: Department: SALES
 select_emp

(1 row)

At this point, you can end the debugger session. If you don't end the debugger session, the next application that invokes the program encounters the global breakpoint, and the debugging cycle begins
again.

25.7 Performance analysis and tuning

EDB Postgres Advanced Server provides tools for analyzing performance and tuning.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1049

Dynatune

EDB Postgres Advanced Server supports dynamic tuning of the database server to make the optimal use of the system resources available on the host machine where it's installed. The two parameters
that control this functionality are located in the postgresql.conf file. These parameters are:

edb_dynatune
edb_dynatune_profile

edb_dynatune

edb_dynatune determines how much of the host system's resources for the database server to use. It bases the determination on the host machine's total available resources and the intended use
of the host machine.

When EDB Postgres Advanced Server is first installed, you set the edb_dynatune parameter according to the host machine's use as a development machine, mixed-use machine, or dedicated server.
For most purposes, the database administrator doesn't need to adjust the configuration parameters in the postgresql.conf file to improve performance.

You can change the value of the edb_dynatune parameter after the initial installation of EDB Postgres Advanced Server by editing the postgresql.conf file. You must restart the postmaster for
the new configuration to take effect.

You can set the edb_dynatune parameter to any integer value from 0 to 100. A value of 0 turns off the dynamic tuning feature, leaving the database server resource use under the control of the
other configuration parameters in the postgresql.conf file.

A low, non-zero value, that is, 1–33, dedicates the least amount of the host machine's resources to the database server. Use this setting for a development machine where many other applications are
being used.

A value in the range of 34—66 dedicates a moderate amount of resources to the database server. You might use this setting for a dedicated application server that has a fixed number of other
applications running on the same machine as EDB Postgres Advanced Server.

The highest values, that is, 67–100, dedicate most of the server's resources to the database server. Use this setting for a host machine that's totally dedicated to running EDB Postgres Advanced Server.

After you select a value for edb_dynatune , you can further fine-tune database server performance by adjusting the other configuration parameters in the postgresql.conf file. Any adjusted
setting overrides the corresponding value chosen by edb_dynatune .

To change the value of a parameter:

1. Uncomment the configuration parameter.
2. Specify the desired value.
3. Restart the database server.

edb_dynatune_profile

Use the edb_dynatune_profile parameter to control tuning aspects based on the expected workload profile on the database server. This parameter takes effect when you start the database
server.

The table shows the possible values for edb_dynatune_profile .

Value Usage

oltp Recommended when the database server is processing heavy online transaction processing workloads.

reporting Recommended for database servers used for heavy data reporting.

mixed Recommended for servers that provide a mix of transaction processing and data reporting.

EDB wait states

The EDB wait states contrib module contains two main components.

EDB Wait States Background Worker (EWSBW)

When the wait states background worker is registered as one of the shared preload libraries, EWSBW probes each of the running sessions at regular intervals.

For every session, it collects information such as:

The database to which it's connected
The logged-in user of the session

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1050

The query running in that session
The wait events on which it's waiting

This information is saved in a set of files in a user-configurable path and directory folder given by the edb_wait_states.directory parameter to add to the postgresql.conf file. The path
must be a full, absolute path, not a relative path.

To install EWSBW on a Linux system:

1. Install EDB wait states with the edb-asxx-server-edb_wait_states RPM package, where xx is the EDB Postgres Advanced Server version number.

2. To launch the worker, register it in the postgresql.conf file using the shared_preload_libraries parameter. For example:

shared_preload_libraries = '$libdir/edb_wait_states'

3. Restart the database server. After a successful restart, the background worker begins collecting data.

4. To review the data, create the following extension:

CREATE EXTENSION edb_wait_states;

5. To terminate the EDB wait states worker, remove $libdir/edb_wait_states from the shared_preload_libraries parameter, and restart the database server.

To install EWSBW on a Windows system:

1. To install the EDB wait states module with the EDB Modules installer, invoke the StackBuilder Plus utility. Follow the onscreen instructions to finish installing the EDB Modules .

2. To register the worker, modify the postgresql.conf file to include the wait states library in the shared_preload_libraries configuration parameter. The parameter value must
include:

shared_preload_libraries = '$libdir/edb_wait_states.dll'

The EDB wait states installation places the edb_wait_states.dll library file in the following path:

C:\Program Files\edb\as14\lib\

3. Restart the database server to make the changes take effect. After a successful restart, the background worker starts and begins collecting the data.

4. To view the data, create the following extension:

CREATE EXTENSION edb_wait_states;

The installer places the edb_wait_states.control file in the following path:

C:\Program Files\edb\as14\share\extension

Terminating the wait states worker

To terminate the EDB wait states worker:

1. Use the DROP EXTENSION command to drop the edb_wait_states extension.
2. Modify the postgresql.conf file, removing $libdir/edb_wait_states.dll from the shared_preload_libraries parameter.
3. To apply your changes, restart the database server.

The wait states interface

Each of the functions in the interface has common input and output parameters. Those parameters are:

start_ts and end_ts (IN). Together these specify the time interval and the data to read. If you specify only start_ts , the data starting from start_ts is output. If you specify only end_ts ,
data up to end_ts is output. If you don't specify either, all the data is output.
query_id (OUT). Identifies a normalized query. It's internal hash code computed from the query.
session_id (OUT). Identifies a session.
ref_start_ts and ref_end_ts (OUT). Provides the timestamps of a file containing a particular data point. A data point might be a wait event sample record, a query record, or a session record.

The examples that follow are based on the following three queries. They are executed simultaneously on four different sessions connected to different databases using different users:

SELECT schemaname FROM pg_tables, pg_sleep(15) WHERE schemaname <>

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1051

'pg_catalog'; /* ran on 2 sessions */
SELECT tablename FROM pg_tables, pg_sleep(10) WHERE schemaname <>
'pg_catalog';
SELECT tablename, schemaname FROM pg_tables, pg_sleep(10) WHERE schemaname
<> 'pg_catalog';

edb_wait_states_data

Use this function to read the data collected by EWSBW:

edb_wait_states_data(
 IN start_ts timestamptz default '-infinity'::timestamptz,
 IN end_ts timestamptz default 'infinity'::timestamptz,
 OUT session_id int4,
 OUT <dbname> text,
 OUT <username> text,
 OUT <query> text,
 OUT <query_start_time> timestamptz,
 OUT <sample_time> timestamptz,
 OUT <wait_event_type> text,
 OUT <wait_event> text
)

You can use this function to find out the following:

The queries running in the given duration (defined by start_ts and end_ts) in all the sessions, and the wait events, if any, they were waiting on. For example:

SELECT query, session_id, wait_event_type, wait_event
 FROM edb_wait_states_data(start_ts, end_ts);

The progress of a session within a given duration, that is, the queries run in a session (session_id = 100000) and the wait events the queries waited on. For example:

SELECT query, wait_event_type, wait_event
 FROM edb_wait_states_data(start_ts, end_ts)
 WHERE session_id = 100000;

The duration for which the samples are available. For example:

SELECT min(sample_time), max(sample_time)
 FROM edb_wait_states_data();

Parameters

In addition to the common parameters described previously, each row of the output gives the following:

dbname

The session's database.

username

The session's logged-in user.

query

The query running in the session.

query_start_time

The time when the query started.

sample_time

The time when wait event data was collected.

wait_event_type

The type of wait event the session (backend) is waiting on.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1052

wait_event

The wait event the session (backend) is waiting on.

Example

The following is a sample output from the edb_wait_states_data() function:

edb=# SELECT * FROM edb_wait_states_data();
-[RECORD 1]----+---
session_id | 4398
dbname | edb
username | enterprisedb
query | SELECT schemaname FROM pg_tables, pg_sleep($1) WHERE schemaname <> $2
query_start_time | 17-AUG-18 11:56:05.271962 -04:00
sample_time | 17-AUG-18 11:56:19.700236 -04:00
wait_event_type | Timeout
wait_event | PgSleep
-[RECORD 2]----+---
session_id | 4398
dbname | edb
username | enterprisedb
query | SELECT schemaname FROM pg_tables, pg_sleep($1) WHERE schemaname <> $2
query_start_time | 17-AUG-18 11:56:05.271962 -04:00
sample_time | 17-AUG-18 11:56:18.699938 -04:00
wait_event_type | Timeout
wait_event | PgSleep
-[RECORD 3]----+---
session_id | 4398
dbname | edb
username | enterprisedb
query | SELECT schemaname FROM pg_tables, pg_sleep($1) WHERE schemaname <> $2
query_start_time | 17-AUG-18 11:56:05.271962 -04:00
sample_time | 17-AUG-18 11:56:17.700253 -04:00
wait_event_type | Timeout
wait_event | PgSleep
 .
 .
 .

edb_wait_states_queries

This function gives information about the queries sampled by EWSBW.

edb_wait_states_queries(
 IN start_ts timestamptz default '-infinity'::timestamptz,
 IN end_ts timestamptz default 'infinity'::timestamptz,
 OUT query_id int8,
 OUT <query> text,
 OUT ref_start_ts timestamptz
 OUT ref_end_ts timestamptz
)

A new queries file is created periodically. Multiple query files can be generated corresponding to specific intervals.

This function returns all the queries in query files that overlap with the given time interval. A query gives all the queries in query files that contained queries sampled between start_ts and
end_ts :

SELECT query FROM edb_wait_states_queries(start_ts, end_ts);

In other words, the function can output queries that didn't run in the given interval. To do that, use edb_wait_states_data() .

Parameters

In addition to the common parameters described previously, each row of the output gives the following:

query

Normalized query text.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1053

Example

The following is a sample output from the edb_wait_states_queries() function:

edb=# SELECT * FROM edb_wait_states_queries();
-[RECORD 1]+---
query_id | 4292540138852956818
query | SELECT schemaname FROM pg_tables, pg_sleep($1) WHERE schemaname <> $2
ref_start_ts | 17-AUG-18 11:52:38.698793 -04:00
ref_end_ts | 18-AUG-18 11:52:38.698793 -04:00
-[RECORD 2]+---
query_id | 3754591102365859187
query | SELECT tablename FROM pg_tables, pg_sleep($1) WHERE schemaname <> $2
ref_start_ts | 17-AUG-18 11:52:38.698793 -04:00
ref_end_ts | 18-AUG-18 11:52:38.698793 -04:00
-[RECORD 3]+---
query_id | 349089096300352897
query | SELECT tablename, schemaname FROM pg_tables, pg_sleep($1) WHERE schemaname <> $2
ref_start_ts | 17-AUG-18 11:52:38.698793 -04:00
ref_end_ts | 18-AUG-18 11:52:38.698793 -04:00

edb_wait_states_sessions

This function gives information about the sessions sampled by EWSBW:

edb_wait_states_sessions(
 IN start_ts timestamptz default '-infinity'::timestamptz,
 IN end_ts timestamptz default 'infinity'::timestamptz,
 OUT session_id int4,
 OUT <dbname> text,
 OUT <username> text,
 OUT ref_start_ts timestamptz
 OUT ref_end_ts timestamptz
)

You can use this function to identify the databases that were connected and the users that started those sessions. For example:

SELECT dbname, username, session_id
 FROM edb_wait_states_sessions();

Similar to edb_wait_states_queries() , this function outputs all the sessions logged in session files that contain sessions sampled in the given interval. It doesn't necessarily output only the
sessions sampled in the given interval. To identify that, use edb_wait_states_data() .

Parameters

In addition to the common parameters described previously, each row of the output gives the following:

dbname

The database to which the session is connected.

username

Login user of the session.

Example

The following is a sample output from the edb_wait_states_sessions() function:

edb=# SELECT * FROM edb_wait_states_sessions();
-[RECORD 1]+---------------------------------
session_id | 4340
dbname | edb
username | enterprisedb
ref_start_ts | 17-AUG-18 11:52:38.698793 -04:00
ref_end_ts | 18-AUG-18 11:52:38.698793 -04:00
-[RECORD 2]+---------------------------------
session_id | 4398

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1054

dbname | edb
username | enterprisedb
ref_start_ts | 17-AUG-18 11:52:38.698793 -04:00
ref_end_ts | 18-AUG-18 11:52:38.698793 -04:00
-[RECORD 3]+---------------------------------
session_id | 4410
dbname | db1
username | user1
ref_start_ts | 17-AUG-18 11:52:38.698793 -04:00
ref_end_ts | 18-AUG-18 11:52:38.698793 -04:00
-[RECORD 4]+---------------------------------
session_id | 4422
dbname | db2
username | user2
ref_start_ts | 17-AUG-18 11:52:38.698793 -04:00
ref_end_ts | 18-AUG-18 11:52:38.698793 -04:00

edb_wait_states_samples

This function gives information about wait events sampled by EWSBW:

edb_wait_states_samples(
 IN start_ts timestamptz default '-infinity'::timestamptz,
 IN end_ts timestamptz default 'infinity'::timestamptz,
 OUT query_id int8,
 OUT session_id int4,
 OUT <query_start_time> timestamptz,
 OUT <sample_time> timestamptz,
 OUT <wait_event_type> text,
 OUT <wait_event> text
)

Usually, you don't need to call this function directly.

Parameters

In addition to the common parameters described previously, each row of the output gives the following:

query_start_time

The time when the query started in this session.

sample_time

The time when wait event data was collected.

wait_event_type

The type of wait event on which the session is waiting.

wait_event

The wait event on which the session (backend) is waiting.

Example

The following is a sample output from the edb_wait_states_samples() function:

edb=# SELECT * FROM edb_wait_states_samples();
-[RECORD 1]----+---------------------------------
query_id | 4292540138852956818
session_id | 4340
query_start_time | 17-AUG-18 11:56:00.39421 -04:00
sample_time | 17-AUG-18 11:56:00.699934 -04:00
wait_event_type | Timeout
wait_event | PgSleep
-[RECORD 2]----+---------------------------------
query_id | 4292540138852956818
session_id | 4340

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1055

query_start_time | 17-AUG-18 11:56:00.39421 -04:00
sample_time | 17-AUG-18 11:56:01.699003 -04:00
wait_event_type | Timeout
wait_event | PgSleep
-[RECORD 3]----+---------------------------------
query_id | 4292540138852956818
session_id | 4340
query_start_time | 17-AUG-18 11:56:00.39421 -04:00
sample_time | 17-AUG-18 11:56:02.70001 -04:00
wait_event_type | Timeout
wait_event | PgSleep
-[RECORD 4]----+---------------------------------
query_id | 4292540138852956818
session_id | 4340
query_start_time | 17-AUG-18 11:56:00.39421 -04:00
sample_time | 17-AUG-18 11:56:03.700081 -04:00
wait_event_type | Timeout
wait_event | PgSleep
 .
 .
 .

edb_wait_states_purge

The function deletes all the sampled data files (queries, sessions, and wait-event samples) that were created after start_ts and aged (rotated) before end_ts :

edb_wait_states_purge(
 IN start_ts timestamptz default '-infinity'::timestamptz,
 IN end_ts timestamptz default 'infinity'::timestamptz
)

Usually you don't need to run this function. The backend usually purges those according to the retention age. However, if that doesn't happen for some reason, you can use this function.

To find out how long the samples were retained, use edb_wait_states_data() .

Example

This code shows the $PGDATA/edb_wait_states directory before running edb_wait_states_purge() :

[root@localhost data]# pwd
/var/lib/edb/as14/data
[root@localhost data]# ls -l edb_wait_states
total 12
-rw------- 1 enterprisedb ... 253 Aug 17 11:56 edb_ws_queries_587836358698793_587922758698793
-rw------- 1 enterprisedb ... 1600 Aug 17 11:56 edb_ws_samples_587836358698793_587839958698793
-rw------- 1 enterprisedb ... 94 Aug 17 11:56 edb_ws_sessions_587836358698793_587922758698793

This code shows the $PGDATA/edb_wait_states directory after running edb_wait_states_purge() :

edb=# SELECT * FROM edb_wait_states_purge();
 edb_wait_states_purge

(1 row)

[root@localhost data]# pwd
/var/lib/edb/as14/data
[root@localhost data]# ls -l edb_wait_states
total 0

25.8 EDB clone schema

EDB Clone Schema is an extension module for EDB Postgres Advanced Server that allows you to copy a schema and its database objects from a local or remote database (the source database) to a
receiving database (the target database).

The source and target databases can be either:

The same physical database

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1056

Different databases in the same database cluster
Separate databases running under different database clusters on separate database server hosts

Use the following functions with EDB Clone Schema:

localcopyschema . This function copies a schema and its database objects from a source database into the same database (the target) but with a different schema name from the original.
Use this function when the source schema and the copy will reside within the same database. See localcopyschema for more information.
localcopyschema_nb . This function performs the same purpose as localcopyschema but as a background job, which frees up the terminal from which the function was initiated. This

function is referred to as a non-blocking function. See localcopyschema_nb for more information.
remotecopyschema . This function copies a schema and its database objects from a source database to a different target database. Use this function when the source schema and the copy

will reside in separate databases. The separate databases can reside in the same EDB Postgres Advanced Server database clusters or in different ones. See remotecopyschema for more
information.
remotecopyschema_nb . This function performs the same purpose as remotecopyschema but as a background job, which frees up the terminal from which the function was initiated. This

function is a non-blocking function. See remotecopyschema_nb for more information.
process_status_from_log . This function displays the status of the cloning functions. The information is obtained from a log file you specify when invoking a cloning function. See

process_status_from_log for more information.
remove_log_file_and_job . This function deletes the log file created by a cloning function. You can also use this function to delete a job created by the non-blocking form of the function.

See remove_log_file_and_job for more information.

You can clone these database objects from one schema to another:

Data types
Tables including partitioned tables, excluding foreign tables
Indexes
Constraints
Sequences
View definitions
Materialized views
Private synonyms
Table triggers, but excluding event triggers
Rules
Functions
Procedures
Packages
Comments for all supported object types
Access control lists (ACLs) for all supported object types

You can't clone the following database objects:

Large objects (Postgres LOBs and BFILEs)
Logical replication attributes for a table
Database links
Foreign data wrappers
Foreign tables
Event triggers
Extensions

For cloning objects that rely on extensions, see the limitations that follow.

Row-level security
Policies
Operator class

The following limitations apply:

EDB Clone Schema is supported on EDB Postgres Advanced Server when you specify a dialect of Compatible with Oracle on the EDB Postgres Advanced Server Dialect dialog box during
installation. It's also supported when you include the --redwood-like keywords during a text-mode installation or cluster initialization.
The source code in functions, procedures, triggers, packages, and so on, aren't modified after being copied to the target schema. If such programs contain coded references to objects with
schema names, the programs might fail when invoked in the target schema if such schema names are no longer consistent in the target schema.
Cross-schema object dependencies aren't resolved. If an object in the target schema depends on an object in another schema, this dependency isn't resolved by the cloning functions.
For remote cloning, if an object in the source schema depends on an extension, then you must create this extension in the public schema of the remote database before invoking the remote
cloning function.
At most, 16 copy jobs can run in parallel to clone schemas. Each job can have at most 16 worker processes to copy table data in parallel.
You can't cancel queries run by background workers.

Setup process

You must install several extensions along with the PL/Perl language on any database used as the source or target database by an EDB Clone Schema function.

In addition, it might help to modify some configuration parameters in the postgresql.conf file of the database servers.

Installing extensions and PL/Perl

Perform this installation on any database to be used as the source or target database by an EDB Clone Schema function.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1057

1. Install the following extensions on the database:

postgres_fdw

dblink

adminpack

pgagent

Ensure that pgAgent is installed before creating the pgagent extension. On Linux, you can use the edb-asxx-pgagent RPM package, where xx is the EDB Postgres Advanced Server
version number to install pgAgent. On Windows, use StackBuilder Plus to download and install pgAgent.

You can install the extensions using the following commands:

CREATE EXTENSION postgres_fdw SCHEMA public;
CREATE EXTENSION dblink SCHEMA public;
CREATE EXTENSION adminpack;
CREATE EXTENSION pgagent;

For more information about using the CREATE EXTENSION command, see the PostgreSQL core documentation.

1. Modify the postgresql.conf file by adding $libdir/parallel_clone to the shared_preload_libraries configuration parameter as shown in this example:

shared_preload_libraries = '$libdir/dbms_pipe,$libdir/dbms_aq,$libdir/parallel_clone'

2. Install the Perl procedural language (PL/Perl) on the database, and run the CREATE TRUSTED LANGUAGE plperl command. For Linux, install PL/Perl using the edb-asxx-server-
plperl RPM package, where xx is the EDB Postgres Advanced Server version number. For Windows, use the EDB Postgres Language Pack. For information on EDB Language Pack, see the
EDB Postgres Language Pack.

3. Connect to the database as a superuser and run the following command:

CREATE TRUSTED LANGUAGE plperl;

For more information about using the CREATE LANGUAGE command, see the PostgreSQL core documentation.

Setting configuration parameters

You might need to modify configuration parameters in the postgresql.conf file.

Performance configuration parameters

You might need to tune the system for copying a large schema as part of one transaction. Tuning of configuration parameters is for the source database server referenced in a cloning function.

You might need to tune the following configuration parameters in the postgresql.conf file:

work_mem . Specifies the amount of memory for internal sort operations and hash tables to use before writing to temporary disk files.
maintenance_work_mem . Specifies the maximum amount of memory for maintenance operations such as VACUUM , CREATE INDEX , and ALTER TABLE ADD FOREIGN KEY to use.
max_worker_processes . Sets the maximum number of background processes that the system can support.
checkpoint_timeout . Maximum time between automatic WAL checkpoints, in seconds.
checkpoint_completion_target . Specifies the target of checkpoint completion as a fraction of total time between checkpoints.
checkpoint_flush_after . Whenever more than checkpoint_flush_after bytes are written while performing a checkpoint, attempt to force the OS to issue these writes to the

underlying storage.
max_wal_size . Maximum size to let the WAL grow to between automatic WAL checkpoints.
max_locks_per_transaction . Controls the average number of object locks allocated for each transaction. Individual transactions can lock more objects as long as the locks of all

transactions fit in the lock table.

For information about the configuration parameters, see the PostgreSQL core documentation.

Status logging

Status logging by the cloning functions creates log files in the directory specified by the log_directory parameter in the postgresql.conf file for the database server to which you're
connected when invoking the cloning function.

The default location is PGDATA/log , as shown by the following:

#log_directory = 'log' # directory where log files are written,

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1058

https://www.postgresql.org/docs/current/static/sql-createextension.html
https://www.enterprisedb.com/docs/language_pack/latest/
https://www.postgresql.org/docs/current/static/sql-createlanguage.html
https://www.postgresql.org/docs/current/static/runtime-config.html

 # can be absolute or relative to PGDATA

This directory must exist before running a cloning function.

The name of the log file is determined by what you specify in the parameter list when invoking the cloning function.

To display the status from a log file, use the process_status_from_log function.

To delete a log file, use the remove_log_file_and_job function, or delete it manually from the log directory.

Installing EDB Clone Schema

Install the EDB Clone Schema on any database to be used as the source or target database by an EDB Clone Schema function.

1. If you previously installed an older version of the edb_cloneschema extension, run the following command:

DROP EXTENSION parallel_clone CASCADE;

This command also drops the edb_cloneschema extension.

2. Install the extensions. Make sure that you create the parallel_clone extension before creating the edb_cloneschema extension.

CREATE EXTENSION parallel_clone SCHEMA public;

CREATE EXTENSION edb_cloneschema;

Creating the foreign servers and user mappings

When using one of the local cloning functions localcopyschema or localcopyschema_nb , one of the required parameters includes a single, foreign server. This server is for identifying the
database server and its database that's the source and receiver of the cloned schema.

When using one of the remote cloning functions remotecopyschema or remotecopyschema_nb , two of the required parameters include two foreign servers. The foreign server specified as the
first parameter identifies the source database server and its database that's the provider of the cloned schema. The foreign server specified as the second parameter identifies the target database server
and its database that's the receiver of the cloned schema.

For each foreign server, you must create a user mapping. When a selected database superuser invokes a cloning function, that superuser must be mapped to a database user name and password that
has access to the foreign server that's specified as a parameter in the cloning function.

For general information about foreign data, foreign servers, and user mappings, see the PostgreSQL core documentation.

Foreign server and user mapping for local cloning functions

For the localcopyschema and localcopyschema_nb functions, the source and target schemas are both in the same database of the same database server. Thus, you must define and specify
only one foreign server for these functions. This foreign server is also referred to as the local server because this server is the one to which you must be connected when invoking the
localcopyschema or localcopyschema_nb function.

The user mapping defines the connection and authentication information for the foreign server. You must create this foreign server and user mapping in the database of the local server in which the
cloning occurs.

The database user for whom the user mapping is defined must be a superuser and connected to the local server when invoking an EDB Clone Schema function.

This example creates the foreign server for the database containing the schema to clone and to receive the cloned schema:

CREATE SERVER local_server FOREIGN DATA WRAPPER postgres_fdw
 OPTIONS(
 host 'localhost',
 port '5444',
 dbname 'edb'
);

For more information about using the CREATE SERVER command, see the PostgreSQL core documentation.

The user mapping for this server is the following:

CREATE USER MAPPING FOR enterprisedb SERVER local_server
 OPTIONS (

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1059

https://www.postgresql.org/docs/current/static/ddl-foreign-data.html
https://www.postgresql.org/docs/current/static/sql-createserver.html

 user 'enterprisedb',
 password 'password'
);

For more information about using the CREATE USER MAPPING command, see the PostgreSQL core documentation.

The following psql commands show the foreign server and user mapping:

edb=# \des+
List of foreign servers
-[RECORD 1]--------+--
Name | local_server
Owner | enterprisedb
Foreign-data wrapper | postgres_fdw
Access privileges |
Type |
Version |
FDW options | (host 'localhost', port '5444', dbname 'edb')
Description |

edb=# \deu+
 List of user mappings
 Server | User name | FDW options
--------------+--------------+--
 local_server | enterprisedb | ("user" 'enterprisedb', password 'password')
(1 row)

When database superuser enterprisedb invokes a cloning function, the database user enterprisedb with its password is used to connect to local_server on the localhost with port
5444 to database edb .

In this case, the mapped database user, enterprisedb , and the database user, enterprisedb , used to connect to the local edb database are the same database user. However, that's not
required.

For specific use of these foreign server and user mapping examples, see the example given in localcopyschema .

Foreign server and user mapping for remote cloning functions

For the remotecopyschema and remotecopyschema_nb functions, the source and target schemas are in different databases of either the same or different database servers. You must define
and specify two foreign servers for these functions.

The foreign server defining the originating database server and its database containing the source schema to clone is referred to as the source server or the remote server.

The foreign server defining the database server and its database to receive the schema to clone is referred to as the target server or the local server.

The target server is also referred to as the local server because this server is the one to which you must be connected when invoking the remotecopyschema or remotecopyschema_nb function.

The user mappings define the connection and authentication information for the foreign servers.

You must create all of these foreign servers and user mappings in the target database of the target/local server.

The database user for whom the user mappings are defined must be a superuser and the user connected to the local server when invoking an EDB Clone Schema function.

This example creates the foreign server for the local, target database that receives the cloned schema:

CREATE SERVER tgt_server FOREIGN DATA WRAPPER postgres_fdw
 OPTIONS(
 host 'localhost',
 port '5444',
 dbname 'tgtdb'
);

The following is the user mapping for this server:

CREATE USER MAPPING FOR enterprisedb SERVER tgt_server
 OPTIONS (
 user 'tgtuser',
 password 'tgtpassword'
);

This example creates the foreign server for the remote, source database that's the source for the cloned schema:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1060

https://www.postgresql.org/docs/current/sql-createusermapping.html

CREATE SERVER src_server FOREIGN DATA WRAPPER postgres_fdw
 OPTIONS(
 host '192.168.2.28',
 port '5444',
 dbname 'srcdb'
);

The following is the user mapping for this server:

CREATE USER MAPPING FOR enterprisedb SERVER src_server
 OPTIONS (
 user 'srcuser',
 password 'srcpassword'
);

The following psql commands show the foreign servers and user mappings:

tgtdb=# \des+
List of foreign servers
-[RECORD 1]--------+---
Name | src_server
Owner | tgtuser
Foreign-data wrapper | postgres_fdw
Access privileges |
Type |
Version |
FDW options | (host '192.168.2.28', port '5444', dbname 'srcdb')
Description |
-[RECORD 2]--------+---
Name | tgt_server
Owner | tgtuser
Foreign-data wrapper | postgres_fdw
Access privileges |
Type |
Version |
FDW options | (host 'localhost', port '5444', dbname 'tgtdb')
Description |

tgtdb=# \deu+
 List of user mappings
 Server | User name | FDW options
------------+--------------+--
 src_server | enterprisedb | ("user" 'srcuser', password 'srcpassword')
 tgt_server | enterprisedb | ("user" 'tgtuser', password 'tgtpassword')
(2 rows)

When database superuser enterprisedb invokes a cloning function, the database user tgtuser with password tgtpassword is used to connect to tgt_server on the localhost with
port 5444 to database tgtdb .

In addition, database user srcuser with password srcpassword connects to src_server on host 192.168.2.28 with port 5444 to database srcdb .

Note

Be sure the pg_hba.conf file of the database server running the source database srcdb has an appropriate entry. This entry must permit connection from the target server location
(address 192.168.2.27 in the following example) with the database user srcuser that was included in the user mapping for the foreign server src_server defining the source
server and database.

TYPE DATABASE USER ADDRESS METHOD

"local" is for Unix domain socket connections only
local all all md5
IPv4 local connections:
host srcdb srcuser 192.168.2.27/32 md5

For specific use of these foreign server and user mapping examples, see the example given in remotecopyschema .

EDB Clone Schema functions

The EDB Clone Schema functions are created in the edb_util schema when the parallel_clone and edb_cloneschema extensions are installed.

Verify the following conditions before using an EDB Clone Schema function:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1061

You're connected to the target or local database as the database superuser defined in the CREATE USER MAPPING command for the foreign server of the target or local database.
The edb_util schema is in the search path, or invoke the cloning function with the edb_util prefix.
The target schema doesn't exist in the target database.
When using the remote copy functions, if the on_tblspace parameter is set to true , then the target database cluster contains all tablespaces that are referenced by objects in the source
schema. Otherwise, creating the DDL statements for those database objects fails in the target schema, which causes a failure of the cloning process.
When using the remote copy functions, if you set the copy_acls parameter to true , then all roles that have GRANT privileges on objects in the source schema exist in the target database
cluster. Otherwise granting privileges to those roles fails in the target schema, which causes a failure of the cloning process.
pgAgent is running against the target database if you're using the non-blocking form of the function.

pgAgent is provided as a component with EDB Postgres Advanced Server. For information about pgAgent, see the pgAdmin documentation.

localcopyschema

The localcopyschema function copies a schema and its database objects in a local database specified in the source_fdw foreign server from the source schema to the specified target schema in
the same database.

localcopyschema(
 <source_fdw> TEXT,
 <source_schema> TEXT,
 <target_schema> TEXT,
 <log_filename> TEXT
 [, <on_tblspace> BOOLEAN
 [, <verbose_on> BOOLEAN
 [, <copy_acls> BOOLEAN
 [, <worker_count> INTEGER]]]]
)

The function returns a Boolean value. If the function succeeds, then true is returned. If the function fails, then false is returned.

The source_fdw, source_schema, target_schema , and log_filename are required parameters while all other parameters are optional.

Parameters

source_fdw

Name of the foreign server managed by the postgres_fdw foreign data wrapper from which to clone database objects.

source_schema

Name of the schema from which to clone database objects.

target_schema

Name of the schema into which to clone database objects from the source schema.

log_filename

Name of the log file in which information from the function is recorded. The log file is created under the directory specified by the log_directory configuration parameter in the
postgresql.conf file.

on_tblspace

Boolean value to specify whether to create database objects in their tablespaces. If false , then the TABLESPACE clause isn't included in the applicable CREATE DDL statement when added to the
target schema. If true , then the TABLESPACE clause is included in the CREATE DDL statement when added to the target schema. The default value is false .

verbose_on

Boolean value to specify whether to print the DDLs in log_filename when creating objects in the target schema. If false , then DDLs aren't printed. If true , then DDLs are printed. The default
value is false .

copy_acls

Boolean value to specify whether to include the access control list (ACL) while creating objects in the target schema. The access control list is the set of GRANT privilege statements. If false , then
the access control list isn't included for the target schema. If true , then the access control list is included for the target schema. The default value is false .

worker_count

Number of background workers to perform the clone in parallel. The default value is 1 .

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1062

https://www.pgadmin.org/docs/pgadmin4/dev/pgagent.html

Example

This example shows the cloning of schema edb containing a set of database objects to target schema edbcopy . Both schemas are in database edb as defined by local_server .

The example is for the following environment:

Host on which the database server is running: localhost
Port of the database server: 5444
Database source/target of the clone: edb
Foreign server (local_server) and user mapping with the information of the preceding bullet points
Source schema: edb
Target schema: edbcopy
Database superuser to invoke localcopyschema: enterprisedb

Before invoking the function, database user enterprisedb connects to to database edb :

edb=# SET search_path TO "$user",public,edb_util;
SET
edb=# SHOW search_path;
 search_path

 "$user", public, edb_util
(1 row)

edb=# SELECT localcopyschema ('local_server','edb','edbcopy','clone_edb_edbcopy');
 localcopyschema

 t
(1 row)

The following displays the logging status using the process_status_from_log function:

edb=# SELECT process_status_from_log('clone_edb_edbcopy');
 process_status_from_log
--
 (FINISH,"2017-06-29 11:07:36.830783-04",3855,INFO,"STAGE: FINAL","successfully cloned schema")
(1 row)

After the clone is complete, the following shows some of the database objects copied to the edbcopy schema:

edb=# SET search_path TO edbcopy;
SET
edb=# \dt+
 List of relations
 Schema | Name | Type | Owner | Size | Description
---------+---------+-------+--------------+------------+-------------
 edbcopy | dept | table | enterprisedb | 8192 bytes |
 edbcopy | emp | table | enterprisedb | 8192 bytes |
 edbcopy | jobhist | table | enterprisedb | 8192 bytes |
(3 rows)

edb=# \dv
 List of relations
 Schema | Name | Type | Owner
---------+----------+------+--------------
 edbcopy | salesemp | view | enterprisedb
(1 row)

edb=# \di
 List of relations
 Schema | Name | Type | Owner | Table
---------+---------------+-------+--------------+---------
 edbcopy | dept_dname_uq | index | enterprisedb | dept
 edbcopy | dept_pk | index | enterprisedb | dept
 edbcopy | emp_pk | index | enterprisedb | emp
 edbcopy | jobhist_pk | index | enterprisedb | jobhist
(4 rows)

edb=# \ds
 List of relations
 Schema | Name | Type | Owner
---------+------------+----------+--------------
 edbcopy | next_empno | sequence | enterprisedb
(1 row)

edb=# SELECT DISTINCT schema_name, name, type FROM user_source WHERE

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1063

schema_name = 'EDBCOPY' ORDER BY type, name;
 schema_name | name | type
-------------+--------------------------------+--------------
 EDBCOPY | EMP_COMP | FUNCTION
 EDBCOPY | HIRE_CLERK | FUNCTION
 EDBCOPY | HIRE_SALESMAN | FUNCTION
 EDBCOPY | NEW_EMPNO | FUNCTION
 EDBCOPY | EMP_ADMIN | PACKAGE
 EDBCOPY | EMP_ADMIN | PACKAGE BODY
 EDBCOPY | EMP_QUERY | PROCEDURE
 EDBCOPY | EMP_QUERY_CALLER | PROCEDURE
 EDBCOPY | LIST_EMP | PROCEDURE
 EDBCOPY | SELECT_EMP | PROCEDURE
 EDBCOPY | EMP_SAL_TRIG | TRIGGER
 EDBCOPY | "RI_ConstraintTrigger_a_19991" | TRIGGER
 EDBCOPY | "RI_ConstraintTrigger_a_19992" | TRIGGER
 EDBCOPY | "RI_ConstraintTrigger_a_19999" | TRIGGER
 EDBCOPY | "RI_ConstraintTrigger_a_20000" | TRIGGER
 EDBCOPY | "RI_ConstraintTrigger_a_20004" | TRIGGER
 EDBCOPY | "RI_ConstraintTrigger_a_20005" | TRIGGER
 EDBCOPY | "RI_ConstraintTrigger_c_19993" | TRIGGER
 EDBCOPY | "RI_ConstraintTrigger_c_19994" | TRIGGER
 EDBCOPY | "RI_ConstraintTrigger_c_20001" | TRIGGER
 EDBCOPY | "RI_ConstraintTrigger_c_20002" | TRIGGER
 EDBCOPY | "RI_ConstraintTrigger_c_20006" | TRIGGER
 EDBCOPY | "RI_ConstraintTrigger_c_20007" | TRIGGER
 EDBCOPY | USER_AUDIT_TRIG | TRIGGER
(24 rows)

localcopyschema_nb

The localcopyschema_nb function copies a schema and its database objects in a local database specified in the source_fdw foreign server from the source schema to the specified target
schema in the same database. The copy occurs in a non-blocking manner as a job submitted to pgAgent.

localcopyschema_nb(
 <source_fdw> TEXT,
 <source> TEXT,
 <target> TEXT,
 <log_filename> TEXT
 [, <on_tblspace> BOOLEAN
 [, <verbose_on> BOOLEAN
 [, <copy_acls> BOOLEAN
 [, <worker_count> INTEGER]]]]
)

The function returns an INTEGER value job ID for the job submitted to pgAgent. If the function fails, then null is returned.

The source_fdw , source , target , and log_filename parameters are required. All other parameters are optional.

After the pgAgent job completes, remove it with the remove_log_file_and_job function.

Parameters

source_fdw

Name of the foreign server managed by the postgres_fdw foreign data wrapper from which to clone database objects.

source

Name of the schema from which to clone database objects.

target

Name of the schema into which to clone database objects from the source schema.

log_filename

Name of the log file in which to record information from the function. The log file is created under the directory specified by the log_directory configuration parameter in the
postgresql.conf file.

on_tblspace

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1064

Boolean value to specify whether to create database objects in their tablespaces. If false , then the TABLESPACE clause isn't included in the applicable CREATE DDL statement when added to the
target schema. If true , then the TABLESPACE clause is included in the CREATE DDL statement when added to the target schema. The default value is false .

verbose_on

Boolean value to specify whether to print the DDLs in log_filename when creating objects in the target schema. If false , then DDLs aren't printed. If true , then DDLs are printed. The default
value is false .

copy_acls

Boolean value to specify whether to include the access control list (ACL) while creating objects in the target schema. The access control list is the set of GRANT privilege statements. If false , then
the access control list isn't included for the target schema. If true , then the access control list is included for the target schema. The default value is false .

worker_count

Number of background workers to perform the clone in parallel. The default value is 1 .

Example

The same cloning operation is performed as the example in localcopyschema but using the non-blocking function localcopyschema_nb .

You can use this command to see whether pgAgent is running on the appropriate local database:

[root@localhost ~]# ps -ef | grep pgagent
root 4518 1 0 11:35 pts/1 00:00:00 pgagent -s /tmp/pgagent_edb_log
hostaddr=127.0.0.1 port=5444 dbname=edb user=enterprisedb password=password
root 4525 4399 0 11:35 pts/1 00:00:00 grep --color=auto pgagent

If pgAgent isn't running, you can start it as shown by the following. The pgagent program file is located in the bin subdirectory of the EDB Postgres Advanced Server installation directory.

[root@localhost bin]# ./pgagent -l 2 -s /tmp/pgagent_edb_log hostaddr=127.0.0.1 port=5444
dbname=edb user=enterprisedb password=password

Note

The pgagent -l 2 option starts pgAgent in DEBUG mode, which logs continuous debugging information into the log file specified with the -s option. Use a lower value for the -l
option, or omit it entirely to record less information.

The localcopyschema_nb function returns the job ID shown as 4 in the example.

edb=# SELECT edb_util.localcopyschema_nb ('local_server','edb','edbcopy','clone_edb_edbcopy');
 localcopyschema_nb

 4
(1 row)

The following displays the job status:

edb=# SELECT edb_util.process_status_from_log('clone_edb_edbcopy');
 process_status_from_log

 (FINISH,"29-JUN-17 11:39:11.620093 -04:00",4618,INFO,"STAGE: FINAL","successfully cloned schema")
(1 row)

The following removes the pgAgent job:

edb=# SELECT edb_util.remove_log_file_and_job (4);
 remove_log_file_and_job

 t
(1 row)

remotecopyschema

The remotecopyschema function copies a schema and its database objects from a source schema in the remote source database specified in the source_fdw foreign server to a target schema in
the local target database specified in the target_fdw foreign server:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1065

remotecopyschema(
 <source_fdw> TEXT,
 <target_fdw> TEXT,
 <source_schema> TEXT,
 <target_schema> TEXT,
 <log_filename> TEXT
 [, <on_tblspace> BOOLEAN
 [, <verbose_on> BOOLEAN
 [, <copy_acls> BOOLEAN
 [, <worker_count> INTEGER]]]]
)

The function returns a Boolean value. If the function succeeds, then true is returned. If the function fails, then false is returned.

The source_fdw , target_fdw , source_schema , target_schema , and log_filename are required parameters. All other parameters are optional.

Parameters

source_fdw

Name of the foreign server managed by the postgres_fdw foreign data wrapper from which to clone database objects.

target_fdw

Name of the foreign server managed by the postgres_fdw foreign data wrapper to which to clone database objects.

source_schema

Name of the schema from which to clone database objects.

target_schema

Name of the schema into which to clone database objects from the source schema.

log_filename

Name of the log file in which information from the function is recorded. The log file is created under the directory specified by the log_directory configuration parameter in the
postgresql.conf file.

on_tblspace

Boolean value to specify whether to create database objects in their tablespaces. If false , then the TABLESPACE clause isn't included in the applicable CREATE DDL statement when added to the
target schema. If true , then the TABLESPACE clause is included in the CREATE DDL statement when added to the target schema. The default value is false .

Note

If you specify true and a database object has a TABLESPACE clause, the tablespace must exist in the target database cluseter. Otherwise, the cloning function fails.

verbose_on

Boolean value to specify whether to print the DDLs in log_filename when creating objects in the target schema. If false , then DDLs aren't printed. If true , then DDLs are printed. The default
value is false .

copy_acls

Boolean value to specify whether to include the access control list (ACL) while creating objects in the target schema. The access control list is the set of GRANT privilege statements. If false , then
the access control list isn't included for the target schema. If true , then the access control list is included for the target schema. The default value is false .

Note

If you specify true , a role with GRANT privilege must exist in the target database cluster. Otherwise, the cloning function fails.

worker_count

Number of background workers to perform the clone in parallel. The default value is 1 .

Example

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1066

This example shows cloning schema srcschema in database srcdb (as defined by src_server) to target schema tgtschema in database tgtdb (as defined by tgt_server).

The source server environment:

Host on which the source database server is running: 192.168.2.28
Port of the source database server: 5444
Database source of the clone: srcdb
Foreign server (src_server) and user mapping with the information of the preceding bullet points
Source schema: srcschema

The target server environment:

Host on which the target database server is running: localhost
Port of the target database server: 5444
Database target of the clone: tgtdb
Foreign server (tgt_server) and user mapping with the information of the preceding bullet points
Target schema: tgtschema
Database superuser to invoke remotecopyschema: enterprisedb

Before invoking the function, the connection database user enterprisedb connects to database tgtdb . A worker_count of 4 is specified for this function.

tgtdb=# SELECT edb_util.remotecopyschema
('src_server','tgt_server','srcschema','tgtschema','clone_rmt_src_tgt',worker_count => 4);
 remotecopyschema

 t
(1 row)

The following displays the status from the log file during various points in the cloning process:

tgtdb=# SELECT edb_util.process_status_from_log('clone_rmt_src_tgt');
 process_status_from_log

 (RUNNING,"28-JUN-17 13:18:05.299953 -04:00",4021,INFO,"STAGE: DATA-COPY","[0][0] successfully
 copied data in [tgtschema.pgbench_tellers]
")
 (1 row)

tgtdb=# SELECT edb_util.process_status_from_log('clone_rmt_src_tgt');
 process_status_from_log

 (RUNNING,"28-JUN-17 13:18:06.634364 -04:00",4022,INFO,"STAGE: DATA-COPY","[0][1] successfully
 copied data in [tgtschema.pgbench_history]
")
 (1 row)

tgtdb=# SELECT edb_util.process_status_from_log('clone_rmt_src_tgt');
 process_status_from_log

--

 (RUNNING,"28-JUN-17 13:18:10.550393 -04:00",4039,INFO,"STAGE: POST-DATA","CREATE PRIMARY KEY
 CONSTRAINT pgbench_tellers_pkey successful"
)
 (1 row)

tgtdb=# SELECT edb_util.process_status_from_log('clone_rmt_src_tgt');
 process_status_from_log

 (FINISH,"28-JUN-17 13:18:12.019627 -04:00",4039,INFO,"STAGE: FINAL","successfully clone
 schema into tgtschema")
 (1 row)

The following shows the cloned tables:

tgtdb=# \dt+
 List of relations
 Schema | Name | Type | Owner | Size | Description
-----------+------------------+-------+--------------+------------+-------------
 tgtschema | pgbench_accounts | table | enterprisedb | 256 MB |

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1067

 tgtschema | pgbench_branches | table | enterprisedb | 8192 bytes |
 tgtschema | pgbench_history | table | enterprisedb | 25 MB |
 tgtschema | pgbench_tellers | table | enterprisedb | 16 kB |
(4 rows)

When the remotecopyschema function was invoked, four background workers were specified.

The following portion of the log file clone_rmt_src_tgt shows the status of the parallel data copying operation using four background workers:

Wed Jun 28 13:18:05.232949 2017 EDT: [4019] INFO: [STAGE: DATA-COPY] [0] table count [4]
Wed Jun 28 13:18:05.233321 2017 EDT: [4019] INFO: [STAGE: DATA-COPY] [0][0] worker started to
copy data
Wed Jun 28 13:18:05.233640 2017 EDT: [4019] INFO: [STAGE: DATA-COPY] [0][1] worker started to
copy data
Wed Jun 28 13:18:05.233919 2017 EDT: [4019] INFO: [STAGE: DATA-COPY] [0][2] worker started to
copy data
Wed Jun 28 13:18:05.234231 2017 EDT: [4019] INFO: [STAGE: DATA-COPY] [0][3] worker started to
copy data
Wed Jun 28 13:18:05.298174 2017 EDT: [4024] INFO: [STAGE: DATA-COPY] [0][3] successfully
copied data in [tgtschema.pgbench_branches]
Wed Jun 28 13:18:05.299913 2017 EDT: [4021] INFO: [STAGE: DATA-COPY] [0][0] successfully
copied data in [tgtschema.pgbench_tellers]
Wed Jun 28 13:18:06.634310 2017 EDT: [4022] INFO: [STAGE: DATA-COPY] [0][1] successfully
copied data in [tgtschema.pgbench_history]
Wed Jun 28 13:18:10.477333 2017 EDT: [4023] INFO: [STAGE: DATA-COPY] [0][2] successfully
copied data in [tgtschema.pgbench_accounts]
Wed Jun 28 13:18:10.477609 2017 EDT: [4019] INFO: [STAGE: DATA-COPY] [0] all workers finished
[4]
Wed Jun 28 13:18:10.477654 2017 EDT: [4019] INFO: [STAGE: DATA-COPY] [0] copy done [4] tables
Wed Jun 28 13:18:10.493938 2017 EDT: [4019] INFO: [STAGE: DATA-COPY] successfully copied data
into tgtschema

The DATA-COPY log message includes two square-bracket numbers, for example, [0][3] . The first number is the job index. The second number is the worker index. The worker index values range
from 0 to 3 for the four background workers.

In case two clone schema jobs are running in parallel, the first log file has 0 as the job index, and the second has 1 as the job index.

remotecopyschema_nb

The remotecopyschema_nb function copies a schema and its database objects from a source schema in the remote source database specified in the source_fdw foreign server to a target
schema in the local target database specified in the target_fdw foreign server. Copying occurs in a non-blocking manner as a job submitted to pgAgent.

remotecopyschema_nb(
 <source_fdw> TEXT,
 <target_fdw> TEXT,
 <source> TEXT,
 <target> TEXT,
 <log_filename> TEXT
 [, <on_tblspace> BOOLEAN
 [, <verbose_on> BOOLEAN
 [, <copy_acls> BOOLEAN
 [, <worker_count> INTEGER]]]]
)

The function returns an INTEGER value job ID for the job submitted to pgAgent. If the function fails, then null is returned.

The source_fdw , target_fdw , source , target , and log_filename parameters are required. All other parameters are optional.

After the pgAgent job is complete, remove it with the remove_log_file_and_job function.

Parameters

source_fdw

Name of the foreign server managed by the postgres_fdw foreign data wrapper from which to clone database objects.

target_fdw

Name of the foreign server managed by the postgres_fdw foreign data wrapper to which to clone database objects.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1068

source

Name of the schema from which to clone database objects.

target

Name of the schema into which to clone database objects from the source schema.

log_filename

Name of the log file in which to record information from the function. The log file is created under the directory specified by the log_directory configuration parameter in the
postgresql.conf file.

on_tblspace

Boolean value to specify whether to create database objects in their tablespaces. If false , then the TABLESPACE clause isn't included in the applicable CREATE DDL statement when added to the
target schema. If true , then the TABLESPACE clause is included in the CREATE DDL statement when added to the target schema. The default value is false .

Note

If you specify true is specified and a database object has a TABLESPACE clause, that tablespace must exist in the target database cluster. Otherwise, the cloning function fails.

verbose_on

Boolean value to specify whether to print the DDLs in log_filename when creating objects in the target schema. If false , then DDLs aren't printed. If true , then DDLs are printed. The default
value is false .

copy_acls

Boolean value to specify whether to include the access control list (ACL) while creating objects in the target schema. The access control list is the set of GRANT privilege statements. If false , then
the access control list isn't included for the target schema. If true , then the access control list is included for the target schema. The default value is false .

Note

If you specify true , a role with GRANT privilege must exist in the target database cluster. Otherwise the cloning function fails.

worker_count

Number of background workers to perform the clone in parallel. The default value is 1 .

Example

The same cloning operation is performed as the example in remotecopyschema but using the non-blocking function remotecopyschema_nb .

The following command starts pgAgent on the target database tgtdb . The pgagent program file is located in the bin subdirectory of the EDB Postgres Advanced Server installation directory.

[root@localhost bin]# ./pgagent -l 1 -s /tmp/pgagent_tgtdb_log hostaddr=127.0.0.1 port=5444
user=enterprisedb dbname=tgtdb password=password

The remotecopyschema_nb function returns the job ID shown as 2 in the example:

tgtdb=# SELECT edb_util.remotecopyschema_nb
('src_server','tgt_server','srcschema','tgtschema','clone_rmt_src_tgt',worker_count => 4);
 remotecopyschema_nb

 2
(1 row)

The following shows the completed status of the job:

tgtdb=# SELECT edb_util.process_status_from_log('clone_rmt_src_tgt');
 process_status_from_log
--
 (FINISH,"29-JUN-17 current:16:00.100284 -04:00",3849,INFO,"STAGE: FINAL","successfully clone schema into tgtschema")
(1 row)

The following removes the log file and the pgAgent job:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1069

tgtdb=# SELECT edb_util.remove_log_file_and_job ('clone_rmt_src_tgt',2);
 remove_log_file_and_job

 t
(1 row)

process_status_from_log

The process_status_from_log function provides the status of a cloning function from its log file:

process_status_from_log (
 <log_file> TEXT
)

The function returns the following fields from the log file:

Field name Description

status Displays either STARTING , RUNNING , FINISH , or FAILED .

execution_time When the command was executed. Displayed in timestamp format.

pid Session process ID in which clone schema is getting called.

level Displays either INFO , ERROR , or SUCCESSFUL .

stage Displays either STARTUP , INITIAL , DDL-COLLECTION , PRE-DATA , DATA-COPY , POST-DATA , or FINAL .

message Information respective to each command or failure.

Parameters

log_file

Name of the log file recording the cloning of a schema as specified when the cloning function was invoked.

Example

The following shows the use of the process_status_from_log function:

edb=# SELECT edb_util.process_status_from_log('clone_edb_edbcopy');
 process_status_from_log

 (FINISH,"26-JUN-17 11:57:03.214458 -04:00",3691,INFO,"STAGE: FINAL","successfully cloned schema")
(1 row)

remove_log_file_and_job

The remove_log_file_and_job function performs cleanup tasks by removing the log files created by the schema cloning functions and the jobs created by the non-blocking functions.

remove_log_file_and_job (
 { <log_file> TEXT |
 <job_id> INTEGER |
 <log_file> TEXT, <job_id> INTEGER
 }
)

You can specify values for either or both of the two parameters when invoking the remove_log_file_and_job function:

If you specify only log_file , then the function removes only the log file.
If you specify only job_id , then the function removes only the job.
If you specify both, then the function removes only the log file and the job.

Parameters

log_file

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1070

Name of the log file to remove.

job_id

Job ID of the job to remove.

Example

This example removes only the log file, given the log file name:

edb=# SELECT edb_util.remove_log_file_and_job ('clone_edb_edbcopy');
 remove_log_file_and_job

 t
(1 row)

This example removes only the job, given the job ID:

edb=# SELECT edb_util.remove_log_file_and_job (3);
 remove_log_file_and_job

 t
(1 row)

This example removes the log file and the job, given both values:

tgtdb=# SELECT edb_util.remove_log_file_and_job ('clone_rmt_src_tgt',2);
 remove_log_file_and_job

 t
(1 row)

25.9 Enhanced SQL and other miscellaneous features

EDB Postgres Advanced Server includes enhanced SQL functionality and other features that add flexibility and convenience.

COMMENT

In addition to allowing comments on objects supported by the PostgreSQL COMMENT command, EDB Postgres Advanced Server supports comments on other object types. The complete supported
syntax is:

COMMENT ON
{
 AGGREGATE <aggregate_name> (<aggregate_signature>) |
 CAST (<source_type> AS <target_type>) |
 COLLATION <object_name> |
 COLUMN <relation_name>.<column_name> |
 CONSTRAINT <constraint_name> ON <table_name> |
 CONSTRAINT <constraint_name> ON DOMAIN <domain_name> |
 CONVERSION <object_name> |
 DATABASE <object_name> |
 DOMAIN <object_name> |
 EXTENSION <object_name> |
 EVENT TRIGGER <object_name> |
 FOREIGN DATA WRAPPER <object_name> |
 FOREIGN TABLE <object_name> |
 FUNCTION <func_name> ([[<argmode>] [<argname>] <argtype> [,...]])|
 INDEX <object_name> |
 LARGE OBJECT <large_object_oid> |
 MATERIALIZED VIEW <object_name> |
 OPERATOR <operator_name> (left_type, right_type) |
 OPERATOR CLASS <object_name> USING <index_method> |
 OPERATOR FAMILY <object_name> USING <index_method> |
 PACKAGE <object_name>
 POLICY <policy_name> ON <table_name> |
 [PROCEDURAL] LANGUAGE <object_name> |
 PROCEDURE <proc_name> [([[<argmode>] [<argname>] <argtype> [, ...]])]

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1071

 PUBLIC SYNONYM <object_name>
 ROLE <object_name> |
 RULE <rule_name> ON <table_name> |
 SCHEMA <object_name> |
 SEQUENCE <object_name> |
 SERVER <object_name> |
 TABLE <object_name> |
 TABLESPACE <object_name> |
 TEXT SEARCH CONFIGURATION <object_name> |
 TEXT SEARCH DICTIONARY <object_name> |
 TEXT SEARCH PARSER <object_name> |
 TEXT SEARCH TEMPLATE <object_name> |
 TRANSFORM FOR <type_name> LANGUAGE <lang_name> |
 TRIGGER <trigger_name> ON <table_name> |
 TYPE <object_name> |
 VIEW <object_name>
} IS <'text'>

Where aggregate_signature is:

* |
[<argmode>] [<argname>] <argtype> [, ...] |
[[<argmode>] [<argname>] <argtype> [, ...]]
ORDER BY [<argmode>] [<argname>] <argtype> [, ...]

Parameters

object_name

The name of the object on which you're commenting.

AGGREGATE aggregate_name (aggregate_signature)

Include the AGGREGATE clause to create a comment about an aggregate. aggregate_name specifies the name of an aggregate. aggregate_signature specifies the associated signature in
one of the following forms:

* |
[<argmode>] [<argname>] <argtype> [, ...] |
[[<argmode>] [<argname>] <argtype> [, ...]]
ORDER BY [<argmode>] [<argname>] <argtype> [, ...]

Where argmode is the mode of a function, procedure, or aggregate argument. argmode can be IN , OUT , INOUT , or VARIADIC . The default is IN .

argname is the name of an aggregate argument.

argtype is the data type of an aggregate argument.

CAST (source_type AS target_type)

Include the CAST clause to create a comment about a cast. When creating a comment about a cast, source_type specifies the source data type of the cast, and target_type specifies the
target data type of the cast.

COLUMN relation_name.column_name

Include the COLUMN clause to create a comment about a column. column_name specifies the name of the column to which the comment applies. relation_name is the table, view, composite
type, or foreign table in which a column resides.

CONSTRAINT constraint_name ON table_name

CONSTRAINT constraint_name ON DOMAIN domain_name

Include the CONSTRAINT clause to add a comment about a constraint. When you're creating a comment about a constraint, constraint_name specifies the name of the constraint.
table_name or domain_name specifies the name of the table or domain on which the constraint is defined.

FUNCTION func_name ([[argmode] [argname] argtype [, ...]])

Include the FUNCTION clause to add a comment about a function. func_name specifies the name of the function. argmode specifies the mode of the function. argmode can be IN , OUT ,
INOUT , or VARIADIC . The default is IN .

argname specifies the name of a function, procedure, or aggregate argument. argtype specifies the data type of a function, procedure, or aggregate argument.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1072

large_object_oid

large_object_oid is the system-assigned OID of the large object about which you're commenting.

OPERATOR operator_name (left_type, right_type)

Include the OPERATOR clause to add a comment about an operator. operator_name specifies the optionally schema-qualified name of an operator on which you're commenting. left_type and
right_type are the optionally schema-qualified data types of the operator's arguments.

OPERATOR CLASS object_name USING index_method

Include the OPERATOR CLASS clause to add a comment about an operator class. object_name specifies the optionally schema-qualified name of an operator on which you're commenting.
index_method specifies the associated index method of the operator class.

OPERATOR FAMILY object_name USING index_method

Include the OPERATOR FAMILY clause to add a comment about an operator family. object_name specifies the optionally schema-qualified name of an operator family on which you're
commenting. index_method specifies the associated index method of the operator family.

POLICY policy_name ON table_name

Include the POLICY clause to add a comment about a policy. policy_name specifies the name of the policy. table_name specifies the table that the policy is associated with.

PROCEDURE proc_name [([[argmode] [argname] argtype [, ...]])]

Include the PROCEDURE clause to add a comment about a procedure. proc_name specifies the name of the procedure. argmode specifies the mode of the procedure. argmode can be IN ,
OUT , INOUT , or VARIADIC . The default is IN .

argname specifies the name of a function, procedure, or aggregate argument. argtype specifies the data type of a function, procedure, or aggregate argument.

RULE rule_name ON table_name

Include the RULE clause to specify a comment on a rule. rule_name specifies the name of the rule. table_name specifies the name of the table on which the rule is defined.

TRANSFORM FOR type_name LANGUAGE lang_name

Include the TRANSFORM FOR clause to specify a comment on a TRANSFORM .

type_name specifies the name of the data type of the transform. lang_name specifies the name of the language of the transform.

TRIGGER trigger_name ON table_name

Include the TRIGGER clause to specify a comment on a trigger. trigger_name specifies the name of the trigger. table_name specifies the name of the table on which the trigger is defined.

text

The comment, written as a string literal, or NULL to drop the comment.

Note

Names of tables, aggregates, collations, conversions, domains, foreign tables, functions, indexes, operators, operator classes, operator families, packages, procedures, sequences, text search
objects, types, and views can be schema qualified.

Example

This example adds a comment to a table named new_emp :

COMMENT ON TABLE new_emp IS 'This table contains information about new
employees.';

For more information about using the COMMENT command, see the PostgreSQL core documentation.

Output of function version()

The text string output of the version() function displays the name of the product, its version, and the host system on which it was installed.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1073

https://www.postgresql.org/docs/current/static/sql-comment.html

For EDB Postgres Advanced Server, the version() output is in a format similar to the PostgreSQL community version. The first text word is PostgreSQL instead of EnterpriseDB as in EDB Postgres
Advanced Server version 10 and earlier.

The general format of the version() output is:

PostgreSQL $PG_VERSION_EXT (EnterpriseDB EDB Postgres Advanced Server $PG_VERSION) on $host

So for the current EDB Postgres Advanced Server, the version string appears as follows:

edb@45032=#select version();
version

--
PostgreSQL 14.0 (EnterpriseDB EDB Postgres Advanced Server 14.0.0) on x86_64-pc-linux-gnu, compiled by gcc
(GCC) 4.8.5 20150623 (Red Hat 4.8.5-11), 64-bit
(1 row)

In contrast, for EDB Postgres Advanced Server 10, the version string was the following:

edb=# select version();
 version
--

EnterpriseDB 10.4.9 on x86_64-pc-linux-gnu, compiled by gcc (GCC) 4.4.7 20120313 (Red Hat
4.4.7-18), 64-bit
(1 row)

Logical decoding on standby

Logical decoding on a standby server allows you to create a logical replication slot on a standby server that can respond to API operations such as get , peek , and advance .

For more information about logical decoding, refer to the PostgreSQL core documentation.

For a logical slot on a standby server to work, you must set the hot_standby_feedback parameter to ON on the standby. The hot_standby_feedback parameter prevents VACCUM from
removing recently dead rows that are required by an existing logical replication slot on the standby server. If a slot conflict occurs on the standby, the slots are dropped.

For logical decoding on a standby to work, you must set wal_level to logical on both the primary and standby servers. If you set wal_level to a value other than logical , then slots
aren't created. If you set wal_level to a value other than logical on primary, and if existing logical slots are on standby, such slots are dropped. You can't create new slots.

When transactions are written to the primary server, the activity triggers the creation of a logical slot on the standby server. If a primary server is idle, creating a logical slot on a standby server might
take noticeable time.

For more information about functions that support replication, see the PostgreSQL documentation. See also this logical decoding example.

25.10 System catalog tables

The following system catalog tables contain definitions of database objects. The layout of the system tables is subject to change. If you're writing an application that depends on information stored in the
system tables, we recommend using an existing catalog view or creating a catalog view to isolate the application from changes to the system table.

edb_dir

The edb_dir table contains one row for each alias that points to a directory created with the CREATE DIRECTORY command. A directory is an alias for a path name that allows a user limited
access to the host file system.

You can use a directory to fence a user into a specific directory tree in the file system. For example, the UTL_FILE package offers functions that permit a user to read and write files and directories in
the host file system but allows access only to paths that the database administrator has granted access to using a CREATE DIRECTORY command.

Column Type Modifiers Description

dirname "name" not null The name of the alias.

dirowner oid not null The OID of the user that owns the alias.

dirpath text The directory name to which access is granted.

diracl aclitem[] The access control list that determines the users that can access the alias.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1074

https://www.postgresql.org/docs/current/logicaldecoding-explanation.html
https://www.postgresql.org/docs/current/functions-admin.html#FUNCTIONS-REPLICATION
https://www.postgresql.org/docs/current/logicaldecoding-example.html

edb_all_resource_groups

The edb_all_resource_groups table contains one row for each resource group created with the CREATE RESOURCE GROUP command and displays the number of active processes in each
resource group.

Column Type Modifiers Description

group_name "name" Name of the resource group.

active_processes integer Number of currently active processes in the resource group.

cpu_rate_limit float8 Maximum CPU rate limit for the resource group. 0 means no limit.

per_process_cpu_rate_limit float8 Maximum CPU rate limit per currently active process in the resource group.

dirty_rate_limit float8 Maximum dirty rate limit for a resource group. 0 means no limit.

per_process_dirty_rate_limit float8 Maximum dirty rate limit per currently active process in the resource
group.

edb_policy

The edb_policy table contains one row for each policy.

Column Type Modifiers Description

policyname name not null The policy name.

policygroup oid not null Currently unused.

policyobject oid not null The OID of the table secured by this policy (the object_schema plus the object_name).

policykind char not null

The kind of object secured by this policy:

'r' for a table

'v' for a view

= for a synonym

Currently always 'r'.

policyproc oid not null The OID of the policy function (function_schema plus policy_function).

policyinsert boolean not null True if the policy is enforced by INSERT statements.

policyselect boolean not null True if the policy is enforced by SELECT statements.

policydelete boolean not null True if the policy is enforced by DELETE statements.

policyupdate boolean not null True if the policy is enforced by UPDATE statements.

policyindex boolean not null Currently unused.

policyenabled boolean not null True if the policy is enabled.

policyupdatecheck boolean not null True if rows updated by an UPDATE statement must satisfy the policy.

policystatic boolean not null Currently unused.

policytype integer not null Currently unused.

policyopts integer not null Currently unused.

policyseccols int2vector not null The column numbers for columns listed in sec_relevant_cols .

edb_profile

The edb_profile table stores information about the available profiles. edb_profiles is shared across all databases in a cluster.

Column Type References Description

oid oid Row identifier (hidden attribute, must be explicitly selected).

prfname name The name of the profile.

prffailedloginat
tempts

inte
ger

The number of failed login attempts allowed by the profile. -1 indicates to use the value from the default profile. -2 indicates no limit on
failed login attempts.

prfpasswordlockt
ime

inte
ger

The password lock time associated with the profile, in seconds. -1 indicates to use the value from the default profile. -2 indicates to lock the
account permanently.

prfpasswordlifet
ime

inte
ger

The password life time associated with the profile, in seconds. -1 indicates to use the value from the default profile. -2 indicates that the
password never expires.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1075

prfpasswordgrace
time

inte
ger

The password grace time associated with the profile, in seconds. -1 indicates to use the value from the default profile. -2 indicates that the
password never expires.

prfpasswordreuse
time

inte
ger

The number of seconds that a user must wait before reusing a password. -1 indicates to use the value from the default profile. -2 indicates
that the old passwords can never be reused.

prfpasswordreuse
max

inte
ger

The number of password changes that must occur before a password can be reused. -1 indicates to use the value from the default profile. -2
indicates that the old passwords can never be reused.

prfpasswordverif
yfuncdb

oid pg_databas
e.oid

The OID of the database in which the password verify function exists.

prfpasswordverif
yfunc

oid pg_proc.oi
d

The OID of the password verify function associated with the profile.

Column Type References Description

edb_redaction_column

The catalog edb_redaction_column stores information of data redaction policy attached to the columns of the table.

Column Type References Description

oid oid Row identifier (hidden attribute, must be explicitly selected).

rdpolicyid oid edb_redaction_policy.oid The data redaction policy applies to the described column.

rdrelid oid pg_class.oid The table that the described column belongs to.

rdattnum int2 pg_attribute.attnum The number of the described column.

rdscope int2 The redaction scope: 1 = query, 2 = top_tlist, 4 = top_tlist_or_error

rdexception int2 The redaction exception: 8 = none, 16 = equal, 32 = leakproof

rdfuncexpr pg_node_tree Data redaction function expression

Note

The described column is redacted if the redaction policy edb_redaction_column.rdpolicyid on the table is enabled and the redaction policy expression
edb_redaction_policy.rdexpr evaluates to true.

edb_redaction_policy

The catalog edb_redaction_policy stores information of the redaction policies for tables.

Column Type References Description

oid oid Row identifier (hidden attribute, must be explicitly
selected).

rdname name The name of the data redaction policy

rdrelid oid pg_class.oid The table to which the data redaction policy applies.

rdenable boolean Is the data redaction policy enabled?

rdexpr pg_node_tree The data redaction policy expression.

Note

The data redaction policy applies for the table if it's enabled and the expression ever evaluated to true.

edb_resource_group

The edb_resource_group table contains one row for each resource group created with the CREATE RESOURCE GROUP command.

Column Type Modifiers Description

rgrpname "name" not null Name of the resource group.

rgrpcpuratelimit float8 not null Maximum CPU rate limit for a resource group. 0 means no limit.

rgrpdirtyratelimit float8 not null Maximum dirty rate limit for a resource group. 0 means no
limit.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1076

edb_variable

The edb_variable table contains one row for each package-level variable, that is, each variable declared in a package.

Column Type Modifiers Description

varname "name" not null The name of the variable.

varpackage oid not null The OID of the pg_namespace row that stores the package.

vartype oid not null The OID of the pg_type row that defines the type of the variable.

varaccess "char" not null

+ if the variable is visible outside of the package.

- if the variable is visible only in the package.

Note: Public variables are declared in the package header; private variables are declared in the package body.

varsrc text Contains the source of the variable declaration, including any default value expressions for the variable.

varseq smallint not null The order in which the variable was declared in the package.

pg_synonym

The pg_synonym table contains one row for each synonym created with the CREATE SYNONYM command or CREATE PUBLIC SYNONYM command.

Column Type Modifiers Description

synname "name" not null The name of the synonym.

synnamespace oid not null Replaces synowner . Contains the OID of the pg_namespace row where the synonym is
stored.

synowner oid not null The OID of the user that owns the synonym.

synobjschema "name" not null The schema in which the referenced object is defined.

synobjname "name" not null The name of the referenced object.

synlink text The optional name of the database link in which the referenced object is defined.

product_component_version

The product_component_version table contains information about feature compatibility. An application can query this table at installation or runtime to verify that features used by the
application are available with this deployment.

Column Type Description

product character varying (74) The name of the product.

version character varying (74) The version number of the product.

status character varying (74) The status of the release.

25.11 EDB Postgres Advanced Server exceptions

The following table lists the predefined exceptions, the SQLstate values, associated redwood error code, and descriptions of the exceptions.

Exception name SQLState Redwood error
code

Description

value_error 22000 -6502 The exception occurs when the conversion of a character string to a number fails.

invalid_number 22000 -6502 The exception is raised in PL statement when the conversion of a character string to number fails.

datetime_value_out_of_
range

22008 -1863 The exception occurs while writing a field in date format that is outside the valid range.

divide_by_zero 22012 -1476 The exception occurs when a program attempts to divide a number by zero.

zero_divide 22012 -1476 The exception occurs when a program attempts to divide a number by zero.

dup_val_on_index 23505 -1 The exception occurs when a program attempts to store duplicate values in a column that's constrained by a unique index.

invalid_cursor 34000 -1001 The exception occurs when a program attempts a cursor operation on an invalid cursor, such as closing an unopened cursor.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1077

cursor_already_open 42P03 -6511 The exception occurs when a program attempts to open an already open cursor.

collection_is_null P1403 -6531 The exception occurs when a program attempts to assign values to the elements of nested table or varray that are uninitialized.

subscript_beyond_count P1404 -6533 The exception occurs when a program attempts to reference a nested table or varray using an index number larger than the
number of elements in the collection.

subscript_outside_limi
t

P1405 -6532 The exception occurs when a program attempts to reference a nested table or varray element using an index number that's
outside the range.

Exception name SQLState Redwood error
code

Description

DBMS_CRYPTO package

ciphersuiteinvalid 00009 -28827 The exception occurs when the cipher suite isn't defined.

ciphersuitenull 00009 -28829 The exception occurs when no value is specified for the cipher suite or it contains a NULL value.

keybadsize 00009 0 The exception occurs when the specified key size is bad.

keynull 00009 -28239 The exception occurs when the key isn't specified.

UTL_FILE package

invalid_filehandle P0001 00009 -29282 The exception occurs when file handle is invalid.

invalid_maxlinesize P0001 00009 -29287 The exception occurs when the max line size is invalid or the max line size value isn't within the
range.

invalid_mode P0001 00009 -29281 The exception occurs when the open_mode parameter in FOPEN is invalid.

invalid_operation P0001 00009 -29283 The exception occurs when the file can't be opened or used upon request.

invalid_path P0001 00009 -29280 The exception occurs when the file location or file name is invalid.

read_error P0001 00009 -29284 The exception occurs when the operating system error occurred during the read operation.

write_error P0001 00009 -29285 The exception occurs when the operating system error occurred during the write operation.

UTL_HTTP package

end_of_body P0001 00009 -29266 The exception occurs when the end of HTTP response body is reached.

UTL_URL package

bad_fixed_width_charset 00009 -29274 The exception occurs when the fixed-width multibyte character isn't allowed as a URL character set.

bad_url P0001 00009 -29262 The exception occurs when the URL includes badly formed escape-code sequences.

EDB Postgres Advanced Server keywords

A keyword is a word that's recognized by the EDB Postgres Advanced Server parser as having a special meaning or association. You can use the pg_get_keywords() function to retrieve an up-to-
date list of the EDB Postgres Advanced Server keywords:

acctg=#
acctg=# SELECT * FROM pg_get_keywords();
 word | catcode | catdesc
---------------------+---------+---------------------------------
 abort | U | unreserved
 absolute | U | unreserved
 access | U | unreserved
...

pg_get_keywords returns a table containing the keywords recognized by EDB Postgres Advanced Server:

The word column displays the keyword.
The catcode column displays a category code.
The catdesc column displays a brief description of the category to which the keyword belongs.

You can use any character in an identifier if the name is enclosed in double quotes. You can selectively query the pg_get_keywords() function to retrieve an up-to-date list of the EDB Postgres
Advanced Server keywords that belong to a specific category:

SELECT * FROM pg_get_keywords() WHERE catcode = 'code';

Where code is:

R — The word is reserved. You can never use reserved keywords as an identifier. They are reserved for use by the server.

U — The word is unreserved. Unreserved words are used internally in some contexts, but you can use them as a name for a database object.

T — The word is used internally but can be used as a name for a function or type.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1078

C — The word is used internally and can't be used as a name for a function or type.

For more information about EDB Postgres Advanced Server identifiers and keywords, see the PostgreSQL core documentation.

26 Quick start for CentOS or RHEL 7

EDB Postgres Advanced Server adds extended functionality to the open-source PostgreSQL database that supports database administration, enhanced SQL capabilities, database and application
security, performance monitoring and analysis, and application development utilities. EDB Postgres Advanced Server also supports database compatibility features for Oracle users; for detailed
information about compatibility features, see the EDB Postgres Advanced Server documentation.

This guide walks you through using yum to install EDB Postgres Advanced Server on a RHEL or CentOS 7 system and deploying a database cluster. The database created by this tutorial is well-suited
for experimentation and testing. There are additional security and resource considerations when configuring a production installation that are not covered by this document.

This guide assumes that you are familiar with simple operating system and system administration procedures, and have administrative privileges on the host on which EDB Postgres Advanced Server is
installed.

Components of an EDB Postgres Advanced Server deployment

Among the components that make up an EDB Postgres Advanced Server deployment are:

The Database server - The database server (the postmaster) is the service that provides the key functionality that allows you to store and manage data. EDB Postgres Advanced Server is built on the
PostgreSQL open-source database project; it includes all of the documented features of community PostgreSQL and more.

The database cluster - A cluster is a set of on-disk structures that comprise a collection of databases. A cluster is serviced by a single-instance of the database server. A database cluster is stored in the
data directory. Don't store the data directory of a production database on an NFS file system.

Configuration files - You can use the parameters listed in Postgres configuration files to manage deployment preferences, security preferences, connection behaviors, and logging preferences.

Supporting tools, utilities, and clients - EDB makes available a full suite of tools and utilities that can help you monitor and manage your EDB Postgres Advanced Server deployment. For more
information, visit the EDB website.

Supporting functions, rocedures, data types, index types, operators, utilities, and aggregates - EDB Postgres Advanced Server includes a number of features that help you manage your data.

Prerequisites

Before installing EDB Postgres Advanced Server, use yum to install prerequisite packages:

yum -y install https://dl.fedoraproject.org/pub/epel/epel-release-latest-7.noarch.rpm

If you are installing Migration Toolkit or EDB*Plus, you must first install Java:

yum -y install java

Installing and configuring EDB Postgres Advanced Server

Step 1: You must register with EDB to receive credentials for the EDB repository. For information about requesting credentials, visit the https://www.enterprisedb.com/user/login.

Step 2: Assume superuser privileges to install the EDB repository configuration package:

yum -y install https://yum.enterprisedb.com/edbrepos/edb-repo-latest.noarch.rpm

Step 3: The repository configuration file is named edb.repo . The file resides in /etc/yum.repos.d . Ensure the username and password placeholders in the baseurl specification matches
with the name and password of a registered EDB user.

Step 4: Update the cache and install EDB Postgres Advanced Server:

yum makecache

yum -y install edb-as14-server

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1079

https://www.postgresql.org/docs/current/static/sql-syntax-lexical.html
https://www.enterprisedb.com/
https://www.enterprisedb.com/user/login

Step 5: Use sudo to assume the identity of the enterprisedb database superuser and create an EDB Postgres Advanced Server cluster named acctg on listener port 5444 :

sudo su - enterprisedb

/usr/edb/as14/bin/initdb -D /var/lib/edb/as14/acctg

Starting the cluster

As the enterprisedb user, start the cluster:

/usr/edb/as14/bin/pg_ctl start -D /var/lib/edb/as14/acctg

You can check the status of the cluster with the command:

/usr/edb/as14/bin/pg_ctl status -D /var/lib/edb/as14/acctg

Using the psql command line client

After installing the server and initializing a cluster, you can connect to the database with your choice of client. For convenience, the server is deployed with the pgAdmin 4 graphical client and the psql
command line client.

As the enterprisedb user, open a psql session:

/usr/edb/as14/bin/psql -d edb -p 5444

Then, assign a password to the enterprisedb user:

ALTER ROLE enterprisedb IDENTIFIED BY password;

Create a database (named hr):

CREATE DATABASE hr;

Connect to the new database and create a table (named dept):

\c hr

CREATE TABLE public.dept (deptno numeric(2) NOT NULL CONSTRAINT dept_pk
PRIMARY KEY, dname varchar(14) CONSTRAINT dept_dname_uq UNIQUE, loc
varchar(13));

Add data to the table:

INSERT INTO dept VALUES (10,'ACCOUNTING','NEW YORK');

INSERT into dept VALUES (20,'RESEARCH','DALLAS');

You can use simple SQL commands to query the database and retrieve information about the data you have added to the table:

SELECT * FROM dept;
 deptno | dname | loc
--------+------------+----------
 10 | ACCOUNTING | NEW YORK
 20 | RESEARCH | DALLAS
(2 rows)

Or, create database users:

ALTER ROLE enterprisedb IDENTIFIED BY password;

For detailed product usage information, see the EDB Postgres Advanced Server documentation available at the EDB website.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1080

https://www.pgadmin.org/docs/
https://www.postgresql.org/docs/current/app-psql.html

27 Quick start for RHEL/Rocky Linux/AlmaLinux 8

EDB Postgres Advanced Server adds extended functionality to the open-source PostgreSQL database that supports database administration, enhanced SQL capabilities, database and application
security, performance monitoring and analysis, and application development utilities. EDB Postgres Advanced Server also supports database compatibility features for Oracle users; for detailed
information about compatibility features, see the EDB Postgres Advanced Server documentation.

This guide walka you through using dnf to install EDB Postgres Advanced Server on a RHEL/Rocky Linux/AlmaLinux 8 system and deploying a database cluster. The database created by this tutorial is
well-suited for experimentation and testing. There are likely to be additional security and resource considerations when configuring a production installation that are not covered by this document.

This guide assumes that you are familiar with simple operating system and system administration procedures, and have administrative privileges on the host on which EDB Postgres Advanced Server is
installed.

Components of an EDB Postgres Advanced Server deployment

Among the components that make up an EDB Postgres Advanced Server deployment are:

The database server - The database server (the postmaster) is the service that provides the key functionality that allows you to store and manage data. EDB Postgres Advanced Server is built on the
PostgreSQL open-source database project; it includes all of the documented features of community PostgreSQL and more.

The database cluster - A cluster is a set of on-disk structures that comprise a collection of databases. A cluster is serviced by a single-instance of the database server. A database cluster is stored in the
data directory. Don't store the data directory of a production database on an NFS file system.

Configuration files - You can use the parameters listed in Postgres configuration files to manage deployment preferences, security preferences, connection behaviors, and logging preferences.

Supporting tools, utilities, and clients - EDB makes available a full suite of tools and utilities that can help you monitor and manage your EDB Postgres Advanced Server deployment. For more
information, visit the EDB website.

Supporting functions, procedures, data types, index types, operators, utilities, and aggregates - EDB Postgres Advanced Server includes a number of features that help you manage your data.

Prerequisites

Before installing EDB Postgres Advanced Server, assume superuser privileges and use dnf to install prerequisite packages:

dnf -y install https://dl.fedoraproject.org/pub/epel/epel-release-latest-8.noarch.rpm

If you are installing Migration Toolkit or EDB*Plus, you must first install Java:

dnf -y install java

Installing and configuring EDB Postgres Advanced Server

Step 1: You must register with EDB to receive credentials for the EDB repository. For information about requesting credentials, visit the https://www.enterprisedb.com/user/login.

Step 2: Assume superuser privileges to install the EDB repository configuration package:

dnf -y install https://yum.enterprisedb.com/edbrepos/edb-repo-latest.noarch.rpm

Step 3: The repository configuration file is named edb.repo . The file resides in /etc/yum.repos.d . Ensure the username and password placeholders in the baseurl specification matches
with the name and password of a registered EDB user.

Step 4: Update the cache and install EDB Postgres Advanced Server:

dnf makecache

dnf -y install edb-as14-server

Step 5: Use sudo to assume the identity of the enterprisedb database superuser and create an EDB Postgres Advanced Server cluster named acctg on listener port 5444 :

sudo su - enterprisedb

/usr/edb/as14/bin/initdb -D /var/lib/edb/as14/acctg

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1081

https://www.enterprisedb.com/
https://www.enterprisedb.com/user/login

Starting the cluster

As the enterprisedb user, start the cluster:

/usr/edb/as14/bin/pg_ctl start -D /var/lib/edb/as14/acctg

You can check the status of the cluster with the command:

/usr/edb/as14/bin/pg_ctl status -D /var/lib/edb/as14/acctg

Using the psql command line client

After installing the server and initializing a cluster, you can connect to the database with your choice of client. For convenience, the server is deployed with the pgAdmin 4 graphical client and the psql
command line client.

As the enterprisedb user, open a psql session:

/usr/edb/as14/bin/psql -d edb

Then, assign a password to the enterprisedb user:

ALTER ROLE enterprisedb IDENTIFIED BY password;

Create a database (named hr):

CREATE DATABASE hr;

Connect to the new database and create a table (named dept):

\c hr

CREATE TABLE public.dept (deptno numeric(2) NOT NULL CONSTRAINT dept_pk
PRIMARY KEY, dname varchar(14) CONSTRAINT dept_dname_uq UNIQUE, loc
varchar(13));

Add data to the table:

INSERT INTO dept VALUES (10,'ACCOUNTING','NEW YORK');

INSERT into dept VALUES (20,'RESEARCH','DALLAS');

You can use simple SQL commands to query the database and retrieve information about the data you have added to the table:

SELECT * FROM dept;
 deptno | dname | loc
--------+------------+----------
 10 | ACCOUNTING | NEW YORK
 20 | RESEARCH | DALLAS
(2 rows)

Or create database users:

ALTER ROLE enterprisedb IDENTIFIED BY password;

For more detailed product usage information, see the EDB Postgres Advanced Server documentation available at the EDB website.

28 Quick start for Windows

EDB Postgres Advanced Server adds extended functionality to the open-source PostgreSQL database that supports database administration, enhanced SQL capabilities, database and application
security, performance monitoring and analysis, and application development utilities. EDB Postgres Advanced Server also supports database compatibility features for Oracle users; for detailed
information about compatibility features, see the EDB Postgres Advanced Server documentation.

This guide walks you through using the graphical installer to install EDB Postgres Advanced Server on a Windows system. The database created by this tutorial is well-suited for experimentation and
testing. There are likely to be additional security and resource considerations when configuring a production installation that are not covered by this document.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1082

https://www.pgadmin.org/docs/
https://www.postgresql.org/docs/current/app-psql.html

This guide assumes that you are familiar with simple operating system and system administration procedures, and have administrative privileges on the host on which EDB Postgres Advanced Server is
installed.

Components of an EDB Postgres Advanced Server deployment

Among the components that make up an EDB Postgres Advanced Server deployment are:

The database server - The database server (the postmaster) is the service that provides the key functionality that allows you to store and manage data. EDB Postgres Advanced Server is built on the
PostgreSQL open-source database project; it includes all of the documented features of community PostgreSQL and more.

The database cluster - A cluster is a set of on-disk structures that comprise a collection of databases. A cluster is serviced by a single-instance of the database server. A database cluster is stored in the
data directory. Don't store the data directory of a production database on an NFS file system.

Configuration files - You can use the parameters listed in Postgres configuration files to manage deployment preferences, security preferences, connection behaviors, and logging preferences.

Supporting tools, utilities, and clients - EDB makes available a full suite of tools and utilities that can help you monitor and manage your EDB Postgres Advanced Server deployment. For more
information, visit the EDB website.

Supporting functions, procedures, data types, index types, operators, utilities, and aggregates - EDB Postgres Advanced Server includes a number of features that help you manage your data.

Installation prerequisites

User privileges

To perform an EDB Postgres Advanced Server installation on a Windows system, you must have administrator privileges. If you are installing EDB Postgres Advanced Server on a Windows system that is
configured with User Account Control enabled, you can assume sufficient privileges to invoke the graphical installer by right clicking on the name of the installer and selecting Run as
administrator from the context menu.

Windows-specific software requirements

You should apply Windows operating system updates before invoking the EDB Postgres Advanced Server installer. If (during the installation process) the installer encounters errors, exit the installation,
and ensure that your version of Windows is up-to-date before restarting the installer.

Migration Toolkit or EDB*Plus installation Prerequisites

Before using StackBuilder Plus to install Migration Toolkit or EDB*Plus, you must first install Java (version 1.8 or later). If you are using Windows, Java installers and instructions are available online at:

http://www.java.com/en/download/manual.jsp

Installing and configuring EDB Postgres Advanced Server

The graphical installer provides a quick and easy way to install EDB Postgres Advanced Server 14 on a Windows system. Use the wizard's dialogs to specify information about your system and system
usage; when you have completed the dialogs, the installer performs an installation based on the selections made during the setup process.

To invoke the wizard, you must have administrator privileges. Assume administrator privileges, and double-click the edb-as14-server-14.x.x-x-windows-x64 executable file.

Note

To install EDB Postgres Advanced Server on some versions of Windows, you may be required to right click on the file icon and select Run as Administrator from the context menu to
invoke the installer with Administrator privileges.

When the Language Selection popup opens, select an installation language and click OK to continue to the Setup window.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1083

https://www.enterprisedb.com/
http://www.java.com/en/download/manual.jsp

Fig. 1: The EDB Postgres Advanced Server installer Welcome window

Click Next to continue.

The EnterpriseDB License Agreement opens.

Fig. 2: The EnterpriseDB License Agreement

Carefully review the license agreement before highlighting the appropriate radio button; click Next to continue.

The Installation Directory window opens.

Fig. 3: The Installation Directory window

By default, the EDB Postgres Advanced Server installation directory is:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1084

C:\Program Files\edb\as14

You can accept the default installation location, and click Next to continue, or optionally click the File Browser icon to open the Browse For Folder dialog to choose an alternate
installation directory.

Note

The data directory of a production database should not be stored on an NFS file system.

Fig. 4: The Select Components window

The Select Components window contains a list of optional components that you can install with the EDB Postgres Advanced Server Setup wizard. You can omit a module from the EDB Postgres
Advanced Server installation by deselecting the box next to the components name.

The Setup wizard can install the following components while installing EDB Postgres Advanced Server 14:

EDB Postgres Advanced Server

Select the EDB Postgres Advanced Server option to install EDB Postgres Advanced Server 14.

pgAdmin 4

Select the pgAdmin 4 option to install the pgAdmin 4 client. pgAdmin 4 provides a powerful graphical interface for database management and monitoring.

StackBuilder Plus

The StackBuilder Plus utility is a graphical tool that can update installed products, or download and add supporting modules (and the resulting dependencies) after your EDB Postgres Advanced
Server setup and installation completes.

Command Line Tools

The Command Line Tools option installs command line tools and supporting client libraries including:

libpq
psql
EDB*Loader
ecpgPlus
pg_basebackup, pg_dump, and pg_restore
pg_bench
and more.

Note

The Command Line Tools are required if you are installing EDB Postgres Advanced Server or pgAdmin 4.

After selecting the components you wish to install, click Next to open the Additional Directories window.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1085

Fig. 5: The Additional Directories window

By default, the EDB Postgres Advanced Server data files are saved to:

C:\Program Files\edb\as14\data

The default location of the EDB Postgres Advanced Server Write-Ahead Log (WAL) Directory is:

C:\Program Files\edb\as14\data\pg_wal

EDB Postgres Advanced Server uses write-ahead logs to promote transaction safety and speed transaction processing; when you make a change to a table, the change is stored in shared memory and a
record of the change is written to the write-ahead log. When you perform a COMMIT , EDB Postgres Advanced Server writes contents of the write-ahead log to disk.

Accept the default file locations, or use the File Browser icon to select an alternate location; click Next to continue to the EDB Postgres Advanced Server Dialect window.

Fig. 6: The EDB Postgres Advanced Server Dialect window

Use the drop-down listbox on the EDB Postgres Advanced Server Dialect window to choose a server dialect. The server dialect specifies the compatibility features supported by EDB
Postgres Advanced Server.

By default, EDB Postgres Advanced Server installs in Compatible with Oracle mode; you can choose between Compatible with Oracle and Compatible with PostgreSQL
installation modes.

Compatible with Oracle

If you select Compatible with Oracle , the installation includes the following features:

Data dictionary views that is compatible with Oracle databases.
Oracle data type conversions.
Date values displayed in a format compatible with Oracle syntax.
Support for Oracle-styled concatenation rules (if you concatenate a string value with a NULL value, the returned value is the value of the string).
Schemas (dbo and sys) compatible with Oracle databases added to the SEARCH_PATH .
Support for the following Oracle built-in packages:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1086

Package Functionality compatible with Oracle databases

dbms_alert Provides the capability to register for, send, and receive alerts.

dbms_job Provides the capability for the creation, scheduling, and managing of jobs.

dbms_lob Provides the capability to manage on large objects.

dbms_output Provides the capability to send messages to a message buffer, or get messages from the message buffer.

dbms_pipe Provides the capability to send messages through a pipe within or between sessions connected to the same database cluster.

dbms_rls Enables the implementation of Virtual Private Database on certain EDB Postgres Advanced Server database objects.

dbms_sql Provides an application interface to the EDB dynamic SQL functionality.

dbms_utility Provides various utility programs.

dbms_aqadm Provides supporting procedures for Advanced Queueing functionality.

dbms_aq Provides message queueing and processing for EDB Postgres Advanced Server.

dbms_profiler Collects and stores performance information about the PL/pgSQL and SPL statements that are executed during a performance profiling session.

dbms_random Provides a number of methods to generate random values.

dbms_redact Enables the redacting or masking of data that is returned by a query.

dbms_lock Provides support for the DBMS_LOCK.SLEEP procedure.

dbms_schedule
r

Provides a way to create and manage jobs, programs, and job schedules.

dbms_crypto Provides functions and procedures to encrypt or decrypt RAW, BLOB or CLOB data. You can also use DBMS_CRYPTO functions to generate cryptographically strong random
values.

dbms_mview Provides a way to manage and refresh materialized views and their dependencies.

dbms_session Provides support for the DBMS_SESSION.SET_ROLE procedure.

utl_encode Provides a way to encode and decode data.

utl_http Provides a way to use the HTTP or HTTPS protocol to retrieve information found at an URL.

utl_file Provides the capability to read from, and write to files on the operating system’s file system.

utl_smtp Provides the capability to send e-mails over the Simple Mail Transfer Protocol (SMTP).

utl_mail Provides the capability to manage e-mail.

utl_url Provides a way to escape illegal and reserved characters within an URL.

utl_raw Provides a way to manipulate or retrieve the length of raw data types.

This is not a comprehensive list of the compatibility features for Oracle included when EDB Postgres Advanced Server is installed in Compatible with Oracle mode; for more information, see the
Database Compatibility for Oracle Developers Built-in Package Guide available from the EDB website at:

https://www.enterprisedb.com/docs

If you choose to install in Compatible with Oracle mode, the EDB Postgres Advanced Server superuser name is enterprisedb .

Compatible with PostgreSQL

If you select Compatible with PostgreSQL , EDB Postgres Advanced Server exhibits compatibility with PostgreSQL version 14. If you choose to install in Compatible with PostgreSQL
mode, the default EDB Postgres Advanced Server superuser name is postgres .

For detailed information about PostgreSQL functionality, visit the official PostgreSQL website at:

http://www.postgresql.org

After specifying a configuration mode, click Next to continue to the Password window.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1087

https://www.enterprisedb.com/docs
http://www.postgresql.org

Fig. 7: The Password window

EDB Postgres Advanced Server uses the password specified on the Password window for the database superuser. The specified password must conform to any security policies existing on the EDB
Postgres Advanced Server host.

After you enter a password in the Password field, confirm the password in the Retype Password field, and click Next to continue.

The Additional Configuration window opens.

Fig. 8: The Additional Configuration window

Use the fields on the Additional Configuration window to specify installation details:

Use the Port field to specify the port number that EDB Postgres Advanced Server should listen to for connection requests from client applications. The default is 5444 .
If the Locale field is set to [Default locale] , EDB Postgres Advanced Server uses the system locale as the working locale. Use the drop-down listbox next to Locale to specify an
alternate locale for EDB Postgres Advanced Server.
By default, the Setup wizard installs corresponding sample data for the server dialect specified by the compatibility mode (Oracle or PostgreSQL) . Clear the check box next to
Install sample tables and procedures if you don't wish to have sample data installed.

After verifying the information on the Additional Configuration window, click Next to open the Dynatune Dynamic Tuning: Server Utilization window.

The graphical Setup wizard facilitates performance tuning via the Dynatune Dynamic Tuning feature. Dynatune functionality allows EDB Postgres Advanced Server to make optimal usage of the
system resources available on the host machine on which it is installed.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1088

Fig. 9: The Dynatune Dynamic Tuning: Server Utilization window

The edb_dynatune configuration parameter determines how EDB Postgres Advanced Server allocates system resources. Use the radio buttons on the Server Utilization window to set the
initial value of the edb_dynatune configuration parameter:

Select Development to set the value of edb_dynatune to 33 . A low value dedicates the least amount of the host machine’s resources to the database server. This is a good choice for a
development machine.
Select General Purpose to set the value of edb_dynatune to 66 . A mid-range value dedicates a moderate amount of system resources to the database server. This would be a good
setting for an application server with a fixed number of applications running on the same host as EDB Postgres Advanced Server.
Select Dedicated to set the value of edb_dynatune to 100 . A high value dedicates most of the system resources to the database server. This is a good choice for a dedicated server host.

After the installation is complete, you can adjust the value of edb_dynatune by editing the postgresql.conf file, located in the data directory of your EDB Postgres Advanced Server
installation. After editing the postgresql.conf file, you must restart the server for your changes to take effect.

Select the appropriate setting for your system, and click Next to continue to the Dynatune Dynamic Tuning: Workload Profile window.

Fig. 10: The Dynatune Dynamic Tuning: Workload Profile window

Use the radio buttons on the Workload Profile window to specify the initial value of the edb_dynatune_profile configuration parameter. The edb_dynatune_profile parameter
controls performance-tuning aspects based on the type of work that the server performs.

Select Transaction Processing (OLTP systems) to specify an edb_dynatune_profile value of oltp . Recommended when EDB Postgres Advanced Server is supporting heavy
online transaction processing.
Select General Purpose (OLTP and reporting workloads) to specify an edb_dynatune_profile value of mixed . Recommended for servers that provide a mix of
transaction processing and data reporting.
Select Reporting (Complex queries or OLAP workloads) to specify an edb_dynatune_profile value of reporting . Recommended for database servers used for heavy
data reporting.

After the installation is complete, you can adjust the value of edb_dynatune_profile by editing the postgresql.conf file, located in the data directory of your EDB Postgres Advanced
Server installation. After editing the postgresql.conf file, you must restart the server for your changes to take effect.

For more information about edb_dynatune and other performance-related topics, see the EDB Postgres Advanced Server Guide available from the EDB website at:

https://www.enterprisedb.com/docs

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1089

https://www.enterprisedb.com/docs

By default, EDB Postgres Advanced Server is configured to start the service when the system boots. Click Next to continue.

The Pre Installation Summary opens.

Fig. 12: The Pre Installation Summary

The Pre Installation Summary provides an overview of the options specified during the Setup process. Review the options before clicking Next ; click Back to navigate back through the
dialogs and update any options.

The Ready to Install window confirms that the installer has the information it needs about your configuration preferences to install EDB Postgres Advanced Server. Click Next to continue.

Fig. 13: The Ready to Install window

Fig. 14: Installing EDB Postgres Advanced Server

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1090

As each supporting module is unpacked and installed, the module’s installation is confirmed with a progress bar.

Before the Setup wizard completes the EDB Postgres Advanced Server installation, it offers to Launch StackBuilder Plus at exit?

Fig. 15: The Setup wizard offers to Launch StackBuilder Plus at exit

You can clear the StackBuilder Plus check box and click Finish to complete the EDB Postgres Advanced Server installation, or accept the default and proceed to StackBuilder Plus.

EDB Postgres StackBuilder Plus is included with the installation of EDB Postgres Advanced Server and its core supporting components. StackBuilder Plus is a graphical tool that can update installed
products, or download and add supporting modules (and the resulting dependencies) after your EDB Postgres Advanced Server setup and installation completes.

For more detailed product usage information, see the EDB Postgres Advanced Server documentation available at the EDB website.

29 EDB pgAdmin4 Quick Start Linux

pgAdmin 4 is the leading open source management tool for Postgres databases. EDB pgAdmin 4 is distributed by EDB along with EDB Postgres Advanced Server databases. It's designed to meet the
needs of both novice and experienced Postgres users, providing a powerful graphical interface that simplifies creating, maintaining, and using database objects.

You can install EDB pgAdmin 4 for your EDB Postgres Advanced Server databases using yum package manager for RHEL/CentOS 7.x or 8.x platforms.

Installing EDB pgAdmin 4 on a Linux host

Use the yum package manager to install EDB pgAdmin4.

Create a repository configuration file

Create the respository configuration file if it doesn't already exist.

To create a repository configuration file, you need the credentials that allow access to the EDB repository. For information about requesting credentials, see EDB Repository Access.

To create the repository configuration file, assume superuser privileges and invoke the following command:

yum -y install https://yum.enterprisedb.com/edb-repo-rpms/edb-repo-latest.noarch.rpm

The repository configuration file is named edb.repo . The file resides in /etc/yum.repos.d. After creating the edb.repo file, use the following command to replace the USERNAME and
PASSWORD placeholders in the baseurl specification with the username and password of a registered EDB user:

sed -i "s@<username>:<password>@USERNAME:PASSWORD@" /etc/yum.repos.d/edb.repo

Install EPEL repository

For CentOS 7.x, use the following command:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1091

https://info.enterprisedb.com/rs/069-ALB-339/images/Repository%20Access%2004-09-2019.pdf

yum -y install https://dl.fedoraproject.org/pub/epel/epel-release-latest-7.noarch.rpm

Note

To install EPEL repository on CentOS/RHEL 7.x and 8.x see the platform specific steps at EDB Website.

Install EDB pgAdmin 4

After creating the repository configuration file and adding a username and password to the edb.repo file, you can install edb-pgadmin4 . To install edb-pgadmin4 , assume superuser
privileges and invoke the following command:

yum install edb-pgadmin4*

This command installs following packages:

edb-pgadmin4
edb-pgadmin4-desktop-common
edb-pgadmin4-desktop-gnome
edb-pgadmin4-docs
edb-pgadmin4-web

Starting pgAdmin 4 in desktop mode

Use the following command to start pgAdmin 4 in desktop mode:

/usr/edb/pgadmin4/bin/pgAdmin4

You can also use the link on the Applications menu to start pgAdmin 4 in desktop mode:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1092

https://repos.enterprisedb.com/

Registering and connecting to EDB Postgres Advanced Server with pgAdmin 4

Before managing an EDB Postgres Advanced Server cluster, you must register the server. To register the server, use the fields on the Server dialog box to specify the connection properties. To open the
Server dialog box, right-click the Servers node in the tree, and select Create > Server.

For detailed information about registering your server, see the pgAdmin documentation.

Then, to connect to your EDB Postgres Advanced Server instance, right-click the server name and select Connect Server. Provide your password in the Connect to Server dialog box.

After you connect to the server, you can see the Dashboard tab.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1093

https://www.pgadmin.org/docs/pgadmin4/latest/server_dialog.html

	1 EDB Postgres Advanced Server
	2 EDB Postgres Advanced Server release notes
	Support announcements
	Backup and Recovery Tool (BART) incompatibility

	2.1 EDB Postgres Advanced Server 14.12.0 release notes
	2.2 EDB Postgres Advanced Server 14.11.0 release notes
	2.3 EDB Postgres Advanced Server 14.10.0 release notes
	2.4 EDB Postgres Advanced Server 14.9.1 release notes
	2.5 Version 14.9.0
	2.6 Version 14.8.0
	2.7 Version 14.7.0
	2.8 Version 14.6.0
	2.9 Version 14.5.0
	2.10 Version 14.4.0
	2.11 Version 14.3.0
	2.12 Version 14.2.1
	2.13 Version 14.1.0
	Included components

	3 Supported platforms
	4 Requirements
	Hardware requirements
	Software requirements
	User privileges
	Windows-specific software requirements

	5 Limitations
	6 Deployment options
	7 Installing EDB Postgres Advanced Server
	Linux x86-64 (amd64)
	Red Hat Enterprise Linux (RHEL) and derivatives
	SUSE Linux Enterprise (SLES)
	Debian and derivatives

	Linux IBM Power (ppc64le)
	Red Hat Enterprise Linux (RHEL) and derivatives
	SUSE Linux Enterprise (SLES)

	Windows

	7.1 Installing EDB Postgres Advanced Server on Linux x86 (amd64)
	Red Hat Enterprise Linux (RHEL) and derivatives
	SUSE Linux Enterprise (SLES)
	Debian and derivatives

	7.1.1 Installing EDB Postgres Advanced Server on RHEL 9 or OL 9 x86_64
	Prerequisites
	Install the package
	Initial configuration
	Experiment

	7.1.2 Installing EDB Postgres Advanced Server on RHEL 8 or OL 8 x86_64
	Prerequisites
	Install the package
	Initial configuration
	Experiment

	7.1.3 Installing EDB Postgres Advanced Server on AlmaLinux 9 or Rocky Linux 9 x86_64
	Prerequisites
	Install the package
	Initial configuration
	Experiment

	7.1.4 Installing EDB Postgres Advanced Server on AlmaLinux 8 or Rocky Linux 8 x86_64
	Prerequisites
	Install the package
	Initial configuration
	Experiment

	7.1.5 Installing EDB Postgres Advanced Server on RHEL 7 or OL 7 x86_64
	Prerequisites
	Install the package
	Initial configuration
	Experiment

	7.1.6 Installing EDB Postgres Advanced Server on CentOS 7 x86_64
	Prerequisites
	Install the package
	Initial configuration
	Experiment

	7.1.7 Installing EDB Postgres Advanced Server on SLES 15 x86_64
	Prerequisites
	Install the package
	Initial configuration
	Experiment

	7.1.8 Installing EDB Postgres Advanced Server on SLES 12 x86_64
	Prerequisites
	Install the package
	Initial configuration
	Experiment

	7.1.9 Installing EDB Postgres Advanced Server on Ubuntu 22.04 x86_64
	Prerequisites
	Install the package
	Initial configuration
	Experiment

	7.1.10 Installing EDB Postgres Advanced Server on Ubuntu 20.04 x86_64
	Prerequisites
	Install the package
	Initial configuration
	Experiment

	7.1.11 Installing EDB Postgres Advanced Server on Debian 11 x86_64
	Prerequisites
	Install the package
	Initial configuration
	Experiment

	7.1.12 Installing EDB Postgres Advanced Server on Debian 10 x86_64
	Prerequisites
	Install the package
	Initial configuration
	Experiment

	7.2 Installing EDB Postgres Advanced Server on Linux IBM Power (ppc64le)
	Red Hat Enterprise Linux (RHEL)
	SUSE Linux Enterprise (SLES)

	7.2.1 Installing EDB Postgres Advanced Server on RHEL 9 ppc64le
	Prerequisites
	Install the package
	Initial configuration
	Experiment

	7.2.2 Installing EDB Postgres Advanced Server on RHEL 8 ppc64le
	Prerequisites
	Install the package
	Initial configuration
	Experiment

	7.2.3 Installing EDB Postgres Advanced Server on SLES 15 ppc64le
	Prerequisites
	Install the package
	Initial configuration
	Experiment

	7.2.4 Installing EDB Postgres Advanced Server on SLES 12 ppc64le
	Prerequisites
	Install the package
	Initial configuration
	Experiment

	7.2.5 Installing EDB Postgres Advanced Server on RHEL 7 ppc64le
	Prerequisites
	Install the package
	Initial configuration
	Experiment

	7.3 EDB Postgres Advanced Server installation for Windows
	7.3.1 Installing EDB Postgres Advanced Server with the interactive installer
	Setting cluster preferences during a graphical installation

	7.3.1.1 Performing a graphical installation on Windows
	7.3.1.2 Invoking the graphical installer from the command line
	7.3.1.2.1 Performing an unattended installation
	7.3.1.2.2 Performing an installation with limited privileges
	7.3.1.2.3 Reference: Command line options
	7.3.1.3 Using StackBuilder Plus
	7.3.2 Managing an EDB Postgres Advanced Server installation
	Starting and stopping EDB Postgres Advanced Server and supporting components

	7.3.2.1 Using the Windows services applet
	7.3.2.2 Using pg_ctl to control EDB Postgres Advanced Server
	7.3.2.3 Controlling server startup behavior on Windows
	7.3.2.4 Configuring EDB Postgres Advanced Server
	Setting EDB Postgres Advanced Server environment variables
	Connecting to EDB Postgres Advanced Server with edb-psql
	Connecting to EDB Postgres Advanced Server with the pgAdmin 4 client

	7.4 Linux installation details
	7.4.1 Default component locations
	RHEL/OL/Rocky Linux/AlmaLinux/CentOS/SLES Locations
	Debian/Ubuntu Locations

	7.4.2 Available native packages
	RHEL/OL/Rocky Linux/AlmaLinux/CentOS/SLES Packages
	EDB Postgres Advanced Server RPM packages

	Debian/Ubuntu Packages
	EDB Postgres Advanced Server Debian packages
	Updating an RPM installation

	7.4.3 Installing on Linux using a local repository
	7.4.4 Managing an EDB Postgres Advanced Server installation
	Starting and stopping services
	Controlling a service on RHEL/CentOS 7.x or RHEL/Rocky Linux/AlmaLinux 8.x
	Controlling a service on Debian 10.x or Ubuntu 18.04 | 20.04
	Using pg_ctl to control EDB Postgres Advanced Server
	Configuring component services to autostart at system reboot

	Connecting to EDB Postgres Advanced Server with edb-psql
	Managing authentication on a Debian or Ubuntu host

	Configuring a package installation
	Creating a database cluster and starting the service
	On RHEL/CentOS 7.x or RHEL/Rocky Linux/AlmaLinux 8.x
	On Debian 10.x or Ubuntu 18.04 | 20.04

	Specifying cluster options with INITDBOPTS
	Initializing the cluster in Oracle mode
	Initializing the cluster in Postgres mode

	Modifying the data directory location
	On RHEL/CentOS 7.x or RHEL/Rocky Linux/AlmaLinux 8.x
	Configuring SELinux policy to change the data directory location on RHEL/CentOS 7.x or RHEL/Rocky Linux/AlmaLinux 8.x

	Starting multiple postmasters with different clusters
	On RHEL/CentOS 7.x or RHEL/Rocky Linux/AlmaLinux 8.x

	8 EDB Postgres Advanced Server upgrade
	8.1 Upgrade considerations
	8.2 Upgrading an installation with pg_upgrade
	8.2.1 Performing an upgrade
	8.2.1.1 Linking versus copying
	8.2.2 Invoking pg_upgrade
	8.2.2.1 Command line options: Reference
	8.2.3 Upgrading to EDB Postgres Advanced Server 14
	8.2.4 Upgrading a pgAgent installation
	8.2.5 pg_upgrade troubleshooting
	Upgrade Error - There seems to be a postmaster servicing the cluster
	Upgrade Error - fe_sendauth: no password supplied
	Upgrade Error - New cluster is not empty; exiting
	Upgrade Error - Failed to load library

	8.2.6 Reverting to the old cluster
	8.3 Performing a minor version update of an RPM installation
	8.4 Using StackBuilder Plus to perform a minor version update
	9 Uninstalling EDB Postgres Advanced Server
	9.1 Uninstalling EDB Postgres Advanced Server on Linux
	Uninstalling on RHEL/OL/AlmaLinux/Rocky Linux
	Uninstalling on Debian or Ubuntu

	9.2 Uninstalling EDB Postgres Advanced Server on Windows
	Using EDB Postgres Advanced Server uninstallers at the command line

	10 Troubleshooting
	10.1 Linux installation troubleshootig
	10.1.1 Installation troubleshooting
	Difficulty displaying Java-based applications
	The installation fails to complete eue to existing data directory contents
	Difficulty installing the EPEL release package

	10.1.2 Enabling core dumps
	Enabling core dumps on a RHEL or CentOS or Rocky Linux or AlmaLinux host
	Enabling core dumps on a Debian or Ubuntu host

	10.2 Windows installation troubleshooting
	Difficulty displaying Java-based applications
	- -mode unattended authentication errors
	Errors during an EDB Postgres Advanced Server installation
	The installation fails to complete due to existing data directory contents

	11 Connecting to your database
	12 Managing your database connections
	13 Connecting to external data sources
	14 Database Compatibility for Oracle Developers
	14.1 Configuration parameters compatible with Oracle databases
	14.1.1 edb_redwood_date
	14.1.2 edb_redwood_raw_names
	14.1.3 edb_redwood_strings
	14.1.4 edb_stmt_level_tx
	14.1.5 oracle_home
	14.2 About the examples
	14.3 SQL tutorial
	14.3.1 Sample database
	14.3.1.1 Sample database installation
	14.3.1.2 Sample database description
	14.3.2 Creating a new table
	14.3.3 Populating a table With rows
	14.3.4 Querying a table
	14.3.5 Joins between tables
	14.3.6 Aggregate functions
	14.3.7 Updates
	14.3.8 Deletions
	14.3.9 The SQL language
	14.4 Advanced concepts
	14.4.1 Views
	14.4.2 Foreign keys
	14.4.3 The ROWNUM pseudo-column
	14.4.4 Synonyms
	Creating a synonym
	Parameters
	Deleting a synonym
	Parameters

	14.4.5 Hierarchical queries
	Examples

	14.4.5.1 Defining the parent/child relationship
	14.4.5.2 Selecting the root nodes
	14.4.5.3 Organization tree in the sample application
	14.4.5.4 Node level
	14.4.5.5 Ordering the siblings
	14.4.5.6 Retrieving the root node with CONNECT_BY_ROOT
	14.4.5.7 Retrieving a path with SYS_CONNECT_BY_PATH
	14.4.6 Multidimensional analysis
	14.4.6.1 ROLLUP extension
	14.4.6.2 CUBE extension
	14.4.6.3 GROUPING SETS extension
	14.4.6.4 GROUPING function
	14.4.6.5 GROUPING_ID function
	14.5 Profile management
	14.5.1 Creating a new profile
	Parameters
	Examples

	14.5.1.1 Creating a password function
	Example

	14.5.2 Altering a profile
	Parameters
	Examples

	14.5.3 Dropping a profile
	Parameters
	Examples

	14.5.4 Associating a profile with an existing role
	Parameters
	Examples

	14.5.5 Unlocking a locked account
	Parameters
	Examples

	14.5.6 Creating a new role associated with a profile
	Parameters
	Examples

	14.5.7 Backing up profile management functions
	14.6 Optimizer hints
	Synopsis
	Description
	Parameters

	14.6.1 Default optimization modes
	Examples

	14.6.2 Access method hints
	Examples

	14.6.3 Specifying a join order
	14.6.4 Joining relations hints
	Examples

	14.6.5 Global hints
	Synopsis
	Parameters
	Examples

	14.6.6 Using the APPEND optimizer hint
	14.6.7 Parallelism hints
	Synopsis
	Description
	Parameters
	Examples

	14.6.8 Conflicting hints
	14.7 dblink_ora
	Connecting to an Oracle database

	14.7.1 dblink_ora functions and procedures
	14.7.1.1 dblink_ora_connect()
	14.7.1.2 dblink_ora_status()
	14.7.1.3 dblink_ora_disconnect()
	14.7.1.4 dblink_ora_record()
	14.7.1.5 dblink_ora_call()
	14.7.1.6 dblink_ora_exec()
	14.7.1.7 dblink_ora_copy()
	14.7.2 Calling dblink_ora functions
	14.8 Open Client Library
	14.9 Oracle catalog views
	14.10 Tools and utilities
	14.11 ECPGPlus
	14.12 System catalog tables
	15 Database Compatibility for Oracle Developers: Reference
	15.1 The SQL language
	15.1.1 SQL syntax
	15.1.1.1 Lexical structure
	15.1.1.2 Identifiers and key words
	15.1.1.3 Constants
	String constants
	Numeric constants
	Constants of other types
	CAST
	CAST (MULTISET)

	Example

	15.1.1.4 Comments
	15.1.2 Data types
	15.1.2.1 Numeric types
	Integer types
	Arbitrary precision numbers
	Floating-point types

	15.1.2.2 Character types
	15.1.2.3 Binary data
	15.1.2.4 Date/time types
	INTERVAL types
	Date/time input
	Dates
	Times
	Time stamps

	Date/time output
	Internals

	15.1.2.5 Boolean types
	15.1.2.6 XML type
	15.1.3 Functions and operators
	15.1.3.1 Logical operators
	15.1.3.2 Comparison operators
	15.1.3.3 Mathematical functions and operators
	15.1.3.4 String functions and operators
	Truncation of string text resulting from concatenation with NULL

	15.1.3.5 Pattern matching string functions
	REGEXP_COUNT
	Parameters
	Example

	REGEXP_INSTR
	Parameters
	Example

	REGEXP_SUBSTR
	Parameters
	Example

	15.1.3.6 Pattern matching using the LIKE operator
	15.1.3.7 Data type formatting functions
	TO_CHAR, TO_DATE, TO_TIMESTAMP, and TO_TIMESTAMP_TZ
	Date and time modifiers

	IMMUTABLE TO_CHAR(TIMESTAMP, format) function
	TO_NUMBER
	Numeric modifiers
	Difference TO_CHAR, TO_NUMBER, and SUBSTR functions

	15.1.3.8 Date/time functions and operators
	ADD_MONTHS
	CURRENT DATE/TIME
	EXTRACT
	MONTHS_BETWEEN
	NEXT_DAY
	NEW_TIME
	NUMTODSINTERVAL
	NUMTOYMINTERVAL
	ROUND
	SYSDATE
	TRUNC

	15.1.3.9 Sequence manipulation functions
	15.1.3.10 Conditional expressions
	CASE
	COALESCE
	NULLIF
	NVL
	Examples

	NVL2
	GREATEST and LEAST

	15.1.3.11 Aggregate functions
	LISTAGG
	Objective
	Synopsis
	Parameters
	Return type
	Examples

	MEDIAN
	Objective
	Synopsis
	Parameters
	Return types
	Examples

	STATS_MODE
	Objective
	Synopsis
	Parameters
	Return type
	Examples

	BIT_AND_AGG
	Objective
	Synopsis
	Parameters
	Return Type
	Examples

	BIT_OR_AGG
	Objective
	Synopsis
	Parameters
	Return type
	Examples

	15.1.3.12 Subquery expressions
	EXISTS
	IN
	NOT IN
	ANY/SOME
	ALL

	15.1.3.13 Identifier functions
	SYS_GUID
	Example

	USERENV
	Examples

	SYS_CONTEXT
	Parameters
	Examples

	15.1.3.14 Bitwise functions
	BITAND
	Return types
	Examples

	BITOR
	Return types
	Examples

	BITWISE OPERATORS
	Examples

	15.2 System catalog tables
	dual
	edb_dir
	edb_password_history
	edb_policy
	edb_profile
	edb_variable
	pg_synonym
	product_component_version

	16 Database Compatibility for Oracle Developers: Built-in Package
	16.1 Packages
	16.1.1 Package components
	Package specification syntax
	Parameters

	Package body syntax
	Parameters

	16.1.2 Creating packages
	Creating the package specification
	Creating the package body

	16.1.3 Referencing a package
	16.1.4 Using packages with user-defined types
	16.1.5 Dropping a package
	16.2 Built-in packages
	16.2.1 DBMS_ALERT
	REGISTER
	Parameters
	Examples

	REMOVE
	Parameters

	REMOVEALL
	SIGNAL
	Parameters
	Examples

	WAITANY
	Parameters
	Examples

	WAITONE
	Parameters
	Examples

	Comprehensive example

	16.2.2 DBMS_AQ
	16.2.2.1 ENQUEUE
	Parameters
	Example

	16.2.2.2 DEQUEUE
	Parameters
	Example

	16.2.2.3 REGISTER
	Parameters
	Example

	16.2.2.4 UNREGISTER
	Parameter
	Example

	16.2.3 DBMS_AQADM
	16.2.3.1 ALTER_QUEUE
	Parameters
	Example

	16.2.3.2 ALTER_QUEUE_TABLE
	Parameters
	Example

	16.2.3.3 CREATE_QUEUE
	Parameters
	Example

	16.2.3.4 CREATE_QUEUE_TABLE
	Parameters
	Example

	16.2.3.5 DROP_QUEUE
	Parameters
	Example

	16.2.3.6 DROP_QUEUE_TABLE
	Parameters
	Example

	16.2.3.7 PURGE_QUEUE_TABLE
	Parameters
	Example

	16.2.3.8 START_QUEUE
	Parameters
	Example

	16.2.3.9 STOP_QUEUE
	Parameters
	Example

	16.2.4 DBMS_CRYPTO
	16.2.4.1 DECRYPT
	Parameters
	Examples

	16.2.4.2 ENCRYPT
	Parameters
	Examples

	16.2.4.3 HASH
	Parameters
	Examples

	16.2.4.4 MAC
	Parameters
	Examples

	16.2.4.5 RANDOMBYTES
	Parameter
	Examples

	16.2.4.6 RANDOMINTEGER
	Examples

	16.2.4.7 RANDOMNUMBER
	Examples

	16.2.5 DBMS_JOB
	16.2.5.1 BROKEN
	Parameters
	Examples

	16.2.5.2 CHANGE
	Parameters
	Examples

	16.2.5.3 INTERVAL
	Parameters
	Examples

	16.2.5.4 NEXT_DATE
	Parameters
	Examples

	16.2.5.5 REMOVE
	Parameter
	Examples

	16.2.5.6 RUN
	Parameter
	Examples

	16.2.5.7 SUBMIT
	Parameters
	Examples

	16.2.5.8 WHAT
	Parameters
	Examples

	16.2.6 DBMS_LOB
	16.2.6.1 APPEND
	Parameters

	16.2.6.2 COMPARE
	Parameters

	16.2.6.3 CONVERTTOBLOB
	Parameters

	16.2.6.4 CONVERTTOCLOB
	Parameters

	16.2.6.5 COPY
	Parameters

	16.2.6.6 ERASE
	Parameters

	16.2.6.7 GET_STORAGE_LIMIT
	Parameters

	16.2.6.8 GETLENGTH
	Parameters

	16.2.6.9 INSTR
	Parameters

	16.2.6.10 READ
	Parameters

	16.2.6.11 SUBSTR
	Parameters

	16.2.6.12 TRIM
	Parameters

	16.2.6.13 WRITE
	Parameters

	16.2.6.14 WRITEAPPEND
	Parameters

	16.2.7 DBMS_LOCK
	SLEEP
	Parameters

	16.2.8 DBMS_MVIEW
	16.2.8.1 GET_MV_DEPENDENCIES
	Parameters
	Examples

	16.2.8.2 REFRESH
	Parameters
	Examples

	16.2.8.3 REFRESH_ALL_MVIEWS
	Parameters
	Examples

	16.2.8.4 REFRESH_DEPENDENT
	Parameters
	Examples

	16.2.9 DBMS_OUTPUT
	CHARARR
	DISABLE
	Examples

	ENABLE
	Parameter
	Examples

	GET_LINE
	Parameters
	Examples

	GET_LINES
	Parameters
	Examples

	NEW_LINE
	Parameter

	PUT
	Parameter
	Examples

	PUT_LINE
	Parameter
	Examples

	SERVEROUTPUT
	Parameter
	Examples

	16.2.10 DBMS_PIPE
	16.2.10.1 CREATE_PIPE
	Parameters
	Examples

	16.2.10.2 NEXT_ITEM_TYPE
	Parameters
	Examples

	16.2.10.3 PACK_MESSAGE
	Parameters

	16.2.10.4 PURGE
	Parameters
	Examples

	16.2.10.5 RECEIVE_MESSAGE
	Parameters

	16.2.10.6 REMOVE_PIPE
	Parameters
	Examples

	16.2.10.7 RESET_BUFFER
	Examples

	16.2.10.8 SEND_MESSAGE
	Parameters

	16.2.10.9 UNIQUE_SESSION_NAME
	Parameters
	Examples

	16.2.10.10 UNPACK_MESSAGE
	Parameters

	16.2.10.11 Comprehensive example
	16.2.11 DBMS_PROFILER
	FLUSH_DATA
	Parameters

	GET_VERSION
	Parameters

	INTERNAL_VERSION_CHECK
	Parameters

	PAUSE_PROFILER
	Parameters

	RESUME_PROFILER
	Parameters

	START_PROFILER
	Parameters

	STOP_PROFILER
	Parameters

	Using DBMS_PROFILER
	Querying the DBMS_PROFILER tables and view
	DBMS_PROFILER reference
	PLSQL_PROFILER_RUNS
	PLSQL_PROFILER_UNITS
	PLSQL_PROFILER_DATA
	PLSQL_PROFILER_RAWDATA

	16.2.12 DBMS_RANDOM
	INITIALIZE
	Parameters
	Example

	NORMAL
	Parameters
	Example

	RANDOM
	Parameters
	Example

	SEED
	Parameters
	Example

	SEED
	Parameters
	Example

	STRING
	Parameters
	Example

	TERMINATE
	VALUE
	Parameters
	Example

	VALUE
	Parameters
	Example

	16.2.13 DBMS_REDACT
	Using DBMS_REDACT constants and function parameters
	ADD_POLICY
	Parameters
	Example

	ALTER_POLICY
	Parameters
	Example

	DISABLE_POLICY
	Parameters
	Example

	ENABLE_POLICY
	Parameters
	Example

	DROP_POLICY
	Parameters
	Example

	UPDATE_FULL_REDACTION_VALUES
	Parameters
	Example

	16.2.14 DBMS_RLS
	ADD_POLICY
	Parameters
	Examples

	DROP_POLICY
	Parameters
	Examples

	ENABLE_POLICY
	Parameters
	Examples

	16.2.15 DBMS_SCHEDULER
	16.2.15.1 Using calendar syntax to specify a repeating interval
	16.2.15.2 CREATE_JOB
	Parameters
	Example

	16.2.15.3 CREATE_PROGRAM
	Parameters
	Example

	16.2.15.4 CREATE_SCHEDULE
	Parameters
	Example

	16.2.15.5 DEFINE_PROGRAM_ARGUMENT
	Parameters
	Example

	16.2.15.6 DISABLE
	Parameters
	Example

	16.2.15.7 DROP_JOB
	Parameters
	Example

	16.2.15.8 DROP_PROGRAM
	Parameters
	Example

	16.2.15.9 DROP_PROGRAM_ARGUMENT
	Parameters
	Examples

	16.2.15.10 DROP_SCHEDULE
	Parameters
	Example

	16.2.15.11 ENABLE
	Parameters
	Example

	16.2.15.12 EVALUATE_CALENDAR_STRING
	Parameters
	Example

	16.2.15.13 RUN_JOB
	Parameters
	Example

	16.2.15.14 SET_JOB_ARGUMENT_VALUE
	Parameters
	Examples

	16.2.16 DBMS_SESSION
	SET_ROLE
	Parameters
	Example

	16.2.17 DBMS_SQL
	16.2.17.1 BIND_VARIABLE
	Parameters
	Examples

	16.2.17.2 BIND_VARIABLE_CHAR
	Parameters

	16.2.17.3 BIND_VARIABLE_RAW
	Parameters

	16.2.17.4 CLOSE_CURSOR
	Parameters
	Examples

	16.2.17.5 COLUMN_VALUE
	Parameters
	Examples

	16.2.17.6 COLUMN_VALUE_CHAR
	Parameters

	16.2.17.7 COLUMN_VALUE_RAW
	Parameters
	COLUMN_VALUE_LONG
	Parameters

	16.2.17.8 DEFINE_COLUMN
	Parameters
	Examples

	16.2.17.9 DEFINE_COLUMN_CHAR
	Parameters

	16.2.17.10 DEFINE_COLUMN_RAW
	Parameters
	DEFINE_COLUMN_LONG
	Parameters
	Examples

	16.2.17.11 DESCRIBE_COLUMNS
	Parameters

	16.2.17.12 EXECUTE
	Parameters
	Examples

	16.2.17.13 EXECUTE_AND_FETCH
	Parameters
	Examples

	16.2.17.14 FETCH_ROWS
	Parameters
	Examples

	16.2.17.15 IS_OPEN
	Parameters

	16.2.17.16 LAST_ROW_COUNT
	Parameters
	Examples
	LAST_ERROR_POSITION
	Examples

	16.2.17.17 OPEN_CURSOR
	Parameters
	Examples

	16.2.17.18 PARSE
	Parameters
	Examples

	16.2.18 DBMS_UTILITY
	LNAME_ARRAY
	UNCL_ARRAY
	ANALYZE_DATABASE, ANALYZE SCHEMA and ANALYZE PART_OBJECT
	Parameters for ANALYZE_DATABASE and ANALYZE_SCHEMA
	Parameters for ANALYZE_PART_OBJECT

	CANONICALIZE
	Parameters
	Examples

	COMMA_TO_TABLE
	Parameters
	Examples

	DB_VERSION
	Parameters
	Examples

	EXEC_DDL_STATEMENT
	Parameters
	Examples

	FORMAT_CALL_STACK
	GET_CPU_TIME
	Parameters
	Examples

	GET_DEPENDENCY
	Parameters
	Examples

	GET_HASH_VALUE
	Parameters
	Examples

	GET_PARAMETER_VALUE
	Parameters
	Examples

	GET_TIME
	Parameters
	Examples

	NAME_TOKENIZE
	Parameters
	Examples

	TABLE_TO_COMMA
	Parameters
	Examples

	16.2.19 UTL_ENCODE
	16.2.19.1 BASE64_DECODE
	Parameters
	Examples

	16.2.19.2 BASE64_ENCODE
	Parameters
	Examples

	16.2.19.3 MIMEHEADER_DECODE
	Parameters
	Examples

	16.2.19.4 MIMEHEADER_ENCODE
	Parameters
	Examples

	16.2.19.5 QUOTED_PRINTABLE_DECODE
	Parameters
	Examples

	16.2.19.6 QUOTED_PRINTABLE_ENCODE
	Parameters
	Examples

	16.2.19.7 TEXT_DECODE
	Parameters
	Examples

	16.2.19.8 TEXT_ENCODE
	Parameters
	Examples

	16.2.19.9 UUDECODE
	Parameters
	Examples

	16.2.19.10 UUENCODE
	Parameters
	Examples

	16.2.20 UTL_FILE
	UTL_FILE exception codes
	Setting file permissions with utl_file.umask
	Example

	FCLOSE
	Parameters

	FCLOSE_ALL
	FCOPY
	Parameters
	Examples

	FFLUSH
	Parameters
	Examples

	FOPEN
	Parameters

	FREMOVE
	Parameters
	Examples

	FRENAME
	Parameters
	Examples

	GET_LINE
	Parameters
	Examples

	GET_RAW
	Parameters
	Examples

	IS_OPEN
	Parameters

	NEW_LINE
	Parameters
	Examples

	PUT
	Parameters
	Examples

	PUT_LINE
	Parameters
	Examples

	PUTF
	Parameters
	Examples

	PUT_RAW
	Parameters
	Examples

	16.2.21 UTL_HTTP
	UTL_HTTP exception codes
	HTML_PIECES
	REQ
	RESP
	BEGIN_REQUEST
	Parameters

	END_REQUEST
	Parameters

	END_RESPONSE
	Parameters

	GET_BODY_CHARSET
	Parameters
	Examples

	GET_FOLLOW_REDIRECT
	Parameters

	GET_HEADER
	Parameters
	Examples

	GET_HEADER_BY_NAME
	Parameters
	Examples

	GET_HEADER_COUNT
	Parameters

	GET_RESPONSE
	Parameters

	GET_RESPONSE_ERROR_CHECK
	Parameters

	GET_TRANSFER_TIMEOUT
	Parameters

	READ_LINE
	Parameters
	Examples

	READ_RAW
	Parameters
	Examples

	READ_TEXT
	Parameters
	Examples

	REQUEST
	Parameters
	Example

	REQUEST_PIECES
	Parameters
	Example

	SET_BODY_CHARSET
	Parameters

	SET_FOLLOW_REDIRECT
	Parameters

	SET_HEADER
	Parameters

	SET_RESPONSE_ERROR_CHECK
	Parameters

	SET_TRANSFER_TIMEOUT
	Parameters

	WRITE_LINE
	Parameters
	Example

	WRITE_RAW
	Parameters
	Example

	WRITE_TEXT
	Parameters
	Example

	END_OF_BODY
	Example

	16.2.22 UTL_MAIL
	SEND
	Parameters
	Examples

	SEND_ATTACH_RAW
	Parameters

	SEND_ATTACH_VARCHAR2
	Parameters

	16.2.23 UTL_RAW
	CAST_TO_RAW
	Parameters
	Example

	CAST_TO_VARCHAR2
	Parameters
	Example

	CONCAT
	Parameters
	Example

	CONVERT
	Parameters
	Example

	LENGTH
	Parameters
	Example

	SUBSTR
	Parameters
	Example

	16.2.24 UTL_SMTP
	CONNECTION
	REPLY/REPLIES
	CLOSE_DATA
	Parameters

	COMMAND
	Parameters

	COMMAND_REPLIES
	Parameters

	DATA
	Parameters

	EHLO
	Parameters

	HELO
	Parameters

	HELP
	Parameters

	MAIL
	Parameters

	NOOP
	Parameters

	OPEN_CONNECTION
	Parameters

	OPEN_DATA
	Parameters

	QUIT
	Parameters

	RCPT
	Parameters

	RSET
	Parameters

	VRFY
	Parameters

	WRITE_DATA
	Parameters

	Comprehensive example

	16.2.25 UTL_URL
	ESCAPE
	Parameters
	Examples

	UNESCAPE
	Parameters
	Examples

	17 Database Compatibility for Oracle Developers: Tools and Utilities
	17.1 EDB*Loader
	Data loading methods
	General usage
	Building the EDB*Loader control file
	Description
	Parameters
	EDB*Loader control file examples
	Delimiter-separated field data file
	Fixed-width field data file
	Single physical record data file – RECORDS DELIMITED BY clause
	FILLER clause
	BOUNDFILLER clause
	Field types with length specification
	NULLIF clause
	SELECT statement in a field expression
	Multiple INTO TABLE clauses

	Invoking EDB*Loader
	Description
	Parameters
	Examples
	Exit codes

	Direct path load
	Parallel direct path load
	Remote loading
	Updating a table with a conventional path load

	17.2 EDB*Wrap
	Using EDB*Wrap to obfuscate source code

	17.3 Dynamic runtime instrumentation tools architecture (DRITA)
	Configuring and using DRITA
	DRITA functions
	get_snaps()
	sys_rpt()
	Parameters

	sess_rpt()
	Parameters

	sessid_rpt()
	Parameters

	sesshist_rpt()
	Parameters

	purgesnap()
	Parameters

	truncsnap()

	Simulating Statspack AWR reports
	edbreport()
	Parameters

	stat_db_rpt()
	Parameters

	stat_tables_rpt()
	Parameters

	statio_tables_rpt()
	Parameters

	stat_indexes_rpt()
	Parameters

	statio_indexes_rpt()
	Parameters

	Performance tuning recommendations
	Event descriptions

	18 Database compatibility for Oracle developers: catalog views
	18.1 Oracle catalog views
	18.1.1 ALL_ALL_TABLES
	18.1.2 ALL_CONS_COLUMNS
	18.1.3 ALL_CONSTRAINTS
	18.1.4 ALL_COL_PRIVS
	18.1.5 ALL_DB_LINKS
	18.1.6 ALL_DEPENDENCIES
	18.1.7 ALL_DIRECTORIES
	18.1.8 ALL_IND_COLUMNS
	18.1.9 ALL_INDEXES
	18.1.10 ALL_JOBS
	18.1.11 ALL_OBJECTS
	18.1.12 ALL_PART_KEY_COLUMNS
	18.1.13 ALL_PART_TABLES
	18.1.14 ALL_POLICIES
	18.1.15 ALL_QUEUES
	18.1.16 ALL_QUEUE_TABLES
	18.1.17 ALL_SEQUENCES
	18.1.18 ALL_SOURCE
	18.1.19 ALL_SUBPART_KEY_COLUMNS
	18.1.20 ALL_SYNONYMS
	18.1.21 ALL_TAB_COLUMNS
	18.1.22 ALL_TAB_PARTITIONS
	18.1.23 ALL_TAB_SUBPARTITIONS
	18.1.24 ALL_TAB_PRIVS
	18.1.25 ALL_TABLES
	18.1.26 ALL_TRIGGERS
	18.1.27 ALL_TYPES
	18.1.28 ALL_USERS
	18.1.29 ALL_VIEW_COLUMNS
	18.1.30 ALL_VIEWS
	18.1.31 DBA_ALL_TABLES
	18.1.32 DBA_CONS_COLUMNS
	18.1.33 DBA_CONSTRAINTS
	18.1.34 DBA_COL_PRIVS
	18.1.35 DBA_DB_LINKS
	18.1.36 DBA_DIRECTORIES
	18.1.37 DBA_DEPENDENCIES
	18.1.38 DBA_IND_COLUMNS
	18.1.39 DBA_INDEXES
	18.1.40 DBA_JOBS
	18.1.41 DBA_OBJECTS
	18.1.42 DBA_PART_KEY_COLUMNS
	18.1.43 DBA_PART_TABLES
	18.1.44 DBA_POLICIES
	18.1.45 DBA_PROFILES
	18.1.46 DBA_QUEUES
	18.1.47 DBA_QUEUE_TABLES
	18.1.48 DBA_ROLE_PRIVS
	18.1.49 DBA_ROLES
	18.1.50 DBA_SEQUENCES
	18.1.51 DBA_SOURCE
	18.1.52 DBA_SUBPART_KEY_COLUMNS
	18.1.53 DBA_SYNONYMS
	18.1.54 DBA_TAB_COLUMNS
	18.1.55 DBA_TAB_PARTITIONS
	18.1.56 DBA_TAB_SUBPARTITIONS
	18.1.57 DBA_TAB_PRIVS
	18.1.58 DBA_TABLES
	18.1.59 DBA_TRIGGERS
	18.1.60 DBA_TYPES
	18.1.61 DBA_USERS
	18.1.62 DBA_VIEW_COLUMNS
	18.1.63 DBA_VIEWS
	18.1.64 USER_ALL_TABLES
	18.1.65 USER_CONS_COLUMNS
	18.1.66 USER_CONSTRAINTS
	18.1.67 USER_COL_PRIVS
	18.1.68 USER_DB_LINKS
	18.1.69 USER_DEPENDENCIES
	18.1.70 USER_INDEXES
	18.1.71 USER_JOBS
	18.1.72 USER_OBJECTS
	18.1.73 USER_PART_TABLES
	18.1.74 USER_POLICIES
	18.1.75 USER_QUEUES
	18.1.76 USER_QUEUE_TABLES
	18.1.77 USER_ROLE_PRIVS
	18.1.78 USER_SEQUENCES
	18.1.79 USER_SOURCE
	18.1.80 USER_SUBPART_KEY_COLUMNS
	18.1.81 USER_SYNONYMS
	18.1.82 USER_TAB_COLUMNS
	18.1.83 USER_TAB_PARTITIONS
	18.1.84 USER_TAB_SUBPARTITIONS
	18.1.85 USER_TAB_PRIVS
	18.1.86 USER_TABLES
	18.1.87 USER_TRIGGERS
	18.1.88 USER_TYPES
	18.1.89 USER_USERS
	18.1.90 USER_VIEW_COLUMNS
	18.1.91 USER_VIEWS
	18.1.92 V$VERSION
	18.1.93 PRODUCT_COMPONENT_VERSION
	18.2 System catalog views
	18.2.1 PG_USER
	19 Database Compatibility: Stored Procedural Language
	19.1 Basic SPL elements
	19.1.1 Case sensitivity
	19.1.2 Identifiers
	19.1.3 Qualifiers
	19.1.4 Constants
	19.1.5 User-defined PL/SQL subtypes
	Unconstrained subtypes
	Constrained subtypes
	Using the %TYPE operator
	Subtype conversion

	19.1.6 Character set
	19.2 SPL programs
	19.2.1 SPL block structure
	19.2.2 Anonymous blocks
	19.2.3 Procedures overview
	19.2.3.1 Creating a procedure
	Example

	19.2.3.2 Calling a procedure
	19.2.3.3 Deleting a procedure
	19.2.4 Functions overview
	19.2.4.1 Creating a function
	Examples

	19.2.4.2 Calling a function
	19.2.4.3 Deleting a function
	19.2.5 Procedure and function parameters
	19.2.5.1 Positional versus named parameter notation
	19.2.5.2 Parameter modes
	19.2.5.3 Using default values in parameters
	19.2.6 Subprograms: subprocedures and subfunctions
	19.2.6.1 Creating a subprocedure
	Examples

	19.2.6.2 Creating a subfunction
	Examples

	19.2.6.3 Block relationships
	19.2.6.4 Invoking subprograms
	Invoking locally declared subprograms
	Invoking subprograms declared in ancestor blocks
	Invoking subprograms declared in sibling blocks

	19.2.6.5 Using forward declarations
	19.2.6.6 Overloading subprograms
	19.2.6.7 Accessing subprogram variables
	19.2.7 Compilation errors in procedures and functions
	19.2.8 Program security
	19.2.8.1 EXECUTE privilege
	19.2.8.2 Database object name resolution
	19.2.8.3 Database object privileges
	19.2.8.4 Definer's versus invoker's rights
	19.2.8.5 Security example
	Step 1: Create database and users
	Step 2: Create the sample application
	Step 3: Create the emp table in schema sales_mgr
	Step 4: Remove default privileges
	Step 5: Change list_emp to invoker’s rights
	Step 6: Change hire_clerk to invoker’s rights and qualify call to new_empno
	Step 7: Grant required privileges
	Step 8: Run programs list_emp and hire_clerk**
	Step 9: Run program hire_emp in the emp_admin package

	19.3 Variable declarations
	19.3.1 Declaring a variable
	19.3.2 Using %TYPE in variable declarations
	19.3.3 Using %ROWTYPE in record declarations
	19.3.4 User-defined record types and record variables
	19.4 Basic statements
	19.4.1 Assignment
	19.4.2 DELETE
	19.4.3 INSERT
	19.4.4 NULL
	19.4.5 Using the RETURNING INTO clause
	19.4.6 SELECT INTO
	19.4.7 UPDATE
	19.4.8 Obtaining the result status
	19.5 Control structures
	19.5.1 IF statement
	19.5.1.1 IF-THEN
	19.5.1.2 IF-THEN-ELSE
	19.5.1.3 IF-THEN-ELSE IF
	19.5.1.4 IF-THEN-ELSIF-ELSE
	19.5.2 RETURN statement
	19.5.3 GOTO statement
	19.5.4 CASE expression
	19.5.4.1 Selector CASE expression
	19.5.4.2 Searched CASE expression
	19.5.5 CASE statement
	19.5.5.1 Selector CASE statement
	19.5.5.2 Searched CASE statement
	19.5.6 Loops
	19.5.6.1 LOOP
	19.5.6.2 EXIT
	19.5.6.3 CONTINUE
	19.5.6.4 WHILE
	19.5.6.5 FOR (integer variant)
	19.5.7 Exception handling
	19.5.8 User-defined exceptions
	19.5.9 PRAGMA EXCEPTION_INIT
	19.5.10 RAISE_APPLICATION_ERROR
	19.6 Transaction control
	19.6.1 COMMIT
	19.6.2 ROLLBACK
	19.6.3 PRAGMA AUTONOMOUS_TRANSACTION
	Scenario 1a: No autonomous transactions with only a final COMMIT
	Scenario 1b: No autonomous transactions but a final ROLLBACK
	Scenario 1c: No autonomous transactions, but anonymous block ROLLBACK
	Scenario 2a: Autonomous transaction of anonymous block with COMMIT
	Scenario 2b: Autonomous transaction anonymous block with COMMIT, including procedure with ROLLBACK but not an autonomous transaction procedure
	Scenario 2c: Autonomous transaction anonymous block with COMMIT, including procedure with ROLLBACK that is also an autonomous transaction procedure
	Autonomous transaction trigger
	Autonomous transaction object type method

	19.7 Dynamic SQL
	19.8 Static cursors
	19.8.1 Declaring a cursor
	19.8.2 Opening a cursor
	19.8.3 Fetching rows from a cursor
	19.8.4 Closing a cursor
	19.8.5 Using %ROWTYPE with cursors
	19.8.6 Cursor attributes
	19.8.6.1 %ISOPEN
	19.8.6.2 %FOUND
	19.8.6.3 %NOTFOUND
	19.8.6.4 %ROWCOUNT
	19.8.6.5 Summary of cursor states and attributes
	19.8.7 Cursor FOR loop
	19.8.8 Parameterized cursors
	19.9 REF CURSOR and cursor variables
	19.9.1 REF CURSOR overview
	19.9.2 Declaring a cursor variable
	19.9.2.1 Declaring a SYS_REFCURSOR cursor variable
	19.9.2.2 Declaring a user-defined REF CURSOR type variable
	19.9.3 Opening a cursor variable
	19.9.4 Fetching rows From a cursor variable
	19.9.5 Closing a cursor variable
	19.9.6 Usage restrictions
	19.9.7 Examples
	19.9.7.1 Returning a REF CURSOR from a function
	19.9.7.2 Modularizing cursor operations
	19.9.8 Dynamic queries with REF CURSOR
	19.10 Collections
	19.10.1 Associative arrays
	19.10.2 Nested tables
	19.10.3 Varrays
	19.11 Collection methods
	19.11.1 COUNT
	19.11.2 DELETE
	19.11.3 EXISTS
	19.11.4 EXTEND
	19.11.5 FIRST
	19.11.6 LAST
	19.11.7 LIMIT
	19.11.8 NEXT
	19.11.9 PRIOR
	19.11.10 TRIM
	19.12 Working with collections
	19.12.1 TABLE()
	19.12.2 Using the MULTISET UNION operator
	19.12.3 Using the FORALL statement
	19.12.4 Using the BULK COLLECT clause
	19.12.4.1 SELECT BULK COLLECT
	19.12.4.2 FETCH BULK COLLECT
	19.12.4.3 EXECUTE IMMEDIATE BULK COLLECT
	19.12.4.4 RETURNING BULK COLLECT
	19.12.5 Errors and messages
	19.13 Triggers
	19.13.1 Trigger overview
	19.13.2 Types of triggers
	19.13.3 Creating triggers
	Name
	Synopsis
	Name
	Synopsis
	Description
	Parameters

	19.13.4 Trigger variables
	19.13.5 Transactions and exceptions
	19.13.6 Compound triggers
	19.13.7 Trigger examples
	19.13.7.1 Before statement-level trigger
	19.13.7.2 After statement-level trigger
	19.13.7.3 Before row-level trigger
	19.13.7.4 After row-level trigger
	19.13.7.5 INSTEAD OF trigger
	19.13.7.6 Compound triggers
	19.14 Packages
	19.15 Object types and objects
	19.15.1 Basic object concepts
	19.15.1.1 Attributes
	19.15.1.2 Methods
	19.15.1.3 Overloading methods
	19.15.2 Object type components
	19.15.2.1 Object type specification syntax
	19.15.2.2 Object type body syntax
	19.15.3 Creating object types
	19.15.3.1 Member methods
	19.15.3.2 Static methods
	19.15.3.3 Constructor methods
	19.15.4 Creating object instances
	19.15.5 Referencing an object
	19.15.6 Dropping an object type
	20 Database Compatibility for Oracle Developers: SQL
	20.1 ALTER DIRECTORY
	Name
	Synopsis
	Description
	Parameters
	Examples
	See also

	20.2 ALTER INDEX
	Name
	Synopsis
	Description
	Parameters
	Examples
	See also

	20.3 ALTER PROCEDURE
	Name
	Synopsis
	Description
	Parameters
	Examples
	See also

	20.4 ALTER PROFILE
	Name
	Synopsis
	Description
	Parameters
	Examples
	See also

	20.5 ALTER QUEUE
	Name
	Synopsis
	Parameters for the first form
	Parameters for the second form
	Parameters for the third form
	Parameters for the fourth form
	Examples
	See also

	20.6 ALTER QUEUE TABLE
	Name
	Synopsis
	Description
	Parameters
	Examples
	See also

	20.7 ALTER ROLE… IDENTIFIED BY
	Name
	Synopsis
	Description
	Parameters
	Examples

	20.8 ALTER ROLE: Managing database link and DBMS_RLS privileges
	CREATE DATABASE LINK
	CREATE PUBLIC DATABASE LINK
	DROP PUBLIC DATABASE LINK
	EXEMPT ACCESS POLICY
	See also

	20.9 ALTER SEQUENCE
	Name
	Synopsis
	Description
	Parameters
	Notes
	Examples
	See also

	20.10 ALTER SESSION
	Name
	Synopsis
	Description
	Parameters
	Configuration parameters
	Examples

	20.11 ALTER SYNONYM
	Name
	Synopsis
	Description
	Examples

	20.12 ALTER TABLE
	Name
	Synopsis
	Description
	Parameters
	Notes
	Examples
	See also

	20.13 ALTER TRIGGER
	Name
	Synopsis
	Description
	Parameters
	Examples
	See also

	20.14 ALTER TABLESPACE
	Name
	Synopsis
	Description
	Parameters
	Examples
	See also

	20.15 ALTER USER… IDENTIFIED BY
	Name
	Synopsis
	Description
	Parameters
	Examples
	See also

	20.16 ALTER USER|ROLE… PROFILE MANAGEMENT CLAUSES
	Name
	Synopsis
	Parameters
	Notes
	Examples
	See also

	20.17 CALL
	Name
	Synopsis
	Description
	Parameters
	Examples

	20.18 COMMENT
	Name
	Synopsis
	Description
	Parameters
	Notes
	Examples

	20.19 COMMIT
	Name
	Synopsis
	Description
	Parameters
	Notes
	Examples
	See also

	20.20 CREATE DATABASE
	Name
	Synopsis
	Description
	Parameters
	Notes
	Examples

	20.21 CREATE PUBLIC DATABASE LINK
	Name
	Synopsis
	Description
	Parameters
	Setting up an Oracle instant client for oci-dblink
	Oracle instant client for Linux
	Oracle instant client for Windows

	Examples
	Creating an oci-dblink database link
	Creating a postgres_fdw database link

	Using a database link
	Pushdown for an oci database link
	Creating a foreign table from a database link
	See also

	20.22 CREATE DIRECTORY
	Name
	Synopsis
	Description
	Parameters
	Notes
	Examples
	See also

	20.23 CREATE FUNCTION
	Name
	Synopsis
	Description
	Parameters
	Notes
	Examples
	Other Pragmas (declared in a package specification)
	See also

	20.24 CREATE INDEX
	Name
	Synopsis
	Description
	Parameters
	Notes
	Examples
	See also

	20.25 CREATE MATERIALIZED VIEW
	Name
	Synopsis
	Description
	Parameters
	Notes
	Examples

	20.26 CREATE PACKAGE
	Name
	Synopsis
	Description
	Parameters
	Examples
	See also

	20.27 CREATE PACKAGE BODY
	Name
	Synopsis
	Description
	Parameters
	Examples
	See also

	20.28 CREATE PROCEDURE
	Name
	Synopsis
	Description
	Parameters
	Examples
	See also

	20.29 CREATE PROFILE
	Name
	Synopsis
	Description
	Parameters
	Notes
	Examples
	See also

	20.30 CREATE QUEUE
	Name
	Synopsis
	Description
	Parameters
	Examples
	See also

	20.31 CREATE QUEUE TABLE
	Name
	Synopsis
	Description
	Parameters
	Examples
	See also

	20.32 CREATE ROLE
	Name
	Synopsis
	Description
	Parameters
	Notes
	Examples
	See also

	20.33 CREATE SCHEMA
	Name
	Synopsis
	Description
	Parameters
	Notes
	Examples

	20.34 CREATE SEQUENCE
	Name
	Synopsis
	Description
	Parameters
	Notes
	Examples
	See also

	20.35 CREATE SYNONYM
	Name
	Synopsis
	Description
	Parameters
	Notes
	Examples
	See also

	20.36 CREATE TABLE
	Name
	Synopsis
	Description
	Parameters
	Notes
	Examples
	See also

	20.37 CREATE TABLE AS
	Name
	Synopsis
	Description
	Parameters

	20.38 CREATE TRIGGER
	Name
	Synopsis
	Name
	Synopsis
	Description
	Parameters
	Examples
	See also

	20.39 CREATE TYPE
	Name
	Synopsis
	Object Type
	Nested table type
	Varray type
	Composite type

	Description
	Parameters
	Examples
	Creating an object type
	Creating a collection type
	Creating and using a composite type

	Notes
	See also

	20.40 CREATE TYPE BODY
	Name
	Synopsis
	Description
	Parameters
	Examples
	See also

	20.41 CREATE USER
	Name
	Synopsis
	Description
	Parameters
	Notes
	Examples
	See also

	20.42 CREATE USER|ROLE… PROFILE MANAGEMENT CLAUSES
	Name
	Synopsis
	Description
	Parameters
	Examples
	See also

	20.43 CREATE VIEW
	Name
	Synopsis
	Description
	Parameters
	Notes
	Examples
	See also

	20.44 DELETE
	Name
	Synopsis
	Description
	Parameters
	Examples
	See also

	20.45 DROP DATABASE LINK
	Name
	Synopsis
	Description
	Parameters
	Examples
	See also

	20.46 DROP DIRECTORY
	Name
	Synopsis
	Description
	Parameters
	Examples
	See also

	20.47 DROP FUNCTION
	Name
	Synopsis
	Description
	Parameters
	Examples
	See also

	20.48 DROP INDEX
	Name
	Synopsis
	Description
	Parameters
	Examples
	See also

	20.49 DROP PACKAGE
	Name
	Synopsis
	Description
	Parameters
	Examples
	See also

	20.50 DROP PROCEDURE
	Name
	Synopsis
	Description
	Parameters
	Examples
	See also

	20.51 DROP PROFILE
	Name
	Synopsis
	Description
	Parameters
	Examples
	See also

	20.52 DROP QUEUE
	Name
	Synopsis
	Description
	Parameters
	Examples
	See also

	20.53 DROP QUEUE TABLE
	Name
	Synopsis
	Description
	Parameters
	Examples
	See also

	20.54 DROP SYNONYM
	Name
	Synopsis
	Description
	Parameters
	Examples
	See also

	20.55 DROP ROLE
	Name
	Synopsis
	Description
	Parameters
	Examples
	See also

	20.56 DROP SEQUENCE
	Name
	Synopsis
	Description
	Parameters
	Examples
	See also

	20.57 DROP TABLE
	Name
	Synopsis
	Description
	Parameters
	Examples
	See also

	20.58 DROP TABLESPACE
	Name
	Synopsis
	Description
	Parameters
	Examples
	See also

	20.59 DROP TRIGGER
	Name
	Synopsis
	Description
	Parameters
	Examples
	See also

	20.60 DROP TYPE
	Name
	Synopsis
	Description
	Parameters
	Examples
	See also

	20.61 DROP USER
	Name
	Synopsis
	Description
	Parameters
	Examples
	See also

	20.62 DROP VIEW
	Name
	Synopsis
	Description
	Parameters
	Examples
	See also

	20.63 EXEC
	Name
	Synopsis
	Description
	Parameters
	Examples

	20.64 GRANT
	Name
	Synopsis
	Description
	GRANT on database objects
	GRANT on roles
	Notes
	Examples
	See also
	GRANT on system privileges
	Examples
	Using the ALTER ROLE command to assign system privileges
	See also

	20.65 INSERT
	Name
	Synopsis
	Description
	Parameters
	Examples

	20.66 LOCK
	Name
	Synopsis
	Description
	Parameters
	Notes

	20.67 REVOKE
	Name
	Synopsis
	Description
	Notes
	Examples
	See also

	20.68 ROLLBACK
	Name
	Synopsis
	Description
	Parameters
	Notes
	Examples
	See also

	20.69 ROLLBACK TO SAVEPOINT
	Name
	Synopsis
	Description
	Parameters
	Notes
	Examples
	See also

	20.70 SAVEPOINT
	Name
	Synopsis
	Description
	Parameters
	Notes
	Examples
	See also

	20.71 SELECT
	Name
	Synopsis
	Description
	Parameters
	FROM clause
	Example

	WHERE clause
	Example

	GROUP BY clause
	Example

	HAVING clause
	Example

	SELECT List
	Example

	UNION clause
	INTERSECT clause
	MINUS clause
	CONNECT BY clause
	ORDER BY clause
	Examples
	DISTINCT | UNIQUE clause
	FOR UPDATE clause

	20.72 SET CONSTRAINTS
	Name
	Synopsis
	Description
	Notes

	20.73 SET ROLE
	Name
	Synopsis
	Description
	Notes
	Examples

	20.74 SET TRANSACTION
	Name
	Synopsis
	Description

	20.75 TRUNCATE
	Name
	Synopsis
	Description
	Parameters
	Notes
	Examples
	See also

	20.76 UPDATE
	Name
	Synopsis
	Description
	Parameters
	Examples

	21 Database Compatibility: Table Partitioning
	21.1 Selecting a partition type
	List partitioning
	Range partitioning
	Hash partitioning
	Subpartitioning

	21.1.1 Interval range partitioning
	Restrictions on interval range partitioning

	21.1.2 Automatic list partitioning
	Restrictions on automatic list partitioning

	21.2 Using partition pruning
	Using constraint exclusion
	Fast pruning

	21.2.1 Example: Partition pruning
	21.3 Partitioning commands compatible with Oracle Databases
	21.3.1 CREATE TABLE...PARTITION BY
	List partitioning syntax
	Range partitioning syntax
	Hash partitioning syntax
	Subpartitioning syntax
	Description
	PARTITION BY LIST clause
	AUTOMATIC clause
	PARTITION BY RANGE clause
	INTERVAL clause
	PARTITION BY HASH clause
	STORE IN clause
	TABLESPACE keyword
	SUBPARTITION BY clause
	SUBPARTITION TEMPLATE
	ENABLE ROW MOVEMENT

	Parameters

	21.3.1.1 Example: PARTITION BY LIST
	21.3.1.2 Example: AUTOMATIC LIST PARTITION
	21.3.1.3 Example: PARTITION BY RANGE
	21.3.1.4 Example: INTERVAL RANGE PARTITION
	21.3.1.5 Example: PARTITION BY HASH
	21.3.1.6 Example: PARTITION BY HASH...PARTITIONS num...
	Example: PARTITION BY HASH...PARTITIONS num...STORE IN
	Example: HASH/RANGE PARTITIONS num...
	Example: LIST/HASH SUBPARTITIONS num...
	Example: HASH/HASH PARTITIONS num... SUBPARTITIONS num...
	Example: HASH/HASH SUBPARTITIONS num... STORE IN
	Example: HASH/HASH PARTITIONS num ...STORE IN SUBPARTITIONS num... STORE IN
	Example: RANGE/HASH SUBPARTITIONS num...
	Example: RANGE/HASH SUBPARTITIONS num... IN PARTITION DESCRIPTION
	Example: LIST/HASH SUBPARTITIONS num STORE IN... IN PARTITION DESCRIPTION
	Example: LIST/HASH STORE IN...TABLESPACES

	21.3.1.7 Example: PARTITION BY RANGE, SUBPARTITION BY LIST
	21.3.1.8 Example: CREATING UNIQUE INDEX on PARTITION TABLE
	21.3.1.9 Example: CREATING SUBPARTITION TEMPLATE
	Example: Creating a subpartition template for LIST/RANGE partitioned table
	Example: Creating a subpartition template for LIST/HASH partitioned table
	Example: Creating a subpartition template for INTERVAL/HASH partitioned table

	21.3.2 ALTER TABLE...ADD PARTITION
	Description
	Parameters

	21.3.2.1 Example: Adding a partition to a LIST partitioned table
	21.3.2.2 Example - Adding a partition to a RANGE partitioned table
	21.3.2.3 Example: Adding a partition with SUBPARTITIONS num...IN PARTITION DESCRIPTION
	Example - Adding a Partition with SUBPARTITIONS num...
	Example: Adding a partition with SUBPARTITIONS num... STORE IN

	21.3.3 ALTER TABLE...ADD SUBPARTITION
	Description
	Parameters

	21.3.3.1 Example: Adding a subpartition to a LIST/RANGE partitioned table
	21.3.3.2 Example: Adding a subpartition to a RANGE/LIST partitioned table
	21.3.4 ALTER TABLE...SPLIT PARTITION
	Description
	Parameters

	21.3.4.1 Example: Splitting a LIST partition
	21.3.4.2 Example: Splitting a RANGE partition
	21.3.4.3 Example: Splitting a RANGE/LIST partition
	Example: Splitting a partition with SUBPARTITIONS num...
	Example: Splitting a partition with SUBPARTITIONS num...STORE IN

	21.3.5 ALTER TABLE...SPLIT SUBPARTITION
	Description
	Parameters

	21.3.5.1 Example: Splitting a lIST subpartition
	21.3.5.2 Example: Splitting a RANGE subpartition
	21.3.6 ALTER TABLE...EXCHANGE PARTITION
	Description
	Parameters

	21.3.6.1 Example: Exchanging a table for a partition
	21.3.7 ALTER TABLE...MOVE PARTITION
	Description
	Parameters

	21.3.7.1 Example: Moving a partition to a different tablespace
	21.3.8 ALTER TABLE...RENAME PARTITION
	Description
	Parameters

	21.3.8.1 Example: Renaming a partition
	21.3.9 ALTER TABLE...SET INTERVAL
	Parameters
	Description

	21.3.9.1 Example: Setting an interval range partition
	21.3.10 ALTER TABLE...SET [PARTITIONING] AUTOMATIC
	Parameters
	Description

	21.3.10.1 Example: Setting an AUTOMATIC list partition
	21.3.11 ALTER TABLE...SET SUBPARTITION TEMPLATE
	Parameters
	Description

	21.3.11.1 Example: Setting a SUBPARTITION TEMPLATE
	Example: Adding a subpartition template for LIST/LIST partitioned table
	Example: Adding a subpartition template for LIST/RANGE partitioned table
	Example: Adding a subpartition template for LIST/HASH partitioned table
	Examples: Resetting a SUBPARTITION TEMPLATE

	21.3.12 DROP TABLE
	Parameters
	Description
	Example

	21.3.13 ALTER TABLE...DROP PARTITION
	Parameters
	Description

	21.3.13.1 Example: Deleting a partition
	21.3.14 ALTER TABLE...DROP SUBPARTITION
	Parameters
	Description

	21.3.14.1 Example: Deleting a subpartition
	21.3.15 TRUNCATE TABLE
	Parameters
	Description

	21.3.15.1 Example: Emptying a table
	21.3.16 ALTER TABLE...TRUNCATE PARTITION
	Parameters
	Description

	21.3.16.1 Example: Emptying a partition
	21.3.17 ALTER TABLE...TRUNCATE SUBPARTITION
	Parameters
	Description

	21.3.17.1 Example: Emptying a subpartition
	21.3.18 Accessing a PARTITION or SUBPARTITION
	Using alias for accessing PARTITION or SUBPARTITION

	21.4 Handling stray values in a LIST or RANGE partitioned table
	Defining a DEFAULT partition
	Example: Adding a partition to a table with a DEFAULT partition
	Example: Splitting a DEFAULT partition
	Defining a MAXVALUE partition

	21.5 Specifying multiple partitioning keys in a RANGE partitioned table
	Specifying multiple keys in a range-partitioned table

	21.6 Retrieving information about a partitioned table
	Querying the partitioning views

	21.6.1 Table partitioning views reference
	21.6.1.1 ALL_PART_TABLES
	21.6.1.2 ALL_TAB_PARTITIONS
	21.6.1.3 ALL_TAB_SUBPARTITIONS
	21.6.1.4 ALL_PART_KEY_COLUMNS
	21.6.1.5 ALL_SUBPART_KEY_COLUMNS
	22 ECPGPlus
	PostgreSQL compatibility

	22.1 ECPGPlus overview
	Behind the scenes
	Installation and configuration
	Constructing a makefile
	ECPGPlus command line options

	22.2 Using embedded SQL
	Example: A simple query
	Using indicator variables
	Declaring host variables

	Example: Using a cursor to process a result set

	22.3 Using descriptors
	Example: Using a descriptor to return data

	22.4 Building and executing dynamic SQL statements
	Example: Executing a nonquery statement without parameters
	Example: Executing a nonquery statement with a specified number of placeholders
	Example: Executing a query with a known number of placeholders
	Example: Executing a query with an unknown number of variables

	22.5 Error handling
	Error handling with sqlca
	EXEC SQL WHENEVER
	Example

	22.6 Reference
	C-preprocessor directives
	Compiling in PROC mode
	Using the SELECT_ERROR precompiler option
	Compiling in non-PROC mode

	Supported C data types
	Type codes
	The SQLDA structure
	Parameters

	ECPGPlus statements
	ALLOCATE DESCRIPTOR
	CALL
	CLOSE
	COMMIT
	CONNECT
	DEALLOCATE DESCRIPTOR
	DECLARE CURSOR
	DECLARE DATABASE
	DECLARE STATEMENT
	DELETE
	DESCRIBE
	DESCRIBE DESCRIPTOR
	DISCONNECT
	EXECUTE
	EXECUTE DESCRIPTOR
	EXECUTE...END EXEC
	EXECUTE IMMEDIATE
	FETCH
	FETCH DESCRIPTOR
	GET DESCRIPTOR
	INSERT
	OPEN
	OPEN DESCRIPTOR
	PREPARE
	ROLLBACK
	SAVEPOINT
	SELECT
	SET CONNECTION
	SET DESCRIPTOR
	UPDATE
	WHENEVER

	23 EDB Postgres Language Pack
	Convention used

	23.1 Supported database server versions
	23.2 Installing and configuring Language Pack
	Installing Language Pack
	Invoking the graphical installer
	Installing Language Pack with Stack Builder

	Configuring Language Pack
	Configuring Language Pack on an EDB Postgres Advanced Server host
	Configuring Language Pack on Windows

	Configuring Language Pack on a PostgreSQL Host
	Configuring Language Pack on Windows
	Configuring Language Pack on OSX

	23.3 Using the procedural languages
	PL/Perl
	PL/Python
	PL/Tcl

	23.4 Uninstalling Language Pack
	24 EDB Postgres Advanced Server Security Features
	24.1 Protecting against SQL injection attacks
	24.1.1 SQL/Protect overview
	Types of SQL injection attacks
	Unauthorized relations
	Utility commands
	SQL tautology
	Unbounded DML statements

	Monitoring SQL injection attacks
	Protected roles
	Attack attempt statistics
	Attack attempt queries

	24.1.2 Configuring SQL/Protect
	Selecting roles to protect
	Setting the protected roles list
	Setting the protection level

	Monitoring protected roles
	Learn mode
	Passive mode
	Active mode

	24.1.3 Common maintenance operations
	Adding a role to the protected roles list
	Removing a role from the protected roles list
	Setting the types of protection for a role
	Removing a relation from the protected relations list
	Deleting statistics
	Deleting offending queries
	Disabling and enabling monitoring

	24.1.4 Backing up and restoring a SQL/Protect database
	Object identification numbers in SQL/Protect tables
	Backing up the database
	Restoring From the Backup Files

	24.2 Virtual private database
	24.3 sslutils
	openssl_rsa_generate_key
	openssl_rsa_key_to_csr
	Parameters

	openssl_csr_to_crt
	Parameters

	openssl_rsa_generate_crl
	Parameters

	24.4 Data redaction
	CREATE REDACTION POLICY
	Synopsis
	Description
	Parameters
	Notes
	Examples
	Caveats
	Compatibility
	See also

	ALTER REDACTION POLICY
	Synopsis
	Description
	Parameters
	Examples
	Compatibility
	See also

	DROP REDACTION POLICY
	Synopsis
	Description
	Parameters
	Examples
	Compatibility
	See also

	System Catalogs
	edb_redaction_column
	edb_redaction_policy

	25 EDB Postgres Advanced Server
	25.1 Introduction
	Hard limits

	25.1.1 Conventions used
	25.1.2 About the examples
	Sample database description

	25.2 Enhanced compatibility features
	Enabling compatibility features
	Stored procedural language
	Optimizer hints
	Data dictionary views
	dblink_ora
	Profile management
	Built-in packages
	Open Client Library
	Utilities
	EDB*Plus
	EDB*Loader
	EDB*Wrap
	Dynamic Runtime Instrumentation Tools Architecture (DRITA)

	ECPGPlus
	Table partitioning

	25.3 Database administration
	25.3.1 Configuration parameters
	25.3.1.1 Setting configuration parameters
	Modifying the postgresql.conf file
	Modifying the pg_hba.conf file

	25.3.1.2 Summary of configuration parameters
	25.3.1.3 Configuration parameters by functionality
	25.3.1.3.1 Top performance-related parameters
	25.3.1.3.1.1 shared_buffers
	25.3.1.3.1.2 work_mem
	25.3.1.3.1.3 maintenance_work_mem
	25.3.1.3.1.4 wal_buffers
	25.3.1.3.1.5 checkpoint_segments
	25.3.1.3.1.6 checkpoint_completion_target
	25.3.1.3.1.7 checkpoint_timeout
	25.3.1.3.1.8 max_wal_size
	25.3.1.3.1.9 min_wal_size
	25.3.1.3.1.10 bgwriter_delay
	25.3.1.3.1.11 seq_page_cost
	25.3.1.3.1.12 random_page_cost
	25.3.1.3.1.13 effective_cache_size
	25.3.1.3.1.14 synchronous_commit
	25.3.1.3.1.15 edb_max_spins_per_delay
	25.3.1.3.1.16 pg_prewarm.autoprewarm
	25.3.1.3.1.17 pg_prewarm.autoprewarm_interval
	25.3.1.3.2 Resource usage/memory
	edb_dynatune
	edb_dynatune_profile

	25.3.1.3.3 Resource usage/EDB Resource Manager
	edb_max_resource_groups
	edb_resource_group

	25.3.1.3.4 Query tuning
	enable_hints

	25.3.1.3.5 Query tuning/planner method configuration
	edb_enable_pruning

	25.3.1.3.6 Reporting and logging/what to log
	trace_hints
	edb_log_every_bulk_value

	25.3.1.3.7 Auditing settings
	25.3.1.3.7.1 edb_audit
	25.3.1.3.7.2 edb_audit_directory
	25.3.1.3.7.3 edb_audit_filename
	25.3.1.3.7.4 edb_audit_rotation_day
	25.3.1.3.7.5 edb_audit_rotation_size
	25.3.1.3.7.6 edb_audit_rotation_seconds
	25.3.1.3.7.7 edb_audit_connect
	25.3.1.3.7.8 edb_audit_disconnect
	25.3.1.3.7.9 edb_audit_statement
	25.3.1.3.7.10 edb_audit_tag
	25.3.1.3.7.11 edb_audit_destination
	25.3.1.3.7.12 edb_log_every_bulk_value
	25.3.1.3.8 Client connection defaults/locale and formatting
	icu_short_form

	25.3.1.3.9 Client connection defaults/statement behavior
	default_heap_fillfactor
	edb_data_redaction

	25.3.1.3.10 Client connection defaults/other defaults
	oracle_home
	odbc_lib_path

	25.3.1.3.11 Compatibility options
	edb_redwood_date
	edb_redwood_greatest_least
	edb_redwood_raw_names
	edb_redwood_strings
	edb_stmt_level_tx
	db_dialect
	default_with_rowids
	optimizer_mode

	25.3.1.3.12 Customized options
	custom_variable_classes
	dbms_alert.max_alerts
	dbms_pipe.total_message_buffer
	index_advisor.enabled
	edb_sql_protect.enabled
	edb_sql_protect.level
	edb_sql_protect.max_protected_relations
	edb_sql_protect.max_protected_roles
	edb_sql_protect.max_queries_to_save
	edb_wait_states.directory
	edb_wait_states.retention_period
	edb_wait_states.sampling_interval
	edbldr.empty_csv_field
	utl_encode.uudecode_redwood
	utl_file.umask

	25.3.1.3.13 Ungrouped
	nls_length_semantics
	query_rewrite_enabled
	query_rewrite_integrity
	timed_statistics

	25.3.1.3.14 Audit archiver
	edb_audit_archiver
	edb_audit_archiver_timeout
	edb_audit_archiver_filename_prefix
	edb_audit_archiver_compress_time_limit
	edb_audit_archiver_compress_size_limit
	edb_audit_archiver_compress_command
	edb_audit_archiver_compress_suffix
	edb_audit_archiver_expire_time_limit
	edb_audit_archiver_expire_size_limit
	edb_audit_archiver_expire_command
	edb_audit_archiver_sort_file

	25.3.2 Index Advisor
	25.3.2.1 Index Advisor components
	25.3.2.2 Index Advisor configuration
	25.3.2.3 Using Index Advisor
	Using the pg_advise_index utility
	Using Index Advisor at the psql command line

	25.3.2.4 Reviewing the Index Advisor recommendations
	Using the show_index_recommendations() function
	Querying the index_advisor_log table
	Querying the index_recommendations view

	25.3.2.5 Index Advisor limitations
	25.3.3 SQL Profiler
	Installation
	1. Install SQL Profiler
	2. Add the SQL Profiler library
	3. Create the SQL Profiler extension
	4. Stop and restart the servers

	25.3.4 pgsnmpd
	Configuring pgsnmpd
	Setting the listener address
	Invoking pgsnmpd
	Viewing pgsnmpd help
	Requesting information from pgsnmpd

	25.3.5 EDB audit logging
	25.3.5.1 Audit logging configuration parameters
	25.3.5.2 Selecting SQL statements to audit
	DDL and DCL statements
	Examples

	DML statements
	Example

	25.3.5.3 Enabling audit logging
	Examples
	Case 1: Changes made in database auditdb by role enterprisedb
	Case 2: Changes made in database edb by role admin
	Case 3: Changes made in database auditdb by role admin

	25.3.5.4 Audit log file
	CSV audit log file
	XML audit log file

	25.3.5.5 Using error codes to filter audit logs
	25.3.5.6 Using command tags to filter audit logs
	25.3.5.7 Redacting passwords in audit logs
	Examples

	25.3.5.8 Audit log archiving
	Examples

	25.3.5.9 Object auditing
	Example

	25.3.6 Unicode Collation Algorithm
	Basic Unicode Collation Algorithm concepts
	International components for Unicode
	Locale collations
	Collation attributes

	Using a collation

	25.4 EDB Resource Manager
	Creating and managing resource groups
	CREATE RESOURCE GROUP
	Description
	Parameters
	Example

	ALTER RESOURCE GROUP
	Description
	Parameters
	Example

	DROP RESOURCE GROUP
	Description
	Parameters
	Example

	Assigning a process to a resource group
	Removing a process from a resource group
	Monitoring processes in resource groups

	CPU usage throttling
	Setting the CPU rate limit for a resource group
	Example: Single process in a single group
	Example: Multiple processes in a single group
	Session 1
	Session 2

	Example: Multiple processes in multiple groups
	Session 3
	Session 4

	Dirty buffer throttling
	Setting the dirty rate limit for a resource group
	Example: Single process in a single group
	Example: Multiple processes in a single group
	Session 1
	Session 2

	Example: Multiple processes in multiple groups
	Session 3
	Session 4

	System catalogs
	edb_all_resource_groups
	edb_resource_group

	25.5 libpq C library
	Using libpq with EDB SPL
	REFCURSOR support
	Returning a single REFCURSOR
	Returning multiple REFCURSORs

	Array binding
	PQBulkStart
	API definition

	PQexecBulk
	API definition

	PQBulkFinish
	API definition

	PQexecBulkPrepared
	API definition

	Example code (Using PQBulkStart, PQexecBulk, PQBulkFinish)
	Example code (Using PQexecBulkPrepared)

	25.6 Debugger
	Configuring the debugger
	Starting the debugger
	The Debugger window
	Main debugger window
	The Program Body panel
	The Tabs panel
	The Stack tab

	Debugging a program
	Stepping through the code
	Using breakpoints
	Removing a local breakpoint

	Setting a global breakpoint for in-context debugging

	25.7 Performance analysis and tuning
	Dynatune
	edb_dynatune
	edb_dynatune_profile

	EDB wait states
	EDB Wait States Background Worker (EWSBW)
	Terminating the wait states worker
	The wait states interface

	edb_wait_states_data
	Parameters
	Example

	edb_wait_states_queries
	Parameters
	Example

	edb_wait_states_sessions
	Parameters
	Example

	edb_wait_states_samples
	Parameters
	Example

	edb_wait_states_purge
	Example

	25.8 EDB clone schema
	Setup process
	Installing extensions and PL/Perl
	Setting configuration parameters
	Performance configuration parameters
	Status logging

	Installing EDB Clone Schema
	Creating the foreign servers and user mappings
	Foreign server and user mapping for local cloning functions
	Foreign server and user mapping for remote cloning functions

	EDB Clone Schema functions
	localcopyschema
	Parameters
	Example

	localcopyschema_nb
	Parameters
	Example

	remotecopyschema
	Parameters
	Example

	remotecopyschema_nb
	Parameters
	Example

	process_status_from_log
	Parameters
	Example

	remove_log_file_and_job
	Parameters
	Example

	25.9 Enhanced SQL and other miscellaneous features
	COMMENT
	Parameters
	Example

	Output of function version()
	Logical decoding on standby

	25.10 System catalog tables
	edb_dir
	edb_all_resource_groups
	edb_policy
	edb_profile
	edb_redaction_column
	edb_redaction_policy
	edb_resource_group
	edb_variable
	pg_synonym
	product_component_version

	25.11 EDB Postgres Advanced Server exceptions
	EDB Postgres Advanced Server keywords

	26 Quick start for CentOS or RHEL 7
	Components of an EDB Postgres Advanced Server deployment
	Prerequisites
	Installing and configuring EDB Postgres Advanced Server
	Starting the cluster
	Using the psql command line client

	27 Quick start for RHEL/Rocky Linux/AlmaLinux 8
	Components of an EDB Postgres Advanced Server deployment
	Prerequisites
	Installing and configuring EDB Postgres Advanced Server
	Starting the cluster
	Using the psql command line client

	28 Quick start for Windows
	Components of an EDB Postgres Advanced Server deployment
	Installation prerequisites
	User privileges
	Windows-specific software requirements
	Migration Toolkit or EDB*Plus installation Prerequisites
	Installing and configuring EDB Postgres Advanced Server

	29 EDB pgAdmin4 Quick Start Linux
	Installing EDB pgAdmin 4 on a Linux host
	Create a repository configuration file
	Install EPEL repository
	Install EDB pgAdmin 4
	Starting pgAdmin 4 in desktop mode
	Registering and connecting to EDB Postgres Advanced Server with pgAdmin 4

