
EDB Postgres Extended Server
Version 16

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. Built at 2024-04-08T12:11:08

3
3
3
3
4
4
5
5
8

10
12
15
17
19
21
24
26
28
29
29
32
32
32
36
37
38
40

1 EDB Postgres Extended Server
2 Release notes
2.1 EDB Postgres Advanced Server 16.2 release notes
2.2 EDB Postgres Extended Server 16.1 release notes
3 Deployment options
4 Installing EDB Postgres Extended Server on Linux
4.1 Installing EDB Postgres Extended Server on Linux x86 (amd64)
4.1.1 Installing EDB Postgres Extended Server on RHEL 9 or OL 9 x86_64
4.1.2 Installing EDB Postgres Extended Server on RHEL 8 or OL 8 x86_64
4.1.3 Installing EDB Postgres Extended Server on AlmaLinux 9 or Rocky Linux 9 x86_64
4.1.4 Installing EDB Postgres Extended Server on AlmaLinux 8 or Rocky Linux 8 x86_64
4.1.5 Installing EDB Postgres Extended Server on RHEL 7 or OL 7 x86_64
4.1.6 Installing EDB Postgres Extended Server on CentOS 7 x86_64
4.1.7 Installing EDB Postgres Extended Server on Ubuntu 22.04 x86_64
4.1.8 Installing EDB Postgres Extended Server on Ubuntu 20.04 x86_64
4.1.9 Installing EDB Postgres Extended Server on Debian 11 x86_64
4.1.10 Installing EDB Postgres Extended Server on Debian 10 x86_64
4.2 Default component locations
5 Administration
5.1 Setting configuration parameters
6 Transparent data encryption
7 Replication
8 Configuration parameters (GUCs)
9 SQL enhancements
9.1 transaction_rollback_scope parameter
9.2 JDBC properties for setting rollback scope
10 Operations

EDB Postgres Extended Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 2

1 EDB Postgres Extended Server

EDB Postgres Extended Server is a Postgres database server distribution built on open-source, community PostgreSQL. It's fully compatible with
PostgreSQL. If you have applications written and tested to work with PostgreSQL, they will behave the same with EDB Postgres Extended Server. We
will support and fix any functionality or behavior differences between community PostgreSQL and EDB Postgres Extended Server.

EDB Postgres Extended Server's primary purpose is to extend PostgreSQL with a limited number of features that can't be implemented as extensions,
such as enhanced replication optimization used by EDB Postgres Distributed and Transparent Data Encryption, while maintaining parity in other
respects.

Additional value-add enterprise features include:

Security though Transparent Data Encryption

Optional SQL superset to community PostgreSQL

WAL pacing delays to avoid flooding transaction logs

Additional tracing and diagnostics options

2 Release notes

The EDB Postgres Extended Server documentation describes the latest version of EDB Postgres Extended Server 16, including minor releases and
patches. These release notes cover what was new in each release.

Version Release date

16.2 08 Feb 2024

16.1 09 Nov 2023

2.1 EDB Postgres Advanced Server 16.2 release notes

Released: 8 Feb 2024

EDB Postgres Extended Server 16.2 includes the following enhancements and bug fixes:

Type Description

Upstream
merge

Merged with community PostgreSQL 16.2. Important: Although not vulnerable to the recent 8.0 scoring CVE, CVE-2024-0985, this
release includes tightened security restrictions which address the same issues. See the PostgreSQL 16.2 Release Notes for more
information.

2.2 EDB Postgres Extended Server 16.1 release notes

Released: 09 Nov 2023

EDB Postgres Extended Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 3

https://www.enterprisedb.com/docs/pgd/latest/
https://www.enterprisedb.com/docs/tde/latest/
https://www.enterprisedb.com/docs/tde/latest/
https://www.postgresql.org/docs/16/release-16-2.html

New features, enhancements, bug fixes, and other changes in EDB Postgres Extended Server 16.1 include:

Type Description

Upstream merge Merged with community PostgreSQL 16.1. See the PostgreSQL 16.1 Release Notes for more
information.

Enhancement Transparent data encryption (TDE) now supports a 256bit AES key length.

3 Deployment options

The deployment options include:

Installing on a virtual machine or physical server using native packages

Deploying it with EDB Postgres Distributed using Trusted Postgres Architect

Deploying it on BigAnimal with extreme-high-availability cluster types

4 Installing EDB Postgres Extended Server on Linux

Select a link to access the applicable installation instructions:

Linux x86-64 (amd64)

Red Hat Enterprise Linux (RHEL) and derivatives

RHEL 9, RHEL 8, RHEL 7

Oracle Linux (OL) 9, Oracle Linux (OL) 8, Oracle Linux (OL) 7

Rocky Linux 9, Rocky Linux 8

AlmaLinux 9, AlmaLinux 8

CentOS 7

Debian and derivatives

Ubuntu 22.04, Ubuntu 20.04

Debian 11, Debian 10

EDB Postgres Extended Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 4

https://www.postgresql.org/docs/16/release-16-1.html
https://www.enterprisedb.com/docs/pgd/latest/
https://www.enterprisedb.com/docs/pgd/latest/admin-tpa/
https://www.enterprisedb.com/docs/biganimal/latest/

4.1 Installing EDB Postgres Extended Server on Linux x86 (amd64)

Operating system-specific install instructions are described in the corresponding documentation:

Red Hat Enterprise Linux (RHEL) and derivatives

RHEL 9

RHEL 8

RHEL 7

Oracle Linux (OL) 9

Oracle Linux (OL) 8

Oracle Linux (OL) 7

Rocky Linux 9

Rocky Linux 8

AlmaLinux 9

AlmaLinux 8

CentOS 7

Debian and derivatives

Ubuntu 22.04

Ubuntu 20.04

Debian 11

Debian 10

4.1.1 Installing EDB Postgres Extended Server on RHEL 9 or OL 9 x86_64

Prerequisites

Before you begin the installation process:

Set up the EDB repository.

EDB Postgres Extended Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 5

Setting up the repository is a one-time task. If you have already set up your repository, you don't need to perform this step.

To determine if your repository exists, enter this command:

dnf repolist | grep enterprisedb

If no output is generated, the repository isn't installed.

To set up the EDB repository:

1. Go to EDB repositories.

2. Select the button that provides access to the EDB repository.

3. Select the platform and software that you want to download.

4. Follow the instructions for setting up the EDB repository.

Install the EPEL repository:

sudo dnf -y install https://dl.fedoraproject.org/pub/epel/epel-release-latest-9.noarch.rpm

Install the package

sudo dnf -y install edb-postgresextended16-server edb-postgresextended16-contrib

Initial configuration

Getting started with your cluster involves logging in, ensuring the installation and initial configuration was successful, connecting to your cluster, and
creating the user password.

First, you need to initialize and start the database cluster. The edb-pge-16-setup script creates a cluster.

sudo PGSETUP_INITDB_OPTIONS="-E UTF-8" /usr/edb/pge16/bin/edb-pge-16-setup initdb

sudo systemctl start edb-pge-16

To work in your cluster, log in as the postgres user. Connect to the database server using the psql command-line client. Alternatively, you can use a
client of your choice with the appropriate connection string.

sudo -iu postgres

psql postgres

The server runs with the peer or ident permission by default. You can change the authentication method by modifying the pg_hba.conf file.

Before changing the authentication method, assign a password to the database superuser, postgres. For more information on changing the

EDB Postgres Extended Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 6

https://www.enterprisedb.com/repos-downloads

authentication, see Modifying the pg_hba.conf file.

Experiment

Now you're ready to create and connect to a database, create a table, insert data in a table, and view the data from the table.

First, use psql to create a database named hr to hold human resource information.

CREATE DATABASE

Connect to the hr database inside psql:

\c hr

You are now connected to database "hr" as user "postgres".

Create columns to hold department numbers, unique department names, and locations:

CREATE TABLE public.dept (deptno numeric(2) NOT NULL CONSTRAINT dept_pk
PRIMARY KEY, dname varchar(14) CONSTRAINT dept_dname_uq UNIQUE, loc
varchar(13));

CREATE TABLE

Insert values into the dept table:

INSERT INTO dept VALUES (10,'ACCOUNTING','NEW YORK');

INSERT 0 1

INSERT into dept VALUES (20,'RESEARCH','DALLAS');

INSERT 0 1

View the table data by selecting the values from the table:

SELECT * FROM dept;

deptno | dname | loc
--------+------------+----------

ALTERALTER ROLEROLE postgres withwith PASSWORDPASSWORD
'password';

running inin psql
CREATECREATE DATABASEDATABASE
hr;

EDB Postgres Extended Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 7

10 | ACCOUNTING | NEW YORK
20 | RESEARCH | DALLAS
(2 rows)

4.1.2 Installing EDB Postgres Extended Server on RHEL 8 or OL 8 x86_64

Prerequisites

Before you begin the installation process:

Set up the EDB repository.

Setting up the repository is a one-time task. If you have already set up your repository, you don't need to perform this step.

To determine if your repository exists, enter this command:

dnf repolist | grep enterprisedb

If no output is generated, the repository isn't installed.

To set up the EDB repository:

1. Go to EDB repositories.

2. Select the button that provides access to the EDB repository.

3. Select the platform and software that you want to download.

4. Follow the instructions for setting up the EDB repository.

Install the EPEL repository:

sudo dnf -y install https://dl.fedoraproject.org/pub/epel/epel-release-latest-8.noarch.rpm

Install the package

sudo dnf -y install edb-postgresextended16-server edb-postgresextended16-contrib

Initial configuration

Getting started with your cluster involves logging in, ensuring the installation and initial configuration was successful, connecting to your cluster, and
creating the user password.

EDB Postgres Extended Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 8

https://www.enterprisedb.com/repos-downloads

First, you need to initialize and start the database cluster. The edb-pge-16-setup script creates a cluster.

sudo PGSETUP_INITDB_OPTIONS="-E UTF-8" /usr/edb/pge16/bin/edb-pge-16-setup initdb

sudo systemctl start edb-pge-16

To work in your cluster, log in as the postgres user. Connect to the database server using the psql command-line client. Alternatively, you can use a
client of your choice with the appropriate connection string.

sudo -iu postgres

psql postgres

The server runs with the peer or ident permission by default. You can change the authentication method by modifying the pg_hba.conf file.

Before changing the authentication method, assign a password to the database superuser, postgres. For more information on changing the
authentication, see Modifying the pg_hba.conf file.

Experiment

Now you're ready to create and connect to a database, create a table, insert data in a table, and view the data from the table.

First, use psql to create a database named hr to hold human resource information.

CREATE DATABASE

Connect to the hr database inside psql:

\c hr

You are now connected to database "hr" as user "postgres".

Create columns to hold department numbers, unique department names, and locations:

CREATE TABLE public.dept (deptno numeric(2) NOT NULL CONSTRAINT dept_pk
PRIMARY KEY, dname varchar(14) CONSTRAINT dept_dname_uq UNIQUE, loc
varchar(13));

CREATE TABLE

Insert values into the dept table:

ALTERALTER ROLEROLE postgres withwith PASSWORDPASSWORD
'password';

running inin psql
CREATECREATE DATABASEDATABASE
hr;

EDB Postgres Extended Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 9

INSERT INTO dept VALUES (10,'ACCOUNTING','NEW YORK');

INSERT 0 1

INSERT into dept VALUES (20,'RESEARCH','DALLAS');

INSERT 0 1

View the table data by selecting the values from the table:

SELECT * FROM dept;

deptno | dname | loc
--------+------------+----------
10 | ACCOUNTING | NEW YORK
20 | RESEARCH | DALLAS
(2 rows)

4.1.3 Installing EDB Postgres Extended Server on AlmaLinux 9 or Rocky Linux 9 x86_64

Prerequisites

Before you begin the installation process:

Set up the EDB repository.

Setting up the repository is a one-time task. If you have already set up your repository, you don't need to perform this step.

To determine if your repository exists, enter this command:

dnf repolist | grep enterprisedb

If no output is generated, the repository isn't installed.

To set up the EDB repository:

1. Go to EDB repositories.

2. Select the button that provides access to the EDB repository.

3. Select the platform and software that you want to download.

4. Follow the instructions for setting up the EDB repository.

Install the EPEL repository:

sudo dnf -y install epel-release

EDB Postgres Extended Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 10

https://www.enterprisedb.com/repos-downloads

Enable additional repositories to resolve dependencies:

sudo dnf config-manager --set-enabled crb

Install the package

sudo dnf -y install edb-postgresextended16-server edb-postgresextended16-contrib

Initial configuration

Getting started with your cluster involves logging in, ensuring the installation and initial configuration was successful, connecting to your cluster, and
creating the user password.

First, you need to initialize and start the database cluster. The edb-pge-16-setup script creates a cluster.

sudo PGSETUP_INITDB_OPTIONS="-E UTF-8" /usr/edb/pge16/bin/edb-pge-16-setup initdb

sudo systemctl start edb-pge-16

To work in your cluster, log in as the postgres user. Connect to the database server using the psql command-line client. Alternatively, you can use a
client of your choice with the appropriate connection string.

sudo -iu postgres

psql postgres

The server runs with the peer or ident permission by default. You can change the authentication method by modifying the pg_hba.conf file.

Before changing the authentication method, assign a password to the database superuser, postgres. For more information on changing the
authentication, see Modifying the pg_hba.conf file.

Experiment

Now you're ready to create and connect to a database, create a table, insert data in a table, and view the data from the table.

First, use psql to create a database named hr to hold human resource information.

CREATE DATABASE

ALTERALTER ROLEROLE postgres withwith PASSWORDPASSWORD
'password';

running inin psql
CREATECREATE DATABASEDATABASE
hr;

EDB Postgres Extended Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 11

Connect to the hr database inside psql:

\c hr

You are now connected to database "hr" as user "postgres".

Create columns to hold department numbers, unique department names, and locations:

CREATE TABLE public.dept (deptno numeric(2) NOT NULL CONSTRAINT dept_pk
PRIMARY KEY, dname varchar(14) CONSTRAINT dept_dname_uq UNIQUE, loc
varchar(13));

CREATE TABLE

Insert values into the dept table:

INSERT INTO dept VALUES (10,'ACCOUNTING','NEW YORK');

INSERT 0 1

INSERT into dept VALUES (20,'RESEARCH','DALLAS');

INSERT 0 1

View the table data by selecting the values from the table:

SELECT * FROM dept;

deptno | dname | loc
--------+------------+----------
10 | ACCOUNTING | NEW YORK
20 | RESEARCH | DALLAS
(2 rows)

4.1.4 Installing EDB Postgres Extended Server on AlmaLinux 8 or Rocky Linux 8 x86_64

Prerequisites

Before you begin the installation process:

Set up the EDB repository.

Setting up the repository is a one-time task. If you have already set up your repository, you don't need to perform this step.

To determine if your repository exists, enter this command:

EDB Postgres Extended Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 12

dnf repolist | grep enterprisedb

If no output is generated, the repository isn't installed.

To set up the EDB repository:

1. Go to EDB repositories.

2. Select the button that provides access to the EDB repository.

3. Select the platform and software that you want to download.

4. Follow the instructions for setting up the EDB repository.

Install the EPEL repository:

sudo dnf -y install epel-release

Enable additional repositories to resolve dependencies:

sudo dnf config-manager --set-enabled powertools

Install the package

sudo dnf -y install edb-postgresextended16-server edb-postgresextended16-contrib

Initial configuration

Getting started with your cluster involves logging in, ensuring the installation and initial configuration was successful, connecting to your cluster, and
creating the user password.

First, you need to initialize and start the database cluster. The edb-pge-16-setup script creates a cluster.

sudo PGSETUP_INITDB_OPTIONS="-E UTF-8" /usr/edb/pge16/bin/edb-pge-16-setup initdb

sudo systemctl start edb-pge-16

To work in your cluster, log in as the postgres user. Connect to the database server using the psql command-line client. Alternatively, you can use a
client of your choice with the appropriate connection string.

sudo -iu postgres

psql postgres

The server runs with the peer or ident permission by default. You can change the authentication method by modifying the pg_hba.conf file.

Before changing the authentication method, assign a password to the database superuser, postgres. For more information on changing the

EDB Postgres Extended Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 13

https://www.enterprisedb.com/repos-downloads

authentication, see Modifying the pg_hba.conf file.

Experiment

Now you're ready to create and connect to a database, create a table, insert data in a table, and view the data from the table.

First, use psql to create a database named hr to hold human resource information.

CREATE DATABASE

Connect to the hr database inside psql:

\c hr

You are now connected to database "hr" as user "postgres".

Create columns to hold department numbers, unique department names, and locations:

CREATE TABLE public.dept (deptno numeric(2) NOT NULL CONSTRAINT dept_pk
PRIMARY KEY, dname varchar(14) CONSTRAINT dept_dname_uq UNIQUE, loc
varchar(13));

CREATE TABLE

Insert values into the dept table:

INSERT INTO dept VALUES (10,'ACCOUNTING','NEW YORK');

INSERT 0 1

INSERT into dept VALUES (20,'RESEARCH','DALLAS');

INSERT 0 1

View the table data by selecting the values from the table:

SELECT * FROM dept;

deptno | dname | loc
--------+------------+----------

ALTERALTER ROLEROLE postgres withwith PASSWORDPASSWORD
'password';

running inin psql
CREATECREATE DATABASEDATABASE
hr;

EDB Postgres Extended Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 14

10 | ACCOUNTING | NEW YORK
20 | RESEARCH | DALLAS
(2 rows)

4.1.5 Installing EDB Postgres Extended Server on RHEL 7 or OL 7 x86_64

Prerequisites

Before you begin the installation process:

Set up the EDB repository.

Setting up the repository is a one-time task. If you have already set up your repository, you don't need to perform this step.

To determine if your repository exists, enter this command:

dnf repolist | grep enterprisedb

If no output is generated, the repository isn't installed.

To set up the EDB repository:

1. Go to EDB repositories.

2. Select the button that provides access to the EDB repository.

3. Select the platform and software that you want to download.

4. Follow the instructions for setting up the EDB repository.

Install the EPEL repository:

sudo yum -y install https://dl.fedoraproject.org/pub/epel/epel-release-latest-7.noarch.rpm

Enable additional repositories to resolve dependencies:

subscription-manager repos --enable "rhel-*-optional-rpms" --enable "rhel-*-extras-rpms" --enable
"rhel-ha-for-rhel-*-server-rpms"

Install the package

sudo yum -y install edb-postgresextended16-server edb-postgresextended16-contrib

Initial configuration

EDB Postgres Extended Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 15

https://www.enterprisedb.com/repos-downloads

Getting started with your cluster involves logging in, ensuring the installation and initial configuration was successful, connecting to your cluster, and
creating the user password.

First, you need to initialize and start the database cluster. The edb-pge-16-setup script creates a cluster.

sudo PGSETUP_INITDB_OPTIONS="-E UTF-8" /usr/edb/pge16/bin/edb-pge-16-setup initdb

sudo systemctl start edb-pge-16

To work in your cluster, log in as the postgres user. Connect to the database server using the psql command-line client. Alternatively, you can use a
client of your choice with the appropriate connection string.

sudo -iu postgres

psql postgres

The server runs with the peer or ident permission by default. You can change the authentication method by modifying the pg_hba.conf file.

Before changing the authentication method, assign a password to the database superuser, postgres. For more information on changing the
authentication, see Modifying the pg_hba.conf file.

Experiment

Now you're ready to create and connect to a database, create a table, insert data in a table, and view the data from the table.

First, use psql to create a database named hr to hold human resource information.

CREATE DATABASE

Connect to the hr database inside psql:

\c hr

You are now connected to database "hr" as user "postgres".

Create columns to hold department numbers, unique department names, and locations:

CREATE TABLE public.dept (deptno numeric(2) NOT NULL CONSTRAINT dept_pk
PRIMARY KEY, dname varchar(14) CONSTRAINT dept_dname_uq UNIQUE, loc
varchar(13));

CREATE TABLE

ALTERALTER ROLEROLE postgres withwith PASSWORDPASSWORD
'password';

running inin psql
CREATECREATE DATABASEDATABASE
hr;

EDB Postgres Extended Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 16

Insert values into the dept table:

INSERT INTO dept VALUES (10,'ACCOUNTING','NEW YORK');

INSERT 0 1

INSERT into dept VALUES (20,'RESEARCH','DALLAS');

INSERT 0 1

View the table data by selecting the values from the table:

SELECT * FROM dept;

deptno | dname | loc
--------+------------+----------
10 | ACCOUNTING | NEW YORK
20 | RESEARCH | DALLAS
(2 rows)

4.1.6 Installing EDB Postgres Extended Server on CentOS 7 x86_64

Prerequisites

Before you begin the installation process:

Set up the EDB repository.

Setting up the repository is a one-time task. If you have already set up your repository, you don't need to perform this step.

To determine if your repository exists, enter this command:

dnf repolist | grep enterprisedb

If no output is generated, the repository isn't installed.

To set up the EDB repository:

1. Go to EDB repositories.

2. Select the button that provides access to the EDB repository.

3. Select the platform and software that you want to download.

4. Follow the instructions for setting up the EDB repository.

Install the EPEL repository:

EDB Postgres Extended Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 17

https://www.enterprisedb.com/repos-downloads

sudo yum -y install https://dl.fedoraproject.org/pub/epel/epel-release-latest-7.noarch.rpm

Install the package

sudo yum -y install edb-postgresextended16-server edb-postgresextended16-contrib

Initial configuration

Getting started with your cluster involves logging in, ensuring the installation and initial configuration was successful, connecting to your cluster, and
creating the user password.

First, you need to initialize and start the database cluster. The edb-pge-16-setup script creates a cluster.

sudo PGSETUP_INITDB_OPTIONS="-E UTF-8" /usr/edb/pge16/bin/edb-pge-16-setup initdb

sudo systemctl start edb-pge-16

To work in your cluster, log in as the postgres user. Connect to the database server using the psql command-line client. Alternatively, you can use a
client of your choice with the appropriate connection string.

sudo -iu postgres

psql postgres

The server runs with the peer or ident permission by default. You can change the authentication method by modifying the pg_hba.conf file.

Before changing the authentication method, assign a password to the database superuser, postgres. For more information on changing the
authentication, see Modifying the pg_hba.conf file.

Experiment

Now you're ready to create and connect to a database, create a table, insert data in a table, and view the data from the table.

First, use psql to create a database named hr to hold human resource information.

CREATE DATABASE

Connect to the hr database inside psql:

ALTERALTER ROLEROLE postgres withwith PASSWORDPASSWORD
'password';

running inin psql
CREATECREATE DATABASEDATABASE
hr;

EDB Postgres Extended Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 18

\c hr

You are now connected to database "hr" as user "postgres".

Create columns to hold department numbers, unique department names, and locations:

CREATE TABLE public.dept (deptno numeric(2) NOT NULL CONSTRAINT dept_pk
PRIMARY KEY, dname varchar(14) CONSTRAINT dept_dname_uq UNIQUE, loc
varchar(13));

CREATE TABLE

Insert values into the dept table:

INSERT INTO dept VALUES (10,'ACCOUNTING','NEW YORK');

INSERT 0 1

INSERT into dept VALUES (20,'RESEARCH','DALLAS');

INSERT 0 1

View the table data by selecting the values from the table:

SELECT * FROM dept;

deptno | dname | loc
--------+------------+----------
10 | ACCOUNTING | NEW YORK
20 | RESEARCH | DALLAS
(2 rows)

4.1.7 Installing EDB Postgres Extended Server on Ubuntu 22.04 x86_64

Prerequisites

Before you begin the installation process:

Set up the EDB repository.

Setting up the repository is a one-time task. If you have already set up your repository, you don't need to perform this step.

To determine if your repository exists, enter this command:

apt-cache search enterprisedb

EDB Postgres Extended Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 19

If no output is generated, the repository isn't installed.

To set up the EDB repository:

1. Go to EDB repositories.

2. Select the button that provides access to the EDB repository.

3. Select the platform and software that you want to download.

4. Follow the instructions for setting up the EDB repository.

Install the package

sudo apt-get -y install edb-postgresextended-16

Initial configuration

This section steps you through getting started with your cluster including logging in, ensuring the installation was successful, connecting to your
cluster, and creating the user password.

First, you need to initialize and start the database cluster. The edb-pge-16-setup script creates a cluster.

sudo PGSETUP_INITDB_OPTIONS="-E UTF-8" /usr/lib/edb-pge/16/bin/edb-pge-16-setup initdb

sudo systemctl start edb-pge-16

To work in your cluster, log in as the postgres user. Connect to the database server using the psql command-line client. Alternatively, you can use a
client of your choice with the appropriate connection string.

sudo -iu postgres

psql postgres

The server runs with the peer or ident permission by default. You can change the authentication method by modifying the pg_hba.conf file.

Before changing the authentication method, assign a password to the database superuser, postgres. For more information on changing the
authentication, see Modifying the pg_hba.conf file.

Experiment

Now you're ready to create and connect to a database, create a table, insert data in a table, and view the data from the table.

ALTERALTER ROLEROLE postgres withwith PASSWORDPASSWORD
'password';

EDB Postgres Extended Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 20

https://www.enterprisedb.com/repos-downloads

First, use psql to create a database named hr to hold human resource information.

CREATE DATABASE

Connect to the hr database inside psql:

\c hr

You are now connected to database "hr" as user "postgres".

Create columns to hold department numbers, unique department names, and locations:

CREATE TABLE public.dept (deptno numeric(2) NOT NULL CONSTRAINT dept_pk
PRIMARY KEY, dname varchar(14) CONSTRAINT dept_dname_uq UNIQUE, loc
varchar(13));

CREATE TABLE

Insert values into the dept table:

INSERT INTO dept VALUES (10,'ACCOUNTING','NEW YORK');

INSERT 0 1

INSERT into dept VALUES (20,'RESEARCH','DALLAS');

INSERT 0 1

View the table data by selecting the values from the table:

SELECT * FROM dept;

deptno | dname | loc
--------+------------+----------
10 | ACCOUNTING | NEW YORK
20 | RESEARCH | DALLAS
(2 rows)

4.1.8 Installing EDB Postgres Extended Server on Ubuntu 20.04 x86_64

Prerequisites

running inin psql
CREATECREATE DATABASEDATABASE
hr;

EDB Postgres Extended Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 21

Before you begin the installation process:

Set up the EDB repository.

Setting up the repository is a one-time task. If you have already set up your repository, you don't need to perform this step.

To determine if your repository exists, enter this command:

apt-cache search enterprisedb

If no output is generated, the repository isn't installed.

To set up the EDB repository:

1. Go to EDB repositories.

2. Select the button that provides access to the EDB repository.

3. Select the platform and software that you want to download.

4. Follow the instructions for setting up the EDB repository.

Install the package

sudo apt-get -y install edb-postgresextended-16

Initial configuration

This section steps you through getting started with your cluster including logging in, ensuring the installation was successful, connecting to your
cluster, and creating the user password.

First, you need to initialize and start the database cluster. The edb-pge-16-setup script creates a cluster.

sudo PGSETUP_INITDB_OPTIONS="-E UTF-8" /usr/lib/edb-pge/16/bin/edb-pge-16-setup initdb

sudo systemctl start edb-pge-16

To work in your cluster, log in as the postgres user. Connect to the database server using the psql command-line client. Alternatively, you can use a
client of your choice with the appropriate connection string.

sudo -iu postgres

psql postgres

The server runs with the peer or ident permission by default. You can change the authentication method by modifying the pg_hba.conf file.

Before changing the authentication method, assign a password to the database superuser, postgres. For more information on changing the
authentication, see Modifying the pg_hba.conf file.

EDB Postgres Extended Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 22

https://www.enterprisedb.com/repos-downloads

Experiment

Now you're ready to create and connect to a database, create a table, insert data in a table, and view the data from the table.

First, use psql to create a database named hr to hold human resource information.

CREATE DATABASE

Connect to the hr database inside psql:

\c hr

You are now connected to database "hr" as user "postgres".

Create columns to hold department numbers, unique department names, and locations:

CREATE TABLE public.dept (deptno numeric(2) NOT NULL CONSTRAINT dept_pk
PRIMARY KEY, dname varchar(14) CONSTRAINT dept_dname_uq UNIQUE, loc
varchar(13));

CREATE TABLE

Insert values into the dept table:

INSERT INTO dept VALUES (10,'ACCOUNTING','NEW YORK');

INSERT 0 1

INSERT into dept VALUES (20,'RESEARCH','DALLAS');

INSERT 0 1

View the table data by selecting the values from the table:

SELECT * FROM dept;

deptno | dname | loc
--------+------------+----------
10 | ACCOUNTING | NEW YORK
20 | RESEARCH | DALLAS

ALTERALTER ROLEROLE postgres withwith PASSWORDPASSWORD
'password';

running inin psql
CREATECREATE DATABASEDATABASE
hr;

EDB Postgres Extended Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 23

(2 rows)

4.1.9 Installing EDB Postgres Extended Server on Debian 11 x86_64

Prerequisites

Before you begin the installation process:

Set up the EDB repository.

Setting up the repository is a one-time task. If you have already set up your repository, you don't need to perform this step.

To determine if your repository exists, enter this command:

apt-cache search enterprisedb

If no output is generated, the repository isn't installed.

To set up the EDB repository:

1. Go to EDB repositories.

2. Select the button that provides access to the EDB repository.

3. Select the platform and software that you want to download.

4. Follow the instructions for setting up the EDB repository.

Install the package

sudo apt-get -y install edb-postgresextended-16

Initial configuration

This section steps you through getting started with your cluster including logging in, ensuring the installation was successful, connecting to your
cluster, and creating the user password.

First, you need to initialize and start the database cluster. The edb-pge-16-setup script creates a cluster.

sudo PGSETUP_INITDB_OPTIONS="-E UTF-8" /usr/lib/edb-pge/16/bin/edb-pge-16-setup initdb

sudo systemctl start edb-pge-16

EDB Postgres Extended Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 24

https://www.enterprisedb.com/repos-downloads

To work in your cluster, log in as the postgres user. Connect to the database server using the psql command-line client. Alternatively, you can use a
client of your choice with the appropriate connection string.

sudo -iu postgres

psql postgres

The server runs with the peer or ident permission by default. You can change the authentication method by modifying the pg_hba.conf file.

Before changing the authentication method, assign a password to the database superuser, postgres. For more information on changing the
authentication, see Modifying the pg_hba.conf file.

Experiment

Now you're ready to create and connect to a database, create a table, insert data in a table, and view the data from the table.

First, use psql to create a database named hr to hold human resource information.

CREATE DATABASE

Connect to the hr database inside psql:

\c hr

You are now connected to database "hr" as user "postgres".

Create columns to hold department numbers, unique department names, and locations:

CREATE TABLE public.dept (deptno numeric(2) NOT NULL CONSTRAINT dept_pk
PRIMARY KEY, dname varchar(14) CONSTRAINT dept_dname_uq UNIQUE, loc
varchar(13));

CREATE TABLE

Insert values into the dept table:

INSERT INTO dept VALUES (10,'ACCOUNTING','NEW YORK');

INSERT 0 1

INSERT into dept VALUES (20,'RESEARCH','DALLAS');

ALTERALTER ROLEROLE postgres withwith PASSWORDPASSWORD
'password';

running inin psql
CREATECREATE DATABASEDATABASE
hr;

EDB Postgres Extended Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 25

INSERT 0 1

View the table data by selecting the values from the table:

SELECT * FROM dept;

deptno | dname | loc
--------+------------+----------
10 | ACCOUNTING | NEW YORK
20 | RESEARCH | DALLAS
(2 rows)

4.1.10 Installing EDB Postgres Extended Server on Debian 10 x86_64

Prerequisites

Before you begin the installation process:

Set up the EDB repository.

Setting up the repository is a one-time task. If you have already set up your repository, you don't need to perform this step.

To determine if your repository exists, enter this command:

apt-cache search enterprisedb

If no output is generated, the repository isn't installed.

To set up the EDB repository:

1. Go to EDB repositories.

2. Select the button that provides access to the EDB repository.

3. Select the platform and software that you want to download.

4. Follow the instructions for setting up the EDB repository.

Install the package

sudo apt-get -y install edb-postgresextended-16

Initial configuration

EDB Postgres Extended Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 26

https://www.enterprisedb.com/repos-downloads

This section steps you through getting started with your cluster including logging in, ensuring the installation was successful, connecting to your
cluster, and creating the user password.

First, you need to initialize and start the database cluster. The edb-pge-16-setup script creates a cluster.

sudo PGSETUP_INITDB_OPTIONS="-E UTF-8" /usr/lib/edb-pge/16/bin/edb-pge-16-setup initdb

sudo systemctl start edb-pge-16

To work in your cluster, log in as the postgres user. Connect to the database server using the psql command-line client. Alternatively, you can use a
client of your choice with the appropriate connection string.

sudo -iu postgres

psql postgres

The server runs with the peer or ident permission by default. You can change the authentication method by modifying the pg_hba.conf file.

Before changing the authentication method, assign a password to the database superuser, postgres. For more information on changing the
authentication, see Modifying the pg_hba.conf file.

Experiment

Now you're ready to create and connect to a database, create a table, insert data in a table, and view the data from the table.

First, use psql to create a database named hr to hold human resource information.

CREATE DATABASE

Connect to the hr database inside psql:

\c hr

You are now connected to database "hr" as user "postgres".

Create columns to hold department numbers, unique department names, and locations:

CREATE TABLE public.dept (deptno numeric(2) NOT NULL CONSTRAINT dept_pk
PRIMARY KEY, dname varchar(14) CONSTRAINT dept_dname_uq UNIQUE, loc
varchar(13));

CREATE TABLE

ALTERALTER ROLEROLE postgres withwith PASSWORDPASSWORD
'password';

running inin psql
CREATECREATE DATABASEDATABASE
hr;

EDB Postgres Extended Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 27

Insert values into the dept table:

INSERT INTO dept VALUES (10,'ACCOUNTING','NEW YORK');

INSERT 0 1

INSERT into dept VALUES (20,'RESEARCH','DALLAS');

INSERT 0 1

View the table data by selecting the values from the table:

SELECT * FROM dept;

deptno | dname | loc
--------+------------+----------
10 | ACCOUNTING | NEW YORK
20 | RESEARCH | DALLAS
(2 rows)

4.2 Default component locations

The package managers for the various Linux variations install EDB Postgres Extended Server components in different locations. If you need to access
the components after installation, see:

RHEL/OL/Rocky Linux/AlmaLinux/CentOS/SLES locations
Debian/Ubuntu locations

RHEL/OL/Rocky Linux/AlmaLinux/CentOS/SLES Locations

The RPM installers place EDB Postgres Extended Server components in the directories listed in the table.

Component Location

Executables /usr/edb/pge16/bin

Libraries /usr/edb/pge16/lib

Cluster configuration files /var/lib/edb-pge/16

Documentation /usr/edb/pge16/share/man

Contrib /usr/edb/pge16/share/contrib

Data /var/lib/edb-pge/16/data

Logs /var/log/edb/pge16

Lock files /var/lock/edb/pge16

Backup area /var/lib/edb-pge/16/backups

EDB Postgres Extended Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 28

Templates /usr/edb/pge16/share

Procedural Languages /usr/edb/pge16/lib

Development Headers /usr/edb/pge16/include

Shared data /usr/edb/pge16/share

Component Location

Debian/Ubuntu Locations

The Debian package manager places EDB Postgres Extended Server components in the directories listed in the table.

Component Location

Executables /usr/lib/edb-pge/16/bin

Libraries /usr/lib/edb-pge/16/lib

Cluster configuration files /var/lib/edb-pge/16/main

Data /var/lib/edb-pge/16/main

Logs /var/log/edb-pge/

Lock files /var/lock/edb/pge16

5 Administration

EDB Postgres Extended Server includes features to help you to maintain, secure, and operate EDB Postgres Extended Server databases.

Setting Configuration Parameters covers how to configure GUC parameters at runtime, modifying postgresql.conf for persistent
changes and editing pg_hba.conf to change access and authentication settings.

5.1 Setting configuration parameters

Set each configuration parameter using a name/value pair. Parameter names aren't case sensitive. The parameter name is typically separated from its
value by an optional equals sign (=).

This example shows some configuration parameter settings in the postgresql.conf file:

This is a
comment
log_connections = yesyes
log_destination =
'syslog'
search_path = '"$user", public'
shared_buffers = 128MB

EDB Postgres Extended Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 29

Types of parameter values

Parameter values are specified as one of five types:

BooleanBoolean — Acceptable values are on , off , true , false , yes , no , 1 , 0 , or any unambiguous prefix of these.
IntegerInteger — Number without a fractional part.
Floating pointFloating point — Number with an optional fractional part separated by a decimal point.
StringString — Text value enclosed in single quotes if the value isn't a simple identifier or number, that is, the value contains special characters such
as spaces or other punctuation marks.
EnumEnum — Specific set of string values. The allowed values can be found in the system view pg_settings.enumvals . Enum values are not
case sensitive.

Some settings specify a memory or time value. Each of these has an implicit unit, which is kilobytes, blocks (typically 8 kilobytes), milliseconds,
seconds, or minutes. You can find default units by referencing the system view pg_settings.unit . You can specify a different unit explicitly.

Valid memory units are:

kB (kilobytes)
MB (megabytes)
GB (gigabytes).

Valid time units are:

ms (milliseconds)
s (seconds)
min (minutes)
h (hours)
d (days).

The multiplier for memory units is 1024.

Specifying configuration parameter settings

A number of parameter settings are set when the EDB Postgres Extended Server database product is built. These are read-only parameters, and you
can't change their values. A couple of parameters are also permanently set for each database when the database is created. These parameters are
read-only and you can't later change them for the database. However, there are a number of ways to specify the configuration parameter settings:

The initial settings for almost all configurable parameters across the entire database cluster are listed in the postgresql.conf
configuration file. These settings are put into effect upon database server start or restart. You can override some of these initial parameter
settings. All configuration parameters have built-in default settings that are in effect unless you explicitly override them.

Configuration parameters in the postgresql.conf file are overridden when the same parameters are included in the
postgresql.auto.conf file. Use the ALTER SYSTEM command to manage the configuration parameters in the
postgresql.auto.conf file.

You can modify parameter settings in the configuration file while the database server is running. If the configuration file is then reloaded
(meaning a SIGHUP signal is issued), for certain parameter types, the changed parameters settings immediately take effect. For some of these
parameter types, the new settings are available in a currently running session immediately after the reload. For others, you must start a new
session to use the new settings. And for some others, modified settings don't take effect until the database server is stopped and restarted. See
the PostgreSQL core documentation for information on how to reload the configuration file.

You can use the SQL commands ALTER DATABASE , ALTER ROLE , or ALTER ROLE IN DATABASE to modify certain parameter
settings. The modified parameter settings take effect for new sessions after you execute the command. ALTER DATABASE affects new

EDB Postgres Extended Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 30

https://www.postgresql.org/docs/current/config-setting.html

sessions connecting to the specified database. ALTER ROLE affects new sessions started by the specified role. ALTER ROLE IN
DATABASE affects new sessions started by the specified role connecting to the specified database. Parameter settings established by these
SQL commands remain in effect indefinitely, across database server restarts, overriding settings established by the other methods. You can
change parameter settings established using the ALTER DATABASE , ALTER ROLE , or ALTER ROLE IN DATABASE commands by
either:

Reissuing these commands with a different parameter value.

Issuing these commands using the SET parameter TO DEFAULT clause or the RESET parameter clause. These clauses
change the parameter back to using the setting set by the other methods. See the PostgreSQL core documentation for the syntax of
these SQL commands.

You can make changes for certain parameter settings for the duration of individual sessions using the PGOPTIONS environment variable or by
using the SET command in the EDB-PSQL or PSQL command-line programs. Parameter settings made this way override settings established
using any of the methods discussed earlier, but only during that session.

Modifying the postgresql.conf file

The configuration parameters in the postgresql.conf file specify server behavior with regard to auditing, authentication, encryption, and other
behaviors. On Linux and Windows hosts, the postgresql.conf file resides in the data directory under your EDB Postgres Extended Server
installation.

Parameters that are preceded by a pound sign (#) are set to their default value. To change a parameter value, remove the pound sign and enter a new
value. After setting or changing a parameter, you must either reload or restart the server for the new parameter value to take effect.

In the postgresql.conf file, some parameters contain comments that indicate change requires restart . To view a list of the
parameters that require a server restart, use the following query at the psql command line:

Modifying the pg_hba.conf file

Appropriate authentication methods provide protection and security. Entries in the pg_hba.conf file specify the authentication methods that the
server uses with connecting clients. Before connecting to the server, you might need to modify the authentication properties specified in the
pg_hba.conf file.

When you invoke the initdb utility to create a cluster, the utility creates a pg_hba.conf file for that cluster that specifies the type of authentication
required from connecting clients. You can modify this file. After modifying the authentication settings in the pg_hba.conf file, restart the server
and apply the changes. For more information about authentication and modifying the pg_hba.conf file, see the PostgreSQL core documentation.

When the server receives a connection request, it verifies the credentials provided against the authentication settings in the pg_hba.conf file
before allowing a connection to a database. To log the pg_hba.conf file entry to authenticate a connection to the server, set the
log_connections parameter to ON in the postgresql.conf file.

A record specifies a connection type, database name, user name, client IP address, and the authentication method to authorize a connection upon
matching these parameters in the pg_hba.conf file. Once the connection to a server is authorized, you can see the matched line number and the
authentication record from the pg_hba.conf file.

This example shows a log detail for a valid pg_hba.conf entry after successful authentication:

SELECTSELECT name FROMFROM pg_settings WHEREWHERE contextcontext ==
'postmaster';

EDB Postgres Extended Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 31

https://www.postgresql.org/docs/current/sql-commands.html
https://www.postgresql.org/docs/current/static/auth-pg-hba-conf.html

2020-05-08 10:42:17 IST LOG: connection received: host=[local]
2020-05-08 10:42:17 IST LOG: connection authorized: user=u1 database=edb
application_name=psql
2020-05-08 10:42:17 IST DETAIL: Connection matched pg_hba.conf line 84:
"local all all md5"

6 Transparent data encryption

Transparent data encryption (TDE) encrypts any user data stored in the database system. This encryption is transparent to the user. User data includes
the actual data stored in tables and other objects as well as system catalog data such as the names of objects.

See Transparent data encryption for more information.

7 Replication

EDB Postgres Extended Server provides the core functionality to support the following replication and high availability features in EDB Postgres
Distributed:

Commit At Most Once (CAMO)
Group commit
Eager replication
Decoding worker
Assessment tooling
Lag tracker
Lag control
Timestamp snapshots
Transaction streaming
Missing partition conflict
No need for UPDATE trigger on tables with TOAST
Automatically hold back FREEZE

Asynchronous processing

EDB Postgres Extended Server includes a synchronous_replication_availability parameter. A value of async for this parameter
enables asynchronous processing when not enough standby servers are available (when compared with the values as per
synchronous_standby_names). The behavior reverts to synchronous replication when the required number of synchronous standby servers

reappear.

8 Configuration parameters (GUCs)

These Grand Unified Configuration (GUC) configuration parameters are available with EDB Postgres Extended Server.

Backend parameters

EDB Postgres Extended Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 32

https://www.enterprisedb.com/docs/tde/latest
https://www.enterprisedb.com/docs/pgd/latest

Backend parameters introduce a test probe point infrastructure for injecting sleeps or errors into PostgreSQL and extensions.

Any PROBE_POINT defined throughout the Postgres code code marks important code paths. These probe points might be activated to signal the
current backend or to elog(...) a LOG / ERROR / FATAL / PANIC . They might also, or instead, add a delay at that point in the code.

Unless explicitly activated, probe points have no effect and add only a single optimizer-hinted branch, so they're safe on hot paths.

When an active probe point is hit and the counter is satisfied, after any specified sleep interval, a log message is always emitted at DEBUG1 or
higher.

pg2q.probe_point

The name of a PROBE_POINT in the code of 2ndQPostgres or in an extension that defines a PROBE_POINT . This parameter isn't validated. If a
nonexistent probe point is named, it's never hit.

Only one probe point can be active. This isn't a list, and attempting to supply a list means nothing matches.

Probe points generally have a unique name, given as the argument to the PROBE_POINT macro in the code where it's defined. It's also possible to
use the same PROBE_POINT name where multiple code paths trigger the same action of interest. A probe fires when either path is taken.

pg2q.probe_counter

You might need to act on a probe only after a loop is run for the number of times specified with this parameter. In such cases, set this GUC to the
number of iterations at which point the probe point fires, and reset the counter.

The default value is 1 , meaning the probe points always fire when the name matches.

pg2q.probe_sleep

Sleep for pg2q.probe_sleep milliseconds after hitting the probe point. Then fire the action in pg2q.probe_action .

pg2q.probe_action

Action to take when the named pg2q.probe_point is hit. Available actions are:

sleep — Emit a DEBUG message with the probe name.
log — Emit a LOG message with the probe name.
error — elog(ERROR, ...) to raise an ERROR condition.
fatal — elog(FATAL, ...) .
panic — elog(PANIC, ...) , which generally then calls abort() and delivers a SIGABRT (signal 6) to cause the backend to core

dump. The probe point tries to set the core file limit to enable core dumps if the hard ulimit permits.
sigint , sigterm , sigquit , sigkill — Deliver the named signal to the backend that hit the probe point.

pg2q.probe_backend_pid

If nonzero, the probe sleep and action are skipped for backends other than the backend with this ID.

EDB Postgres Extended Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 33

server_2q_version_num and server_2q_version

The server_2q_version_num and server_2q_version configuration parameters allow the 2ndQuadrant-specific version number and
version substring, respectively, to be accessible to external modules.

Table-level compression control option

You can set the table-level option compress_tuple_target to decide when to trigger compression on a tuple. Previously, you used the
toast_tuple_target (or the compile time default) to decide whether to compress a tuple. However, this was detrimental when a tuple is large

enough and has a good compression ratio but not large enough to cross the toast threshold.

pg2q.max_tuple_field_size

Restricts the maximum uncompressed size of the internal representation of any one field that can be written to a table, in bytes.

The default pg2q.max_tuple_field_size is 1073740799 bytes, which is 1024 bytes less than 1 GiB. This value is slightly less than the 1 GiB
maximum field size usually imposed by PostgreSQL. This margin helps prevent cases where tuples are committed to disk but can't then be processed
by logical decoding output plugins and sent to downstream servers.

Set pg2q.max_tuple_field_size to 1GB or 11073741823 to disable the feature.

If your application doesn't rely on inserting large fields, consider setting pg2q.max_tuple_field_size to a much smaller value, such as 100MB
or even less. Among other issues, large fields can:

Cause surprising application behavior
Increase memory consumption for the database engine during queries and replication
Slow down logical replication

While this parameter is enabled, oversized fields cause queries that INSERT or UPDATE an oversized field to fail with an ERROR such as:

ERROR: field big_binary_field_name in row is larger than pg2q.max_tuple_field_size
DETAIL: New or updated row in relation some_table has field big_binary_field_name
 (attno=2) with size 8161 bytes which exceeds limit 1073740799B configured
 in pg2q.max_tuple_field_size
SQLSTATE: 53400 configuration_limit_exceeded

Only the superuser can set pg2q.max_tuple_field_size . You can use a SECURITY DEFINER function wrapper if you want to allow a non-
superuser to set it.

If you change pg2q.max_tuple_field_size , fields larger than the current pg2q.max_tuple_field_size that are already on disk don't
change. You can SELECT them as usual. Any UPDATE that affects tuples with oversized fields fails, even if the oversized field isn't modified, unless
the new tuple created by the update operation satisfies the currently active size limits.

A DELETE operation doesn't check the field-size limit.

The limit isn't enforced on the text-representation size for I/O of fields because doing so also prevents PostgreSQL from creating and processing
temporary in-memory json objects larger than the limit.

The limit isn't enforced for temporary tuples in tuplestores, such as set-returning functions, CTEs, and views. Size checks are deliberately not enforced

EDB Postgres Extended Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 34

for any MATERIALIZED VIEW either.

WARNINGWARNING

pg2q.max_tuple_field_size is enforced for pg_restore . If a database contains oversized tuples, it does a pg_dump as usual.
However, a subsequent pg_restore fails with the error shown previously. To work around this issue, restore the dump with
pg2q.max_tuple_field_size overridden in connection options using PGOPTIONS or the options connection-parameter string.

For example:

 PGOPTIONS='-c pg2q.max_tuple_field_size=11073741823' pg_restore ...

Data type specifics:

For a bytea field, the size used is the decoded binary size. It isn't the text-representation size in hex or octal escape form, that is, the
octet_length() of the field.

Assuming bytea_output = 'hex' , the maximum size of the I/O representation is 2 * pg2q.max_tuple_field_size + 2 bytes.

For a text , json , or xml field, the measured size is the number of bytes of text in the current database encoding (the
octet_length() of the field), not the number of characters. In UTF-8 encodings, one character usually consumes one byte but might

consume six or more bytes for some languages and scripts.

For a jsonb field, the measured size is that of the PostgreSQL internal jsonb-encoded datatype representation, the text representation of the
json document. In some cases the jsonb representation for larger json documents is smaller than the text representation. This means that
it's possible to insert json documents with text representations larger than any given pg2q.max_tuple_field_size , although it's
uncommon.

Extension-defined data type behavior depends on the implementation of the data type.

The field size used for this limit is the size reported by them pg_column_size() function, minus the 4 bytes of header PostgreSQL adds to
variable-length data types, when used on a literal of the target data type. For example:

demo=> SELECT pg_column_size(BYTEA '\x00010203040506070809') - 4;
14

For example, to see the computed size of the jsonb field, use:

SELECT pg_column_size(JSONB '{"my_json_document": "yes"}') - 4;

Due to TOAST compression , pg_column_size() often reports smaller values when called on existing on-disk fields. Also, the header for
shorter values on disk might be 1 byte instead of 4.

pg2q.max_tuple_size

Restricts the maximum size of a single tuple that can be written to a table. This value is the total row width, including the uncompressed width of all
potentially compressible or external-storage-capable field values. Field headers count against the size, but fixed row headers don't.

Many PostgreSQL operations, such as logical replication, work on whole rows, as do many applications. You can use this setting to impose a limit on
the maximum row size you consider reasonable for your application to prevent inadvertent creation of oversized rows that might pose operational
issues.

EDB Postgres Extended Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 35

When applied to an UPDATE of existing tuples, pg2q.max_tuple_size isn't enforced as strictly as pg2q.max_tuple_field_size . It
doesn't count the full size of unmodified values in columns with storage other than PLAIN .

WARNINGWARNING

pg2q.max_tuple_size is enforced for pg_restore . See the caveat for pg2q.max_tuple_field_size .

9 SQL enhancements

EDB Postgres Extended Server includes a number of SQL enhancements.

Rollback options

In PostgreSQL, any error in a transaction rolls back all actions by that transaction. This behavior is different from other DBMS, such as Oracle and SQL
Server, where an error causes rollback of only the last statement. This difference in transaction handling semantics doesn't cause a problem in all
cases, but it does make implementing business logic in PostgreSQL difficult for Oracle Database and Microsoft SQL Server developers.

One workaround is to manually introduce a savepoint, internally known as subtransactions, into the application code. This is time consuming and
difficult to test. A savepoint is an additional statement and therefore increases transaction latency. Given the overhead of additional development
work and slower performance, this approach isn't viable in most cases.

EDB Postgres Extended Server allows you to roll back just the current statement. The statement-level rollback feature provides an optional mode to
choose whether to allow rollback of the whole transaction or just the current statement. No manual recoding is required. There's some added
overhead, but it's lower than for a savepoint.

See transaction_rollback_scope for information on setting the transaction rollback scope inside the database and JDBC properties for
rollback scope for information on continuing past an error on a JDBC batch job.

Cursors with prepared statements

EDB Postgres Extended Server allows declaring a cursor over a previously created prepared statement.

For example:

PREPARE foo AS ...; DECLARE c1 CURSOR FOR foo;

PL/pgSQL compatibility

EDB Postgres Extended Server integrates with other migration tools with a number of PL/pgSQL compatibility features.

For general simplicity, EDB Postgres Extended Server allows calling functions using plpqsl without the PERFORM keyword.

For example,

EDB Postgres Extended Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 36

BEGIN somefunc(); END

Where somefunc is not a keyword.

9.1 transaction_rollback_scope parameter

To set the transaction rollback scope inside the database, use the transaction_rollback_scope parameter. The
transaction_rollback_scope parameter has two possible values:

transaction — Standard Postgres behavior, where each error aborts the whole transaction.

statement — An error while executing one statement affects only that statement and not the status of the transaction as a whole.

Setting the parameter

You can set the parameter as a user-level property, a connection option, or the mode for specific functions or procedures.

Set the parameter as a user-level property

Set the parameter as a connection option

PGOPTIONS="-c transaction_rollback_scope=statement" psql <other options>

Set the mode for specific functions or procedures

If using PL/pgSQL, you can set the mode for specific functions or procedures:

How subtransactions are handled

If you select the statement value, then a subtransaction is opened just before each SQL command. If the command is successful, the
subtransaction is committed. If the command causes an error, the subtransaction is rolled back, and the parent transaction can continue normally.
The effect is that an error during execution of one statement affects only that statement and not the status of the transaction as a whole.

Committing a subtransaction assigns the resources it holds only to its parent transaction, which might be the top-level transaction. Or it might be

ALTERALTER USER somebody SETSET transaction_rollback_scope TOTO
statement;

ALTERALTER FUNCTIONFUNCTION myfunc SETSET transaction_rollback_scope TOTO
statement;

EDB Postgres Extended Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 37

some other subtransaction if there are user-defined savepoints involved. So this is not an "autonomous transaction." Rolling back a subtransaction
releases all the resources it holds, such as any locks it acquired.

9.2 JDBC properties for setting rollback scope

If you're using a JDBC connector to connect to a client application, you use the autosave and transaction_rollback_scope properties
together to specify the transaction rollback scope.

You can specify these properties in either the connection URL or as an additional properties object parameter to
DriverManager.getConnection .

autosave

The autosave parameter is a string that specifies what the driver does if a query containing multiple statements fails. The possible values are:
server , always , never , and conservative .

In autosave=server mode, JDBC relies on the server-side parameter transaction_rollback_scope to save each statement by
way of internal server savepoints before executing the next. The server rolls back to the previous statement if any statement in the query fails. If
this parameter isn't supported on the server side, JDBC rejects the connection.

In autosave=always mode, the JDBC driver first tries to use the server-side transaction_rollback_scope property. If it isn't
supported, then JDBC driver sets a savepoint before each query statement and rolls back to that savepoint in case of failure.

In autosave=never mode (default), no savepoint activity is ever carried out. In autosave=conservative mode, savepoint is set for
each query. However, the rollback is done only for rare cases like 'cached statement cannot change return type' or 'statement XXX is not valid',
so JDBC driver rolls back and retries.

The default value for this property is never .

This autosave=server property is useful only with the PostgreSQL server providing transaction_rollback_scope functionality.

transaction_rollback_scope

The autosave parameter is a string that determines the range of operations that roll back when an SQL statement fails.

The default value is TRANSACTION , which causes the entire transaction or current subtransaction to roll back. This is the only mode that you can
select with the SET TRANSACTION command.

You can specify the other possible mode, STATEMENT , only during connection establishment, ALTER USER , or ALTER DATABASE . In that
mode, only the failed SQL statement is rolled back, and the transaction is put back in normal mode.

autosave test cases

Test cases for trying out values of the autosave property are available in the BatchAutoSaveTest.java file. The following SQL code shows

EDB Postgres Extended Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 38

the behavior that's expected when the server provides transaction_rollback_scope functionality and autosave=server is used on the
JDBC side.

With autosave=server , the following query inserts values (1) , (3) , and (4) and disregards the duplicate key violation error:

The artifacts directory contains the pgjdbc jar file postgresql-REL2Q.42.2.3.180601.jar . This file needs to be added to the
CLASSPATH as usual. It also contains the postgresql-REL2Q.42.2.3.180601-tests.jar jar that can be used to test the latest
autosave functionality.

You can test the BatchAutoSaveTest.java file provided in the artifacts as follows:

1. Export CLASSPATH to build and run the test case:

2. Compile the supplied test file:

3. Run the test (assuming user as test and running on localhost):

java -Dusername=test -Dport=5432 -Dhost=localhost -Ddatabase=postgres org.junit.runner.JUnitCore
org.postgresql.test.jdbc2.BatchAutoSaveTest

JUnit version 4.12
.Configuration file /Users/altaf/pg/artifacts/../build.properties does not exist. Consider adding
it to specify test db host and login
Configuration file /Users/altaf/pg/artifacts/../build.local.properties does not exist. Consider
adding it to specify test db host and login
Configuration file /Users/altaf/pg/artifacts/../build.properties does not exist. Consider adding it
to specify test db host and login
Configuration file /Users/altaf/pg/artifacts/../build.local.properties does not exist. Consider
adding it to specify test db host and login
.........
Time: 0.556

OK (10 tests)

To modify the test cases, you can modify the BatchAutoSaveTest.java file in the artifacts directory. Then compile and run the test cases.

CREATECREATE TABLETABLE test (idid INT PRIMARYPRIMARY
KEYKEY);
INSERTINSERT INTOINTO test VALUESVALUES
(2);
BEGINBEGIN;
INSERTINSERT INTOINTO test VALUESVALUES
(1);
INSERTINSERT INTOINTO test VALUESVALUES
(2);
INSERTINSERT INTOINTO test VALUESVALUES
(3);
INSERTINSERT INTOINTO test VALUESVALUES
(4);
COMMITCOMMIT;

cd artifacts
export CLASSPATH==$PWD:$PWD/postgresql-REL2Q.42.2.3.180601-tests.jar:$PWD/postgresql-
REL2Q.42.2.3.180601.jar:$PWD/junit-4.12.jar:$PWD/hamcrest-core-1.3.jar

javac -d .
BatchAutoSaveTest.java

EDB Postgres Extended Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 39

10 Operations

EDB Postgres Extended Server has a number of features that relate to operations.

Avoid flooding transaction logs

EDB Postgres Extended Server provides WAL pacing delays to avoid flooding transaction logs. The WAL pacing configuration parameters are:

wal_insert_delay_enabled
wal_insert_delay
wal_insert_delay_size

When wal_insert_delay_enabled is enabled, a session sleeps based on the value of wal_insert_delay after WAL data of at least the
value of wal_insert_delay_size is generated. The default is off.

Additional tracing and diagnostics options

EDB Postgres Extended Server allows you to enable timeouts based on logging trace messages in specific code paths. Use the tracelog_timeout
configuration parameter to allow logging of trace messages after a timeout of the specified time occurs.

Selective physical base backup and subsequent selective recovery/restore

By default, backups are always taken of the entire database cluster. You can also back up individual databases or database objects by specifying the -
L option with the pg_basebackup utility multiple times for multiple databases.

Template databases are backed up by default. WAL data for excluded databases is still part of the WAL archives.

The backup activity stores the list of database objects specified using this option in the backup label file. The presence of these objects in the backup
label file causes selective recovery of these databases. Recovery of template databases and of global metadata related to users, languages, and so on
is also carried out as usual. WAL data belonging to excluded databases is ignored during the recovery process. Attempts to connect to excluded
databases cause errors after regular operations start following the recovery.

Additional operations feature

Reduced locking of ALTER TABLE ... REPLICA IDENTITY

EDB Postgres Extended Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 40

	1 EDB Postgres Extended Server
	2 Release notes
	2.1 EDB Postgres Advanced Server 16.2 release notes
	2.2 EDB Postgres Extended Server 16.1 release notes
	3 Deployment options
	4 Installing EDB Postgres Extended Server on Linux
	Linux x86-64 (amd64)
	Red Hat Enterprise Linux (RHEL) and derivatives
	Debian and derivatives

	4.1 Installing EDB Postgres Extended Server on Linux x86 (amd64)
	Red Hat Enterprise Linux (RHEL) and derivatives
	Debian and derivatives

	4.1.1 Installing EDB Postgres Extended Server on RHEL 9 or OL 9 x86_64
	Prerequisites
	Install the package
	Initial configuration
	Experiment

	4.1.2 Installing EDB Postgres Extended Server on RHEL 8 or OL 8 x86_64
	Prerequisites
	Install the package
	Initial configuration
	Experiment

	4.1.3 Installing EDB Postgres Extended Server on AlmaLinux 9 or Rocky Linux 9 x86_64
	Prerequisites
	Install the package
	Initial configuration
	Experiment

	4.1.4 Installing EDB Postgres Extended Server on AlmaLinux 8 or Rocky Linux 8 x86_64
	Prerequisites
	Install the package
	Initial configuration
	Experiment

	4.1.5 Installing EDB Postgres Extended Server on RHEL 7 or OL 7 x86_64
	Prerequisites
	Install the package
	Initial configuration
	Experiment

	4.1.6 Installing EDB Postgres Extended Server on CentOS 7 x86_64
	Prerequisites
	Install the package
	Initial configuration
	Experiment

	4.1.7 Installing EDB Postgres Extended Server on Ubuntu 22.04 x86_64
	Prerequisites
	Install the package
	Initial configuration
	Experiment

	4.1.8 Installing EDB Postgres Extended Server on Ubuntu 20.04 x86_64
	Prerequisites
	Install the package
	Initial configuration
	Experiment

	4.1.9 Installing EDB Postgres Extended Server on Debian 11 x86_64
	Prerequisites
	Install the package
	Initial configuration
	Experiment

	4.1.10 Installing EDB Postgres Extended Server on Debian 10 x86_64
	Prerequisites
	Install the package
	Initial configuration
	Experiment

	4.2 Default component locations
	RHEL/OL/Rocky Linux/AlmaLinux/CentOS/SLES Locations
	Debian/Ubuntu Locations

	5 Administration
	5.1 Setting configuration parameters
	Types of parameter values
	Specifying configuration parameter settings
	Modifying the postgresql.conf file
	Modifying the pg_hba.conf file

	6 Transparent data encryption
	7 Replication
	Asynchronous processing

	8 Configuration parameters (GUCs)
	Backend parameters
	pg2q.probe_point
	pg2q.probe_counter
	pg2q.probe_sleep
	pg2q.probe_action
	pg2q.probe_backend_pid

	server_2q_version_num and server_2q_version
	Table-level compression control option
	pg2q.max_tuple_field_size
	pg2q.max_tuple_size

	9 SQL enhancements
	Rollback options
	Cursors with prepared statements
	PL/pgSQL compatibility

	9.1 transaction_rollback_scope parameter
	Setting the parameter
	Set the parameter as a user-level property
	Set the parameter as a connection option
	Set the mode for specific functions or procedures

	How subtransactions are handled

	9.2 JDBC properties for setting rollback scope
	autosave
	transaction_rollback_scope
	autosave test cases

	10 Operations
	Avoid flooding transaction logs
	Additional tracing and diagnostics options
	Selective physical base backup and subsequent selective recovery/restore
	Additional operations feature

