EDB Postgres Ark
Release 3.5

Administrator’s Guide

Dec 17, 2019
<table>
<thead>
<tr>
<th>8.1 Using the Console Manager</th>
<th>92</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1.1 Using the Console Manager to Create a Federated Console</td>
<td>94</td>
</tr>
<tr>
<td>8.2 Managing Server Images</td>
<td>97</td>
</tr>
<tr>
<td>8.3 Managing Database Engines</td>
<td>100</td>
</tr>
<tr>
<td>8.4 Adding, Modifying, or Deleting Engine Definitions</td>
<td>103</td>
</tr>
<tr>
<td>8.5 Adding Supporting Components to a Database Engine Definition</td>
<td>108</td>
</tr>
<tr>
<td>8.6 Template Administration</td>
<td>111</td>
</tr>
<tr>
<td>8.7 Red Hat Subscription Management</td>
<td>115</td>
</tr>
<tr>
<td>8.8 Managing Amazon Roles</td>
<td>120</td>
</tr>
<tr>
<td>8.9 User Administration</td>
<td>122</td>
</tr>
<tr>
<td>8.10 User Administration on an Amazon Host</td>
<td>125</td>
</tr>
<tr>
<td>8.11 User Administration on an Azure Host</td>
<td>127</td>
</tr>
<tr>
<td>8.12 Displaying Connected Users</td>
<td>128</td>
</tr>
<tr>
<td>8.13 Managing the Wall Message</td>
<td>129</td>
</tr>
<tr>
<td>8.14 Accessing the Console Logs</td>
<td>130</td>
</tr>
<tr>
<td>8.15 Accessing the Core Usage Logs</td>
<td>131</td>
</tr>
<tr>
<td>8.16 Taking a Manual Backup of the Console</td>
<td>132</td>
</tr>
<tr>
<td>8.17 Editing Installation Properties</td>
<td>133</td>
</tr>
<tr>
<td>9 Using the Ark DBA Tab</td>
<td>134</td>
</tr>
<tr>
<td>9.1 Accessing User Information</td>
<td>135</td>
</tr>
<tr>
<td>9.1.1 The Ark DBA Tables</td>
<td>136</td>
</tr>
<tr>
<td>10 Console Management</td>
<td>144</td>
</tr>
<tr>
<td>10.1 Starting, Stopping or Restarting the Ark Console</td>
<td>144</td>
</tr>
<tr>
<td>10.2 Changing Console Passwords</td>
<td>145</td>
</tr>
<tr>
<td>10.3 Customizing the Console</td>
<td>146</td>
</tr>
<tr>
<td>10.4 Managing Console Logs</td>
<td>147</td>
</tr>
<tr>
<td>10.5 Upgrading the Console</td>
<td>148</td>
</tr>
<tr>
<td>10.6 Updating a PEM Installation</td>
<td>150</td>
</tr>
<tr>
<td>10.7 Recovering From a Console Failure</td>
<td>151</td>
</tr>
<tr>
<td>10.8 Modifying Backup Properties with the EDB Ark Console</td>
<td>152</td>
</tr>
<tr>
<td>10.9 Using the Recover Option</td>
<td>153</td>
</tr>
<tr>
<td>10.10 Manually Recovering from Console Backups</td>
<td>154</td>
</tr>
<tr>
<td>11 Securing EDB Postgres Ark</td>
<td>155</td>
</tr>
<tr>
<td>11.1 Modifying a Security Group for an Amazon AWS Hosted Console</td>
<td>156</td>
</tr>
<tr>
<td>11.2 Using ssh to Access a Server</td>
<td>157</td>
</tr>
<tr>
<td>11.3 Using iptables Rules</td>
<td>158</td>
</tr>
<tr>
<td>11.4 Post-Installation Recommendations</td>
<td>159</td>
</tr>
<tr>
<td>12 Creating a Statically Provisioned Image</td>
<td>160</td>
</tr>
<tr>
<td>13 EDB Postgres Ark Notifications</td>
<td>162</td>
</tr>
<tr>
<td>14 EDB Postgres Ark Resources</td>
<td>165</td>
</tr>
<tr>
<td>15 AWS IAM Role Permission Policy</td>
<td>166</td>
</tr>
<tr>
<td>16 Amazon IAM Role Trust Relationship</td>
<td>167</td>
</tr>
<tr>
<td>17 Amazon Service User Security Policy</td>
<td>168</td>
</tr>
<tr>
<td>18 Conclusion</td>
<td>169</td>
</tr>
<tr>
<td>Index</td>
<td>170</td>
</tr>
</tbody>
</table>
EDB Postgres Ark™

EDB Ark automatically provisions EDB Postgres Advanced Server or PostgreSQL databases in single instances, high-availability clusters, or application development sandboxes. EDB Ark allows service providers and organizations to offer elastic and highly scalable database-as-a-service (DBaaS) environments while freeing DBAs and application developers from the rigors of setting up and administering modern and robust database environments.

In minutes, EDB Ark configures a cluster of database machines with:

- Monitoring
- Streaming replication
- Connection pooling
- Load balancing
- Automatic failover (transaction or recovery time preferred)
- Secure data encryption
- Rotating user-scheduled backups
- Point-in-time recovery
- Elastic storage
- Elastic scale out

EDB Ark’s automatic scaling of storage resources and scale out of read replicas when a database cluster reaches user-defined thresholds provides unattended, around-the-clock responsiveness to unpredictable load demands on your database infrastructure.
The following features have been added to the EDB Ark user console for this release.

- Ark now supports EDB Postgres Advanced Server and PostgreSQL version 12 database clusters.
- EnterpriseDB has introduced a new RPM repository structure that combines the contents of the previous three repositories into a single repository. The new structure is supported by Ark. For information about connecting to the repository, visit https://info.enterprisedb.com/rs/069-ALB-339/images/Repository%20Access%2004-09-2019.pdf.
- Ark now provides extended support for multi-region features (including manual promotion and API support).
- You can use the Promote option (located on a cluster’s context menu in the Details panel) to replace the master node with a standby node. For more information, see the EDB Postgres Ark Getting Started Guide.
- The /templates and /templates/id resources now support the region property.
- Support for Amazon r4.* and r5.8x instance types has been reinstated.

1.1 Limitations

Cloning, Recovering, or Scaling Encrypted Clusters from Previous Versions

Encrypted clusters created with Ark 3.3 or prior may not be used to clone, recover, or scale to a machine type that is not supported by that earlier version. If you will be moving encrypted clusters created with Ark version 3.3 or prior to a new machine type (as supported by Ark 3.4 or 3.5), you will need to:

1. Clone the encrypted cluster to a new, unencrypted cluster.
2. Upgrade the Ark console on which the cluster resides.
3. Clone the unencrypted cluster to a new encrypted cluster of the new machine type.

For detailed information about cloning a cluster, see the *EDB Postgres Ark Getting Started Guide*.

Cloning with a Template from a Foreign Region

You cannot use a template when cloning from a foreign region.
Monitoring a Federated Console with PEM

Ark does not support federated consoles configured in local PEM server mode.

Federating Consoles that host clusters with the Same Name

If you are upgrading to version 3.4 or 3.5, and plan to federate existing Ark version 3.3 consoles that host clusters with the same name, you must first create a clone of one of the clusters specifying an alternate name; federated consoles cannot be used to host clusters with the same name. For example, if you plan to federate two consoles that both contain a cluster named acctg, you should clone one of the clusters specifying an alternate name for the cluster (i.e. acctg-west). Then, you can federate the consoles; both consoles will have access to acctg and acctg-west.
CHAPTER 2

Supported Platforms

The EDB Ark management console runs on the following browser versions (or newer):

- Mozilla Firefox 18
- Mozilla Firefox 17 ESR, 24 ESR, 31 ESR
- Internet Explorer 8
- Safari 6
- Opera 16
- Google Chrome 23

EDB Ark provisions cluster instances on the following 64-bit Linux systems:

- RHEL 7.x
- CentOS 7.x
The Ark console and API are designed to help you easily create and manage high-availability database clusters.

Note: Traditionally, the expression *cluster* refers to a single instance of Postgres managing multiple databases; an EDB Ark database server cluster is a collection of high-availability Postgres server instances that reside in a cloud or on a traditional network.

When you create a new cluster (a group of replicated database servers), EDB Ark initializes one or more Postgres instances (virtual machines) according to your specifications. EDB Ark uses Postgres streaming replication to synchronize replicas in the cluster, and pgpool-II to implement load balancing and connection pooling among all active instances.

The master node of the cluster contains a host operating system with a running instance of Postgres, along with the load balancer. Database modifications are automatically routed to the master node; any modifications to the master node are subsequently propagated to each replica using Postgres streaming replication.

EDB Ark installs Postgres on each replica node in a read-only hot-standby role that automatically duplicates all data found on the master node, and all changes made to that data. In hot-standby mode, the data is available to service
user queries providing read scalability to the cluster. In addition, any schema changes made to the master are also replicated to the replica nodes, making development and deployment of application changes easy and seamless without interruption to normal operations.

Replicas provide balanced user support as needed - if any instance in the cluster goes offline, the cluster’s load is re-balanced among the remaining servers while the instance is automatically replaced.

When used in the default healing configuration, in the event of a failure of the master node, an existing replica is used to replace the failed master node. While the replica nodes are standing by, they are read-only resources, load balancing client queries without a risk of compromising data integrity.

EDB Ark automatically archives data at regular intervals; you can specify a convenient backup window and how many backups to retain when creating a database cluster. EDB Ark also offers backup on demand - simply click the Backup icon to save a copy of the instance. Automatic backups are retained according to your specifications; while on-demand backups are retained until you delete them. Each backup is a complete copy of the cluster; you can use a backup to restore a cluster.

EDB Ark makes it easy to scale a database cluster:

- To increase read performance, you can add read replicas to the cluster (manually or automatically).
- To handle expanding data requirements you can increase the amount of storage available (manually or automatically).
- To increase the RAM or CPU processing power of the cluster’s underlying virtual machine, you can manually scale a cluster into a more appropriate server class.
3.1 Using Ark on an AWS Virtual Private Cloud

EDB Ark can create and manage clusters that reside on Amazon-hosted virtual private clouds (VPCs). A VPC is similar in structure to a traditional network, but provides the scalability and ease of maintenance offered by cloud computing.

A VPC is an isolated network with a unique IP address range and subnet addresses. When deploying a cluster, you can use the Ark console to select the VPC on which the new cluster will reside, or choose to have Ark create a new VPC.

To create a new cluster that resides on a private subnet, log into the Ark console and click the Launch DB Cluster button. Use the Create a new Server Cluster dialog to provide details about the cluster configuration. Check the box to the left of Use Private IP addresses to display only those VPCs which have a NAT gateway configured to support private subnets in the VPC field. Then, use the VPC drop-down menu to select a VPC.

After completing the Step 1 tab, use the Next key to continue. Provide information in the fields on each additional tab before selecting the Launch button and deploying your cluster into your private subnet. For detailed information
about the additional options available when defining a cluster, please see the EDB Ark Getting Started Guide, available via the Ark console dashboard.

Please note: if you use private IP addresses, the master instance is not assigned an elastic IP address. Should a failover occur, the IP address of the master instance will change.

3.1.1 Using a NAT Gateway

You can deploy the Ark console on a VPC, and use a network address translation (NAT) gateway to provide access to services outside of the VPC. The NAT gateway allows an instance without a public IP address to securely access services and resources such as yum repositories.

When the Ark console is deployed in a private subnet (or without a public IP address), the console can only communicate with private networks in its own VPC or peered VPCs. Clusters are restricted to deploying into VPCs that have a peering connection to the VPC in which the console is deployed, and the console’s VPC.

A peering connection allows you to route traffic between two virtual private clouds without exposing the clouds to outside connections.

Please note: when the Ark console is deployed in a private subnet, the Use Private IP addresses option is always true.
CHAPTER 4

Registering an Ark Cluster with PEM

Postgres Enterprise Manager (PEM) is an enterprise management tool designed to assist database administrators, system architects, and performance analysts in administering, monitoring, and tuning PostgreSQL and EnterpriseDB Advanced Server database servers. PEM can manage and monitor a handful of servers or hundreds of servers from a single console, allowing complete control over all aspects of your databases.

A PEM installation consists of a PEM server, one or more PEM agents, and the backing database server (named pem). The PEM server includes a web interface that allows you to monitor and manage the database instances that are registered with a PEM agent. A PEM agent is responsible for returning metric information to the PEM server, and performing tasks on the database instances that are registered with that agent.

The Ark console installation includes a pre-configured PEM server, a PEM agent, and the pem backing database. You also have the option of using a remote PEM server to monitor your Ark console. A remote server is a PEM server that has been installed and configured on another host.

Fig. 4.1: Specifying Deployment Details
During deployment, you will be prompted to use the **PEM Server Mode** drop-down listbox to select a deployment mode:

- **Select DISABLE** to indicate that clusters deployed on the host should not be registered with the PEM server.
- **Select LOCAL** to indicate that you would like to use the PEM server that resides on your local host. If you select LOCAL, the PEM deployment will use default values assigned by the installer.
 - The IP address of the PEM server host will be the IP address of the Ark host.
 - The PEM Server DB Port will monitor port 5432.
 - The PEM server database user will be named `postgres`.
 - The password associated with the PEM server will be the same password as the Ark console.
- **Select REMOTE** to indicate that you would like to use a PEM server that resides on another host, and provide connection information on the Ark console deployment dialog.
 - Provide the IP address of the PEM server host in the **PEM Server IP Address** field.
 - Specify the port monitored for connections by the PEM server in the **PEM Server DB Port** field.
 - Specify the port monitored for API connections in the **PEM Server API Port** field.
 - Provide the name that should be used when authenticating with the PEM server in the **PEM Server Username** field.
 - Provide the password associated with the PEM server user in the **PEM Server Password** field.

If you select REMOTE, whenever a new cluster node is created on this console, it will be registered for monitoring by the PEM server. Please note that you must modify the `pg_hba.conf` file of the pem database on the remote PEM server to accept connections from the host of the Ark console.
4.1 Syncing with the PEM Server

When you register with PEM during console deployment, the *PEM Sync Mode* field will be enabled. Use the drop-down listbox in the PEM Sync Mode field to specify your preference for synchronizing with the PEM server.

If you select **DISABLED:**

- Any object that Ark registers with PEM will be owned by the PEM user specified in the PEM Server *Username* field (if the PEM server is a REMOTE server), or by *postgres* (if the PEM server resides on the host of the LOCAL Ark server).
- Any Ark user that registers with a console instance will not be added as a PEM user.

If you select **ENABLED:**

- Any Amazon Role or Azure Group that is accessible by the Ark user that is deploying the console is added to the PEM server as a group role. The PEM role created for the project, role, or group is not a login role. To simplify management, each role that represents a project, role, or group is also a member of the PEM *ark-team* group role.

- Each user that registers with a monitored Ark instance is also created as a PEM login user. The user account will be displayed in the *Login/Group Roles* node of the PEM client tree control. To access the properties dialog for the user, right click on the user name, and select *Properties* from the context menu.

Each PEM user account that corresponds with a registered Ark user will belong to the *ark-user* role. The PEM user account will also have membership in any *ark-team* roles that have been created to correspond to the project, role, or groups that the Ark user has permission to access.
The PEM user account is not password enabled. To set a password for the account, an administrative user must navigate to the PEM role's Definition tab, and provide a password in the Password field.

If you use the Ark console to delete an Ark user, the synchronization service will disable the corresponding user on the PEM server. The service will ensure that membership in ark-user is revoked, and the role will no longer be a LOGIN role. Please note that the sync service will only modify those roles that are a member of the ark-user team.

The sync service will also ensure that the corresponding pem-team role is deleted if a tenant, group, or role is deleted on an Ark host.
Ark will sync with PEM on the schedule specified by the PEM Synchronization Interval field. The field accepts interval values in minutes; by default, Ark will attempt to synchronize every 10 minutes.
4.2 Monitoring an Ark Cluster

After deployment, you can access the PEM web interface in your choice of browser:

- If the PEM server resides on a local host, navigate to: https://<address_of_ark_server>/pem
- If the PEM server resides on a remote host, navigate to: https://<address_of_remote_pem_server>:<port>/pem

When prompted, provide the PEM credentials to connect.

If you have registered the Ark console with a remote PEM server during deployment, use the PEM server credentials to connect.

If you have deployed the PEM server locally (on the Ark host), the password associated with the Ark backing database will be used for the PEM server. Unless you have modified the password (either during deployment in the DB User New Password field, or after deployment in the console backing database), the Ark database superuser has the following connection credentials at deployment:

 name: postgres
 password: 0f42d1934a1a19f3d25d6288f2a3272c6143fc5d

You should change the password after deployment to a unique password (known only to trusted users).

After authenticating with the server, the PEM web interface allows you to manage your monitored nodes.
When you launch an Ark cluster on a console that is registered with PEM, Ark will register each node of the cluster with the PEM server for monitoring. Each node of an Ark cluster, and the agent that resides on the node is displayed in a Group-level heading in the PEM web interface browser tree control. The node name is:

 Ark-Cluster<cluster_name>

Where <cluster_name> is the name assigned to the cluster. Right click on the IP address of a cluster node, and provide the password specified when the cluster was provisioned to authenticate with the database and view the database objects that reside on the cluster in the tree control.

PEM documentation is available via the PEM web interface Help menu, or at the EnterpriseDB website.

Known Limitations

If your Ark clusters are provisioned with private IP addresses, they may not be reachable from the PEM server. If this is the case, you will not be able to use PEM to remotely browse the database server. PEM agents running on the Ark cluster nodes will be able to report status to the PEM Server.

Please note that the user identifier associated with an Ark cluster (the cluster owner) must be unique across all Ark consoles supported by a given PEM server.
4.3 Registering a PEM Agent

The PEM agent is responsible for executing tasks and reporting statistics from a monitored Postgres instance to the PEM server. The PEM agent is installed by the pem-agent RPM. By default, all engine configurations shipped with the Ark console include the PEM agent.

After installing the PEM agent, the agent must be registered on each node that will be monitored by the PEM server. The steps that follow detail registering the PEM agent with the server, and configuring the server to monitor the agent.

Please note that before registering a node for monitoring, you must:

- modify the `pg_hba.conf` file on the node hosting the PEM server to allow connections from any monitored node.
- modify the `pg_hba.conf` file on any monitored node, allowing connections from the PEM server.
- configure the agent on each monitored node.

The steps that follow provide detailed information about each configuration step. The steps assume that you have installed and configured a PEM server; for information about installing and configuring PEM, please visit the EnterpriseDB website at www.enterprisedb.com.

Please note: when a cluster node is stopped (for example, when scaling down), or if a cluster is deleted, the Monitoring tab of the PEM web interface will alert you that the agent on that node is down.

If the cluster has been deleted (and the agent will not resume monitoring), you can use the PEM Browser tree control to remove the agent definition from the PEM server. Expand the PEM Agents node of the tree control, and right-click on the name of the deleted agent; then, select Delete/Drop from the context menu.
1. Create an EDB Ark Cluster

Navigate to the Clusters tab, and create a new cluster that is provisioned using an engine definition that includes the pem-agent RPM package in the list of required RPM packages. For detailed information about creating a new server cluster, please see the EDB Ark Getting Started Guide, available through the Ark console’s Dashboard tab.

2. Modify the pg_hba.conf file to allow connections to the PEM Server

The PEM server consists of an instance of PostgreSQL, an associated PostgreSQL database for storage of monitoring data, and a server that provides web services for the PEM web interface. The PEM server may reside on a host outside of a monitored EDB Ark cluster, or on the master node of an Ark cluster.

Before a PEM agent that resides on an Ark cluster can communicate with the PEM server, you must modify the pg_hba.conf file of the PostgreSQL database that stores PEM statistics to allow connections from any monitored servers as well as the PEM client.

With your choice of editor, modify the pg_hba.conf file of the PEM Server backing database, adding entries for the IP address of the EDB Ark cluster. The connection properties should allow connections that use cert and md5 authentication.

![Fig. 4.8: Modifying the pg_hba.conf file](image)

3. Restart the PEM Server Database

After modifying the pg_hba.conf file for the PostgreSQL installation that stores statistical information for PEM, you must restart the PEM backing database server to apply the changes. The name of the PEM service is:

```
postgresql-<x>
```

Where `<x>` specifies the version. For example, the following command restarts a PostgreSQL 10 service:

```
service postgresql-10 restart
```

Use your platform and version-specific command to restart the PEM server.

4. Establish an SSH Session with the Monitored Node of the Ark Cluster

Use the Download SSH Key icon on the Clusters tab to download the SSH key for your cluster. When you download the key, a popup will open, informing you of the steps required to connect to the master node of your cluster.

4.3. Registering a PEM Agent
Open a terminal window, modify the permissions on the downloaded file, and use the command shown on the popup to establish a connection with the server.

5. Modify the pg_hba.conf file to Allow Connections from the PEM Server

Use your choice of editor to modify the pg_hba.conf file on the Ark node. By default, the pg_hba.conf file is located in /var/lib/ppsas/<x.x>/data, where <x.x> specifies the Ark server version.

Add entries to the pg_hba.conf file that allow connections from the PEM server.

6. Restart the Database Server on the Ark Cluster

After modifying the pg_hba.conf file, you must restart the server to apply the changes. The name of the service is Arkdb. Use the platform and version specific command for your cluster to restart the Arkdb service.

7. Configuring the PEM Agent

You must register each PEM agent that resides in an Ark cluster with the PEM server. Using the SSH connection to the cluster node on which the agent resides, navigate into the directory that contains the PEM agent installation:

 cd /usr/pem-7.0/bin

Then, invoke the PEM agent registration program:

 PGPASSWORD=password ./pemagent --register-agent --pem-server <x.x.x.x> --pem-port <port> --pem-user <user_name>

Where:

 <x.x.x.x> specifies the IP address of the PEM server.
 <port> specifies the port on which the server is listening for connections
 <user_name> specifies the name of the PEM user.

The program will confirm that the agent was registered successfully.
After registering the agent, use the following command to ensure that the service is configured to restart when if the node restarts, and that the pemagent service is running:

```
chkconfig pemagent on && service pemagent start
```

For more information about Postgres Enterprise Manager, and to download PEM documentation, please visit the EnterpriseDB website.
When deploying the console, you can specify the type of authentication used by the Ark console. Authentication can be native password (provided by the service provider), or performed by the PostgreSQL backing database that resides on the host of the Ark console.

Using Native Password Authentication

When using native password authentication, an Administrative user must:

- On AWS: use the User Administration section of the Ark Admin tab to register Ark users.
- On Azure: use the Azure console to create user accounts and manage user access.

Using PostgreSQL Authentication

Ark supports using the following PostgreSQL authentication types:

- PASSWORD
- LDAP
- RADIUS
- PAM
- BSD

For information about configuring authentication on a Postgres server, please consult the Postgres documentation available at the EnterpriseDB website.

If you choose to use PostgreSQL authentication when deploying the Ark console, an Administrative user must:

- On AWS: add each user to the Ark backing database, and then use the User Administration section of the Ark Admin tab to register Ark users. On an Amazon host, the user name and associated password specified in the Ark backing database must match the credentials specified when registering the user in the Ark console.
- On Azure: add each user to the Ark backing database. Registration will be complete when the user logs in to the Ark console.

You can use the psql client to add a user to the postgres database. To use the psql client, SSH to the host of the Ark console; navigate into the bin directory, and connect to the psql client with the command:
When prompted, supply the password of the postgres database user. After connecting to the database, you can use the `CREATE ROLE` command to add a user to the database:

```
ADD USER <user_name> WITH PASSWORD <password>;
```

Where:

- `<user_name>` specifies the name of the Ark user. `<password>` specifies the password associated with the user name.

For detailed information about using the `psql` client please see the Postgres documentation.

After the administrative user adds the end-user, the end-user will complete the registration process by navigating to the URL of the console, and logging in.
5.1 Using Provider Authentication on AWS

If you use authentication provided by Amazon, an Ark Administrative user can use the Ark Administrator’s console to add, modify, or delete user accounts.

![Diagram of provider authentication process]

Fig. 5.1: Using Provider Authentication on AWS

When the user provides credentials to the Ark console, the credentials are passed to Amazon for verification. If the credentials are successfully verified, the role is evaluated to determine if the user should have access to the Administrator console or the end-user console.
5.2 Using PostgreSQL Authentication on AWS

When Postgres authentication is enabled, the first user to log in becomes the service user.

![Flowchart](image)

Fig. 5.2: Using PostgreSQL Authentication on AWS

An Ark Administrative user must use a client application (such as psql or PEM) to add each user to the Ark backing database, and then use the User Administration table to register Ark users. The user name and associated password specified in the Ark backing database must match the credentials specified when registering the user in the Ark console. If Ark successfully verifies the credentials, the credentials are passed to Amazon for evaluation to determine console access.
5.3 Using Provider Authentication on Azure

If you use native password authentication provided by Azure you must use the Azure Active Directory console to create and manage user accounts.

![Diagram of provider authentication process]

Fig. 5.3: Using Provider Authentication on Azure

When the user provides credentials to the Ark console, the credentials are passed to the provider for verification. If the credentials are successfully verified, the role is evaluated to determine if the user should have access to the Administrator console or the end-user console.
5.4 Using PostgreSQL Authentication on Azure

When Postgres authentication is enabled on Azure, the first user to log in to the Ark console becomes the service user. An administrator will be required to use either the PEM web interface or psql to add each successive user to the Ark backing database. User registration will be completed when the end user logs in to the Ark console.

The credentials of the Ark service user are verified by the provider; all other credentials are verified by the Postgres server on the Ark console host. If Ark successfully verifies the credentials, the credentials are then evaluated to determine console access.

Fig. 5.4: Using PostgreSQL Authentication on Azure
Some features of the Ark Administrative console will not work properly when pop-up blocker (or Ad blocker) software is enabled. To take full advantage of console features, you should disable pop-up blocker software from restricting pop-ups from the URL/s used by the Ark console or Ark clusters. After disabling pop-up blocker software for your console, follow the platform specific steps to deploy an Ark console:

- If your cluster resides on an Amazon public cloud, see *Installing the Ark Console on AWS* for more information.
- If your cluster uses an Azure host, see *Installing the Ark Console on Azure* for more information.
6.1 Installing the Ark Console on AWS

The EDB Ark console is distributed through the Amazon AWS Marketplace in an Amazon machine instance. To install the Ark console on your Amazon instance, you will need to:

- Launch an *Ark instance* with an Amazon AWS Marketplace AMI.
- Create an *Amazon role* and *register an administrative user*.
- Configure the *Ark console*.
- Create an Amazon role and *register an Ark console user*.
6.1.1 Launching the Ark Console Instance on AWS

Before launching an AMI into an Amazon VPC, you must ensure that the VPC has access to an Internet Gateway. If your VPC does not have access to an Internet Gateway, you can use the Amazon management console to create an Internet Gateway and associate it with your VPC.

Please note: if you are using EC2-Classic networking, you do not need to provide an Internet Gateway.

To launch an Amazon EC2 instance that contains a running copy of the Ark console and the Ark console’s backing database, connect to your Amazon AWS Marketplace account and locate the AMI that contains the Ark console. Navigate through the introductory page for the AMI, selecting AWS service options that are appropriate to your application, and agreeing to the Terms and Conditions. When you agree to the Terms and Conditions, Amazon will process the subscription.

After you subscribe, Amazon will forward an email to the address associated with your user account that includes launch instructions for the AMI.

Then, use the Amazon launch wizard to launch your instance, noting the requirements that follow on Step 3 and Step 6 of the wizard.

![Step 3: Configure Instance Details](image)

Fig. 6.1: Step 3 - Enabling the startup script
When configuring your instance, you should include the following selections on the Step 3: Configure Instance Details dialog of the Amazon launch wizard:

- Use the Auto-assign Public IP drop-down to specify Enable to automatically assign an IP address to the new instance.
- Use the Advanced Details section to provide the text of the script that will start the Ark console setup or recovery dialog.

```bash
#!/bin/sh
rm -f /usr/share/tomcat/startup-password.txt
echo "<console_password>" > /usr/share/tomcat/startup-password.txt
chown tomcat:tomcat /usr/share/tomcat/startup-password.txt
chmod 600 /usr/share/tomcat/startup-password.txt
```

Replace the `<console_password>` variable in the script with a password for the console. When the user first connects to the AWS Ark console, they will be required to provide the console password provided in the script.

Continue through the launch wizard; please note that when configuring your security group, the group must allow communication between the nodes of the cluster. When defining the security group, include the rules listed in the table below.

<table>
<thead>
<tr>
<th>Rule Type</th>
<th>Direction</th>
<th>Port or Range</th>
<th>Remote</th>
<th>CIDR Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>All ICMP</td>
<td>Ingress</td>
<td></td>
<td>CIDR</td>
<td>0.0.0.0/0</td>
</tr>
<tr>
<td>SSH</td>
<td></td>
<td>22</td>
<td>CIDR</td>
<td>0.0.0.0/0</td>
</tr>
<tr>
<td>HTTP</td>
<td></td>
<td>80</td>
<td>CIDR</td>
<td>0.0.0.0/0</td>
</tr>
<tr>
<td>HTTPS</td>
<td></td>
<td>443</td>
<td>CIDR</td>
<td>0.0.0.0/0</td>
</tr>
<tr>
<td>Custom TCP</td>
<td>Ingress</td>
<td>6666</td>
<td>CIDR</td>
<td>0.0.0.0/0</td>
</tr>
<tr>
<td>Custom TCP</td>
<td>Ingress</td>
<td>7800 to 7999</td>
<td>CIDR</td>
<td>0.0.0.0/0</td>
</tr>
<tr>
<td>Custom TCP</td>
<td>Ingress</td>
<td>5432</td>
<td>CIDR</td>
<td>0.0.0.0/0</td>
</tr>
</tbody>
</table>

Please Note:

- The CIDR addresses specified in the rules for SSH, HTTP, HTTPS, and 5432 can be customized to restrict access to a limited set of users.
- The CIDR addresses specified for port 6666 and ports 7800 through 7999 must specify a value of 0.0.0.0/0.
- The Custom TCP rule that opens ports 7800 through 7999 provides enough ports for 200 cluster connections; the upper limit of the port range can be extended if more than 200 clusters are required.
6.1.2 Creating the Amazon AWS Service User and Service Role

Before configuring the Ark console on an Amazon host and creating users, you must create an Amazon service user and service role. Ark uses the service role when performing Ark management functions (such as console backups). The Ark console uses the service role credentials (the cross account keys) to assume the IAM roles assigned to Ark users. This enables Ark to securely manage AWS resources. When configuring the Ark console, you are required to provide the setup dialog with details about the AWS service user and the service role. Specify:

- the Amazon Role ARN (resource name) that will be used by the Ark service in the Service Account Role ARN field.
- the Amazon external ID that will be used by the Ark service user in the Service Account External ID field.
- the AWS_ACCESS_KEY_ID associated with the AWS role used for account administration in AWS Access Key field.
- the AWS_SECRET_ACCESS_KEY associated with the AWS role used for account administration in AWS Secret Key field.
Creating the AWS Service User

To create the Ark console’s service user account, connect to the Amazon AWS management console, and navigate through the IAM menu (Identity and Access Management) to the Users dashboard; select the Add user button to open the Add user dialog.

![Add user dialog](image)

Fig. 6.2: The AWS Add user dialog

On the Add user dialog:

- Provide a name for the service user account in the User name field.
- Check the box to the left of Programmatic access.

Click Next: Permissions to continue. Click the Attach existing policies directly button, and then the Create policy button to open the Create policy dialog in a new tab.

When the Create policy dialog opens, select the JSON tab, and provide the policy definition.
After copying in a policy, click the **Review policy** button to continue.
Provide a name and a description for the service policy definition, and click the **Create policy** button to continue.

Return to the **Add user** tab, and click the **Refresh** button. Check the box to the left of the new policy, and click **Next: Tags**.

IAM user tags are optional; you can click **Next: Review** to continue.
Review the account details, and click the Create user button to create the user. The AWS console will confirm that the user has been added successfully.

Keep a copy of the access key values displayed on the console; you must provide the values when configuring your Ark console:

- Provide the Access key id in the AWS Access Key field on the Ark console setup dialog.
- Use the Show button to display the Secret access key. You must provide the Secret access key in the AWS Secret Key field on the Ark console setup dialog.
Creating the AWS Service Role

After creating the service user, you must create a service role. Connect to the Amazon management console, and navigate through the Identity and Access Management dashboard to the Roles dashboard. Then, click the Create role button to open the Create role dialog.

Select the AWS service button, and the EC2 service type; click Next: Permissions to continue.
When the `Attach permissions policies` dialog opens, do not select a policy; instead, click `Next: Tags`, then `Next: Review` to continue.

When the `Review` dialog opens, specify a name and description for the new role and click the `Create role` button. The new role will be displayed in the role list on the Amazon IAM Roles page. Click the role name to display detailed
information about the role on the **Summary** dialog.

![AWS Summary dialog](image)

Fig. 6.11: The AWS Summary dialog

The **Summary** dialog will display a Role ARN, but the ARN will not be enabled until the security policy and trust policy are updated. To modify the inline security policy, click the **Add inline policy** button; the button is located on the **Permissions** tab.
Copy the provided security policy into the JSON tab on the Create policy dialog. After providing security policy information, click Review Policy to provide a name for the policy, and return to the role information page.
Navigate to the Trust relationships tab, and select the Edit Trust Relationship button to display the Policy Document. Replace the displayed content of the policy document with the provided Amazon IAM Role Trust Relationship.

Click the Update Trust Policy button to finish.
The role detail Summary will display values that you must provide when configuring your Ark console:

- The **Role ARN** associated with the service role must be provided in the **Service Account Role ARN** field.

- The external ID associated with the service role must be provided in the **Service Account External ID** field. You can find this value under the **Conditions** section of the **Trust Relationships** tab.
6.1.3 Configuring the Ark Console

After launching the instance in the Amazon console, navigate to the public IP address of the cluster.

![Fig. 6.15: Deploying the console](image)

When prompted, provide the password specified when launching the console, and click Deploy Console.
Use fields in the first section of the dialog to provide values that are specific to your Amazon account:

- Use the **AWS Access Key** field to specify the Amazon access key ID associated with the AWS role that will be used for account administration.

- Use the **AWS Secret Key** field to specify the Amazon secret key associated with the AWS role that will be used for account administration.

- Use the **Service Account Role ARN** field to specify the Amazon Role ARN (resource name) that should be used by the Ark service user when performing management functions on behalf of Ark.

- Use the **Service Account External ID** field to specify the Amazon external ID that should be used by the Ark service user.

- Use the **Service Account ID** field to specify the identity of the service account.

- Use the **Service Account Password** field to provide the password associated with the service account.

- Use the **Enable Self Registration** field to specify if the Ark console should allow self-registration for Ark users; specify `true` to allow self-registration, or `false` to disable self-registration.
Use fields in the next section to provide general server properties:

- **Use the Console DNS Name field** to specify a custom DNS name for the console. The property does not assign the DNS name to the console, but any notification emails that refer to the console will refer to the console by the specified name. If you do not provide a custom DNS name, the IP address of the console will be used in notifications.

- **Use the Contact Email Address field** to specify the email address that will be included in the body of cluster status notification emails.

- **Use the Email From Address field** to specify the return email address used on cluster status notification emails.

- **Use the Notification Email field** to specify the email address to which email notifications about the status of the Ark console will be sent.

- **Set the CC From Address field to true** to instruct Ark to send a copy of the email to the Email From Address anytime a notification email is sent.

- **Use the API Timeout field** to specify the number of minutes that an authorization token will be valid for use with the API.

- **Use the WAL Archive Container field** to specify the name of the object storage container where WAL archives (used for point-in-time recovery) are stored. You must provide a value for this field; once set, this property must not be changed.
 - The bucket name must be at least 3 and no more than 63 characters long.
The name can contain lowercase letters, numbers, and hyphens; the name must start with and end with a lowercase letter or number.

A series of one or more labels; adjacent labels are separated by a single period (.). A name may not be formatted as an IP address.

For more information, please visit: http://docs.aws.amazon.com/AmazonS3/latest/dev/BucketRestrictions.html

- Use the Dashboard Docs URL field to specify the location of the content that will be displayed on the Dashboard tab of the Ark console. If your cluster resides on a network with Internet access, set the parameter to DEFAULT to display content (documentation) from EnterpriseDB; to display alternate content, provide the URL of the content. To display no content in the lower half of the Dashboard tab, leave the field blank.

- Use the Dashboard Hot Topics URL field to specify the location of the content that will be displayed on the Dashboard tab of the Ark console. If your cluster resides on a network with Internet access, set the parameter to DEFAULT to display content (alerts) from EnterpriseDB; to display alternate content, provide the URL of the content. Leave the field blank to omit content.

- Use the Enable Console Switcher field to indicate if the console should display console switcher functionality.

- Set Enable Postgres Authentication to true to instruct Ark to enforce the authentication method configured on the backing Postgres server. Supported authentication methods include password, LDAP, RADIUS, PAM, and BSD. If false, Ark will use the default authentication method (password).

- Use the Template Restrict New Users field to configure the Ark console to make any new user a Template Only user by default. You can later modify the user definition in the User Administration table to specify that a user is not a template only user.

- Use the Cluster Event Retention Limit field to specify how long the console will keep events for deleted clusters. The default value is 14 days.

![Dashboard Docs URL](image)

Fig. 6.18: Provide connection details for PEM

Use fields in the next section to provide connection details for a PEM server host; this will allow Ark to register and unregister PEM agents and clusters:

- Use the PEM Server Mode drop-down listbox to select a deployment mode:
Select **DISABLE** to indicate that clusters deployed on the host should not be registered with the PEM server.

Select **LOCAL** to indicate that you would like to use the PEM server that resides on your local host. If you select **LOCAL**, the PEM deployment will use default values assigned by the installer.

- The IP address of the PEM server host will be the IP address of the Ark host.
- The PEM Server Port will monitor port 5432.
- The PEM server database user will be named `postgres`.
- The password associated with the PEM server will be the same password as the Ark console.

Select **REMOTE** to indicate that you would like to use a PEM server that resides on another host, and provide connection information on the Ark console deployment dialog. If you select **REMOTE**, whenever a new cluster node is created on this console, it will be registered for monitoring by the PEM server.

- Provide the IP address of the PEM server host in the **PEM Server IP Address** field.
- Specify the port monitored for connections by the PEM server in the **PEM Server DB Port** field.
- Specify the port on the PEM server host used for PEM API connection attempts by the Ark server in the **PEM Server API Port** field. Not valid if the PEM server mode is **DISABLED** or **LOCAL**.
- Provide the name that should be used when authenticating with the PEM server in the **PEM Server Username** field.
- Provide the password associated with the PEM server user in the **PEM Server Password** field.
- Use the **PEM Sync Mode** drop-down listbox to **ENABLE** or **DISABLE** synchronization between the Ark server and the PEM server.
- Use the **PEM Synchronization Interval** field to specify the number of minutes between attempts to synchronize the Ark console with the PEM server.

![Image of SAML service provider configuration](image-url)

Fig. 6.19: Provide information about the service provider

If you specify `true` in the **SAML auth enabled** field, the Ark console will display the properties required to use
SAML authentication when connecting to the Ark console. Use fields on the deployment dialog to specify SAML authentication properties. Use fields in the next section to provide information about the service provider:

- Use the **SP Entity ID** field to provide a URI that specifies the identifier of the service provider.
- Use the **SP Consumer Service URL** field to specify the URL from which the response from the identity provider will be returned.
- Use the **SP Consumer Service Binding** field to specify the SAML protocol binding to be used when returning the response message from the identity provider.
- Use the **SP Logout Service URL** field to specify the URL to which the service provider will specify information about where and how the **Logout Response** message MUST be returned to the requester, in this case our service provider.
- Use the **SP Logout Service Binding** field to specify the SAML protocol binding to be used when returning the **LogoutResponse** or sending the **LogoutRequest** message.
- Use the **SP Name ID Format** field to specify the constraints on the name identifier that will be used to represent the requested subject.
- Use the **SP Certificate** field to specify certificate information; this is usually x509cert. The private key of the service files are provided by files placed in the **certs** folder.
- Use the **SP Private Key** field to specify the location of the service providers private key; this must be in PKCS#8 format.

Fig. 6.20: Provide information about the identity provider

Use fields in the next section to provide information about the identity provider:

- Use the **IDP Entity ID** field to specify the identifier of the identity provider (this must be a URI).
- Use the **IDP Sign On URL** field to specify the URL target of the identity provider (where the service provider will send the Authentication Request Message).
- Use the **IDP Sign On Service Binding** field to specify the SAML protocol binding to be used when returning the response message. This version of Ark only supports the HTTP-Redirect binding.
- Use the **IDP Logout Service URL** field to specify the URL Location of the identity provider to which the service provider will send a single logout Request.
- Use the **IDP Logout Service Response URL** field to specify the URL Location of the identity provider to which the service provider will send a single logout response.
Use the IDP Single Logout Service Binding field to specify the SAML protocol binding to be used when returning the response message.

Use the IDP Certificate field to specify the Public x509 certificate of the identity provider.

Fig. 6.21: Provide information about your SAML preferences

Use fields in the next section to provide your SAML preferences:

- Use the Encrypted Name ID field to indicate that the name identifier of the samlp:logoutRequest sent by this service provider will be encrypted; specify true or false.

- Use the Auth Request Signed field to indicate if the samlp:AuthnRequest messages sent by this service provider will be signed; specify true or false.

- Use the Logout Request field to indicate if the samlp:logoutRequest messages sent by the service provider will be signed; specify true or false.

- Use the Logout Response Signed field to indicate if the samlp:logoutResponse messages sent by the service provider will be signed; specify true or false.

- Use the Sign messages field to indicate if the samlp:Response, samlp:LogoutRequest, and samlp:LogoutResponse elements received by the service provider to be signed; specify true or false.

- Use the Sign Metadata field to indicate that the metadata of this service provider must be signed; specify true or false.
• Use the **Encrypt Assertions** field to indicate that the assertions received by this service provider must be encrypted; specify `true` or `false`.

• Use the **Encrypt Name ID** field to indicate that the name identifier received by this service provider must be encrypted; specify `true` or `false`.

• Use the **Authentication Context** field to specify that `set empty` and `no AuthContext` will be sent in the AuthNRequest. You can set multiple values in a comma-delimited list.

• Use the **Auth Comparison Parameters** field to specify that the `authn` comparison parameter to be set; this field defaults to `exact`.

• Use the **XML validation** field to indicate if the service provider will validate all received xmls; specify `true` or `false`.

• Use the **Signature Algorithm** field to specify the algorithm that the toolkit will use for the signing process. Specify one of the following:
 - `http://www.w3.org/2000/09/xmldsig#rsa-sha1`
 - `http://www.w3.org/2000/09/xmldsig#dsa-sha1`
 - `http://www.w3.org/2001/04/xmldsig-more#rsa-sha256`
 - `http://www.w3.org/2001/04/xmldsig-more#rsa-sha384`
 - `http://www.w3.org/2001/04/xmldsig-more#rsa-sha512`

![Fig. 6.22: Provide information about your organization](image)

Use fields in the next section to provide information about your organization:

• Use the **Organization Name** field to specify the name of the organization for which authentication is being provided.

• Use the **Display Name** field to specify the display name of the organization.

• Use the **Organization URL** field to specify the URL of the organization.

• Use the **Organization Language** field to specify the primary language used by the organization.

• Use the **Technical Contact Name** field to specify the name of a technical contact.

• Use the **Technical Email Address** field to specify a contact email address for the technical contact.

• Use the **Support Contact Name** field to specify the name of a support contact.
• Use the SAML Support Email Address field to specify the email address of the SAML support contact.

Fig. 6.23: Provide console backup information

Use fields in the next section to specify your console backup storage preferences:
• Use the Storage Bucket field to specify the name of the bucket in which backups will be stored.
• Use the Console Backup Folder field to specify the name of the backup folder within the storage bucket.

Fig. 6.24: Specify console password preferences

Use fields in the next section to specify database password preferences for the database superuser (postgres) on the backing PostgreSQL database (postgres):
• Use the DB User New Password field to set the password for the postgres user on the console’s backing database (postgres).
• Use the DB User Confirm Password field to set the password for the postgres user on the console’s backing database (postgres).

Fig. 6.25: Select a timezone for the server

Use the last field to specify a timezone for the server:
• Use the drop-down listbox in the Timezone field to select the timezone that will be displayed by the Ark console.

When you’ve completed the setup dialog, click the Save button to validate your changes. The Ark console will prompt you to confirm that you wish to restart the server; when prompted, click the Restart button to restart the server and start the Ark console.
6.1.4 Creating an Amazon Role and Registering an Ark Console User

After deploying the console, you must create an Amazon role with an associated security policy that will be applied to the Ark console user. You can use the same security policy for multiple users, or create additional Amazon roles with custom security policies for additional users. Each time you register a user, you will be prompted for a Role ARN. The Role ARN determines which security policy will be applied to that user.

To define an Amazon role, connect to the Amazon management console, and navigate through the Identity and Access Management dashboard to the Roles dashboard, and click the Create role button.

![Create role dialog]

Fig. 6.26: The Create role dialog

When the Create role dialog opens, select the AWS service button and highlight the EC2 bar, and click Next: Permissions to continue.
When the Attach permissions policies dialog opens, do not specify a policy; instead, click Next: Review to continue.

Fig. 6.27: The Attach permissions policies dialog
Use the **Review** dialog to provide a name and a description; then, click **Create role**. The role will be displayed in the role list on the Amazon IAM **Roles** page. Highlight the role name to review account details.

The **Summary** dialog will display a Role ARN, but the ARN will not be enabled until the security policy and trust policy are updated.

After completing the **Create Role** wizard, you must modify the inline policy and trust relationship (defined by the
security policy) to allow Ark to use the role. Click the **Add inline policy** link to add a security policy. Then, copy the *permission policy text* into the **JSON** tab.

Create policy

A policy defines the AWS permissions that you can assign to a user, group, or role. You can create and edit a policy in the visual editor and using JSON.

![Create policy interface](image)

Then, click **Review Policy** to return to continue to the **Review policy** page and provide a name for the policy. Then, click the **Create policy** button to return to the role summary page.

Select the **Trust relationships** tab, and click the **Edit trust relationship** button to update the trust relationship assigned to the role.
Fig. 6.31: Editing the trust relationship

Replace the displayed content with the provided policy document.

Note: EDB-ARK-SERVICE is a placeholder within the trust policy. You must replace the placeholder with the External ID provided on the Step 2 tab of the Ark console New User Registration dialog.

To retrieve the External ID, open another browser window and navigate to the Log In page of your Ark console.

Fig. 6.32: Accessing the New User Registration dialog
Click the Register button to open the New User Registration dialog.

![New User Registration dialog](image)

Fig. 6.33: The New User Registration dialog

Enter user information in the User Details box located on the Step 1 tab:

- Enter your first and last names in the First Name and Last Name fields.
- Enter a password that will be associated with the user account, and confirm the password in the Password and Verify Password fields.
- Provide an email address in the Email field; please note that the email address is used as the Login identity for the user.
- Use the drop-down listbox in the Cloud Provider field to select the host on which the cloud will reside.
- Enter the name of the company with which you are associated in the Company Name field.

When you’ve completed Step 1, click Next to open the Step 2 tab. The Step 2 tab of the New User Registration dialog will display a random External ID number. Copy the External ID from the Step 2 dialog into the trust policy, replacing EDB-ARK-SERVICE. Please note that you must enclose the External ID in double-quotes ("). Click the Update Trust Policy button to save your edits and exit the dialog.
Your Amazon IAM role ARN is displayed on the Amazon role detail panel.

Enter your Amazon IAM role ARN in the Role Arn field on the Step 2 dialog, and click Finish to complete the registration. Select Cancel to exit without completing the registration.

After registering your user identity and connection information, you are ready to log in to the Ark console.
Provide the email address in the Email field, and the associated password in the Password field, and click Log In to connect to the Ark management console.

In preparation for non-administrative user to connect, an Administrator should:
1. Use the Ark console to define a server image for each server that will host a database cluster. For detailed information about using the Ark console to create server images, see Creating a Server Image.

2. Use the Ark console to create database engine definitions. For detailed information about defining a database engine, see Creating a Database Engine.
6.2 Installing the Ark Console on Azure

The EDB Postgres Ark image is available on Azure Marketplace; installation and configuration is a simple process. To enable the Ark console on Azure, you must:

- Create an Azure user account with sufficient privileges to access the Ark Administrator’s console.
- Create an Azure network security group.
- Create an Azure storage account.
- Launch a VM Image that contains the Ark console.
- Configure the Ark console.
- Register an Ark Administrative user.
6.2.1 Providing Administrative Access to an Azure User

To provide sufficient privileges for an Azure user account to access the Ark administrative console, navigate to the Azure Resource groups panel, highlight the name of the resource group in which your instance will reside, and select Access control (IAM) from the Resources panel; then, click the +Add button to access the Add permissions panel.

On the Add permissions panel, use the drop-down listbox in the Role field to select Owner; use the drop-down listbox in the Select field to select the user(s) that should have administrative access to the Ark console. When you've made your selections, click Save.

To limit the scale of the access to the resource group in which the image resides, use the Resources - Access control (IAM) panel to specify a value of This resource in the scale field for the specified user(s).

For more information about delegating Azure permissions, please see the Azure documentation.
6.2.2 Creating a Security Group

Before connecting to the Ark console, you must create a security group that will allow connections from your web browser, and between the Ark console and your instance. To create a security group, navigate to the Microsoft Azure Network security groups page, and click the Add button. When the Create network security group panel opens:

- Use the Name field to provide a name for the security group.
- Use the drop-down listbox in the Subscription field to select a subscription plan.
- Use the Resource group field to provide a name for the associated resource group, or highlight the Use existing radio button and use the drop-down listbox in the Resource group field to select an existing resource group.
- Use the Location drop-down listbox to specify a location.

When you’ve finished, click Create to create a network security group.

After creating the network security group, you must provide the inbound rules that will allow the Ark console to manage your instance. On the Network security groups page, click the name of the security group that you wish to modify; click Inbound security rules (in the SETTINGS section of the details panel) to modify the inbound rules for the group.

To add a new rule, click the Add button, and provide details about the rule; after providing rule details, click OK. The Azure console will notify you that it is creating the new rule. When defining the security group, include the rules listed below:

<table>
<thead>
<tr>
<th>Rule Type</th>
<th>Direction</th>
<th>Port</th>
<th>Remote</th>
<th>CIDR Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>All ICMP</td>
<td>Ingress</td>
<td></td>
<td>CIDR</td>
<td>0.0.0.0/0</td>
</tr>
<tr>
<td>SSH</td>
<td>CIDR</td>
<td>0.0.0.0/0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HTTP</td>
<td>CIDR</td>
<td>0.0.0.0/0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HTTPS</td>
<td>CIDR</td>
<td>0.0.0.0/0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Custom TCP</td>
<td>Ingress</td>
<td>6666</td>
<td>CIDR</td>
<td>0.0.0.0/0</td>
</tr>
<tr>
<td>Custom TCP</td>
<td>Ingress</td>
<td>port range from 7800 to 7999</td>
<td>CIDR</td>
<td>0.0.0.0/0</td>
</tr>
<tr>
<td>Custom TCP</td>
<td>Ingress</td>
<td>5432</td>
<td>CIDR</td>
<td>0.0.0.0/0</td>
</tr>
</tbody>
</table>

The CIDR addresses specified in the rules for SSH, HTTP, and HTTPS can be customized to restrict access to a limited set of users. The CIDR addresses specified for port 6666 and ports 7800 through 7999 must specify a value of 0.0.0.0/0.

The rule that opens ports 7800 through 7999 provides enough ports for 200 cluster connections; you can extend the upper limit of the port range if more than 200 clusters are required.
6.2.3 Creating a Storage Account

Before launching the Ark console, you should create an Azure storage account in which the Ark console will store console backups. You should not modify the storage account after the console is launched.

To add an Azure storage account, navigate to the Azure All resources page, and click the Add button. In the MARKETPLACE edit box enter Storage account, and hit return. Highlight the Storage account – blob, file, table, queue entry.

Click the Create button located on the bottom of the Storage account–blob, file, table, queue panel to open the Create storage account panel. Use fields on the Create storage account panel to define the storage account.

When you’ve defined your storage account, click Create; the Azure dashboard will keep you informed as the storage account is deployed, and send you a notification when the account creation is finished.

For detailed information about defining a storage account, please consult the Azure documentation.
6.2.4 Launching the Ark Console Instance

The EDB Postgres Ark image is available on the Microsoft Azure Marketplace. To create an Ark virtual machine, log in to the Microsoft Azure management console, and click the green plus sign in the upper-left hand corner to navigate to the Azure Marketplace.

![Fig. 6.39: Selecting an image](image)

When the Azure Marketplace opens, enter EDB Postgres Ark in the search box. Select the EDB Postgres Ark (published by EnterpriseDB Corp.) icon from the search results, and click Create to continue.

The Azure console will open to a dialog that allows you to configure the virtual machine that will host your console deployment. Please note that your virtual machine requirements may vary from the description that follows; the description is intended to provide guidelines about the minimum requirements for a console host for an Ark deployment. Please consult the Azure documentation for detailed information about additional configuration options for your virtual environment.
Use fields on the Basics panel to provide general information about the new virtual machine:

- If applicable, use the Subscription drop-down listbox to select the name of an Azure subscription.
- Use the Resource group drop-down listbox to select the resource group in which the VM will be created.
- Provide a name for the VM in the Virtual Machine Name field.
- If applicable, use the Region drop-down listbox to select the region in which the VM will reside.
- Use the Image drop-down listbox to select the image that will be used for the VM.
- Use the Change size link (in the Size field) to open the Select a VM size panel and select the machine configuration.
Highlight a configuration type, and click the Select button (in the lower-left corner of the panel) to continue.

- Select the radio button next to the Authentication type you wish to use for the Administrator account; we highly recommend using SSH authentication.
- Provide an operating system user name in the User name field; the default operating system user name for Ark images is centos.
- If you have elected to enable SSH public key authentication, provide the key in the SSH public key field.

Use fields on the Networking panel to specify your network configuration preferences. When configuring an Azure virtual machine to use the Ark console, you should:

- Select the Advanced radio button in the Network security group field.
- Use the Network security group drop-down listbox to select the security group that you wish to use for the virtual machine.

Use fields on the Guest config panel to provide an extension that sets the Ark console deployment password. Create a file on your local system named startup-password.sh that contains the following text:

```bash
#!/bin/sh
rm -f /usr/share/tomcat/startup-password.txt
echo "console_password" > /usr/share/tomcat/startup-password.txt
chown tomcat:tomcat /usr/share/tomcat/startup-password.txt
```
To provide the location of the script to the virtual machine, click the Select an Extension to install link, then Custom Script for Linux. Then, click the Create button; use the fields on the Install extension panel to identify the script:

- Use the Script files browser to locate and upload the script file.
- Enter the command that will invoke your script in the Command field; for example, `sh startup-password.sh`.

![Install extension](image)

Fig. 6.42: Installing an extension

Click OK to continue and return to the Settings panel; when you’ve finished updating the settings with your preferences, click OK to continue. Then, click the Review + Create button to validate your virtual machine definition.
Azure will confirm that your machine definition is valid; then, you can click the Create button to create your virtual
machine.

You can monitor the virtual machine’s deployment from the Azure Operations page, the Resource group activity log, or the Virtual machine Overview page.

![Virtual machine details page](image)

Fig. 6.44: The virtual machine details page

While the deployment finishes, you can register your application in the Azure Active Directory. You will need the Public IP address or DNS name of your server for the registration. To copy the IP address, click the copy icon to the right of the public IP address on the VM details panel.
After copying the public IP address of your server, select **App registrations** from the Azure Active Directory page. Click the New application registration button located on the App registrations detail panel.

Fig. 6.45: The New application registration page
Use fields on the Create panel to provide information about your application:

- Provide the application name in the Name field.
- Use the drop-down listbox in the Application type field to select the Application type; select Native for the Ark console application.
- Provide the public IP address of the virtual machine that is hosting the console in the Redirect URI field.

Click Create to register your application.
After creating the virtual machine and registering the application, you must adjust the required permissions, allowing the Windows Azure Service Management API to connect to your application. This will give the Ark server permission to control Azure services via the Service Management API.

Please note that you must be an Azure Global Administrator to grant permissions required by Ark. Click the Settings icon, and then navigate to the Required permissions page for the application, and select +Add.
Click Select an API, and then highlight Windows Azure Service Management API.

Click Select permissions, and then Access Azure Service Management; then, click Select.

6.2. Installing the Ark Console on Azure
Then, click **Grant Permissions**.
When prompted, click Yes to confirm that you wish to grant access permissions.

Repeat the process, adding permissions for Microsoft Graph. When adding permissions for Microsoft Graph, select a scale of Read all users full profiles.

When you’re finished granting permissions, the Required permissions list should include:

- Wizard Azure Active Directory
- Windows Azure Service Management API
- Microsoft Graph
6.2.5 Configuring the Ark Console

To access the Ark setup dialog and configure the console, open a browser window and navigate to the IP address assigned to the console.

![Logging in to the instance](image)

Fig. 6.53: *Logging in to the instance*

When prompted, provide the console password. If you did not assign a password in a script identified as an extension (when creating the Azure virtual machine), a password will be created randomly, and stored in:

```
/usr/share/tomcat/startup-password.txt
```

To retrieve a system assigned password, ssh into the console host and invoke the following command:

```
$ more /usr/share/tomcat/startup-password.txt
```

h020zdigm95xxqmjonrs

The Ark console setup dialog opens.
Use fields in the first portion of the setup dialog to provide platform specific information and configuration details for the Ark console.

- Use the **Azure Subscription ID** field to specify the subscription ID for the Azure account that hosts the Ark console. You can locate the subscription ID on the Azure Subscriptions page.

- Use the **Azure Active Directory ID** field to specify the directory ID associated with the Azure account that hosts the Ark console. To locate the directory ID, navigate to the Azure Active Directory and select Properties.

- Use the **Azure Application Registration ID** field to specify the application ID associated with the Azure account that hosts the Ark console. To locate the application ID, select Enterprise applications or App registrations from the Azure Active Directory menu; use the application ID associated with the registration created for the Ark console.

- Use the **Service Account ID** field to specify the name of the Azure service account. The service account must be an owner of the resource group in which the Ark server is deployed.

- Use the **Service Account Password** field to specify the password associated with the service account.

- Use the **Azure Storage Account** field to specify the name of the Azure block storage account you wish to use with this Ark server.
The fields in the **General properties** section set values that control Ark behaviors:

- **Use the Console DNS Name field** to specify a custom DNS name for the console. The property does not assign the DNS name to the console, but any notification emails that refer to the console will refer to the console by the specified name. If you do not provide a custom DNS name, the IP address of the console will be used in notifications.

- **Use the Contact Email Address field** to specify the address that will be included in the body of cluster status notification emails.

- **Use the Email From Address field** to specify the return email address specified on cluster status notification emails.

- **Use the Notification Email field** to specify the email address to which email notifications about the status of the Ark console will be sent.

- **Set the CC From Address field** to true to instruct Ark to send a copy of the email to the Email From Address anytime a notification email is sent.

- **Use the API Timeout field** to specify the number of minutes that an authorization token will be valid for use within the API.

- **Use the WAL Archive Container field** to specify the name of the storage container where WAL archives (used for point-in-time recovery) are stored. You must provide a value for this property; once set, this property must not be modified.

- **Use the Dashboard Docs URL field** to specify the location of the content that will be displayed on the Dashboard tab of the Ark console. If your cluster resides on a network with Internet access, set the parameter
to DEFAULT to display content (documentation) from EnterpriseDB; to display alternate content, provide the URL of the content. To display no content in the lower half of the Dashboard tab, leave the field blank.

- **Use the Dashboard Hot Topics URL field** to specify the location of the content that will be displayed on the Dashboard tab of the Ark console. If your cluster resides on a network with Internet access, set the parameter to DEFAULT to display content (alerts) from EnterpriseDB; to display alternate content, provide the URL of the content. To display no content across the middle section of the Dashboard tab, leave the field blank.

- **Use the Enable Console Manager field** to indicate if the console should display console manager functionality. When set to true, the console will display the manager; when false, the manager will not be displayed.

- **Set Enable Postgres Authentication to true** to instruct Ark to enforce the authentication method configured on the backing Postgres server. Supported authentication methods include password, LDAP, RADIUS, PAM, and BSD. If set to false, Ark will use the default authentication method (password).

- **Use the Template Restrict New Users field** to configure the Ark console to make any new user a Template Only user by default. You can later modify the user definition in the User Administration table to specify that a user is not a template only user.

- **Use the Cluster Event Retention Limit field** to specify how long the console will keep events for deleted clusters. The default value is 14 days.

![Fig. 6.56: The PEM server property fields](image)

Use fields in the next section to provide connection details for a PEM server host; this will allow Ark to register and unregister PEM agents and clusters.

- **Use the PEM Server Mode drop-down listbox** to select a deployment mode:
 - Select DISABLE to indicate that clusters deployed on the host should not be registered with the PEM server.
 - Select LOCAL to indicate that you would like to use the PEM server that resides on your local host. If you select LOCAL, the PEM deployment will use default values assigned by the installer.

- **The IP address of the PEM server host** will be the IP address of the Ark host.

- **The PEM Server Port** will monitor port 5432.

- **The PEM server database user** will be named postgres.

6.2. Installing the Ark Console on Azure 78
• The password associated with the PEM server will be the same password as the Ark console.

Select REMOTE to indicate that you would like to use a PEM server that resides on another host, and provide connection information on the Ark console deployment dialog. If you select REMOTE, whenever a new cluster node is created on this console, it will be registered for monitoring by the PEM server.

• Provide the IP address of the PEM server host in the PEM Server IP Address field.

• Specify the port monitored for connections by the PEM server in the PEM Server DB Port field.

• Specify the port on the PEM server host used for PEM API connection attempts by the Ark server in the PEM Server API Port field. Not valid if the PEM server mode is DISABLED or LOCAL.

• Provide the name that should be used when authenticating with the PEM server in the PEM Server Username field.

• Provide the password associated with the PEM server user in the PEM Server Password field.

• Use the PEM Sync Mode drop-down listbox to ENABLE or DISABLE synchronization between the Ark server and the PEM server.

• Use the PEM Synchronization Interval field to specify the number of minutes between attempts to synchronize the Ark console with the PEM server.

Fig. 6.57: Provide information about the service provider

If you specify true in the SAML auth enabled field, the Ark console will display the properties required to use SAML authentication when connecting to the Ark console. Use fields on the deployment dialog to specify SAML authentication properties. Use fields in the next section to provide information about the service provider:

• Use the SP Entity ID field to provide a URI that specifies the identifier of the service provider.

• Use the SP Consumer Service URL field to specify the URL from which the response from the identity provider will be returned.

• Use the SP Consumer Service Binding field to specify the SAML protocol binding to be used when returning the response message from the identity provider.
• Use the **SP Logout Service URL** field to specify the URL to which the service provider will specify information about where and how the **Logout Response** message MUST be returned to the requester, in this case our service provider.

• Use the **SP Logout Service Binding** field to specify the SAML protocol binding to be used when returning the **LogoutResponse** or sending the **LogoutRequest** message.

• Use the **SP Name ID Format** field to specify the constraints on the name identifier that will be used to represent the requested subject.

• Use the **SP Certificate** field to specify certificate information; this is usually x509cert. The private key of the service files are provided by files placed in the **certs** folder.

• Use the **SP Private Key** field to specify the location of the service providers private key; this must be in **PKCS#8** format.

<table>
<thead>
<tr>
<th>IDP Entity ID</th>
<th>IDP Sign On URL</th>
<th>IDP Sign On Service Binding</th>
<th>IDP Logout Service URL</th>
<th>IDP Logout Service Response URL</th>
<th>IDP Single Logout Service Binding</th>
<th>IDP Certificate</th>
</tr>
</thead>
</table>

Fig. 6.58: *Provide information about the identity provider*

Use fields in the next section to provide information about the identity provider:

• Use the **IDP Entity ID** field to specify the identifier of the identity provider (this must be a URI).

• Use the **IDP Sign On URL** field to specify the URL target of the identity provider (where the service provider will send the Authentication Request Message).

• Use the **IDP Sign On Service Binding** field to specify the SAML protocol binding to be used when returning the response message. This version of Ark only supports the HTTP-Redirect binding.

• Use the **IDP Logout Service URL** field to specify the URL Location of the identity provider to which the service provider will send a single logout Request.

• Use the **IDP Logout Service Response URL** field to specify the URL Location of the identity provider to which the service provider will send a single logout response.

• Use the **IDP Single Logout Service Binding** field to specify the SAML protocol binding to be used when returning the response message.

• Use the **IDP Certificate** field to specify the Public x509 certificate of the identity provider.
Use fields in the next section to provide your SAML preferences:

- Use the Encrypted Name ID field to indicate that the name identifier of the samlp:logoutRequest sent by this service provider will be encrypted; specify true or false.

- Use the Auth Request Signed field to indicate if the samlp:AuthnRequest messages sent by this service provider will be signed; specify true or false.

- Use the Logout Request field to indicate if the samlp:logoutRequest messages sent by the service provider will be signed; specify true or false.

- Use the Logout Response Signed field to indicate if the samlp:logoutResponse messages sent by the service provider will be signed; specify true or false.
• Use the Sign messages field to sign the metadata. If you leave the field empty, the metadata will not be signed. If you wish to provide a signature, provide a comma separated keyFileName, certFileName pair.

• Use the Sign assertions field to indicate a requirement for the samlp:Response, samlp:LogoutRequest, and samlp:LogoutResponse elements received by the service provider to be signed; specify true or false.

• Use the Sign Metadata field to indicate that the metadata of this service provider must be signed; specify true or false.

• Use the Encrypt Assertions field to indicate that the assertions received by this service provider must be encrypted; specify true or false.

• Use the Encrypt Name ID field to indicate that the name identifier received by this service provider must be encrypted; specify true or false.

• Use the Authentication Context field to specify that Set Empty and no AuthContext will be sent in the AuthNRequest. You can set multiple values in a comma-delimited list.

• Use the Auth Comparison Parameters field to specify that the authn comparison parameter to be set; this field defaults to exact.

• Use the XML validation field to indicate if the service provider will validate all received xmls; specify true or false.

• Use the Signature Algorithm field to specify the algorithm that the toolkit will use for the signing process. Specify one of the following:
 - http://www.w3.org/2000/09/xmldsig#rsa-sha1
 - http://www.w3.org/2000/09/xmldsig#dsa-sha1
 - http://www.w3.org/2001/04/xmldsig-more#rsa-sha256
 - http://www.w3.org/2001/04/xmldsig-more#rsa-sha384
 - http://www.w3.org/2001/04/xmldsig-more#rsa-sha512

![Fig. 6.60: Provide information about your organization](image)

Use fields in the next section to provide information about your organization:

• Use the Organization Name field to specify the name of the organization for which authentication is being provided.
• Use the **Display Name** field to specify the display name of the organization.
• Use the **Organization URL** field to specify the URL of the organization.
• Use the **Organization Language** field to specify the primary language used by the organization.
• Use the **Technical Contact Name** field to specify the name of a technical contact.
• Use the **Technical Email Address** field to specify a contact email address for the technical contact.
• Use the **Support Contact Name** field to specify the name of a support contact.
• Use the **SAML Support Email Address** field to specify the email address of the SAML support contact.

![Console Backup Storage Fields](image)

Fig. 6.61: The console backup storage fields

Use fields in the next section to provide information about the location of the console backup storage in the next section of the setup dialog; please note that you must provide values in these fields to use the Ark console recovery functionality:

• Use the **Storage Bucket** field to specify the name of the container that will be used to store files for point-in-time recovery. This location may not change after the initial deployment of the Ark console.
 – A container name must be at least 3 and no more than 63 characters in length.
 – A container name may contain lowercase letters, numbers, and the dash character (-).
 – A container name must start with a lowercase letter or number.
 For more information, please consult the Azure documentation.
• Use the **Console Backup Folder** field to specify a folder in which the backups will be stored.

![Password Fields](image)

Fig. 6.62: The password fields

Use the password properties fields to modify the password for the database user:

• Use the **DB User New Password** field to modify the database password.
• Use the **DB User Confirm Password** field to confirm the new password.
Use the last field to specify a timezone for the server:

- Use the drop-down listbox in the Timezone field to select the timezone that will be displayed by the Ark console.

When you’ve completed the dialog, click the Save button to validate and save your preferences; when prompted, click the Restart button to restart the console.
6.2.6 Connecting to the Administrative Console on an Azure Host

When you navigate to the URL of the installed Ark console that uses Azure to host clusters, the console will display a login dialog.

![Login dialog](image)

Fig. 6.64: The Login dialog

Enter the name of an administrative user in the User Name field, and the associated password in the Password field, and click Login to connect to the Ark console. If the user name and password provided are members of a role with administrative privileges, the Ark console will include the DBA tab and the Admin tab.
After connecting to the Ark console, you should:

- Update the User tab, providing a Notification Email. For more information about the User tab, see the EDB Ark Getting Started Guide, available on the Ark Dashboard.

- Use the ref:`Ark Using Admin Tab` to create the server images and database engines that will be used by non-administrative users.
Administrative users have access through the Ark console to features that allow them to register server images and create database engine definitions that will be available for use by the non-administrative EDB Ark user. An administrator also has access to statistical information and console log files that are not available to the non-administrative user.

For information about functionality that is exposed to both administrators and non-administrative users, please see the *EDB Ark Getting Started Guide*.

When you navigate to the URL of the Ark console, the console will display a login dialog.

![Fig. 7.1: The Login dialog](image-url)
Enter the name of an administrative user in the *User Name* field, and the associated password in the *Password* field, and click Login to connect to the Ark console. The console opens as shown below.

![The EDB Ark Administrator’s console](image)

Fig. 7.2: *The EDB Ark Administrator’s console*
Use options on the Admin tab to perform administrative tasks such as creating federations of consoles, managing servers and database engines, and defining templates. You can also use the Admin tab to manage users and deployment properties.

Fig. 8.1: The Admin tab.
Console Manager

Use the fields in the Console Manager panel to:

- Make a console available through the Consoles drop-down navigation listbox on the Ark console.

- Generate a token that can be used to configure the current console as part of a **federation** of Ark consoles. A federated console can deploy resources (such as standby servers) on another console that resides in another region.

- Register other consoles with the current console as part of a **federation** of consoles.

For more information, see *Using the Console Manager*.

Server Type Administration

A fresh installation of EDB Ark will include default database engine configurations for:

- EDB Postgres Advanced Server 9.4, 9.5, 9.6, 10.0, and 11 (64-bit)
- PostgreSQL 9.4, 9.5, 9.6, 10.0, and 11 (64-bit)

For information about adding additional servers, see *Managing Server Images*.

DB Engine Administration

The databases made available through the DB Engine Administration panel will be disabled and will not have an associated server type or valid repository information. To make a database available for end users, you must:

- Create one or more server images that correspond to a server that resides on your system. For more information about defining a server type, see *Managing Server Images*.

- Use the Edit Engine Details button to modify existing engine definitions to specify a server image associated with the engine and repository information (if applicable), and enable the engine for use by end-users.

For more information, see *Managing Database Engines*.

Template Administration

Use the Template Administration panel to create and manage database cluster templates. A template contains a predefined set of server options that determine the configuration of a cluster.

An administrator can use a template to:

- simplify creation of clusters that use a common configuration.

- predefine supported cluster configurations.

- limit access to server resources for a Template Only user. A Template Only user must use a template when deploying a new cluster.

For more information about creating and using a template, see *Template Administration*.

RHEL Subscription Management

Options in the RHEL Subscription Management panel allow you to:

- Add, modify, or delete RHEL subscription information.

For more information, see *Red Hat Subscription Management*.

IAM Roles Administration (AWS only)

Options in the IAM Roles Administration panel allow you to:

- Make Amazon ARNs available for use in Ark user accounts (AWS).
For information about user administration options, see *Managing Amazon Roles*.

User Administration

Options in the User Administration panel allow you to:

- If applicable, manage user accounts.
- Access a list of currently connected users.
- Display a banner message to connected users.
- Specify that a user must use a template when deploying a cluster.

For information about user administration options, see *User Administration*.

Download Console Logs

Click the Download button in the Download Console Logs panel to download a zip file that contains the server logs for the underlying application server. You can use the log file to confirm changes to server status or verify server activity.

For more information, see *Accessing the Console Logs*.

Download Core Usage Logs

Click the Download button in the Download Core Usage Logs panel to download a zip file that contains the usage logs for the underlying server.

For more information, see *Accessing the Core Usage Logs*.

Backup Ark Console

Click the Backup Now button to start a console backup. A popup will confirm that you have requested a manual backup of the console.

For more information, see *Taking a Manual Backup of the Console*.

Edit Installation Properties

Click the Edit installation properties button to open a dialog that allows you to modify the Ark console configuration. For more information, see *Editing Installation Properties*.
8.1 Using the Console Manager

Use fields in the Console Manager panel to manage the names and links displayed by the Consoles drop-down listbox on the Ark console. You can also use the Console Manager to manage federated consoles and provide access to cross-region resources. The console manager provides access to optional functionality; if you are not federating consoles or do not wish to use the Consoles drop-down, you are not required to complete the fields in the panel.

For more information about creating and using federated consoles, see Using the Console Manager to Create a Federated Console.

Fig. 8.2: The Consoles drop-down.

The Consoles drop-down listbox (in the upper-right corner of the Ark console) provides quick access to other consoles. When you select a name from the Consoles drop-down listbox, the Ark console opens a browser tab and navigates to the address associated with the name. Use the Console Manager section of the Admin tab to manage the console names and addresses that are displayed in the Consoles drop-down.

Fig. 8.3: The Console Manager panel

To enable the Consoles drop-down, you must first provide a name for the console to which you are currently connected in the Name for this Console field.

Fig. 8.4: Provide a name for the console.
After providing the console name, click the **Save Name** button to display the name of the console in the upper-left corner of the Ark console, and in the **Consoles** drop-down. To add a shortcut to another console, click the **Add Console** button; the Add Console dialog opens.

![Console Manager](image)

Fig. 8.5: *Saving the console name.*

Then, use the Add Console dialog to provide information about the console for which you are creating a **Consoles** entry:

- Provide a user-friendly name in the **Name** field.
- Provide the URL of the console in the **Url** field; please note that the URL must be prefixed with the http protocol identifier.
- Optionally, provide the API token associated with the console in the **API Token** field. This field is only required when you are federating consoles.

When you’re finished, click the **Save** button to add the console to the list displayed on the **Consoles** drop-down.

To modify an entry in the **Consoles** drop-down, highlight the name of the console in the **NAME** column and click the **Edit Console** button. After modifying the console details on the Edit Console dialog, click the **Apply** button to preserve the changes. Click **Cancel** to exit the dialog without saving your changes.

To remove a URL, highlight the name of the URL in the **NAME** column and click the **Delete Console** button. A dialog will open, asking you to confirm that you wish to delete the Console.

![Delete Console](image)

Fig. 8.6: *Deleting a console.*

Click the **Delete** button to confirm that you want to remove the entry from the **Consoles** drop-down and delete the entry from the **Console Manager** table, or click **Cancel** to exit the dialog without deleting the entry.
8.1.1 Using the Console Manager to Create a Federated Console

You can use fields in the Console Manager panel to generate and share access tokens between consoles to create a federation of consoles. After creating a federation, you can create or clone cluster members in any region in which one of the federated consoles resides. A federated console may have resources that reside in more than one region; standby nodes that reside in other regions will reflect the state of the master node.

Note: Each federation may only contain one console from a specific region; if you try to add more than one console from a given region to a federation, Ark will return an error.

When creating a federation, please note:

- All of the federated consoles must be configured with the same set of database engines and server images:
 - Each database engine must have the same configuration across all federated consoles (including the engine id and name).
 - Each server image must have the same configuration across all federated consoles; the image id will vary by region.

For example, you might have two consoles; one that resides in Region `us-east-1` and one that resides in Region `us-east-2`. You can create a federation of those consoles by registering the consoles with each other. After registering the consoles (sharing the URL and token of each console within the federation with the other console), you will be allowed to select the Region in which replica nodes are created or cloned.

![Create a New Server Cluster](image)

Fig. 8.7: Selecting a region.

Note: Standby nodes that reside in a different region than the master console will be used for load balancing. Failover to nodes that reside on a different region than the master node is not supported. If a master node fails and you do not have a standby node in the same region as the master node, Ark will create a replacement node in the same region as the original master.

All of the resources that reside on federated consoles will be visible on the Clusters tab of all of the consoles within the federation. To federate consoles you must:

1. Use the Name for this Console field to create a name for each console that will be federated. Click within the field and provide a console name; when finished, click the Save Name button. The console name will be displayed on the title bar of the Ark console.
2. Click the Generate API Token button to create a token for the console. The API token is displayed in the API Token for this Console field.

3. Use the Add Console dialog on each console within the federation to register the other consoles with which they will be federated.

After registering each with all of the other consoles within the federation, you will be allowed to create resources in any region in which the federated consoles reside.
Revoking a Token

Select the Revoke API Token button to revoke the token assigned to the console.

![Revoke Current API Token dialog](image)

Fig. 8.11: Confirm you wish to revoke the token.

If the console is a member of a federation, the other members of the federation will no longer be able to create resources in the area in which the console resides. To restore membership in a federation, you must generate a new token for the console and edit the console definitions of the other federation members, updating the token associated with the console.

After creating a federation, you can:

- Log in to any federated console and initiate a cluster backup.
- Log in to any federated console and delete a cluster.
- Initiate a clone operation regardless of the region in which the node resides.
- Log in to any federated console and initiate a yum update on a cluster.
- Scale a federated cluster in multiple regions.
- Perform machine scaling on a cluster that resides on a federated console.
8.2 Managing Server Images

A server definition describes the virtual machine that will host an instance of Advanced Server or PostgreSQL. Use the Server Type Administration panel to manage server images.

Creating a Server Image

To create a new server image, connect to the Ark console as a user with administrative privileges, navigate to the Admin tab, and select Add Server. The Add Server dialog opens.

Use the fields on the Add Server dialog to define a new server:

- Use the Server ID field to provide an identifier for the server image. The Server ID must be unique, and may not be modified after saving the server image.
- Use the Server Description field to provide a description of the server image.
- Use the Image ID field to provide the Image ID of the server image.

On Amazon
If you are using Ark with Amazon, provide the AMI ID in the Image ID field. Please note: you should use a server from a trusted source, with a virtualization type of hvm. We recommend using the official Amazon images from the Amazon AWS Marketplace.

On Azure

If you are using an Ark with Azure, you can use the Azure CLI interface to retrieve a list of the machine images that are available in the Azure Marketplace. Review the Azure documentation for information about downloading and installing the Azure CLI. After installing the Azure CLI, you can use one of the following commands to retrieve a list of the available images for a specific platform and version:

<table>
<thead>
<tr>
<th>Version</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>RHEL 7:</td>
<td>az vm image list --offer RHEL --sku 7.-output table --all</td>
</tr>
<tr>
<td>CentOS 7:</td>
<td>az vm image list --offer CentOS --sku 7 --output table --all</td>
</tr>
</tbody>
</table>

Select an image from a trusted publisher; when configuring the Ark console, provide the first three elements of the Urn column in the Server Image ID field. For example, if the Urn returned by the CLI is RedHat:RHEL:7.2:7.2.20160921 7.2.20160921, the Image ID is RedHat:RHEL:7.2.

Some recommended images and providers are:

- RedHat:RHEL:7-RAW
- OpenLogic:CentOS:7.5

Use the Initial User field to provide the name of the default operating system user. This user must have sudo root privileges to perform the initial provisioning of software on the node.

If you are using an Amazon AWS Marketplace image, the default user name is associated with the backing image; for more information about image user identities, review the AWS documentation.

- Use the System Type field drop-down listbox to select the operating system type of the server; select CentOS or RHEL.
- Check the box next to Statically Provisioned to indicate that the server is statically provisioned. A statically provisioned server is a pre-installed image that contains the software required to create a database cluster.

For detailed information about creating a statically provisioned image, please see Creating a Statically Provisioned Image.

When you have completed the dialog, click Save to create the server image, or Cancel to exit without saving.

Modifying a Server

Click the Edit Server Details button to open the Edit Server Details dialog and modify the properties of a server.
After modifying the server definition, click **Save** to make the changes persistent and exit the dialog, or **Cancel** to exit without saving.

Deleting a Server

To delete a server definition, highlight a server name, and select the **Delete Server** button. If no engines are dependent on the server, a dialog will open, asking you to confirm that you wish to delete the selected server type.

Select the **Delete** key to remove the server, or **Cancel** to exit without removing the server.

Please note: If the server is currently used by an engine, the Ark console will advise you that the server cannot be removed; before removing the server, you must delete any dependent engines.
8.3 Managing Database Engines

An engine definition pairs a Postgres server type with the server image on which it will reside. Only an EDB Ark administrative user can define an engine. Once defined, all of the engines that reside within a specific role or group will be made available to all users with access to that group. You can use the DB Engine Administration section of the Admin tab to create and manage database engines.

Please note: The EnterpriseDB repository structure has changed; after upgrading your Ark console to v3.5, you will have a combination of old and new DB engine configurations in the Ark Admin panel. You should migrate to the new DB engines for all new clusters since these contain the proper EDB YUM repository configuration.

The Ark console ships with a number of default engine definitions. Before using an engine, you must create a server (see Managing Server Images) and edit the engine details, associating a server with the engine you wish to use and enabling the engine.

The following engines are shipped with Ark. Engine definitions may include multiple repositories to provide access to all of the packages required to complete the installation. Advanced Server repositories require you to provide a USERNAME and associated PASSWORD; for credentials, visit the EnterpriseDB website.

PostgreSQL 9.4 64bit on CentOS / RHEL 7

https://yum.postgresql.org/9.4/redhat/rhel-7-x86_64/pgdg-redhat-repo-latest.noarch.rpm
https://USERNAME:PASSWORD@yum.enterprisedb.com/edb-repo-rpms/edb-repo-latest.noarch.rpm

Required Packages: postgresql94-server pgpool-II-94 edb-pem-agent

EDB Postgres Advanced Server 9.4 64bit on CentOS / RHEL 7

https://USERNAME:PASSWORD@yum.enterprisedb.com/edb-repo-rpms/edb-repo-latest.noarch.rpm

Required Packages: ppas94-server ppas-pgpool34 ppas94-pgpool34-extensions edb-pem-agent

PostgreSQL 9.5 64bit on CentOS / RHEL 7
EDB Postgres Ark, Release 3.5

EDB Postgres Advanced Server 9.5 64bit on CentOS / RHEL 7

https://USERNAME:PASSWORD@yum.enterprisedb.com/edb-repo-rpms/edb-repo-latest.noarch.rpm

Required Packages: ppas95-server ppas-pgpool34 ppas95-pgpool34-extensions edb-pem-agent

PostgreSQL 9.6 64bit on CentOS / RHEL 7

https://USERNAME:PASSWORD@yum.enterprisedb.com/edb-repo-rpms/edb-repo-latest.noarch.rpm

Required Packages: postgresql96-server pgpool-II-96 edb-pem-agent

EDB Postgres Advanced Server 9.6 64bit on CentOS / RHEL 7

https://USERNAME:PASSWORD@yum.enterprisedb.com/edb-repo-rpms/edb-repo-latest.noarch.rpm

Required Packages: pkgs: edb-as96-server edb-pgpool35 edb-as96-pgpool35-extensions edb-pem-agent

PostgreSQL 10 64bit on CentOS / RHEL 7

https://USERNAME:PASSWORD@yum.enterprisedb.com/edb-repo-rpms/edb-repo-latest.noarch.rpm

Required Packages: postgresql10-server pgpool-II-10 pgpool-II-10-extensions edb-pem-agent

EDB Postgres Advanced Server 10 64bit on CentOS / RHEL 7

https://USERNAME:PASSWORD@yum.enterprisedb.com/edb-repo-rpms/edb-repo-latest.noarch.rpm

Required Packages: edb-as10-server edb-pgpool36 edb-as10-pgpool36-extensions edb-pem-agent

PostgreSQL 11 64bit on CentOS / RHEL 7

https://USERNAME:PASSWORD@yum.enterprisedb.com/edb-repo-rpms/edb-repo-latest.noarch.rpm

Required Packages: postgresql11-server pgpool-II-11 pgpool-II-11-extensions edb-pem-agent

EDB Postgres Advanced Server 11 64bit on CentOS / RHEL 7

8.3. Managing Database Engines
<table>
<thead>
<tr>
<th>EDB Postgres Ark, Release 3.5</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>PostgreSQL 12 64bit on CentOS / RHEL 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>https://yum.postgresql.org/reporpms/EL-7-x86_64/pgdg-redhat-repo-latest.noarch.rpm</td>
</tr>
<tr>
<td>Required Packages: postgresql12-server pgpool-II-12 pgpool-II-12-extensions edb-pem-agent</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>EDB Postgres Advanced Server 12 64bit on CentOS / RHEL 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>https://USERNAME:PASSWORD@yum.enterprisedb.com/edb-repo-rpms/edb-repo-latest.noarch.rpm</td>
</tr>
<tr>
<td>Required Packages: edb-as12-server edb-pgpool40 edb-as12-pgpool40-extensions edb-pem-agent</td>
</tr>
</tbody>
</table>
8.4 Adding, Modifying, or Deleting Engine Definitions

Use the Add Engine dialog to define an engine. To access the Add Engine dialog, connect to the Ark console as a user with administrative privileges, navigate to the Admin tab, and select Add Engine.

![Add Engine dialog](image)

Fig. 8.18: The Add Engine dialog

Use the fields on the Add Engine dialog to define a new server image/database pairing; please note that some fields are disabled if the server is statically provisioned:

- Use the ID field to provide an identifier for the engine. Please note that the identifier must be unique, and may not be modified after saving the engine.
- Use the drop-down listbox in the DB Type field to select the type of database used in the pairing.
- Use the drop-down listbox in the Version field to specify the server version.
- Use the Name field to provide a name for the pairing. When the engine is enabled, the specified name will be included for use on the Create Cluster dialog.
- Use the drop-down listbox in the Server Type field to specify the server image on which the database will reside. The drop-down listbox displays those images previously defined on the Add Server dialog.
- Use the drop-down listbox in the RHEL Subscription field to select the Red Hat Subscription Manager service that will be used by the engine. To populate the RHEL Subscription drop-down, describe your subscription services in the RHEL Subscription Management section of the Admin tab. RHEL Subscription Manager services are only applicable for RHEL 7 clusters.
Please note that you must delete any instances that use an engine that is associated with a RHEL subscription before you can delete the RHEL subscription.

- Use the Yum repo URL field to provide the URL of the yum repository that will be used to initially provision database packages and to later update the database packages during cluster upgrade operations. When specifying multiple repositories in the Yum repo URL field, specify one repository per line. When you perform an update, any available updates in all of the specified repositories will be applied. The repository URL should take the form:

 http://<user_name>:<password>@<repository_url>

 Where:

 user_name specifies the name of a user with sufficient privileges to access the repository.

 password specifies the password associated with the repository user. Please note that if your password contains special characters (such as a $), you may need to percent-encode the characters.

 repository_url specifies the URL of the repository.

 Please contact your EnterpriseDB account manager if you need connection credentials for the EnterpriseDB repositories, or visit the EnterpriseDB website.

- Use the Required DB Packages field to provide a space-delimited list of packages that have been tested by EDB as the required minimum set to build a functional cluster instance.

When defining a database engine, you must specify the required package list for the installation in the Required DB packages field on the Edit Engine Details dialog.

For an Advanced Server 9.4 database, the package list must include:

```
ppas94-server
ppas-pgpool34
ppas95-pgpool34-extensions
pem-agent
```

For an Advanced Server 9.5 database, the package list must include:

```
ppas95-server
ppas-pgpool34
ppas95-pgpool34-extensions
pem-agent
```

For an Advanced Server 9.6 database, the package list must include:

```
edb-as96-server
edb-pgpool35
edb-as96-pgpool35-extensions
pem-agent
```

For an Advanced Server 10 database, the package list must include:

```
edb-as10-server
edb-pgpool36
edb-as10-pgpool36-extensions
pem-agent
```

For an Advanced Server 11 database, the package list must include:

```
edb-as11-server
edb-pgpool37
```
For an Advanced Server 12 database, the package list must include:

- `edb-as12-server`
- `edb-pgpool40`
- `edb-as12-pgpool40-extensions`
- `edb-pem-agent`

For a PostgreSQL 9.4 database, the package list must include:

- `postgresql94-server`
- `pgpool-II-94`
- `pem-agent`

For a PostgreSQL 9.5 database, the package list must include:

- `postgresql95-server`
- `pgpool-II-95`
- `pem-agent`

For a PostgreSQL 9.6 database, the package list must include:

- `postgresql96-server`
- `pgpool-II-96`
- `pem-agent`

For a PostgreSQL 10 database, the package list must include:

- `postgresql10-server`
- `pgpool-II-10`
- `pgpool-II-10-extensions`
- `pem-agent`

For a PostgreSQL 11 database, the package list must include:

- `postgresql11-server`
- `pgpool-II-11`
- `pgpool-II-11-extensions`
- `edb-pem-agent`

For a PostgreSQL 12 database, the package list must include:

- `postgresql12-server`
- `pgpool-II-12`
- `pgpool-II-12-extensions`
- `edb-pem-agent`

- Use the Optional Node Packages field to provide the names of any packages that should be installed (from the specified repository) on every cluster node during provisioning.

Please note: packages added via the Optional Node Packages field on the master node of the cluster will also be provisioned on any standby nodes that are subsequently created. If the package requires manual configuration steps, you will be required to repeat those steps on each node of the cluster; package configurations will not be propagated to standby nodes. If you add a node through cluster operations (such as failover, scaling, or restoring a node from backup), any packages on the new node will require manual configuration.
When you have completed the dialog, click **Save** to create the engine definition, or **Cancel** to exit without saving.

For information about using the EnterpriseDB repository, and the Advanced Server packages available, please see the EDB Postgres Advanced Server Installation Guide.

Modifying an Engine

To modify an engine, use the **Edit Engine Details** button to open the **Edit Engine Details** dialog.

![Fig. 8.19: The Edit Engine Details dialog](image)

Use fields on the Edit Engine dialog to specify property changes to an engine. When you’re finished, click the **Save** button to make the changes persistent and exit, or **Cancel** to exit without saving.

Disabling an Engine

You can use the disabled box to specify that an engine is (or is not) available for use in new clusters without removing the engine definition:

- If the box next to disabled is checked, the engine will not be available for use.
- If the box next to disabled is unchecked, the engine will be available for use.

Click the **Save** button to make any changes to the **Edit Engine Details** dialog persistent, or select **Cancel** to exit without modifying the engine definition.

Please note that disabling an engine has no impact on any running clusters; it simply prevents users from creating new clusters with the engine. You can use this feature to phase out the use of older engines.

Deleting an Engine

8.4. Adding, Modifying, or Deleting Engine Definitions 106
To delete an engine, highlight an engine name in the DB Engine Administration list, and select the Delete Engine button. A dialog will open, asking you to confirm that you wish to delete the selected engine.

![Delete DB Engine dialog](image)

Fig. 8.20: The Delete DB Engine dialog

Click the Delete button to remove the engine definition, or select Cancel to exit without removing the engine definition.

Please note that you cannot remove an engine that is referenced by one or more clusters and/or backups; if you attempt to remove an engine that is in use, EDB Ark will display a warning message.
8.5 Adding Supporting Components to a Database Engine Definition

When you create a cluster, you specify the engine that EDB Ark will use when provisioning that cluster. If you modify the engine description, adding the list of RPM packages that will be installed when that engine is provisioned, each node of any cluster provisioned with that engine will include the functionality of the supporting component.

Adding PostGIS to a Database Engine

To simplify PostGIS installation, add a list of the required RPM packages to the Optional Node Packages field of the Edit Engine Details dialog. To provision replicas that contain the PostGIS functions, perform the installation and create the extensions on the master node of the cluster before adding replica nodes to your cluster.

To modify an engine description, use Administrative credentials to connect to the Ark console, and navigate to the Admin tab. Select an engine ID from the list of engines in the DB Engine Administration list, and click Edit Engine Details.

When the Edit Engine Details dialog opens, use the fields on the dialog to specify the repository information and the names of optional RPM packages that the installer should provision on each node of the cluster.

- The PostGIS RPM packages are distributed from the enterprisedb tools repository; by default, the enterprisedb tools repository is included in the Yum Repo URL field.
- Add the names of the PostGIS RPM packages to the Optional Node Packages field on the Edit Engine Details dialog.
The PostGIS installation packages for Advanced Server 9.4 are:

- ppa94-postgis
- ppa94-postgis-core
- ppa94-postgis-docs
- ppa94-postgis-utils

The PostGIS installation packages for Advanced Server 9.5 are:

- ppa95-postgis
- ppa95-postgis-core
- ppa95-postgis-docs
- ppa95-postgis-utils

The PostGIS installation packages for Advanced Server 9.6 are:

- edb-as-96-postgis
- edb-as-96-postgis-core
- edb-as-96-postgis-docs
- edb-as-96-postgis-utils

The PostGIS installation packages for Advanced Server 10 are:

- edb-as-10-postgis
- edb-as-10-postgis-core
- edb-as-10-postgis-docs
- edb-as-10-postgis-utils

The PostGIS installation packages for Advanced Server 11 are:

- edb-as-11-postgis
- edb-as-11-postgis-core
- edb-as-11-postgis-docs
- edb-as-11-postgis-jdbc
- edb-as-11-postgis-utils

Any EDB Ark clusters that are subsequently provisioned with that engine will automatically include an installation of the PostGIS on all nodes of the cluster.

Creating the PostGIS Extensions

After adding the packages to the master node of a cluster, you can use the `psql` client or the EDB Postgres Enterprise Manager (PEM) client to create the extensions. Before connecting with a client, an Administrator must open the listener port (by default, 5444 on an Advanced Server instance) of the node for connections.

Use a client to connect to the database in which you wish to create the extensions, and enter the following commands:

```
CREATE EXTENSION postgis;
CREATE EXTENSION fuzzystrmatch;
CREATE EXTENSION postgis_topology;
CREATE EXTENSION postgis_tiger_geocoder;
```
The client will confirm that the extensions have been created successfully. The PostGIS functions are created in the public schema of the database.

Visit the PostGIS project site for detailed information about using PostGIS.
8.6 Template Administration

A template contains a predefined set of server options that determine the configuration of a database cluster. A template can simplify creation of clusters that use a common configuration, or limit user access to costly resources such as large server classes. Use functionality offered in the Template Administration panel to create and manage templates.

![Template Administration](image)

Fig. 8.22: The Template Administration section of the Admin dashboard

Use the TEMPLATES ONLY column of the User Administration table to specify that a user must use a template. A Template Only user will have access to only those templates that specify a role or tenant in which they have membership in the Select Roles section of the Add Template dialog.

If a user is specified as a Template Only user:

- They must use a template when deploying a cluster.
- They will be restricted to the scaling policies defined in the template.
- They cannot modify a manually-defined cluster created by another user.
- They can only create clusters in a server class that exists in an available template.
- They must use a template when cloning or restoring from backup.
- They may only delete backups of template created clusters.
- They may not delete last backup of a template created cluster if the cluster had been deleted (removing the last artifact of any cluster).

To create a template, click the Add Template button; the Add Template dialog opens.
Fig. 8.23: The Template Administration section of the Admin dashboard

Use fields on the Add Template dialog to define a new template:

- Provide a user-friendly name for the template in the Template Name field.
- Use the Description field to provide a description of the template.
- Use the drop-down listbox in the Engine Version field to select the version of the Postgres engine that you
wish to use on clusters configured by the template.

- Use the drop-down listbox in the **Server Class** field to specify the size of each cluster node. The server class determines the size and type (compute power and RAM) of any cluster configured by the template.

- If your cluster resides on an Amazon AMI, use the drop-down listbox in the **VPC** field to specify the identity of the network in which clusters configured by the template should reside.

- Use the drop-down listbox in the **Number of nodes** field to specify the number of nodes that should be created in each cluster.

- Use the **Storage GB** field to specify the initial size of the data space (in Gigabytes).

- Check the box next to **Encrypted** to indicate that the cluster should be encrypted. EDB Ark uses the aes-xts_plain (512-bit) cipher suite to provide an encryption environment that is both secure and transparent to connecting clients. When encryption is enabled, everything residing on the cluster is encrypted except for the root filesystem.

- If the cluster will reside on an AWS host, check the box next to **EBS Optimized** to specify that the cluster should use an Amazon EBS-optimized instance and provisioned IOPS to guarantee a level of I/O performance.

- The **IOPS** field is enabled for those clusters that will reside on an EBS-optimized instance. If applicable, specify the level of I/O performance that will be maintained for the cluster by automatic scaling. The maximum value is 30 times the size of your cluster; for example, if you have a 4 Gigabyte cluster, you can specify a maximum value of 120.

- Check the box next to **Perform OS and Software update** to specify that a software update should be performed whenever the cluster is provisioned. Please note: this option is disabled if the cluster uses a statically provisioned server.

- Use the **Number of backups** field to specify the number of backups that will be retained for the cluster. When the specified number of server backups is reached, EDB Ark will delete the oldest backup to make room for a new backup.

- Use the **Backup Window** field to specify a time that it is convenient to perform a cluster backup.

- Check the box next to **Continuous Archiving (Point-in-Time Recovery)** to enable point-in-time recovery for the cluster. When enabled, a base backup is automatically performed that can be used to restore to a specific point in time. All subsequent automatic scheduled backups will also support point-in-time recovery.

- Check the boxes next to the options in the **Select Scaling Options** box to indicate which options will be available to template users. Check the box next to:
 - **Manually Scale Replicas** to specify that users of this template will be allowed to manually scale replica nodes configured by this template.
 - **Manually Scale Storage** to specify that users of this template will be allowed to manually scale storage on clusters configured by this template.
 - **Auto Scale Replicas** to specify that users of this template will be able to configure automatic node scaling for clusters configured by this template.
 - **Auto Scale Storage** to specify that users of this template will be able to configure automatic storage scaling for clusters configured by this template.

- Check the box to the left of a role name in the **Select Roles** box to indicate that members of the selected role can use the template.

When you’ve completed the Add Template dialog, click **Save** to create the defined template; click **Cancel** to close the dialog and exit without saving your work.
If you select Launch From Template on the Create a New Server Cluster dialog, you will be prompted to select the template you wish to use from the Template Name drop-down listbox. After selecting a template, you can use the Full Template Details link to open a popup that displays detailed information about the configuration of clusters deployed with the template.

![Template Details: acctg_payables](image)

Fig. 8.24: The template details popup
8.7 Red Hat Subscription Management

You can use the Ark Administrative console to attach Red Hat Subscription Manager information to engines hosted on Red Hat consoles. The Red Hat Subscription Manager tracks installed products and subscriptions to implement content management with tools like yum. Visit the Red Hat website for information about Red Hat Subscription Manager.

When you create a new cluster that uses an engine that is associated with a Red Hat subscription, Ark registers the cluster nodes with Red Hat; when you terminate the node, the system’s subscription is unregistered.

Use the RHEL Subscription Management section of the Admin tab to define and manage Red Hat Subscription Manager access for your Ark consoles that reside on Red Hat Linux instances.

Fig. 8.25: The RHEL Subscription Management section.

After creating a subscription definition, use options in the DB Engine Administration panel to associate the definition with database engines.
Use fields on the Add RHEL Subscription dialog to describe a Red Hat subscription service:
• Use the **Subscription ID** field to provide a user-friendly name for the subscription. The name will identify the subscription in the RHEL Subscription drop-down on the Add Engine Details dialog.

• Use the **Username** field to provide the name of the user account registered with the Red Hat content server.

• Use the **Password** field to provide the password associated with the user account.

• Use the **Server URL** field to provide the host name of the subscription server used by the service; if left blank, the default value of subscription.rhn.redhat.com will be used.

• Use the **Base URL** field to provide the host name of the content delivery server used by the service; if left blank, the default value of https://cdn.redhat.com will be used.

• Use the **Org** field to provide the organization that will be registered with the Red Hat subscription system.

• Use the **Environment** field to provide the name of the environment (within the organization that will be registered).

• Use the **Name** field to provide the name of the system that will be registered.

• Use the **Activation Key** field to provide the activation key of the Red Hat subscription.

• If enabled, use the **Auto-attach** checkbox to instruct any node associated with the subscription to automatically attach to the service.

• If applicable, use the **Pool** field to provide the pool identifier for the Red Hat subscription service.

• If applicable, check the **Auto** checkbox to indicate that nodes provisioned with engines associated with the pool will automatically attach to the subscription service.

• If applicable, use the **Quantity** field to provide the number of subscriptions in the subscription pool.

• Use the **Service Level** field to provide the service level of the subscription.

• Use the **Release** field to provide the operating system minor release that will be used when identifying updates to any nodes provisioned with the subscription.

• Check the **Force** checkbox to indicate that the node should be registered, even if it is already registered.

• Use the **Type** field to specify the type of consumer that is being registered; the default is system.

• The **Required Repos** list is populated by the Ark console, and displays a list of the repositories required by the subscription definition.

• Use the **Additional Repos** field to provide the names of any additional repositories that should be enabled on the cluster node(s).

• Use the **Disabled Repos** field to provide the names of any repositories that should be disabled on the cluster node(s).

When you’ve completed the dialog, click the **Save** button to add the repository to the table in the RHEL Subscription Management section, or **Cancel** to exit without saving. If you choose to save the definition, the Ark console will display a popup that lists the subscription manager commands that were generated as a result of your selections.
After creating a subscription definition, use options in the DB Engine Administration section of the Admin tab to associate the definition with database engines; see Managing Database Engines for detailed information.

Modifying a RHEL Subscription Definition

To modify the description of a Red Hat Subscription Manager service, highlight the name of a subscription in the RHEL Subscription Management table, and click the Edit RHEL Subscription button. The Edit RHEL Subscription Details dialog opens, allowing you to modify the subscription definition.

After modifying the subscription definition, click Save to preserve your changes and exit the dialog; to exit without saving, click the Cancel button. Please note that changes made to a definition are applied only to those instances that are created after the changes are saved; changes are not propagated to existing instances.

Deleting a Red Hat Subscription Definition

Before deleting a Red Hat subscription service definition, you must:

- Modify any database engines that are associated with the subscription, disassociating the engine definition from the Red Hat subscription.

- Delete any instances that were created using an engine that is associated with the Red Hat subscription service.

Then, to delete a Red Hat Subscription Manager service from the list in the Ark console, highlight the name of a service and click the Delete RHEL Subscription button.

Fig. 8.27: RHEL Subscription details

Based on your selections, the following subscription-manager commands will be used:

```
subscription-manager register \
  --username=carol.smith@enterprisedb.com \
  --password=***** \
  --serverurl=subscriptions.rhe.redhat.com \
  --baseurl=https://cdn.redhat.com \
  --org=EnterpriseDB \
  --environment=Accounting \
  --name=acctg \
  --auto-attach \
  --servicelevel=Standard \
  --release=RHEL7 \ 
  --activationkey=7488hgi955 \
  --type=system
```

```
subscription-manager repos --enable rhel-7-server-rpms
subscription-manager repos --enable rhel-7-server-extras-rpms
subscription-manager repos --enable rhel-7-server-optional-rpms
```
Click the Delete button to confirm that you wish to delete the subscription definition, or Cancel to exit without deleting the definition.
8.8 Managing Amazon Roles

Amazon Role ARNs that are listed in the IAM Roles Administration table will be available on the Role drop-down listbox of the Add User dialog. Please note that before adding a Role ARN to the table you must define the role in the AWS management console, and the trust policy of the role must include the External Id of the Ark console.

![Roles Administration dialog](image1)

Fig. 8.29: The Roles Administration dialog

You can use the Add Role dialog to add an entry to the table. To locate the information required by the Add Role dialog, connect to the Amazon Management dashboard, and navigate to the Roles page. Select the role you wish to add from the list to open the Summary dialog; then, select the Trust relationships tab to display the information required.

![Summary dialog](image2)

Fig. 8.30: The Roles Administration dialog

To add a Role ARN to the table, click the Add Role button; the Add Role dialog opens.
Use fields on the dialog to provide details from the Amazon management console:

- **Provide the Role ARN from the Summary dialog header in the Role Arn field.**
- **Provide the Value from the Trust relationships tab in the External Id field.**

Click the **Apply** button to verify the information, and add the entry to the table.
8.9 User Administration

Options in the **User Administration** panel provide extended management functionality for an administrative user. The functionality offered is host and configuration specific.

![User Administration Panel](image)

Fig. 8.32: User administration features of the Amazon console

Depending on your host type and configuration, you can use **User Administration** options to:

- add, modify, or delete a user account.
- delete clusters or snapshots that belong to a user account.
- display a list of logged in users.
- add, modify, or remove a wall message.
- specify that a user must use a template when deploying a cluster.

Adding a User

If available for your configuration, you can click the **Add User** button to access the **Add User** dialog and register a new user account for the Ark console.
Provide information about the user account:

- Use the Login field to provide the identifier that the user will provide when logging in to the console; each identifier must be unique.
- Provide the user’s first name in the First Name field.
- Provide the user’s last name in the Last Name field.
- To allow the user administrative access to the Ark console, check the box next to Admin.
- Check the box next to Enabled if the user should be allowed to log in to the console.
- Check the box next to Templates Only to specify that a user must use a template when deploying a cluster.
- If applicable, provide a password associated with the user account in the Password field.
- If applicable, confirm the password in the Verify Password field.
- If applicable, select a previously defined Amazon role ARN from the drop-down list in the Role field, or copy a different role ARN into the field. The role ARN must be defined on the AWS console by an Amazon administrator. Each role will be able to access all clusters that are created by users that share the common role ARN. To create an isolated user environment, a user must have a unique Amazon role ARN.

If you copy an Amazon role ARN into the Role field, a popup will open, prompting you for the AWS ExternalId associated with the user. To locate the ExternalId, connect to the Amazon management console, and navigate to the IAM Roles page. Select the role name from the list, and then click the Trust Relationships tab. The ExternalId associated with the Role ARN is displayed in the Conditions section of the Summary page.

Modifying User Properties and Reviewing User Activity

If the Edit User button is displayed, you can use the Edit User dialog to modify user properties. Highlight a user name, and click the Edit User button to open the Edit User dialog. Enabled fields on the Details tab.
may be modified; use the Info tab to review information about the user account and account activities.

After making changes to modifiable fields, click the Save button to make the changes persistent. Click Cancel to exit without saving any changes.

Deleting User Objects

If enabled, you can use buttons below the User Administration table to manage user objects. Highlight a user name, and click:

- The Delete Clusters button to delete all clusters that belong to the selected user.
- The Delete Snapshots button to delete any cluster backups that belong to the selected user.

After deleting the objects owned by a user, you can use the Delete User button to remove the user account. To delete a user, highlight the name of a user in the user table, and click the Delete User button. The Ark console will ask you to confirm that you wish to delete the selected user before removing the account. Click Delete to remove the user account, or Cancel to exit the popup without deleting the account.
8.10 User Administration on an Amazon Host

You can use the User Administration table to register new users for the Ark console, edit user properties, or delete a user account. Please note that you must use a client application to connect to the Ark console and add the user to the postgres database before the user is allowed to connect.

Fig. 8.34: The user table of an AWS console

Columns within the User Administration table provide information about the current AWS console users:

- The user’s login name is displayed in the ID column.
- The user’s first name is displayed in the FIRST_NAME column.
- The user’s last name is displayed in the LAST_NAME column.
- Check the box next to a user name in the ADMIN column to indicate that the user should have administrative access to the Ark console.
- Check the box next to a user name in the ENABLED column to indicate that the account is active.
- Check the box in the TEMPLATES ONLY column to indicate that the user must use templates when deploying clusters.
- The number of clusters currently owned by the user is displayed in the CLUSTERS column.
- The number of cluster snapshots owned by the user is displayed in the SNAPSHOTS column.
- The date and time of the last login is displayed in the LAST LOGIN column. The time zone displayed is based on the time zone used by the operating system.
- The LOGINS column displays a cumulative total of the number of times that the user has logged in.

After adding the user to the Ark console, use the psql client application to add the user to the backing postgres database. To use the psql client, SSH to the host of the Ark console. Then, navigate into the bin directory, and connect to the psql client with the command:

```bash
./psql -d postgres -U postgres
```

When prompted, supply the password of the postgres database user. After connecting to the database, you can use the CREATE ROLE command to add a user to the database:

```sql
ADD USER user_name WITH PASSWORD 'password';
```
Where:

- `user_name` specifies the name of the Ark user.
- `password` specifies the password associated with the user name.

Please note: The user name and associated password specified in the Ark backing database must match the credentials specified when registering the user in the Ark console.

For detailed information about using the `psql` client please see the Postgres core documentation.

After the administrative user adds the end-user, the end-user will complete the registration process by navigating to the URL of the console, and logging in.

Use the buttons below the AWS user table to manage user accounts for the AWS console and user-owned objects.
8.11 User Administration on an Azure Host

You can use the User Administration table to register new users for the Ark console, edit user properties, or delete a user account. Please note that you must use a client application to connect to the Ark console and add the user to the postgres database before the user is added to the table or allowed to connect.

Use the check boxes to modify user access privileges:

- Check the box next to a user name in the ADMIN column to indicate that the user should have administrative access to the Ark console.
- Check the box next to a user name in the ENABLED column to indicate that the account is active.
- Check the box in the TEMPLATES ONLY column to indicate that the user must use templates when deploying clusters.

Use the Refresh button to update the table.
8.12 Displaying Connected Users

Click the Show logged in users button to display the Logged in users popup.

The dialog displays:

- The current number of empty sessions; an empty session is an http session with the server that is not associated with a logged-in user.
- The current number of sessions with a logged-in user.
- A list of the currently logged-in users.

When you’re finished reviewing the list, use the X in the upper-right corner of the popup to close the dialog.
8.13 Managing the Wall Message

Provide a message in the Message field and click the Display Message button to add an announcement to the top of the user console. A message may include HTML tags to control the displayed format, and will wrap if the message exceeds the width of the screen.

![Fig. 8.37: Modifying the Wall Message](image)

The console may take a few seconds to refresh. Once processed by the server, the message will be displayed to console users when their screens refresh.

![Fig. 8.38: Displaying a wall message](image)

Use the Remove Message button to remove the wall banner.
8.14 Accessing the Console Logs

Use the **Download Console Logs** panel to download a zip file that contains the server logs for the underlying application server. You can confirm changes to server status or verify server activity by reviewing the application server log file.

![Download Console Logs](image)

Fig. 8.39: The Download Console Logs section of the Admin tab

You can also review the console logs via an ssh session. Log files are stored in `/var/log/edb-ark`. The current log file is `/var/log/edb-ark/ark.log`.

You can use the Linux `tail` utility to display the most recent entries in any of the server logs. For example, to review the last 10 lines in the server log file, connect to the console host with ssh and enter:

```
tail file_name
```

Where `file_name` specifies the complete path to the log file.

You can include the `-F` option to instruct the `tail` utility to display only the last 10 lines of the log file, and new log file entries as they are added to the file:

```
tail -F file_name
```
8.15 Accessing the Core Usage Logs

Use the **Download Core Usage Logs** panel to download a zip file that contains the core usage by managed clusters on an hourly basis.

![Download Core Usage Logs panel](image)

Fig. 8.40: The Download Core Usage Logs section of the Admin tab

The zip file contains a report with four columns; the columns contain:

- The date and time that the entry was written.
- The database type; either `ppas` for Advanced Server, or `postgres` for PostgreSQL.
- The database version.
- The total number of cores running in that region.
8.16 Taking a Manual Backup of the Console

Use the Backup Ark Console panel to request a manual backup of the Ark console begin.

![Backup Ark Console panel](image)

Fig. 8.41: The Backup Ark Console section of the Admin tab

Click the Backup Now button to start a console backup; the backup will be uploaded to the currently configured object storage service.
8.17 Editing Installation Properties

Use the option displayed in the Edit Installation Properties panel to review or modify Ark console properties.

Click the Edit installation properties button to open the Edit Installation Properties dialog. Use fields on the dialog to modify the properties of the Ark console. When you’ve finished, click Save to preserve your changes and restart the console server, or Cancel to exit the dialog without saving the changes.

For detailed descriptions of each field:

- For an Amazon-hosted console, review the AWS deployment instructions.
- For an Azure-hosted console, review the Azure console deployment instructions.
The DBA tab displays views that contain information about current clusters and cluster creation history. The tab is accessible only to administrative users.

Fig. 9.1: *The Ark DBA tab*

Use the *Choose table/view* drop down listbox to select a view.
When the view opens, click a column heading to sort the view by the contents of the column; click a second time to reverse the sort order. Use the Refresh button to update the contents of the view.

9.1 Accessing User Information

Use the user information links in the lower-left corner of the DBA tab to download a comma-delimited list of users and user information.

The file contains the information provided on the User tab of the Ark console by each user:

- The user identifier.
- The default email address of the user.
- The first name of the user.
- The last name of the user.
- The status of the user account (TRUE if enabled, FALSE if disabled).
- The company name with which the user is associated.

Select a link to download user information:
• Click Contact information for enabled users to download a file that contains only those users that are currently enabled.

• Click Contact information for all users to download a file that contains user information of all users (enabled and disabled).

9.1.1 The Ark DBA Tables

The tables accessed through the DBA tab display a read-only view of the database tables. A DBA can use the information to diagnose some user issues without accessing the console database directly or issuing SQL commands. The tables provide helpful information that a cloud administrator can use when troubleshooting.

For security reasons, the DBA tab does not display the table in which the server stores personal information about registered users, and columns containing sensitive information are obfuscated.

activation

The activation table stores the user activation codes that are generated during registration or password recovery. The table contains one entry for each activation code generated.

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID</td>
<td>The row identifier for the activation table.</td>
</tr>
<tr>
<td>ACTIVATION TIME</td>
<td>The time that the user activated his account or reset his password.</td>
</tr>
<tr>
<td>CODE</td>
<td>A unique code that identifies the transaction. This code is supplied to the user as part of the link in the email.</td>
</tr>
<tr>
<td>CODETYPE</td>
<td>The activation code types. The valid types are:</td>
</tr>
<tr>
<td></td>
<td>NEW_USER</td>
</tr>
<tr>
<td></td>
<td>RESET_PASSWORD</td>
</tr>
<tr>
<td>CREATION_TIME</td>
<td>The time that the activation code was created.</td>
</tr>
<tr>
<td>USER_ID</td>
<td>The identity of the user to whom the activation email was sent.</td>
</tr>
</tbody>
</table>

attachedvolume

The attachedvolume table provides information about volumes attached to cluster instances. The table contains one entry for each attached volume.

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID</td>
<td>The volume to which the instance is attached. The service provider supplies this identifier.</td>
</tr>
<tr>
<td>ATTACHTIME</td>
<td>The date and time that the volume was attached.</td>
</tr>
<tr>
<td>DEVICE</td>
<td>The mount point of the volume.</td>
</tr>
<tr>
<td>INSTANCEID</td>
<td>The cloud service provider's instance identifier.</td>
</tr>
<tr>
<td>REGION</td>
<td>The cloud service provider's service region (if applicable).</td>
</tr>
<tr>
<td>STATUS</td>
<td>The current status of the volume.</td>
</tr>
<tr>
<td>IOPS</td>
<td>The IOPs value for the volume.</td>
</tr>
<tr>
<td>OPTIMIZED</td>
<td>True if the cluster is optimized, False if the cluster is not optimized.</td>
</tr>
</tbody>
</table>
backups

The backups table provides information about the current backups stored by the server. A backup consists of multiple snapshots (one for each EBS volume in a cluster).

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID</td>
<td>A string value that identifies the backup</td>
</tr>
<tr>
<td>BACKUPTYPE</td>
<td>Manual Backup if the backup was invoked by a user; Auto Backup if the backup was a scheduled system backup.</td>
</tr>
<tr>
<td>CAPACITY</td>
<td>The size of the backup. If the cluster is encrypted, the column will also include (encrypted).</td>
</tr>
<tr>
<td>ENDED</td>
<td>The time at which the backup ended.</td>
</tr>
<tr>
<td>ENGINEVERSION</td>
<td>The Postgres engine version.</td>
</tr>
<tr>
<td>MASTERUSER</td>
<td>The name of the database superuser.</td>
</tr>
<tr>
<td>NOTES</td>
<td>Notes added by the cluster owner when the snapshot was taken.</td>
</tr>
<tr>
<td>OWNER</td>
<td>The name of the cluster owner.</td>
</tr>
<tr>
<td>PROGRESS</td>
<td>The most-recent information about the progress of the backup.</td>
</tr>
<tr>
<td>SIGNATURE</td>
<td>The name of the cluster owner and the cluster (colon delimited).</td>
</tr>
<tr>
<td>STARTED</td>
<td>The time at which the backup began.</td>
</tr>
<tr>
<td>CONTINUOUSARCHIVING</td>
<td>True if archiving is enabled; false if archiving is disabled.</td>
</tr>
<tr>
<td>CLUSTERUUID</td>
<td>The identifier of the cluster from which the backup was created.</td>
</tr>
<tr>
<td>XLOGLOCATION</td>
<td>The location of the Xlog file for the backup.</td>
</tr>
<tr>
<td>XLOGFILENAME</td>
<td>The identifier of the Xlog file for the backup.</td>
</tr>
<tr>
<td>WALARCHIVECONTAINER</td>
<td>The name of the archive container in which the WAL logs are stored.</td>
</tr>
<tr>
<td>ENCRYPTFS</td>
<td>True if the content of a backup is stored on an encrypted file system; false if it is not.</td>
</tr>
<tr>
<td>ENCRYPTKEY</td>
<td>The key associated with the backup (obscured).</td>
</tr>
<tr>
<td>TENANT</td>
<td>The tenant in which the cluster resides.</td>
</tr>
<tr>
<td>YUMUPDATE</td>
<td>True if updates are enabled for the cluster; false if they are not.</td>
</tr>
<tr>
<td>DBENGINE_ID</td>
<td>The engine number of the database engine used by the cluster.</td>
</tr>
</tbody>
</table>

controlurl

The consoleurl table provides a list of the resources currently made available by the console switcher.

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID</td>
<td>The row ID.</td>
</tr>
<tr>
<td>NAME</td>
<td>The name of the cluster that resides on the URL.</td>
</tr>
<tr>
<td>URL</td>
<td>The URL of the master node of the cluster.</td>
</tr>
</tbody>
</table>

dbengine

The dbengine table provides information about the currently defined database engines. The table contains one entry for each engine.
<table>
<thead>
<tr>
<th>Column Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID</td>
<td>The row ID.</td>
</tr>
<tr>
<td>ENGINE_ID</td>
<td>The engine identifier.</td>
</tr>
<tr>
<td>EOL</td>
<td>true if the engine is no longer supported; false if the engine is supported.</td>
</tr>
<tr>
<td>NAME</td>
<td>The (user-friendly) name of the database engine.</td>
</tr>
<tr>
<td>OPTIONAL_PKGS</td>
<td>The optional packages that are installed on the database server (specified in the engine definition).</td>
</tr>
<tr>
<td>REQUIRED_PKGS</td>
<td>The required packages that are installed on the database server (specified in the engine definition).</td>
</tr>
<tr>
<td>TYPE</td>
<td>The database server type.</td>
</tr>
<tr>
<td>VERSION</td>
<td>The version of the database server.</td>
</tr>
<tr>
<td>SERVERIMAGE_ID</td>
<td>The database ID of the server image that is linked to the database engine.</td>
</tr>
<tr>
<td>RHELSUBSCRIPTION_ID</td>
<td>The identifier of the Red Hat subscription associated with the engine.</td>
</tr>
</tbody>
</table>

instances

The instances table provides information about the currently active EDB Ark nodes for the EDB Ark service account. The table contains one entry for each instance (master or replica node).

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID</td>
<td>The instance ID assigned by the service provider.</td>
</tr>
<tr>
<td>AUTOSCALE</td>
<td>true if auto-scaling is enabled on the cluster; false if auto-scaling is disabled.</td>
</tr>
<tr>
<td>AVAILABILITYZONE</td>
<td>The data center in which the cluster resides.</td>
</tr>
<tr>
<td>BACKUPRETENTION</td>
<td>The number of backups that EDB Ark will retain for the master node of the cluster.</td>
</tr>
<tr>
<td>BACKUPWINDOW</td>
<td>The time during which backups will be taken.</td>
</tr>
<tr>
<td>CLUSTERNAME</td>
<td>The name of the cluster.</td>
</tr>
<tr>
<td>CLUSTERSTATE</td>
<td>The current state of the database. Valid values are: STOPPED = 0, STARTING = 1, RUNNING = 2, WARNING = 3, UNKNOWN = 99</td>
</tr>
<tr>
<td>CLUSTERNODEID</td>
<td>On a primary instance, this is the count of how many nodes have been created so far in this cluster, including any dead nodes. On a replica instance, this represents the order in which it was created in the cluster.</td>
</tr>
<tr>
<td>CONNECTIONTHRESHOLD</td>
<td>The value specified in the Auto-Scaling Thresholds portion of the Details panel, on the Clusters tab. Specifies the number of connections made before the cluster is scaled up.</td>
</tr>
<tr>
<td>CONNECTIONS</td>
<td>The number of active database connections.</td>
</tr>
<tr>
<td>CPULOAD</td>
<td>The current CPU load of the instance.</td>
</tr>
<tr>
<td>CPUTHRESHOLD</td>
<td>The CPU load threshold at which the cluster will be automatically scaled up.</td>
</tr>
<tr>
<td>CREATIONTIME</td>
<td>The date and time that the node was created.</td>
</tr>
</tbody>
</table>

Continued on next page
Table 9.1 – continued from previous page

<table>
<thead>
<tr>
<th>Column</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATATHRESHOLD</td>
<td>The disk space threshold at which the cluster will be automatically scaled up.</td>
</tr>
<tr>
<td>DBNAME</td>
<td>The name of the default database created when the instance was created (edb or postgres).</td>
</tr>
<tr>
<td>DBPORT</td>
<td>The database listener port.</td>
</tr>
<tr>
<td>DBSTATE</td>
<td>The current state of the database:</td>
</tr>
<tr>
<td></td>
<td>0 – Stopped</td>
</tr>
<tr>
<td></td>
<td>1 – Starting</td>
</tr>
<tr>
<td></td>
<td>2 – Running</td>
</tr>
<tr>
<td></td>
<td>3 – Warning</td>
</tr>
<tr>
<td></td>
<td>99 – Unknown</td>
</tr>
<tr>
<td>DNSNAME</td>
<td>The IP address of the instance.</td>
</tr>
<tr>
<td>ENGINEVERSION</td>
<td>The version of the database that is running on the instance.</td>
</tr>
<tr>
<td>FREEDATASPACE</td>
<td>The current amount of free data space on the instance.</td>
</tr>
<tr>
<td>IMAGEID</td>
<td>The server image used when creating the node.</td>
</tr>
<tr>
<td>INSTANCEDSTATE</td>
<td>The current state of the node.</td>
</tr>
<tr>
<td>MASTERPW</td>
<td>The password of the cluster owner.</td>
</tr>
<tr>
<td>MASTERUSER</td>
<td>The name of the cluster owner.</td>
</tr>
<tr>
<td>OWNER</td>
<td>The owner of the node.</td>
</tr>
<tr>
<td>PARAMETERGROUP</td>
<td>The name of the database parameter group used by the instance.</td>
</tr>
<tr>
<td>PENDINGMODIFICATIONS</td>
<td>A message describing any cluster modification in progress (if applicable).</td>
</tr>
<tr>
<td>PORT</td>
<td>The SSH port for the cluster.</td>
</tr>
<tr>
<td>PRIMARYFAILOVERTOREPLICA</td>
<td>Boolean value; true if the cluster will fail over to a replica; false if the cluster will fail over to a new master instance.</td>
</tr>
<tr>
<td>PRIVATEIP</td>
<td>The private IP address of the node.</td>
</tr>
<tr>
<td>HARDWARE</td>
<td>The specified hardware size of the instance.</td>
</tr>
<tr>
<td>PUBLICIP</td>
<td>The public IP address of the node.</td>
</tr>
<tr>
<td>READONLY</td>
<td>True if the node is a read-only replica; false if the node is a master node.</td>
</tr>
<tr>
<td>REGION</td>
<td>The region in which the node resides.</td>
</tr>
<tr>
<td>SECURITYGROUP</td>
<td>The security group assigned to the node.</td>
</tr>
<tr>
<td>SSHKEY</td>
<td>The node’s SSH key.</td>
</tr>
<tr>
<td>SSHKEYNAME</td>
<td>The name of the node’s SSH key.</td>
</tr>
<tr>
<td>STORAGE</td>
<td>The amount of disk space on the instance.</td>
</tr>
<tr>
<td>SUBNET</td>
<td>The VPC subnet ID (valid for AWS users only).</td>
</tr>
<tr>
<td>USEDATASPACE</td>
<td>The current amount of used data space on the instance.</td>
</tr>
<tr>
<td>OPTIMIZED</td>
<td>Boolean value; true if an instance is optimized; false if not (valid for AWS users only).</td>
</tr>
<tr>
<td>IOPS</td>
<td>The requested IOPS setting for the cluster (valid for AWS users only).</td>
</tr>
<tr>
<td>MONITORINGLB</td>
<td>Boolean value; true if load balancing is enabled, false if load balancing is not enabled.</td>
</tr>
<tr>
<td>CASTATE</td>
<td>The most-recent continuous archiving state of the instance.</td>
</tr>
<tr>
<td>CONTINUOUSARCHIVING</td>
<td>Boolean value; true if continuous archiving is enabled, false if continuous archiving is not enabled.</td>
</tr>
</tbody>
</table>

Continued on next page
Table 9.1 – continued from previous page

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLUSTERUUID</td>
<td>The unique cluster identifier.</td>
</tr>
<tr>
<td>VPC</td>
<td>The VPC ID (valid for AWS users only).</td>
</tr>
<tr>
<td>ENCRYPTFS</td>
<td>True if encryption is enabled for the cluster; false if it is not.</td>
</tr>
<tr>
<td>ENCRYPTKEY</td>
<td>The encryption key for the cluster.</td>
</tr>
<tr>
<td>CLUSTERKEY</td>
<td>The SSH key shared by all of the instances in the cluster.</td>
</tr>
<tr>
<td>CLUSTERKEYNAME</td>
<td>The name of the SSH key.</td>
</tr>
<tr>
<td>LBPORT</td>
<td>The load balancing port of the instance.</td>
</tr>
<tr>
<td>NOTIFICATIONEMAIL</td>
<td>The notification email for the cluster.</td>
</tr>
<tr>
<td>TENANT</td>
<td>The tenant in which the node was created.</td>
</tr>
<tr>
<td>VERSION_NUM</td>
<td>The version of EDB Ark under which the instance was created.</td>
</tr>
<tr>
<td>VOLUMETYPE</td>
<td>If supported, the volume type of the cluster.</td>
</tr>
<tr>
<td>YUMSTATUS</td>
<td>The current yum status of the node:</td>
</tr>
<tr>
<td></td>
<td>0 – OK</td>
</tr>
<tr>
<td></td>
<td>1 – Unknown</td>
</tr>
<tr>
<td></td>
<td>2 – Warning</td>
</tr>
<tr>
<td></td>
<td>3 – Critical</td>
</tr>
<tr>
<td>YUMUPDATE</td>
<td>Boolean value; true if the cluster was created with “yum update” enabled,</td>
</tr>
<tr>
<td></td>
<td>false if “yum update” was not enabled when the cluster was created.</td>
</tr>
<tr>
<td>DBENGINE_ID</td>
<td>The selected database engine installed on the instance.</td>
</tr>
</tbody>
</table>

nodestatistics

The nodestatistics table displays information gathered by the cluster manager about the activity for each node. The table contains one record for each time that the cluster manager collected information.

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID</td>
<td>The row identifier for the nodestatistics table.</td>
</tr>
<tr>
<td>CONNECTIONS</td>
<td>The number of connections to the specified node.</td>
</tr>
<tr>
<td>CPULOAD</td>
<td>The processing load placed on the CPU by connecting clients.</td>
</tr>
<tr>
<td>FREEMEM</td>
<td>The amount of free memory available to the node.</td>
</tr>
<tr>
<td>NODEID</td>
<td>The service provider’s node identifier.</td>
</tr>
<tr>
<td>OPSPERSECOND</td>
<td>The number of operations per second.</td>
</tr>
<tr>
<td>TIMESTAMP</td>
<td>The time at which the data was gathered.</td>
</tr>
<tr>
<td>USEDMEM</td>
<td>The amount of used memory (on the node).</td>
</tr>
</tbody>
</table>

pcshistory

The pcshistory table provides a sortable list of the transactions that have been displayed on the Events tabs of the registered users of the EDB Ark service account.

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID</td>
<td>The row identifier for the pcshistory table.</td>
</tr>
<tr>
<td>CLOCKTIME</td>
<td>The time at which the event occurred.</td>
</tr>
<tr>
<td>DESCRIPTION</td>
<td>The description of the event.</td>
</tr>
<tr>
<td>OWNER</td>
<td>The registered owner of the cluster on which the event occurred.</td>
</tr>
<tr>
<td>SOURCE</td>
<td>The name of the cluster on which the event occurred.</td>
</tr>
</tbody>
</table>
property

The property table displays persistent properties used in the console, such as the console name used during backups and wall messages.

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAME</td>
<td>The name of a property.</td>
</tr>
<tr>
<td>VALUE</td>
<td>The value of the property.</td>
</tr>
</tbody>
</table>

rhelrepo

The rhelrepo table provides information about the repositories required by the described Red Hat Subscription Manager services.

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID</td>
<td>The unique identifier of the repository.</td>
</tr>
<tr>
<td>REPO_NAME</td>
<td>The repository name.</td>
</tr>
<tr>
<td>SUBSCRIPTION_ID</td>
<td>The descriptive identifier of the Red Hat Subscription Manager service.</td>
</tr>
</tbody>
</table>

rhelsubscription

The rhelsubscription table provides information about currently defined Red Hat Subscription Manager services.

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID</td>
<td>The unique identifier of the server.</td>
</tr>
<tr>
<td>ACTIVATION_KEY</td>
<td>The activation key of the Red Hat subscription.</td>
</tr>
<tr>
<td>AUTO_ATTACH</td>
<td>Indicates if nodes associated with the subscription will automatically attach to the service.</td>
</tr>
<tr>
<td>BASE_URL</td>
<td>The content delivery server used by the service.</td>
</tr>
<tr>
<td>ENVIRONMENT</td>
<td>The name of the environment (within the organization that will be registered).</td>
</tr>
<tr>
<td>FORCE</td>
<td>Indicates if the node should be registered (even if the node is already registered).</td>
</tr>
<tr>
<td>NAME</td>
<td>The name of the system that will be registered.</td>
</tr>
<tr>
<td>ORG</td>
<td>The organization that will be registered with the Red Hat subscription system.</td>
</tr>
<tr>
<td>PASSWORD</td>
<td>The password associated with the user account.</td>
</tr>
<tr>
<td>RELEASE</td>
<td>The operating system minor release that will be used when identifying updates to any nodes provisioned with the subscription.</td>
</tr>
<tr>
<td>SERVER_URL</td>
<td>The host name of the subscription server used by the service.</td>
</tr>
<tr>
<td>SERVICE_LEVEL</td>
<td>The service level of the Red Hat subscription.</td>
</tr>
<tr>
<td>SUBSCRIPTION_ID</td>
<td>The user-friendly name of the subscription.</td>
</tr>
<tr>
<td>TYPE</td>
<td>The type of consumer that is being registered by the subscription service.</td>
</tr>
<tr>
<td>USERNAME</td>
<td>The name of the user account registered with the Red Hat content server.</td>
</tr>
<tr>
<td>POOL</td>
<td>The pool identifier for the Red Hat subscription service.</td>
</tr>
<tr>
<td>QUANTITY</td>
<td>The number of subscriptions in the subscription pool.</td>
</tr>
<tr>
<td>ATTACH_AUTO</td>
<td>Indicates if nodes using the pool will automatically attach to the service.</td>
</tr>
</tbody>
</table>
serverimage

The serverimage table provides information about currently defined EDB Ark server images.

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID</td>
<td>The unique identifier of the server.</td>
</tr>
<tr>
<td>INIT_USER</td>
<td>The virtual machine OS user (as provided on the Add Server dialog).</td>
</tr>
<tr>
<td>SERVER_DESCRIPTION</td>
<td>The server description.</td>
</tr>
<tr>
<td>SERVER_ID</td>
<td>The descriptive identifier of the server.</td>
</tr>
<tr>
<td>OS_TYPE</td>
<td>The operating system type of the server.</td>
</tr>
<tr>
<td>IS_STATIC</td>
<td>The provisioning mode of the server; true if the server is static, false if the server is not static.</td>
</tr>
</tbody>
</table>

snapshots

The snapshots table provides information about cluster backups that reside in the cloud.

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID</td>
<td>The unique snapshot identifier.</td>
</tr>
<tr>
<td>BACKUPID</td>
<td>An application-managed foreign key reference to the ID column of the backups table.</td>
</tr>
<tr>
<td>CAPACITY</td>
<td>The size of the snapshot.</td>
</tr>
<tr>
<td>DESCRIPTION</td>
<td>The name of the cluster owner and the cluster (colon delimited).</td>
</tr>
<tr>
<td>ENDED</td>
<td>The time at which the backup ended.</td>
</tr>
<tr>
<td>ENGINEVERSION</td>
<td>The Postgres engine version.</td>
</tr>
<tr>
<td>MASTERPW</td>
<td>The password of the database superuser.</td>
</tr>
<tr>
<td>MASTERUSER</td>
<td>The name of the database superuser.</td>
</tr>
<tr>
<td>NOTES</td>
<td>Notes added by the cluster owner when the snapshot was taken.</td>
</tr>
<tr>
<td>OWNER</td>
<td>The name of the cluster owner.</td>
</tr>
<tr>
<td>PROGRESS</td>
<td>The most-recent information about the progress of the snapshot.</td>
</tr>
<tr>
<td>SHARED</td>
<td>Deprecated column.</td>
</tr>
<tr>
<td>STARTED</td>
<td>The time at which the backup began.</td>
</tr>
<tr>
<td>STATUS</td>
<td>Manual Backup if the backup was invoked by a user; Auto Backup if the backup was a scheduled system backup.</td>
</tr>
<tr>
<td>VOLUMESIZE</td>
<td>The size of the retained backup.</td>
</tr>
</tbody>
</table>

template

The template table provides information about the configurations available with each template.
<table>
<thead>
<tr>
<th>Column Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID</td>
<td>The unique identifier of the template (system assigned).</td>
</tr>
<tr>
<td>BACKUPRETENTI ON</td>
<td>The number of backups that Ark will retain for the master node of the cluster.</td>
</tr>
<tr>
<td>BACKUPWINDOW</td>
<td>The time during which backups will be taken.</td>
</tr>
<tr>
<td>CONTINUOUSARCHIVING</td>
<td>True if archiving is enabled; false if archiving is disabled.</td>
</tr>
<tr>
<td>DESCRIPTION</td>
<td>The colon delimited name of the cluster owner and the cluster.</td>
</tr>
<tr>
<td>DISABLED</td>
<td>True if the template is enabled; false if it is disabled.</td>
</tr>
<tr>
<td>ENCRYPTFS</td>
<td>True if the content of a backup is stored on an encrypted file system; false if it is not.</td>
</tr>
<tr>
<td>HARDWARE</td>
<td>The specified hardware size of the instance.</td>
</tr>
<tr>
<td>NAME</td>
<td>The name of the template.</td>
</tr>
<tr>
<td>NUMNODES</td>
<td>The number of nodes that will be created in a cluster deployed with this template.</td>
</tr>
<tr>
<td>STORAGE</td>
<td>The amount of disk space available to the cluster.</td>
</tr>
<tr>
<td>TENANTS</td>
<td>The names of the roles or tenants that may use this template.</td>
</tr>
<tr>
<td>VPC</td>
<td>The VPC ID (valid for AWS users only).</td>
</tr>
<tr>
<td>YUMUPDATE</td>
<td>True if updates are enabled for the cluster; false if they are not.</td>
</tr>
<tr>
<td>DBENGINE_ID</td>
<td>The database engine used by the template.</td>
</tr>
<tr>
<td>MANUALLYSCALEREPLICAS</td>
<td>MANUALLYSCALEREPLICAS indicates if users of this template will be allowed to manually scale replica nodes configured by this template.</td>
</tr>
<tr>
<td>MANUALLYSCALESTORAGE</td>
<td>MANUALLYSCALESTORAGE indicates if users of this template will be allowed to manually scale storage on clusters configured by this template.</td>
</tr>
<tr>
<td>AUTOSCALEREPLICAS</td>
<td>AUTOSCALEREPLICAS indicates if users of this template will be able to configure automatic node scaling for clusters configured by this template.</td>
</tr>
<tr>
<td>AUTOSCALESTORAGE</td>
<td>AUTOSCALESTORAGE indicates if users of this template will be able to configure automatic storage scaling for clusters configured by this template.</td>
</tr>
<tr>
<td>OPTIMIZED</td>
<td>Boolean value; true if an instance is optimized; false if not (valid for AWS users only).</td>
</tr>
<tr>
<td>IOPS</td>
<td>The IOPS setting for the cluster (valid for AWS users only).</td>
</tr>
</tbody>
</table>
The sections that follow provide information about managing the EDB Ark application server.

10.1 Starting, Stopping or Restarting the Ark Console

Apache Tomcat is an open source project that deploys Java servlets on behalf of the Ark console. To start, stop, or restart the application server, use ssh to connect to the host of the Ark console database. Then, use sudo to assume sufficient privileges to restart the console:

```bash
sudo su -
```

Then, use systemctl to start, stop, or restart the server.

- **To start the server:**

  ```bash
  systemctl start tomcat
  ```

- **To stop the server:**

  ```bash
  systemctl stop tomcat
  ```

- **To restart the server (if it is already running):**

  ```bash
  systemctl restart tomcat
  ```
10.2 Changing Console Passwords

A fresh installation of the Ark console includes a PostgreSQL installation that is used to manage the console; the management database is named postgres. By default, the database superuser has the following connection credentials:

- **name:** postgres
- **password:** 0f42d1934a19f3d25d6288f2a3272c6143fc5d

You should change the password on the PostgreSQL server to a unique password (known only to trusted users). You can set the password when you deploy the console or modify the password later on the Edit Installation Properties dialog. To open the Edit Installation Properties dialog, navigate to the Admin tab of the Ark console and click the Edit Installation Properties button.

![Fig. 10.1: Changing console passwords](image)

Fields near the bottom of the dialog allow you to modify the password:

- **Use** the DB User New Password field to modify the database password.
- **Use** the DB User Confirm Password field to confirm the new password.

After providing a new password and confirming the password, click the Save button. The console will inform you that it needs to restart the server to complete the password change. When prompted, click the Restart button. When the restart is complete, you will be required to log in to the server again.

Please note: if you modify the password of the Ark console, the password of the PEM server that resides on the Ark console will change as well. When using the PEM web interface to connect to the PEM server, use the password assigned to the Ark console.
10.3 Customizing the Console

The majority of the console layout is defined in source files and cannot be changed without compilation, but you can modify several aspects of the user interface, including:

- Background images
- Background colors
- Fonts
- Font colors

To change the colors, fonts, or images displayed by the console, you can use ssh to connect to the console host; once connected, use your choice of editor to modify the files that control the onscreen display.

Modifying the Console Display

To modify the console display, use ssh to connect to the host of the Ark console: After connecting to the console host, you can use your choice of editor to modify the files that control the look and feel of the console host.

Please Note: We recommend that you make a backup of any file that you plan to modify before changing the file.

The css File

The css rules for the EDB Ark user console are stored in the styles.css file. The file is located at:

/usr/share/tomcat/webapps/PPCDConsole/WEB-INF/classes/VAADIN/themes/pcsconsole/styles.css

Please refer to comments within the file for detailed information about modifying individual components within the console display.

Some modifications to the styles.css file will be visible when you reload the page in your browser; if a change is not immediately visible, restart the server to apply the changes. If a change is not visible after restarting the server, you may need to clear your browser cache.

The images Directory

To modify the images that are displayed by the console user interface, replace the .png files in the images directory with the images you wish to display. The images directory is located at:

/usr/share/tomcat/webapps/PPCDConsole/VAADIN/themes/pcsconsole/images

Please note that the logo displayed on the login screen is defined in the i18n.properties file; for more information about modifying the logo image, please refer to comments in that file.

The html Template File

The loginscreen.html template file defines the page layout for the login screen and the terms of use URL (referenced on the login screen). The file is located at:

/usr/share/tomcat/webapps/PPCDConsole/WEB-INF/classes/com/enterprisedb/pcs/ui/loginscreen.html

The properties File

Use the i18n.properties file to modify text and external URLs displayed in the Ark console. The i18n.properties file is located at:

/usr/share/tomcat/webapps/PPCDConsole/WEB-INF/classes/i18n.properties

Comments within the i18n.properties files identify the onscreen information controlled by each entry in the file. You must restart the server to apply any modifications to the properties file.
10.4 Managing Console Logs

By default, Ark console log files are written to `/var/log/edb-ark/ark.log`. Log files are rotated on a daily basis, and stored for 30 days.

You can use the `ark.server.level` property to manage the level of detail saved in the Ark console log files. The `ark.server.level` property resides in:

```
/usr/share/tomcat/webapps/PPCDConsole/WEB-INF/classes
```

To modify the value, connect to the Ark console, and use your choice of editor to modify the property value. The valid values are:

<table>
<thead>
<tr>
<th>Property Value</th>
<th>Information Logged</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEVERE</td>
<td>Includes the least amount of information in the log files (i.e., exceptions and ERROR messages).</td>
</tr>
<tr>
<td>WARNING</td>
<td>Includes WARNING messages.</td>
</tr>
<tr>
<td>INFO</td>
<td>Includes informational messages about server activity.</td>
</tr>
<tr>
<td>CONFIG</td>
<td>Includes messages about configuration changes.</td>
</tr>
<tr>
<td>FINE</td>
<td>This is the default; provides detailed information about server activity.</td>
</tr>
<tr>
<td>FINER</td>
<td>Includes a higher level of detail about server activity.</td>
</tr>
<tr>
<td>FINEST</td>
<td>Provides the highest level of detail about server activity.</td>
</tr>
</tbody>
</table>

After modifying the properties file, restart the server to make the changes take effect:

```
sudo systemctl restart tomcat
```
The steps that follow provide detailed instructions about upgrading the Ark console. Before upgrading the console, you must ensure that no users are connected to the console, and that there are no cluster operations (backup, cloning, etc) in progress; you may wish to alert users to the pending upgrade with a wall message.

Use the `Show logged in users` button on the Admin tab to confirm that no users are connected to the console, and check the server log (located in `/var/log/edb-ark/ark.log`) to confirm that all server activities have completed. Then:

1. Use `ssh` to connect to the node on which the Ark console resides, and assume root privileges:
   ```
   sudo su -
   ```
2. With your choice of editor, modify the repository configuration file (located in `/etc/yum.repos.d`), enabling the `edb-ark` repository URL.
   ```
   [edb-ark]
   name=EnterpriseDB EDB Ark
   baseurl=http://<username>:<username>@yum.enterprisedb.com/edb-ark/redhat/rhel-\$releasever-\$basearch
   enabled=0
   gpgcheck=0
   gpgkey=file:///etc/pki/rpm-gpg/ENTERPRISEDB-GPG-KEY
   ```
 To enable the repository, replace the `<username>` placeholders with your user name and password, and set `enabled=1`.
3. Use the `yum list edb-ark` command to review a list of available updates.
   ```
   yum list edb-ark
   ```
4. If any updates are available, use `yum` to install the updates:
   ```
   yum update package_name
   ```
 Where `package_name` specifies the name of the package that you wish to update.
5. When the downloads complete, navigate into the `/usr/share/tomcat` directory:
   ```
   cd /usr/share/tomcat
   ```
6. Invoke the EDB Ark post-installation script to upgrade the console:
   ```
   ./postInstall.sh
   ```
 The installation script will prompt you to confirm that the console is not in use, and that you wish to continue with the installation.
   ```
   [root@ip-172-31-15-135 yum.repos.d]# /usr/share/tomcat/postInstall.sh
   Script will upgrade the application! Is the EDB-ARK console in a steady state (no logged in users, no activity in the console)?
   Are you sure you want to continue? <y/N> y
   Updating EDB-ARK Application...
   Stopping httpd and tomcat services...
   Deploying the latest application in tomcat
   Starting httpd and tomcat services...
   Done!
   ```
 When the `yum update` completes, navigate to the Ark URL in your browser, and enter the account password. You will be taken to the Ark deployment dialog where you will be required to provide the `Service Account ID` and
Service Account Password; provide any missing values, select a Time Zone, and restart the Ark server. Ark will open to the Login dialog.
10.6 Updating a PEM Installation

If you are using a local installation of PEM to monitor an Ark console, you may want to update your version of PEM to a more recent version. To update your PEM installation:

1. Ensure that the `edb-ark.repo` file is enabled and contains your connection credentials:

 Use ssh to connect to the Ark console host, and navigate to the `/etc/yum.repos.d` directory. Then, use your choice of editor to update the `edb-ark.repo` file.

   ```
   [edb-ark]
   name=EnterpriseDB EDB-ARK $releasever - $basearch
   baseurl=https://<username>:<password>@yum.enterprisedb.com/edb-ark/redhat/rhel-...
   enabled=0
   gpgcheck=1
   gpgkey=file:///etc/pki/rpm-gpg/ENTERPRISEDB-GPG-KEY
   [edb-tools]
   name=EnterpriseDB Tools $releasever - $basearch
   baseurl=https://<username>:<password>@yum.enterprisedb.com/tools/redhat/rhel-...
   enabled=0
   gpgcheck=1
   gpgkey=file:///etc/pki/rpm-gpg/ENTERPRISEDB-GPG-KEY
   [edb-dependencies]
   name=EnterpriseDB Dependencies $releasever-$basearch
   baseurl=https://<username>:<password>@yum.enterprisedb.com/dependencies/redhat/rhel-$releasever-$basearch
   enabled=0
   gpgcheck=1
   gpgkey=file:///etc/pki/rpm-gpg/ENTERPRISEDB-GPG-KEY
   ```

 Modify the repository details, replacing each `<username>` and `<password>` placeholder with your credentials for the EnterpriseDB repository, and setting enabled to 1. To request credentials for the repository, please visit the EnterpriseDB website.

2. Assume superuser privileges.

   ```
   sudo su
   ```

3. Use yum to update the PEM agent and PEM server version installed on your Ark console host:

   ```
   yum install edb-pem-python-idna.noarch
   yum update edb-pem edb-pem-server
   ```

4. When the installation completes, configure the updated PEM server:

   ```
   /usr/edb/pem/bin/configure-pem-server.sh -dbi /usr/lib/pgsql/10 -d /var/lib/pgsql/10/data/ -ho 127.0.0.1 -p 5432 -su postgres -sp <ark_console_password> -t 1 -ci 0.0.0.0/0 -ds postgresql-10 -acp ~/.pem/
   ```

 Where `<ark_console_password>` is the password of the Ark console.

 For more information about using PEM, please see the PEM user guides.
10.7 Recovering From a Console Failure

User and instance information used by the Ark console is stored in tables in a Postgres database. If the console application should fail, the information will persist in the console database, and will be available when the console application restarts.

If the system hosting the application database fails, then all information about the console database and registered users will be lost unless you have retained a backup.

The Ark console is configured to take automatic backups of the console database hourly, and after the registration of each new user. If you do not wish to use the Ark backup script to implement backups, you should maintain regular backups of your console database.

Please note: the Ark recovery utility only supports recovering the console from a backup that is the same version as the current console version.
10.8 Modifying Backup Properties with the EDB Ark Console

You can use the Installation Properties dialog to modify console backup properties; to modify the properties, navigate to the Admin tab, and click the Edit Installation Properties button.

When the Edit Installation Properties dialog opens, you can modify details about the console backup storage:

- Use the Backup Script field to specify the name and location of the backup script provided with EDB Ark. If you choose to provide your own backup script, use the parameter to specify the name and location.

- Use the DB Name field to specify the name of the console database; the default is postgres.

- Use the Directory to Store Backups field to specify a directory to which backups will be written. Please note that you must create the directory specified.

 The backup directory specified should not reside on the console VM’s root disk; your backup would be lost in the event of a VM failure. You should consider mounting an external volume to the console VM, and writing console database backups to that volume.

- Use the DB User Name field to specify the name of the console database user; the default is postgres.

- Use the DB User Password field to specify the password associated with the console database user; the default password is:

 0f42d1934a1a19f3d25d6288f2a3272c6143fc5d

- Use the Storage Bucket field to specify the name of the swift storage container that will be used to store files for point-in-time recovery. This location should not change after the initial deployment of the Ark console.

- Use the Console Backup Folder field to specify a folder in which the backups will be stored.

- Use the Storage Tenant field to provide the name of the tenant in which the backup will be stored.
10.9 Using the Recover Option

If the console cannot locate a registered user, and your console is configured to support console backups, the Ark console login dialog will request the password specified during setup and display the Deploy Console or Recover from Backup options when you navigate to the console address.

To initiate a console recovery, provide the console password specified when you deployed the console instance (in the Amazon management console), and click the Recover from Backup button. The console properties dialog opens, prompting you for information about console backups.

Use the dialog to provide details about the console, and the location of a backup to recover. When you’re finished, click the Recover button to start the recovery process. A popup will open, prompting you for the name of the backup folder that you wish to use for the recovery.

Use the Folder name drop-down listbox to select the backup you wish to use for the recovery, and click Finish to start the recovery process. If your system is monitored by a local PEM server, the backup will attempt to restore both the Ark and PEM servers.
10.10 Manually Recovering from Console Backups

If you wish to manually save backups, you can use the Postgres `pg_dump` or `pg_dumpall` command to archive the console database. Then, you can then use the `pg_restore` command to restore the console database if necessary.

Recovering the Console with a Backup Script

The backup script provided with the Ark console uses `pg_dump` to create a plain-text SQL script file that contains the commands required to rebuild the console database to the state in which the backup was taken. After using ssh to connect to the host of the console, you can use the following command to invoke the psql command line tool and restore the console:

```
/usr/bin/psql -h localhost -p 5432 -d postgres -U postgres -f <(echo truncate sequence\;; cat `recovery_file`)
```

Where `recovery_file` specifies the path and name of the backup file you wish to restore.

While restoring a console instance, you should shut down the application server so that the console application isn’t actively using the database. When the restoration is complete, restart the application server.
Each cluster has an associated security group that specifies the addresses from which the cluster will accept connections. By default, the security group exposes only port 9999 (the load balancing port) to the outside world, while allowing inter-cluster communication, and console-to-cluster communication between the servers in the cluster.

You can modify the security group, strategically exposing other ports for client connection. For example, you may wish to open port 22 to allow ssh connections to a server, or port 5444 to allow connections to the listener port of the Advanced Server database server that resides on a replica node.

EDB Ark assigns the same security group to every member of a cluster. By default, the security group contains rules that specify that any cluster member may connect to any other member’s ICMP port, TCP port or UDP port. These rules do not permit connections from hosts on the public Internet. You must not alter these security rules.

Additional rules open TCP ports 7800–7802 to the cluster manager, allowing the cluster manager to perform maintenance and administrative tasks. Please note that the rules governing connections from the cluster manager must remain open to allow:

- intra-cluster communications
- communication with the console or cluster manager
- maintenance and administrative functionality

The rule for TCP port 9999 uses a CIDR mask (0.0.0.0/0) to specify that port 9999 is open for connections from any IP address. You can customize this rule, selectively restricting the IP addresses from which computers are allowed to connect to a given port within the cluster.

Please note that EDB Ark provides a secure environment for all communications within the cluster, and between the cluster and the console or cluster manager by employing SSH authentication and SSL encryption.
11.1 Modifying a Security Group for an Amazon AWS Hosted Console

Security groups for Ark clusters that reside on an AWS host are managed through the Amazon management console; Amazon administrative privileges are required to review or modify the security group entries.

To manage a security group for a cluster, connect to the AWS management console, and locate the cluster on the Instances dashboard. Highlight the cluster name, and scroll through the columns to the right. Click the name of the security group (in the Security Groups column) to review detailed information about the rules that are currently defined for the cluster.

To modify a security group and add a rule that allows connections from an outside client (such as ssh), navigate to the Inbound tab, and click the Edit button. When the Edit inbound rules dialog opens, click the Add Rule button to add a new line to the list of rules.

Specify the rule type, the protocol type, the port (or port range) on which inbound connections will be accepted, and the CIDR-formatted address from which you will be connecting.

Consult the core documentation for more information about specifying a CIDR address.

When you’ve defined the rule, click Save to add the entry to the inbound rules list.

Please consult the Amazon documentation for detailed information about managing the security group for a virtual private cloud.
11.2 Using ssh to Access a Server

EDB Ark creates an ssh key when you create a new cluster; each cluster has a unique key. Before connecting to a Postgres instance that resides on the cloud via an ssh encrypted connection, you must download the ssh key, and adjust the privileges on the key file.

To download your private key, navigate to the Clusters tab, and click the Download SSH Key icon. The Accessing Your Cluster Instance popup opens.

![Accessing Your Cluster Instance](image)

The popup displays the tenant name, the cluster name, the name that you should use when connecting to the cluster, and the IP address to which you should connect.

Before using the private key, you must modify the permissions on the keyfile. Use the following command to restrict file permissions:

```
chmod 0600 <ssh_key_file>.pem
```

Where `<ssh_key_file>.pem` specifies the complete path and name of the EDB Ark ssh private key file.

After modifying the key file permissions, you can use ssh to connect to the cluster. Include the complete path to the key file when invoking the command provided on the Accessing Your Cluster Instance popup.

Please note: Postgres Server applications must be invoked by the Postgres cluster owner (identified when creating an EDB Ark cluster as the Master User). If you are using a PostgreSQL server, the default user name is postgres; if you are using Advanced Server, the default user name is enterprisedb. To change your identity after connecting via ssh, use the `su` command:

```
# sudo su database_user_name
```
11.3 Using iptables Rules

If you are using iptables rules to manage security on the host of the Ark console, please note that you must not modify the iptables rules provided by EDB Ark.

If you are using iptables on the host of the Ark console, do not modify the following rules:

- `iptables -A PREROUTING -t nat -i eth0 -p tcp --dport 80 -j REDIRECT --to-port 8080`
- `iptables -A PREROUTING -t nat -i eth0 -p tcp --dport 443 -j REDIRECT --to-port 8181`
- `iptables -I INPUT 1 -p tcp --dport 8181 -j ACCEPT`
- `iptables -I INPUT 1 -p tcp --dport 8080 -j ACCEPT`

These rules:
- redirect http and https traffic on ports 80 and 443 to the default ports (8080 and 8181).
- allow inbound traffic on 8080 and 8181.
- save the configuration (to preserve the behaviors when the system reboots).

If you are using iptables on an Advanced Server cluster, do not modify the following rules:

- `iptables -I INPUT 1 -p tcp --dport 7800:7802 -j ACCEPT`
- `iptables -I INPUT 1 -p tcp --dport 5444 -j ACCEPT`
- `iptables -I INPUT 1 -p tcp --dport 9999 -j ACCEPT`

If you are using iptables on a PostgreSQL cluster, do not modify the following rules:

- `iptables -I INPUT 1 -p tcp --dport 7800:7802 -j ACCEPT`
- `iptables -I INPUT 1 -p tcp --dport 5432 -j ACCEPT`
- `iptables -I INPUT 1 -p tcp --dport 9999 -j ACCEPT`

The rules:
- allow inbound traffic from the Ark console on ports 7800 and 7802.
- allow inbound traffic on the database listener ports.
- save the configuration (to preserve the behaviors when the system reboots).
- allow inbound traffic on the load balancer port.
11.4 Post-Installation Recommendations

SE Linux

During the installation process, SE Linux is disabled on the console host. Please note that SE Linux must remain disabled for the Ark console and clusters to function properly.

Create a Secondary User Account

The Ark console installation process creates an administrative user (named centos on CentOS hosts, or cloud-user on RHEL hosts) with ssh access to the console host. After installing the Ark console, you should use ssh to connect to the console host, and create a secondary user account that can be used to login and gain root privileges in the event that the installer-created user should lose ssh access for any reason.
Creating a Statically Provisioned Image

An `install.sh` script is distributed with Ark; use the script when creating a statically provisioned image. If you are creating a statically provisioned image on a RHEL host, you must register the host before configuring the cluster.

1. Create an instance that contains the backing operating system for your image.
2. Use `scp` to copy the `install.sh` file to the instance.
3. Use the following command to modify the permissions associated with the `install.sh` file:
   ```bash
   `chmod a+x install.sh`
   ```
4. Then, assume superuser privileges and invoke the install.sh script, including command options and values that specify details about the image:

<table>
<thead>
<tr>
<th>Option</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>-n</code></td>
<td>The database server type</td>
</tr>
<tr>
<td><code>-v</code></td>
<td>The database server version</td>
</tr>
<tr>
<td><code>-u</code></td>
<td>If true, Ark will invoke the yum update command and update the currently installed software packages.</td>
</tr>
<tr>
<td><code>-c</code></td>
<td>When set to true, the script will configure and enable required RHEL repositories.</td>
</tr>
<tr>
<td><code>-r</code></td>
<td>The repository address (and if applicable, credentials) for provisioning. Include the <code>-r</code> flag once for each repository required by packages specified with the <code>-p</code> or <code>-o</code> options.</td>
</tr>
<tr>
<td><code>-p</code></td>
<td>A list of the packages that will be installed in the image.</td>
</tr>
<tr>
<td><code>-o</code></td>
<td>A list of additional packages that should be installed in the image.</td>
</tr>
</tbody>
</table>

5. Take a snapshot of the instance, and make the image public to make it accessible to the Ark console.

Examples

For example, the following command creates a static image that contains the EDB Postgres Advanced Server 10 database on a RHEL host:

```bash
$ sudo ./install.sh -n ppas -v 10 -u true -c true -r http://USERNAME:PASSWORD@yum.enterprisedb.com/10/redhat/rhel-\$releasever-\$basearch -r http://USERNAME:PASSWORD@yum.
```
The following command creates a static image that contains PostgreSQL 10 on a CentOS host:

```
$ sudo ./install.sh -n postgres -v 10 -u true -c false -r http://yum.postgresql.org/10/redhat/rhel-7-x86_64/pgdg-redhat96-10-3.noarch.rpm -p postgresql10-server pgpool-II-10
```

The script returns `Script execution complete` when the command finishes executing successfully.

When creating a new server with the Ark console that references the image, check the box next to `Statically Provisioned` on the console properties dialog.
CHAPTER 13

EDB Postgres Ark Notifications

EDB Ark will send e-mail notifications when:

- The state of a monitored database cluster changes.
- An administrative action is performed on a cluster
- User information changes.

Please note: For EDB Ark notifications to function properly, you must have an SMTP server running on each node, and provide contact email addresses for the Ark administrator and Ark user.

<table>
<thead>
<tr>
<th>Subject</th>
<th>Body</th>
</tr>
</thead>
<tbody>
<tr>
<td>Console DB Backup Failed</td>
<td>The Console DB Backup failed. A problem was encountered trying to run the backup script: script_output.</td>
</tr>
<tr>
<td>Database State Changed to db_state</td>
<td>The MASTER /REPLICA database server dns_name in cluster cluster_name is now STOPPED /STARTING /RUNNING /WARNING /UNKNOWN in location availability_zone.</td>
</tr>
<tr>
<td>Load Balancer Port Error</td>
<td>The MASTER /REPLICA database server dns_name in cluster cluster_name in location availability_zone is reporting an error determining the load balancer port.</td>
</tr>
<tr>
<td>Load Balancer Port Notification</td>
<td>The MASTER /REPLICA database server dns_name in cluster cluster_name is now RUNNING /STARTING /STOPPED /WARNING /UNKNOWN in location availability_zone using port port_number.</td>
</tr>
<tr>
<td>Continuous Archiving State Changed to db_state</td>
<td>Continuous Archiving on the master/replica database server dns_name in cluster cluster_name is operating normally.</td>
</tr>
<tr>
<td>Continuous Archiving State Changed to db_state</td>
<td>A problem was detected with continuous archiving on the master/replica database server dns_name in cluster cluster_name.</td>
</tr>
<tr>
<td>Data Storage Scaling cluster_name</td>
<td>Data storage is being added to cluster cluster_name because the auto-scaling threshold was reached.</td>
</tr>
<tr>
<td>Data storage scaling for cluster cluster_name has been suspended</td>
<td>Data storage scaling for cluster cluster_name has been suspended. Instance instance_id no assignable device names left</td>
</tr>
<tr>
<td>Rebuild of primary node in cluster cluster_name</td>
<td>The primary server, node id instance_id in cluster cluster_name is being rebuilt.</td>
</tr>
</tbody>
</table>

Continued on next page
<table>
<thead>
<tr>
<th>Subject</th>
<th>Body</th>
</tr>
</thead>
<tbody>
<tr>
<td>Replacement of primary node in cluster cluster_{name}</td>
<td>The primary server, node id instance_{id} in cluster cluster_{name} is being replaced with node id instance_{id}.</td>
</tr>
<tr>
<td>Rebuild of replica node in cluster cluster_{name}</td>
<td>The replica server, node id instance_{id} in cluster cluster_{name} is being rebuilt.</td>
</tr>
<tr>
<td>Replica promotion failed in cluster cluster_{name}</td>
<td>Replica promotion failed. Performing rebuild of primary DB node; id: instance_{id}</td>
</tr>
<tr>
<td>REPLACEMENT OF PRIMARY NODE IN CLUSTER cluster_{name}</td>
<td>The primary server, node id instance_{id} in cluster cluster_{name} is being replaced with node id instance_{id}.</td>
</tr>
<tr>
<td>Rebuild of replica node in cluster cluster_{name}</td>
<td>The replica server, node id instance_{id} in cluster cluster_{name} is being rebuilt.</td>
</tr>
<tr>
<td>REPLICA PROMOTION FAILED IN CLUSTER cluster_{name}</td>
<td>Replica promotion failed. node id: instance_{id}</td>
</tr>
<tr>
<td>WARNING: Connectivity Issue with instance region/instance_{id}</td>
<td>WARNING: The EDB Ark cluster manager was unable to connect to the node manager for instance ID region/instance_{id}. This may be due to a temporary connectivity issue or the instance may require manual intervention.</td>
</tr>
<tr>
<td>(PITR) Base Backup of cluster cluster_{name} failed</td>
<td>The automatic/manual backup of cluster cluster_{name} in location availability_zone failed.</td>
</tr>
<tr>
<td>Backup of cluster cluster_{name} failed</td>
<td>The automatic/manual backup of cluster cluster_{name} in location availability_zone failed.</td>
</tr>
<tr>
<td>WAL Archive Storage Container Created</td>
<td>A storage container (bucket) named bucket_{name} has been created. All EDB Ark clusters configured for Continuous Archiving (Point-in-Time Recovery) will use this location to store archived WAL files. This container should not be deleted once created as it will cause WAL archiving to stop functioning.</td>
</tr>
<tr>
<td>Termination of cluster cluster_{name} completed.</td>
<td>The termination of cluster cluster_{name} has completed.</td>
</tr>
<tr>
<td>WARNING: Termination Protection instance_{id}.</td>
<td>The system was not able to terminate instance {0} in cluster cluster_{name} because termination protection is enabled. You must disable termination protection before this instance can be terminated.</td>
</tr>
<tr>
<td>OS/SW update PASSED on node instance_{id}.</td>
<td>Yum update results for node: dns_name Yum exit status: exit_status You may also consult the yum log on the node (usually in /var/log/yum.log) If there were any errors, you will have to log into the node and manually correct them and/or consult with your EDB Ark Admin.</td>
</tr>
<tr>
<td>OS/SW update FAILED on node instance_{id}.</td>
<td>Yum update results for node: dns_name Yum exit status: exit_status You may also consult the yum log on the node (usually in /var/log/yum.log) If there were any errors, you will have to log into the node and manually correct them and/or consult with your EDB Ark Admin.</td>
</tr>
<tr>
<td>OS/SW Status is now: status</td>
<td>The OS/SW status on node dns_{name} of cluster cluster_{name} is now CRITICAL. This indicates that the node has at least one outstanding security update and possibly other non-critical updates available. Please log into the EDB Ark console and perform a cluster upgrade.</td>
</tr>
<tr>
<td>OS/SW Status is now: status</td>
<td>The OS/SW status on node dns_{name} of cluster cluster_{name} is now UNKNOWN. This indicates that the node is having difficulty determining the OS/SW status. This may be a temporary issue that will resolve itself. Please log into the EDB Ark console and check your clusters status. If it is still showing status UNKNOWN then you will need to log into node dns_{name} and run “yum –security check-update” to diagnose the issue manually.</td>
</tr>
<tr>
<td>Unable to delete Security Group group_{name}</td>
<td>The system was not able to delete the Security Group named group_{name} in cluster cluster_{name}. This could be because one or more instances in the cluster could not be terminated. This Security Group will need to be manually deleted from the provider’s management console.</td>
</tr>
<tr>
<td>Volume attachment failed in cluster cluster_{name}</td>
<td>The message body contains error text directly from the server. }</td>
</tr>
</tbody>
</table>
The Ark console has encountered an error while attempting to synchronize with the PEM server:

Exception Information
Ark console: https://console_address
PEM dashboard: https://pem_console_address/pem/browser/
Full Error Details: [details](#)

Reboot of cluster cluster_name in progress
OS/SW update completed successfully, rebooting all cluster nodes.
You can find solutions to administrative problems through EnterpriseDB. If you have purchased support, you can log a support ticket:

- in the Customer Portal: https://enterprisedbpartners.force.com
- via email: mailto:support@enterprisedb.com
- or by phone: +1-732-331-1320 or 1-800-235-5891 (US Only)

If you have not purchased support, and would like to, view your support options at:

https://www.enterprisedb.com/products/subscriptions

You are always welcome to log an issue via email; when time permits, our customer support experts will respond to inquiries from customers that have not purchased support. Postgres documentation and helpful tutorials is always available from the Dashboard tab of the Ark console.
AWS IAM Role Permission Policy

When you define an Amazon user, you are required to provide a security policy. The following text is an example of a security policy.

```json
```
When you define an Amazon IAM role, you are required to provide a security policy and an updated trust relationship policy document. You can use the following trust relationship document:

```json
"Version": "2012-10-17",
"Statement": [
  {
    "Sid": "",
    "Effect": "Allow",
    "Principal": {
      "Service": "ec2.amazonaws.com"
    },
    "Action": "sts:AssumeRole"
  },
  {
    "Sid": "",
    "Effect": "Allow",
    "Principal": {
      "AWS": "arn:aws:iam::your_account_number:root"
    },
    "Action": "sts:AssumeRole",
    "Condition": {
      "StringEquals": {
        "sts:ExternalId": "EDB-ARK-SERVICE"
      }
    }
  }
]
```
When you define an Amazon service user, you are required to provide an inline security policy. You can use the following security policy when registering a service user:

```json
{
  "Version": "2012-10-17",
  "Statement": [
    {
      "Sid": "Stmt1389628412000",
      "Effect": "Allow",
      "Action": [
        "sts:GetFederationToken",
        "sts:AssumeRole"
      ],
      "Resource": [
        "*
      ]
    }
  ]
}
```
Conclusion

EDB designs, establishes coding best practices, reviews, and verifies input validation for the logon UI for EDB Postgres Ark where present. EDB follows the same approach for additional input components, however the nature of the product may require that it accepts freeform SQL, WMI or other strings to be entered and submitted by trusted users for which limited validation is possible. In such cases it is not possible to prevent users from entering incorrect or otherwise dangerous inputs.

EDB reserves the right to add features to products that accept freeform SQL, WMI or other potentially dangerous inputs from authenticated, trusted users in the future, but will ensure all such features are designed and tested to ensure they provide the minimum possible risk, and where possible, require superuser or equivalent privileges.

EDB does not warrant that we can or will anticipate all potential threats and therefore our process cannot fully guarantee that all potential vulnerabilities have been addressed or considered.
Index

A
Accessing User Information, 135
Adding Components to a DB Engine, 107
Administrative Features of the EDB Ark Console, 87
Amazon IAM Role Trust Relationship, 167
Amazon Service User Security Policy, 168
Ark Architecture Overview, 5
Ark Authentication Models, 20
AWS IAM Role Permission Policy, 166

C
Conclusion, 169
Configuring Ark for SAML, 45, 79
Configuring the Ark Console, 40
Configuring the Ark Console on Azure, 74
Connecting to the Admin Console on an Azure Host, 84
Console Logs, 129
Console Management, 144
Console Manager, 91
Core Usage Logs, 130
Creating a Security Group on Azure, 60
Creating a Storage Account on Azure, 61
Creating an AWS Role and Registering an Ark User, 49
Creating the AWS Service Role, 34
Creating the AWS Service User, 30
Creating the AWS Service User and Role, 29
Cross-region resources, 93

D
DBA Tab, 133
Display Connected Users, 127

E
EDB Postgres Ark Notifications, 162
EDB Postgres Ark Resources, 165
Editing Installation Properties, 132

F
Federated console, 93

I
Installing the Ark Console, 26
Installing the Ark Console on AWS, 27
Installing the Ark Console on Azure, 59
iptables Rules, 157

L
Launching the Ark Console on AWS, 27
Launching the Ark Console on Azure, 62

M
Managing Amazon Roles, 119
Managing Database Engines, 99
Managing Engine Definitions, 102
Managing Server Images, 96
Manual Backup of the Console, 131
Modifying, 155
Monitoring an Ark Cluster, 13

N
New Features, 2

P
PostgreSQL Authentication on AWS, 22
PostgreSQL Authentication on Azure, 24
Provider Authentication on AWS, 21
Provider Authentication on Azure, 23
Providing Admin access to an Azure user, 59

R
Red Hat Subscription Management, 114
Registering a PEM Agent, 15
Registering an Ark Cluster with PEM, 9

S
saml, 45, 79
Security Group, 155
SSH Connections, 156
Supported Platforms, 4
T
Template Administration, 110

U
User Administration, 121
User Administration on an AWS Host, 124
User Administration on an Azure Host, 126
Using the Admin Tab, 89

W
Wall Message, 128
What’s New, 2