

EDB Postgres™ Advanced Server
ECPGPlus Guide

EDB Postgres™ Advanced Server 11

November 20, 2018

Copyright © 2012 - 2018 EnterpriseDB Corporation. All rights reserved.

2

EDB Postgres™ Advanced Server ECPGPlus Guide
by EnterpriseDB® Corporation

Copyright © 2012 - 2018 EnterpriseDB® Corporation. All rights reserved.

EnterpriseDB Corporation, 34 Crosby Drive Suite 201, Bedford, MA 01730, USA

T +1 781 357 3390 F +1 978 467 1307 E info@enterprisedb.com www.enterprisedb.com

EDB Postgres Advanced Server ECPGPlus Guide

Copyright © 2012 - 2018 EnterpriseDB Corporation. All rights reserved.

3

Table of Contents

1 Introduction ... 5

1.1 Typographical Conventions Used in this Guide ... 6

2 ECPGPlus - Overview .. 7

2.1 Installation and Configuration .. 10

2.2 Constructing a Makefile .. 11

2.3 ECPGPlus Command Line Options .. 13

3 Using Embedded SQL .. 14

3.1 Example - A Simple Query ... 14

3.1.1 Using Indicator Variables ... 17

3.1.2 Declaring Host Variables .. 18

3.2 Example - Using a Cursor to Process a Result Set ... 20

4 Using Descriptors.. 24

4.1 Example - Using a Descriptor to Return Data .. 26

5 Building and Executing Dynamic SQL Statements .. 36

5.1 Example - Executing a Non-query Statement Without Parameters 37

5.2 Example - Executing a Non-query Statement with a Specified Number of

Placeholders .. 40

5.3 Example - Executing a Query With a Known Number of Placeholders........... 43

5.4 Example - Executing a Query With an Unknown Number of Variables 46

6 Error Handling .. 56

6.1 Error Handling with sqlca ... 56

6.2 EXEC SQL WHENEVER .. 62

7 Reference .. 64

7.1 C-preprocessor Directives ... 64

7.2 Supported C Data Types ... 67

7.3 Type Codes ... 68

7.4 The SQLDA Structure .. 69

7.5 ECPGPlus Statements ... 73

7.5.1 ALLOCATE DESCRIPTOR .. 74

7.5.2 CALL .. 75

7.5.3 CLOSE .. 76

7.5.4 COMMIT .. 77

EDB Postgres Advanced Server ECPGPlus Guide

Copyright © 2012 - 2018 EnterpriseDB Corporation. All rights reserved.

4

7.5.5 CONNECT .. 78

7.5.6 DEALLOCATE DESCRIPTOR ... 81

7.5.7 DECLARE CURSOR ... 82

7.5.8 DECLARE DATABASE .. 83

7.5.9 DECLARE STATEMENT ... 84

7.5.10 DELETE ... 85

7.5.11 DESCRIBE ... 87

7.5.12 DESCRIBE DESCRIPTOR .. 89

7.5.13 DISCONNECT ... 91

7.5.14 EXECUTE .. 92

7.5.15 EXECUTE DESCRIPTOR ... 93

7.5.16 EXECUTE...END EXEC .. 94

7.5.17 EXECUTE IMMEDIATE .. 95

7.5.18 FETCH .. 96

7.5.19 FETCH DESCRIPTOR .. 97

7.5.20 GET DESCRIPTOR ... 98

7.5.21 INSERT... 100

7.5.22 OPEN .. 102

7.5.23 OPEN DESCRIPTOR ... 103

7.5.24 PREPARE ... 104

7.5.25 ROLLBACK ... 106

7.5.26 SAVEPOINT .. 107

7.5.27 SELECT .. 108

7.5.28 SET CONNECTION .. 110

7.5.29 SET DESCRIPTOR .. 112

7.5.30 UPDATE ... 115

7.5.31 WHENEVER .. 117

EDB Postgres Advanced Server ECPGPlus Guide

Copyright © 2012 - 2018 EnterpriseDB Corporation. All rights reserved.

5

1 Introduction

EnterpriseDB has enhanced ECPG (the PostgreSQL pre-compiler) to create ECPGPlus.

ECPGPlus allows you to include Pro*C compatible embedded SQL commands in C

applications when connected to an EDB Postgres Advanced Server (Advanced Server)

database. When you use ECPGPlus to compile an application, the SQL code is syntax-

checked and translated into C.

ECPGPlus supports:

¶ Oracle Dynamic SQL – Method 4 (ODS-M4).

¶ Pro*C compatible anonymous blocks.

¶ A CALL statement compatible with Oracle databases.

As part of ECPGPlus's Pro*C compatibility, you do not need to include the BEGIN

DECLARE SECTION and END DECLARE SECTION directives.

PostgreSQL Compatibility

While most ECPGPlus statements will work with community PostgreSQL, the CALL

statement, and the EXECUTE…END EXEC statement work only when the client application

is connected to EDB Postgres Advanced Server.

EDB Postgres Advanced Server ECPGPlus Guide

Copyright © 2012 - 2018 EnterpriseDB Corporation. All rights reserved.

6

1.1 Typographical Conventions Used in this Gu ide

Certain typographical conventions are used in this manual to clarify the meaning and

usage of various statements, statements, programs, examples, etc. This section provides a

summary of these conventions.

In the following descriptions a term refers to any word or group of words that are

language keywords, user-supplied values, literals, etc. A term’s exact meaning depends

upon the context in which it is used.

¶ Italic font introduces a new term, typically, in the sentence that defines it for the

first time.

¶ Fixed - width (mono - spaced) font is used for terms that must be given

literally such as SQL statements, specific table and column names used in the

examples, programming language keywords, etc. For example, SELECT * FROM

emp;

¶ Italic fixed - width font is used for terms for which the user must

substitute values in actual usage. For example, DELETE FROM table_name ;

¶ A vertical pipe | denotes a choice between the terms on either side of the pipe. A

vertical pipe is used to separate two or more alternative terms within square

brackets (optional choices) or braces (one mandatory choice).

¶ Square brackets [] denote that one or none of the enclosed term(s) may be

substituted. For example, [a | b] , means choose one of “a” or “b” or neither

of the two.

¶ Braces {} denote that exactly one of the enclosed alternatives must be specified.

For example, { a | b } , means exactly one of “a” or “b” must be specified.

¶ Ellipses ... denote that the proceeding term may be repeated. For example, [a |

b] ... means that you may have the sequence, “b a a b a ”.

EDB Postgres Advanced Server ECPGPlus Guide

Copyright © 2012 - 2018 EnterpriseDB Corporation. All rights reserved.

7

2 ECPGPlus - Overview

EnterpriseDB has enhanced ECPG (the PostgreSQL pre-compiler) to create ECPGPlus.

ECPGPlus is a Pro*C-compatible version of the PostgreSQL C pre-compiler. ECPGPlus

translates a program that combines C code and embedded SQL statements into an

equivalent C program. As it performs the translation, ECPGPlus verifies that the syntax

of each SQL construct is correct.

The following diagram charts the path of a program containing embedded SQL

statements as it is compiled into an executable:

To produce an executable from a C program that contains embedded SQL statements,

pass the program (my_program.pgc in the diagram above) to the ECPGPlus pre-

compiler. ECPGPlus translates each SQL statement in my_program.pgc into C code

that calls the ecpglib API, and produces a C program (my_program.c). Then, pass

the C program to a C compiler; the C compiler generates an object file (my_program.o).

EDB Postgres Advanced Server ECPGPlus Guide

Copyright © 2012 - 2018 EnterpriseDB Corporation. All rights reserved.

8

Finally, pass the object file (my_program.o), as well as the ecpglib library file, and

any other required libraries to the linker, which in turn produces the executable

(my_program).

While the ECPGPlus preprocessor validates the syntax of each SQL statement, it cannot

validate the semantics. For example, the preprocessor will confirm that an INSERT

statement is syntactically correct, but it cannot confirm that the table mentioned in the

INSERT statement actually exists.

Behind the Scenes

A client application contains a mix of C code and SQL code comprised of the following

elements:

¶ C preprocessor directives

¶ C declarations (variables, types, functions, ...)

¶ C definitions (variables, types, functions, ...)

¶ SQL preprocessor directives

¶ SQL statements

For example:

 1 #i nclude <stdio.h>

 2 EXEC SQL INCLUDE sqlca;

 3

 4 extern void printInt(char *label, int val);

 5 extern void printStr(char *label, char *val);

 6 extern void printFloat(char *label, float val);

 7

 8 void displayCustomer(int custNumber)

 9 {

 10 EXEC SQL BEGIN DECLARE SECTION;

 11 VARCHAR custName[50];

 12 float custBalance;

 13 int custID = custNumber;

 14 EXEC SQL END DECLARE SECTION;

 15

 16 EXEC SQL SELECT name, balance

 17 INTO :cu stName, :custBalance

 18 FROM customer

 19 WHERE id = :custID;

 20

 21 printInt("ID", custID);

 22 printStr("Name", custName);

 23 printFloat("Balance", custBalance);

 24 }

EDB Postgres Advanced Server ECPGPlus Guide

Copyright © 2012 - 2018 EnterpriseDB Corporation. All rights reserved.

9

In the above code fragment:

¶ Line 1 specifies a directive to the C preprocessor.

C preprocessor directives may be interpreted or ignored; the option is controlled

by a command line option (- C PROC) entered when you invoke ECPGPlus. In

either case, ECPGPlus copies each C preprocessor directive to the output file (4)

without change; any C preprocessor directive found in the source file will appear

in the output file.

¶ Line 2 specifies a directive to the SQL preprocessor.

SQL preprocessor directives are interpreted by the ECPGPlus preprocessor, and

are not copied to the output file.

¶ Lines 4 through 6 contain C declarations.

C declarations are copied to the output file without change, except that each

VARCHAR declaration is translated into an equivalent struct declaration.

¶ Lines 10 through 14 contain an embedded-SQL declaration section.

C variables that you refer to within SQL code are known as host variables. If you

invoke the ECPGPlus preprocessor in Pro*C mode (- C PROC), you may refer to

any C variable within a SQL statement; otherwise you must declare each host

variable within a BEGIN/END DECLARATION SECTION pair.

¶ Lines 16 through 19 contain a SQL statement.

SQL statements are translated into calls to the ECPGPlus run-time library.

¶ Lines 21 through 23 contain C code.

C code is copied to the output file without change.

Any SQL statement must be prefixed with EXEC SQL and extends to the next (unquoted)

semicolon. For example:

printf(ñUpdating employee salaries\ nò);

EXEC SQL UPDATE emp SET sal = sal * 1.25;

EXEC SQL COMMIT;

pri ntf(ñEmployee salaries updated\ nò);

EDB Postgres Advanced Server ECPGPlus Guide

Copyright © 2012 - 2018 EnterpriseDB Corporation. All rights reserved.

10

When the preprocessor encounters the code fragment shown above, it passes the C code

(the first line and the last line) to the output file without translation and converts each

EXEC SQL statement into a call to an ecpgli b function. The result would appear

similar to the following:

printf("Updating employee salaries \ n");

{

 ECPGdo(__LINE__, 0, 1, NULL, 0, ECPGst_normal,

 "update emp set sal = sal * 1.25",

 ECPGt_EOIT, ECPGt_EORT);

}

{

 ECPGtrans(_ _LINE__, NULL, "commit");

}

printf(ñEmployee salaries updated\ nò);

2.1 Installation and Configuration

On Windows, ECPGPlus is installed by the Advanced Server installation wizard as part

of the Database Server component. On Linux, install with the edb- as xx - server -

devel RPM package where xx is the Advanced Server version number. By default, on a

Linux installation, the executable is located in:

/ usr / edb / as11 /bin

On Windows, the executable is located in:

C: \ Program Files \ edb \ as11 \ bin

When invoking the ECPGPlus compiler, the executable must be in your search path

(%PATH% on Windows, $PATH on Linux). For example, the following commands set the

search path to include the directory that holds the ECPGPlus executable file ecpg .

On Windows:

set EDB_PATH=C: \ Program Files \ edb \ as 11\ bin

set P ATH=%EDB_PATH%;%PATH%

On Linux:

export EDB_ PATH==/usr/edb/as11/bin

export PATH=$EDB_PATH:$PATH

EDB Postgres Advanced Server ECPGPlus Guide

Copyright © 2012 - 2018 EnterpriseDB Corporation. All rights reserved.

11

2.2 Constructing a Makefile

A makefile contains a set of instructions that tell the make utility how to transform a

program written in C (that contains embedded SQL) into a C program. To try the

examples in this guide, you will need:

¶ a C compiler (and linker)

¶ the make utility

¶ ECPGPlus preprocessor and library

¶ a makefile that contains instructions for ECPGPlus

The following code is an example of a makefile for the samples included in this guide.

To use the sample code, save it in a file named makefile in the directory that contains

the source code file.

INCLUDES = - I$(shell pg_config -- includedir)

LIBPATH = - L $(shell pg_config -- libdir)

CFLAGS += $(INCLUDES) - g

LDFLAGS += - g

LDLIBS += $(LIBPATH) - lecpg - lpq

.SUFFIXES: .pgc ,.pc

.pgc.c:

 ecpg - c $(INCLUDES) $?

.pc.c:

 ecpg - C PROC - c $(INCLUDES) $?

The first two lines use the pg_config program to locate the necessary header files and

library directories:

INCLUDES = - I$(shell pg_config -- includedir)

LIBPATH = - L $(shell pg_config -- libdir)

The pg_config program is shipped with Advanced Server.

make knows that it should use the CFLAGS variable when running the C compiler and

LDFLAGS and LDLIBS when invoking the linker. ECPG programs must be linked against

the ECPG run-time library (- lecpg) and the libpq library (- lpq)

EDB Postgres Advanced Server ECPGPlus Guide

Copyright © 2012 - 2018 EnterpriseDB Corporation. All rights reserved.

12

CFLAGS += $(INCLUDES) - g

LDFLAGS += - g

LDLIBS += $(LIBPATH) - lecpg - lpq

The sample makefile instructs make how to translate a .pgc or a .pc file into a C

program. Two lines in the makefile specify the mode in which the source file will be

compiled. The first compile option is:

.pgc.c:

 ecpg - c $(INCLUDES) $?

The first option tells make how to transform a file that ends in .pgc (presumably, an

ECPG source file) into a file that ends in .c (a C program), using community ECPG

(without the ECPGPlus enhancements). It invokes the ECPG pre-compiler with the - c

flag (instructing the compiler to convert SQL code into C), using the value of the

INCLUDES variable and the name of the .pgc file.

.pc.c:

 ecpg - C PROC - c $(INCLUDES) $?

The second option tells make how to transform a file that ends in .pg (an ECPG source

file) into a file that ends in .c (a C program), using the ECPGPlus extensions. It invokes

the ECPG pre-compiler with the - c flag (instructing the compiler to convert SQL code

into C), as well as the - C PROC flag (instructing the compiler to use ECPGPlus in Pro*C-

compatibility mode), using the value of the INCLUDES variable and the name of the .pgc

file.

When you run make, pass the name of the ECPG source code file you wish to compile.

For example, to compile an ECPG source code file named customer_list.pgc , use

the command:

 make customer_list

The make utility consults the makefile (located in the current directory), discovers that

the makefile contains a rule that will compile customer_list.pgc into a C program

(customer_list.c), and then uses the rules built into make to compile

customer_list.c into an executable program.

EDB Postgres Advanced Server ECPGPlus Guide

Copyright © 2012 - 2018 EnterpriseDB Corporation. All rights reserved.

13

2.3 ECPGPlus Command Line Options

In the sample makefile shown above, make includes the - C option when invoking

ECPGPlus to specify that ECPGPlus should be invoked in Pro*C compatible mode.

If you include the - C PROC keywords on the command line, in addition to the ECPG

syntax, you may use Pro*C command line syntax; for example:

$ ecpg - C PROC I NCLUDE=/usr /edb/ as1 1/ include acct_update .c

To display a complete list of the other ECPGPlus options available, navigate to the

ECPGPlus installation directory, and enter:

./ecpg -- help

The command line options are:

Option Description
- c Automatically generate C code from embedded SQL code.
- C mode Use the - C option to specify a compatibility mode:

INFORMIX
INFORMIX_SE
PROC

- D symbol Define a preprocessor symbol.

The - D keyword is not supported when compiling in PROC mode. Instead,

use the Oracle-style óDEFINE=ô clause.
- h Parse a header file, this option includes option '- c '.
- i Parse system, include files as well.
- I directory Search directory for include files.
- o outfile Write the result to outfile .
- r option Specify run-time behavior; option can be:

no_indicator - Do not use indicators, but instead use special values to

represent NULL values.

prepare - Prepare all statements before using them.

questionmarks - Allow use of a question mark as a placeholder.

usebulk - Enable bulk processing for INSERT, UPDATE and DELETE

statements that operate on host variable arrays.
-- regression Run in regression testing mode.
- t Turn on autocommit of transactions.
- l Disable #line directives.
-- help Display the help options.
-- version Output version information.

Please Note: If you do not specify an output file name when invoking ECPGPlus, the

output file name is created by stripping off the .pgc file name extension, and appending

.c to the file name.

EDB Postgres Advanced Server ECPGPlus Guide

Copyright © 2012 - 2018 EnterpriseDB Corporation. All rights reserved.

14

3 Using Embedded SQL

Each of the following sections leads with a code sample, followed by an explanation of

each section within the code sample.

3.1 Example - A Simple Query

The first code sample demonstrates how to execute a SELECT statement (which returns a

single row), storing the results in a group of host variables. After declaring host

variables, it connects to the edb sample database using a hard-coded role name and the

associated password, and queries the emp table. The query returns the values into the

declared host variables; after checking the value of the NULL indicator variable, it prints a

simple result set onscreen and closes the connection.

/**

 * print_emp.pgc

 *

 */

#include <stdio.h>

int main(void)

{

 EXEC SQL BEGIN DECLARE SECTION;

 int v_empno;

 char v_ename[40];

 double v_sal;

 double v_comm;

 short v_comm_ind;

 EXEC SQL END DECLARE SECTION;

 EXEC SQL WHENEVER SQLERROR sqlprint;

 EXEC SQL CONNECT TO edb

 USER 'alice' IDENTIFIED BY '1safepwd';

 EXEC SQL

 SELECT

 empno, ename, sal, comm

 INTO

 :v_empno, :v_ename, :v_sal, :v_comm INDICATOR:v_comm_ind

 FROM

 emp

 WHERE

 empno = 7369;

 if (v_comm_ind)

 printf("empno(%d), ename(%s), sal(%.2f) comm(NULL) \ n",

 v_empno, v_ename, v_sal);

EDB Postgres Advanced Server ECPGPlus Guide

Copyright © 2012 - 2018 EnterpriseDB Corporation. All rights reserved.

15

 else

 printf("empno(%d), ename(%s), sal(%.2f) comm(%.2f) \ n",

 v_empno, v_ename, v_sa l, v_comm);

 EXEC SQL DISCONNECT;

}

/**

The code sample begins by including the prototypes and type definitions for the C stdio

library, and then declares the main function:

#include <stdio.h>

int main(void)

{

Next, the application declares a set of host variables used to interact with the database

server:

 EXEC SQL BEGIN DECLARE SECTION;

 int v_empno;

 char v_ename[40];

 double v_sal;

 double v_comm;

 short v_comm_ind;

 EXEC SQL END DECLARE SECTION;

Please note that if you plan to pre-compile the code in PROC mode, you may omit the

BEGIN DECLAREéEND DECLARE section. For more information about declaring host

variables, refer to Section 3.1.2, Declaring Host Variables.

The data type associated with each variable within the declaration section is a C data

type. Data passed between the server and the client application must share a compatible

data type; for more information about data types, see Section 7.2, Supported C Data

Types.

The next statement instructs the server how to handle an error:

 EXEC SQL WHENEVER SQLERROR sqlprint;

If the client application encounters an error in the SQL code, the server will print an error

message to stderr (standard error), using the sqlprint () function supplied with

ecpglib . The next EXEC SQL statement establishes a connection with Advanced Server:

 EXEC SQL CONNECT TO edb

 USER 'alice' IDENTIFIED BY '1safe pwd';

EDB Postgres Advanced Server ECPGPlus Guide

Copyright © 2012 - 2018 EnterpriseDB Corporation. All rights reserved.

16

In our example, the client application connects to the edb database, using a role named

alice with a password of 1safepwd .

The code then performs a query against the emp table:

 EXEC SQL

 SELECT

 empno, ename, sal, comm

 INTO

 :v_empno, :v_ename, :v_sal, :v_comm INDICATOR :v_comm_ind

 FROM

 emp

 WHERE

 empno = 7369;

The query returns information about employee number 7369 .

The SELECT statement uses an INTO clause to assign the retrieved values (from the

empno, ename, sal and comm columns) into the :v_empno , :v_ename , :v_sal and

:v_comm host variables (and the :v_comm_ind null indicator). The first value retrieved

is assigned to the first variable listed in the INTO clause, the second value is assigned to

the second variable, and so on.

The comm column contains the commission values earned by an employee, and could

potentially contain a NULL value. The statement includes the INDICATOR keyword, and

a host variable to hold a null indicator.

The code checks the null indicator, and displays the appropriate on-screen results:

 if (v_comm_ind)

 printf("empno(%d), ename(%s), sal(%.2f) comm(NULL) \ n",

 v_empno, v_ename, v_sal);

 else

 printf("empno(%d), ename(%s), sal(%.2f) comm(%.2f) \ n",

 v_empno, v_ename, v_sal, v_comm);

If the null indicator is 0 (that is, false), the comm column contains a meaningful value,

and the printf function displays the commission. If the null indicator contains a non-

zero value, comm is NULL, and printf displays a value of NULL. Please note that a host

variable (other than a null indicator) contains no meaningful value if you fetch a NULL

into that host variable; you must use null indicators to identify any value which may be

NULL.

The final statement in the code sample closes the connection to the server:

 EXEC SQL DISCONNECT;

}

EDB Postgres Advanced Server ECPGPlus Guide

Copyright © 2012 - 2018 EnterpriseDB Corporation. All rights reserved.

17

3.1.1 Using Indicator Variables

The previous example included an indicator variable that identifies any row in which the

value of the comm column (when returned by the server) was NULL. An indicator

variable is an extra host variable that denotes if the content of the preceding variable is

NULL or truncated. The indicator variable is populated when the contents of a row are

stored. An indicator variable may contain the following values:

Indicator Value Denotes
If an indicator variable is less than 0. The value returned by the server was NULL.

If an indicator variable is equal to 0. The value returned by the server was not NULL, and was
not truncated.

If an indicator variable is greater than 0. The value returned by the server was truncated when
stored in the host variable.

When including an indicator variable in an INTO clause, you are not required to include

the optional INDICATOR keyword.

You may omit an indicator variable if you are certain that a query will never return a

NULL value into the corresponding host variable. If you omit an indicator variable and a

query returns a NULL value, ecpglib will raise a run-time error.

EDB Postgres Advanced Server ECPGPlus Guide

Copyright © 2012 - 2018 EnterpriseDB Corporation. All rights reserved.

18

3.1.2 Declaring Host Variables

You can use a host variable in a SQL statement at any point that a value may appear

within that statement. A host variable is a C variable that you can use to pass data values

from the client application to the server, and return data from the server to the client

application. A host variable can be:

¶ an array

¶ a typedef

¶ a pointer

¶ a struct

¶ any scalar C data type

The code fragments that follow demonstrate using host variables in code compiled in

PROC mode, and in non-PROC mode. The SQL statement adds a row to the dept table,

inserting the values returned by the variables v_deptno , v_dname and v_loc into the

deptno column, the dname column and the loc column, respectively.

If you are compiling in PROC mode, you may omit the EXEC SQL BEGIN DECLARE

SECTION and EXEC SQL END DECLARE SECTION directives. PROC mode permits you to

use C function parameters as host variables:

void addDept(int v_deptno, char v_dname, char v_loc)

{

 EXEC SQL INSERT INTO dept VALUES(:v_deptno, :v_dname, :v_loc);

}

If you are not compiling in PROC mode, you must wrap embedded variable declarations

with the EXEC SQL BEGIN DECLARE SECTION and the EXEC SQL END DECLARE

SECTION directives, as shown below:

void addDept(int v_deptno, char v_dname, char v_loc)

{

 EXEC SQL BEGIN DECLARE SECTION;

 int v_deptno_copy = v_deptno;

 char v_dname_copy[14+1] = v_dname;

 char v_loc_copy[13+1] = v_loc;

 EXEC SQL END DECLARE SECTION;

 EXEC SQL INSERT INTO dep t VALUES(:v_deptno, :v_dname, :v_loc);

}

You can also include the INTO clause in a SELECT statement to use the host variables to

retrieve information:

EDB Postgres Advanced Server ECPGPlus Guide

Copyright © 2012 - 2018 EnterpriseDB Corporation. All rights reserved.

19

EXEC SQL SELECT deptno, dname, loc

 INTO :v_deptno, :v_dname, v_loc FROM dept;

Each column returned by the SELECT statement must have a type-compatible target

variable in the INTO clause. This is a simple example that retrieves a single row; to

retrieve more than one row, you must define a cursor, as demonstrated in the next

example.

EDB Postgres Advanced Server ECPGPlus Guide

Copyright © 2012 - 2018 EnterpriseDB Corporation. All rights reserved.

20

3.2 Example - Using a Cursor to Process a Result Set

The code sample that follows demonstrates using a cursor to process a result set. There

are four basic steps involved in creating and using a cursor:

1. Use the DECLARE CURSOR statement to define a cursor.

2. Use the OPEN CURSOR statement to open the cursor.

3. Use the FETCH statement to retrieve data from a cursor.

4. Use the CLOSE CURSOR statement to close the cursor.

After declaring host variables, our example connects to the edb database using a user-

supplied role name and password, and queries the emp table. The query returns the

values into a cursor named employees. The code sample then opens the cursor, and loops

through the result set a row at a time, printing the result set. When the sample detects the

end of the result set, it closes the connection.

/**

 * print_emps.pgc

 *

 */

#include <stdio.h>

int main(int argc, char *argv[])

{

 EXEC SQL BEGIN DECLARE SECTION;

 char *username = argv[1];

 char *password = argv[2];

 int v_empno;

 char v_ename[40];

 double v_sal;

 double v_comm;

 short v_comm_ind;

 EXEC SQL END DECLARE SECTION;

 EXEC SQL WHENEVER SQLERROR sqlprint;

 EXEC SQL CONNECT TO edb USER :username IDENTIFIED BY :password;

 EXEC SQL DECLARE employees CURSOR FOR

 SELECT

 empno, ename, sal, comm

 FROM

 emp;

 EXEC SQL OPEN employees;

EDB Postgres Advanced Server ECPGPlus Guide

Copyright © 2012 - 2018 EnterpriseDB Corporation. All rights reserved.

21

 EXEC SQL WHENEVER NOT FOUND DO break;

 for (;;)

 {

 EXEC SQL FETCH NEXT FROM employees

 INTO

 :v_empno, :v_ename, :v_sal, :v_comm INDICATOR :v_comm_ind;

 if (v_comm_ind)

 printf("empno(%d), ename(%s), sal(%.2f) comm(NULL) \ n",

 v_empno, v_ename, v_sal);

 else

 printf("empno(%d), ename(%s), sal(%.2f) comm(%.2f) \ n",

 v_empno, v_ename, v_sal, v_comm);

 }

 EXEC SQL CLOSE employees;

 EXEC SQL DISCONNECT;

}

/**

The code sample begins by including the prototypes and type definitions for the C stdio

library, and then declares the main function:

#include <stdio.h>

int main(int argc, char *argv[])

{

Next, the application declares a set of host variables used to interact with the database

server:

 EXEC SQL BEGIN DECLARE SECTION;

 char *username = argv[1];

 char *password = argv[2];

 int v_empno;

 char v_ename[40];

 double v_sal;

 double v_comm;

 short v_comm_ind;

 EXEC SQL END DECLARE SECTION;

argv [] is an array that contains the command line arguments entered when the user runs

the client application. argv[1] contains the first command line argument (in this case, a

username), and argv[2] contains the second command line argument (a password);

please note that we have omitted the error-checking code you would normally include a

real-world application. The declaration initializes the values of username and

password , setting them to the values entered when the user invoked the client

application.

EDB Postgres Advanced Server ECPGPlus Guide

Copyright © 2012 - 2018 EnterpriseDB Corporation. All rights reserved.

22

You may be thinking that you could refer to argv[1] and argv[2] in a SQL statement

(instead of creating a separate copy of each variable); that will not work. All host

variables must be declared within a BEGIN/END DECLARE SECTION (unless you are

compiling in PROC mode). Since argv is a function parameter (not an automatic

variable), it cannot be declared within a BEGIN/END DECLARE SECTION. If you are

compiling in PROC mode, you can refer to any C variable within a SQL statement.

The next statement instructs the server to respond to an SQL error by printing the text of

the error message returned by ECPGPlus or the database server:

 EXEC SQL WHENEVER SQLERROR sqlprint;

Then, the client application establishes a connection with Advanced Server:

 EXEC SQL CONNECT TO edb USER :username IDENTIFIED BY :password;

The CONNECT statement creates a connection to the edb database, using the values found

in the :username and :password host variables to authenticate the application to the

server when connecting.

The next statement declares a cursor named employees :

 EXEC SQL DECLARE employees CURSOR FOR

 SELECT

 empno, ename, sal, comm

 FROM

 emp;

employees will contain the result set of a SELECT statement on the emp table. The

query returns employee information from the following columns: empno, ename, sal

and comm. Notice that when you declare a cursor, you do not include an INTO clause -

instead, you specify the target variables (or descriptors) when you FETCH from the

cursor.

Before fetching rows from the cursor, the client application must OPEN the cursor:

 EXEC SQL OPEN employees;

In the subsequent FETCH section, the client application will loop through the contents of

the cursor; the client application includes a WHENEVER statement that instructs the server

to break (that is, terminate the loop) when it reaches the end of the cursor:

 EXEC SQL WHENEVER NOT FOUND DO break;

The client application then uses a FETCH statement to retrieve each row from the cursor

INTO the previously declared host variables:

EDB Postgres Advanced Server ECPGPlus Guide

Copyright © 2012 - 2018 EnterpriseDB Corporation. All rights reserved.

23

 for (;;)

 {

 EXEC SQL FETCH NEXT FROM employees

 INTO

 :v_empno, :v_ename, :v_sal, :v_comm INDICATOR :v_comm_ind;

The FETCH statement uses an INTO clause to assign the retrieved values into the

:v_empno , :v_ename , :v_sal and :v_comm host variables (and the :v_comm_ind

null indicator). The first value in the cursor is assigned to the first variable listed in the

INTO clause, the second value is assigned to the second variable, and so on.

The FETCH statement also includes the INDICATOR keyword and a host variable to hold

a null indicator. If the comm column for the retrieved record contains a NULL value,

v_comm_ind is set to a non-zero value, indicating that the column is NULL.

The code then checks the null indicator, and displays the appropriate on-screen results:

 if (v_comm_ind)

 printf("empno(%d), ename(%s), sal(%.2f) comm(NULL) \ n",

 v_empno, v_ename, v_sal);

 else

 printf("empno(%d), ename(%s), sal(%.2f) comm(%.2f) \ n",

 v_empno, v_ename, v_sal, v_comm);

 }

If the null indicator is 0 (that is, false), v_comm contains a meaningful value, and the

printf function displays the commission. If the null indicator contains a non-zero

value, comm is NULL, and printf displays the string 'NULL' . Please note that a host

variable (other than a null indicator) contains no meaningful value if you fetch a NULL

into that host variable; you must use null indicators for any value which may be NULL.

The final statements in the code sample close the cursor (employees), and the

connection to the server:

 EXEC SQL CLOSE employees ;

 EXEC SQL DISCONNECT;

EDB Postgres Advanced Server ECPGPlus Guide

Copyright © 2012 - 2018 EnterpriseDB Corporation. All rights reserved.

24

4 Using Descriptors

Dynamic SQL allows a client application to execute SQL statements that are composed at

runtime. This is useful when you don't know the content or form a statement will take

when you are writing a client application. ECPGPlus does not allow you to use a host

variable in place of an identifier (such as a table name, column name or index name);

instead, you should use dynamic SQL statements to build a string that includes the

information, and then execute that string. The string is passed between the client and the

server in the form of a descriptor. A descriptor is a data structure that contains both the

data and the information about the shape of the data.

A client application must use a GET DESCRIPTOR statement to retrieve information from

a descriptor. The following steps describe the basic flow of a client application using

dynamic SQL:

1. Use an ALLOCATE DESCRIPTOR statement to allocate a descriptor for the result

set (select list).

2. Use an ALLOCATE DESCRIPTOR statement to allocate a descriptor for the input

parameters (bind variables).

3. Obtain, assemble or compute the text of an SQL statement.

4. Use a PREPARE statement to parse and syntax-check the SQL statement.

5. Use a DESCRIBE statement to describe the select list into the select-list descriptor.

6. Use a DESCRIBE statement to describe the input parameters into the bind-

variables descriptor.

7. Prompt the user (if required) for a value for each input parameter. Use a SET

DESCRIPTOR statement to assign the values into a descriptor.

8. Use a DECLARE CURSOR statement to define a cursor for the statement.

9. Use an OPEN CURSOR statement to open a cursor for the statement.

10. Use a FETCH statement to fetch each row from the cursor, storing each row in

select-list descriptor.

11. Use a GET DESCRIPTOR command to interrogate the select-list descriptor to find

the value of each column in the current row.

12. Use a CLOSE CURSOR statement to close the cursor and free any cursor resources.

EDB Postgres Advanced Server ECPGPlus Guide

Copyright © 2012 - 2018 EnterpriseDB Corporation. All rights reserved.

25

A descriptor may contain the attributes listed in the table below:

Field Type Attribute Description

CARDINALITY integer The number of rows in the result set.
DATA N/A The data value.
DATETIME_INTERVAL_CODE integer If TYPE is 9:

1 - DATE
2 - TIME
3 - TIMESTAMP
4 - TIME WITH TIMEZONE
5 - TIMESTAMP WITH TIMEZONE

DATETIME_INTERVAL_PRECISION integer Unused.
INDICATOR integer Indicates a NULL or truncated value.
KEY_MEMBER integer Unused (returns FALSE).
LENGTH integer The data length (as stored on server).
NAME string The name of the column in which the data

resides.
NULLABLE integer Unused (returns TRUE).
OCTET_LENGTH integer The data length (in bytes) as stored on

server.
PRECISION integer The data precision (if the data is of

numeric type).
RETURNED_LENGTH integer Actual length of data item.
RETURNED_OCTET_LENGTH integer Actual length of data item.
SCALE integer The data scale (if the data is of numeric

type).
TYPE integer A numeric code that represents the data

type of the column:
1 - SQL3_CHARACTER

2 - SQL3_NUMERIC

3 - SQL3_DECIMAL

4 - SQL3_INTEGER

5 - SQL3_SMALLINT

6 - SQL3_FLOAT

7 - SQL3_REAL

8 - SQL3_DOUBLE_PRECISION

9 - SQL3_DATE_TIME_TIMESTAMP

10 - SQL3_INTERVAL

12 - SQL3_CHARACTER_VARYING

13 - SQL3_ENUMERATED

14 - SQL3_BIT

15 - SQL3_BIT_VARYING

16 - SQL3_BOOLEAN

EDB Postgres Advanced Server ECPGPlus Guide

Copyright © 2012 - 2018 EnterpriseDB Corporation. All rights reserved.

26

4.1 Example - Using a Descriptor to Return Data

The following simple application executes an SQL statement entered by an end user. The

code sample demonstrates:

¶ how to use a SQL descriptor to execute a SELECT statement.

¶ how to find the data and metadata returned by the statement.

The application accepts an SQL statement from an end user, tests the statement to see if it

includes the SELECT keyword, and executes the statement.

When invoking the application, an end user must provide the name of the database on

which the SQL statement will be performed, and a string that contains the text of the

query.

For example, a user might invoke the sample with the following command:

. /exec_st mt edb "SELECT * FROM emp"

/**

/* exec_stmt .pgc

 *

 */

#include <stdio.h>

#include <stdlib.h>

#include <sql3types.h>

#include <sqlca.h>

EXEC SQL WHENEVER SQLERROR SQLPRINT;

static void print_meta_data(char * desc_name);

char *md1 = "col field data ret";

char *md2 = "num name type len";

char *md3 = " --- -------------------- ----------------- --- ";

int main(int argc, char *argv[])

{

 EXEC SQL BEGIN DECLARE SECTION;

 char *db = argv[1];

 char *stmt = argv[2];

 int col_count;

 EXEC SQL END DECLARE SECTION;

 EXEC SQL CONNECT TO :db;

EDB Postgres Advanced Server ECPGPlus Guide

Copyright © 2012 - 2018 EnterpriseDB Corporation. All rights reserved.

27

 EXEC SQL ALLOCATE DESCRIPTOR parse_desc;

 EXEC SQL PREPARE query FROM :stmt;

 EXEC SQL DESCRIBE query INTO SQL DESCRIPTOR parse_desc;

 EXEC SQL GET DESCRIPTOR 'parse_desc' :col_count = COUNT ;

 if(col_count == 0)

 {

 EXEC SQL EXECUTE IMMEDIATE :stmt;

 if(sqlca.sqlcode >= 0)

 EXEC SQL COMMIT;

 }

 else

 {

 int row;

 EXEC SQL ALLOCATE DESCRIPTOR row_desc;

 EXEC SQL DECLARE my_cursor CURSOR FOR query;

 EXEC SQL OPEN my_cursor;

 for(row = 0; ; row++)

 {

 EXEC SQL BEGIN DECLARE SECTION;

 int col;

 EXEC SQL END DECLARE SECTION;

 EXEC SQL FETCH IN my_cursor

 INTO SQL DESCRIPTOR row_desc;

 if(sqlca.sqlcode != 0)

 break;

 if(row == 0)

 print_meta_data("row_desc");

 printf("[RECORD %d] \ n", row +1);

 for(col = 1; col <= col_count ; col++)

 {

 EXEC SQL BEGIN DECLARE SECTION;

 short ind;

 varchar val[40+1];

 varchar name[20+1];

 EXEC SQL END DECLARE SECTION;

 EXEC SQL GET DESCRIPTOR ' row_desc '

 VALUE :col

 :val = DATA, :ind = INDICATOR, :name = NAME;

 if(ind == - 1)

 printf(" % - 20s : <null> \ n", name.arr);

EDB Postgres Advanced Server ECPGPlus Guide

Copyright © 2012 - 2018 EnterpriseDB Corporation. All rights reserved.

28

 else if(ind > 0)

 printf(" % - 20s : <truncated> \ n", name.arr);

 else

 printf(" % - 20s : %s \ n", name.arr, val.arr);

 }

 printf(" \ n");

 }

 printf("%d rows \ n", ro w);

 }

 exit(0);

}

static void print_meta_data(char *desc_name)

{

 EXEC SQL BEGIN DECLARE SECTION;

 char *desc = desc_name;

 int col_count;

 int col;

 EXEC SQL END DECLARE SECTION;

 static char *types[] =

 {

 "unused ",

 "CHARACTER ",

 "NUMERIC ",

 "DECIMAL ",

 "INTEGER ",

 "SMALLINT ",

 "FLOAT ",

 "REAL ",

 "DOUBLE ",

 "DATE_TIME ",

 "INTERVAL ",

 "unused ",

 "CHARACTER_VARYING",

 "ENUMERATED ",

 "BIT ",

 "BIT_VARYING ",

 "BOOLEAN ",

 "abstract "

 };

 EXEC SQL GET DESCRIPTOR :desc :col_count = count;

 printf("%s \ n", m d1);

 printf("%s \ n", md2);

 printf("%s \ n", md3);

EDB Postgres Advanced Server ECPGPlus Guide

Copyright © 2012 - 2018 EnterpriseDB Corporation. All rights reserved.

29

 for(col = 1; col <= col_count; col++)

 {

 EXEC SQL BEGIN DECLARE SECTION;

 int type;

 int ret_len;

 varchar name[21];

 EXEC SQL END DECLARE SECTION;

 char *type_name;

 EXEC SQL GET DESCRIPTOR :desc

 VALUE :col

 :name = NAME,

 :type = TYPE,

 :ret_len = RETURNED_OCTET_LENGTH;

 if(type > 0 && type < SQL3_abstract)

 type_name = types[type];

 else

 type_name = " unknown";

 printf("%02d: % - 20s % - 17s %04d \ n",

 col, name.arr, type_name, ret_len);

 }

 printf(" \ n");

}

/**

The code sample begins by including the prototypes and type definitions for the C stdio

and stdlib libraries, SQL data type symbols, and the SQLCA (SQL communications

area) structure:

#include <stdio.h>

#include <stdlib.h>

#include <sql3types.h>

#include <sqlca.h>

The sample provides minimal error handling; when the application encounters an SQL

error, it prints the error message to screen:

EXEC SQL WHENEVER SQLERROR SQLPRINT;

The application includes a forward-declaration for a function named

print_meta_data() that will print the metadata found in a descriptor:

static void print_meta_data(char * desc_name);

EDB Postgres Advanced Server ECPGPlus Guide

Copyright © 2012 - 2018 EnterpriseDB Corporation. All rights reserved.

30

The following code specifies the column header information that the application will use

when printing the metadata:

char *md1 = "col field data ret";

char *md2 = "num name type len";

char *md3 = " --- -------------------- ----------------- --- ";

int main(int argc, char *argv[])

{

The following declaration section identifies the host variables that will contain the name

of the database to which the application will connect, the content of the SQL Statement,

and a host variable that will hold the number of columns in the result set (if any).

 EXEC SQL BEGIN DECLARE SECTION;

 char *db = argv[1];

 char *stmt = argv[2];

 int col_count;

 EXEC SQL END DECLARE SECTION;

The application connects to the database (using the default credentials):

 EXEC SQL CONNECT TO :db;

Next, the application allocates an SQL descriptor to hold the metadata for a statement:

 EXEC SQL ALLOCATE DESCRIPTOR parse _desc;

The application uses a PREPARE statement to syntax check the string provided by the

user:

 EXEC SQL PREPARE query FROM :stmt;

and a DESCRIBE statement to move the metadata for the query into the SQL descriptor.

 EXEC SQL DESCRIBE query INTO SQL DE SCRIPTOR parse_desc;

Then, the application interrogates the descriptor to discover the number of columns in the

result set, and stores that in the host variable col_count .

 EXEC SQL GET DESCRIPTOR parse_desc :col_count = COUNT ;

If the column count is zero, the end user did not enter a SELECT statement; the

application uses an EXECUTE IMMEDIATE statement to process the contents of the

statement:

 if(col_count == 0)

 {

EDB Postgres Advanced Server ECPGPlus Guide

Copyright © 2012 - 2018 EnterpriseDB Corporation. All rights reserved.

31

 EXEC SQL EXECUTE IMMEDIATE :stmt;

If the statement executes successfully, the application performs a COMMIT:

 if(sqlca.sqlcode >= 0)

 EXEC SQL COMMIT;

 }

 else

 {

If the statement entered by the user is a SELECT statement (which we know because the

column count is non-zero), the application declares a variable named row .

 int row;

Then, the application allocates another descriptor that holds the description and the

values of a specific row in the result set:

 EXEC SQL ALLOCATE DESCRIPTOR row_desc;

The application declares and opens a cursor for the prepared statement:

 EXEC SQL DECLARE my_cursor CURSOR FOR query;

 EXEC SQL OPEN my_cursor;

Loops through the rows in result set:

 for(row = 0; ; row++)

 {

 EXEC SQL BEGIN DECLARE SECTION;

 int col;

 EXEC SQL END DECLARE SECTION;

Then, uses a FETCH to retrieve the next row from the cursor into the descriptor:

 EXEC SQL FETCH IN my_cursor INTO SQL DESCRIPTOR row_desc;

The application confirms that the FETCH did not fail; if the FETCH fails, the application

has reached the end of the result set, and breaks the loop:

 if(sqlca.sqlcode != 0)

 break;

The application checks to see if this is the first row of the cursor; if it is, the application

prints the metadata for the row.

 if(row == 0)

 print_meta_data("row_desc");

EDB Postgres Advanced Server ECPGPlus Guide

Copyright © 2012 - 2018 EnterpriseDB Corporation. All rights reserved.

32

Next, it prints a record header containing the row number:

 printf("[RECORD %d] \ n", row +1);

Then, it loops through each column in the row:

 for(col = 1; col <= col_count; col++)

 {

 EXEC SQL BEGIN DECLARE SECTION;

 short ind;

 varchar val[40+1];

 va rchar name[20+1];

 EXEC SQL END DECLARE SECTION;

The application interrogates the row descriptor (row_desc) to copy the column value

(:val), null indicator (:ind) and column name (:name) into the host variables declared

above. Notice that you can retrieve multiple items from a descriptor using a comma-

separated list.

 EXEC SQL GET DESCRIPTOR row_desc

 VALUE :col

 :val = DATA, :ind = INDICATOR, :name = NAME;

If the null indicator (ind) is negative, the column value is NULL; if the null indicator is

greater than 0, the column value is too long to fit into the val host variable (so we print

<truncated>); otherwise, the null indicator is 0 (meaning NOT NULL) so we print the

value. In each case, we prefix the value (or <null> or <truncated>) with the name of

the column.

 if(ind == - 1)

 printf(" % - 20s : <null> \ n", name.arr);

 else if(ind > 0)

 printf(" % - 20s : <truncated> \ n", name.arr);

 else

 printf(" % - 20s : %s \ n", name.arr, val.arr);

 }

 printf(" \ n");

 }

When the loop terminates, the application prints the number of rows fetched, and exits:

 printf("%d rows \ n", row);

 }

 exit(0);

}

EDB Postgres Advanced Server ECPGPlus Guide

Copyright © 2012 - 2018 EnterpriseDB Corporation. All rights reserved.

33

The print_meta_data() function extracts the metadata from a descriptor and prints

the name, data type, and length of each column:

static void print_meta_data(char *desc_name)

{

The application declares host variables:

 EXEC SQL BEGIN DECLARE SECTION;

 char *desc = desc_name;

 int col_count;

 int col;

 EXEC SQL END DECLARE SECTION;

The application then defines an array of character strings that map data type values

(numeric) into data type names. We use the numeric value found in the descriptor to

index into this array. For example, if we find that a given column is of type 2, we can

find the name of that type (NUMERIC) by writing types[2] .

 static char *types[] =

 {

 "unused ",

 "CHARACTER ",

 "NUMERIC ",

 "DECIMAL ",

 "INTEGER ",

 "SMALLINT ",

 "FLOAT ",

 "REAL ",

 "DOUBLE ",

 "DATE_TIME ",

 "INTERVAL ",

 "unused ",

 "CHARACTER_VARYING",

 "ENUMERATED ",

 "BIT ",

 "BIT_VARYING ",

 "BOOLEAN ",

 "a bstract "

 };

The application retrieves the column count from the descriptor. Notice that the program

refers to the descriptor using a host variable (desc) that contains the name of the

descriptor. In most scenarios, you would use an identifier to refer to a descriptor, but in

this case, the caller provided the descriptor name, so we can use a host variable to refer to

the descriptor.

 EXEC SQL GET DESCRIPTOR :desc :col_count = count;

EDB Postgres Advanced Server ECPGPlus Guide

Copyright © 2012 - 2018 EnterpriseDB Corporation. All rights reserved.

34

The application prints the column headers (defined at the beginning of this application):

 printf("%s \ n", md1);

 printf("%s \ n", md2);

 printf("%s \ n", md3);

Then, loops through each column found in the descriptor, and prints the name, type and

length of each column.

 for(col = 1; col <= col_count; col++)

 {

 EXEC SQL BEGIN DECLARE SECTION;

 int type;

 int ret_len;

 varchar name[21];

 EXEC SQL END DECLARE SECTION;

 char *type_name;

It retrieves the name, type code, and length of the current column:

 EXEC SQL GET DESCRIPTOR :desc

 VALUE :col

 :name = NAME,

 :type = TYPE,

 :ret_len = RETURNED_OCTET_LENGTH;

If the numeric type code matches a 'known' type code (that is, a type code found in the

types[] array), it sets type_name to the name of the corresponding type; otherwise, it

sets type_name to "unknown" .

 if(type > 0 && type < SQL3_abstract)

 type_name = types[type];

 else

 type_name = "unknown";

and prints the column number, name, type name, and length:

 printf("%02d: % - 20s % - 17s %04d \ n",

 col, name.arr, type_name, ret_len);

 }

 printf(" \ n");

}

If you invoke the sample application with the following command:

./exec_stmt test "SELECT * FROM emp WHERE empno IN(7902, 7934)"

EDB Postgres Advanced Server ECPGPlus Guide

Copyright © 2012 - 2018 EnterpriseDB Corporation. All rights reserved.

35

The application returns:

col field data ret

num name type len

--- -------------------- ----------------- ---

01: empno NUMERIC 0004

02: ename CHARACTER_VARYING 0004

03: job CHARACTER_VARYING 0007

04: mgr NUMERIC 0004

05: hiredate DATE_TIME 0018

06: sal NUMERIC 0007

07: comm NUMERIC 0000

08: deptno NUMERIC 0002

[RECORD 1]

 empno : 7902

 ename : FORD

 job : ANALYST

 mgr : 7566

 hiredate : 03 - DEC- 81 00:00:00

 sal : 3000.00

 comm : <null>

 deptno : 20

[RECORD 2]

 empno : 7934

 ename : MILLER

 job : CLERK

 mgr : 7782

 hiredate : 23 - JAN- 82 00:00:00

 sal : 1300.00

 comm : <null>

 deptno : 10

2 rows

EDB Postgres Advanced Server ECPGPlus Guide

Copyright © 2012 - 2018 EnterpriseDB Corporation. All rights reserved.

36

5 Building and Executing Dynamic
SQL Statements

The following examples demonstrate four techniques for building and executing dynamic

SQL statements. Each example demonstrates processing a different combination of

statement and input types:

¶ The first example demonstrates processing and executing a SQL statement that

does not contain a SELECT statement and does not require input variables. This

example corresponds to the techniques used by Oracle Dynamic SQL Method 1.

¶ The second example demonstrates processing and executing a SQL statement that

does not contain a SELECT statement, and contains a known number of input

variables. This example corresponds to the techniques used by Oracle Dynamic

SQL Method 2.

¶ The third example demonstrates processing and executing a SQL statement that

may contain a SELECT statement, and includes a known number of input

variables. This example corresponds to the techniques used by Oracle Dynamic

SQL Method 3.

¶ The fourth example demonstrates processing and executing a SQL statement that

may contain a SELECT statement, and includes an unknown number of input

variables. This example corresponds to the techniques used by Oracle Dynamic

SQL Method 4.

EDB Postgres Advanced Server ECPGPlus Guide

Copyright © 2012 - 2018 EnterpriseDB Corporation. All rights reserved.

37

5.1 Example - Executing a Non -query Statement Without
Parameters

The following example demonstrates how to use the EXECUTE IMMEDIATE command to

execute a SQL statement where the text of the statement is not known until you run the

application. You cannot use EXECUTE IMMEDIATE to execute a statement that returns a

result set. You cannot use EXECUTE IMMEDIATE to execute a statement that contains

parameter placeholders.

The EXECUTE IMMEDIATE statement parses and plans the SQL statement each time it

executes, which can have a negative impact on the performance of your application. If

you plan to execute the same statement repeatedly, consider using the

PREPARE/EXECUTE technique described in the next example.

/**************************** ******************************* /

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

static void handle_error(void);

int main(int argc, char *argv[])

{

 char *insertStmt;

 EXEC SQL WHENEVER SQLERROR DO handle_error();

 EXEC SQL CONNECT :argv[1];

 insertStmt = "INSERT INTO dept VALUES(50, 'ACCTG', 'SEATTLE')";

 EXEC SQL EXECUTE IMMEDIATE :insertStmt;

 fprintf(stderr, "ok \ n");

 EXEC SQL COMMIT RELEASE;

 exit (EXIT_SUCCESS);

}

static void handle_error(void)

{

 fprintf(stderr, "%s \ n", sqlca.sqlerrm.sqlerrmc);

 EXEC SQL WHENEVER SQLERROR CONTINUE;

 EXEC SQL ROLLBACK RELEASE;

EDB Postgres Advanced Server ECPGPlus Guide

Copyright © 2012 - 2018 EnterpriseDB Corporation. All rights reserved.

38

 exit(EXIT_FAILURE);

}

/**************************** ******************************* /

The code sample begins by including the prototypes and type definitions for the C

stdio , string , and stdlib libraries, and providing basic infrastructure for the

program:

#include <stdio.h>

#include <string.h>

#include < stdlib.h>

static void handle_error(void);

int main(int argc, char *argv[])

{

 char *insertStmt;

The example then sets up an error handler; ECPGPlus calls the handle_error()

function whenever a SQL error occurs:

 EXEC SQL WHENEVER SQLERROR DO handle_error();

Then, the example connects to the database using the credentials specified on the

command line:

 EXEC SQL CONNECT :argv[1];

Next, the program uses an EXECUTE IMMEDIATE statement to execute a SQL statement,

adding a row to the dept table:

 ins ertStmt = "INSERT INTO dept VALUES(50, 'ACCTG', 'SEATTLE')";

 EXEC SQL EXECUTE IMMEDIATE :insertStmt;

If the EXECUTE IMMEDIATE command fails for any reason, ECPGPlus will invoke the

handle_error() function (which terminates the application after displaying an error

message to the user). If the EXECUTE IMMEDIATE command succeeds, the application

displays a message (ok) to the user, commits the changes, disconnects from the server,

and terminates the application.

 fprintf(stderr, "ok \ n");

 EXEC SQL COMMIT RELEASE;

EDB Postgres Advanced Server ECPGPlus Guide

Copyright © 2012 - 2018 EnterpriseDB Corporation. All rights reserved.

39

 exit(EXIT_SUCCESS);

}

ECPGPlus calls the handle_error() function whenever it encounters a SQL error.

The handle_error() function prints the content of the error message, resets the error

handler, rolls back any changes, disconnects from the database, and terminates the

application.

static void handle_error(void)

{

 fprintf(stderr, "%s \ n", sqlca.sqlerrm.sqlerrmc);

 EXEC SQL WHENEVER SQLERROR CONTINUE;

 EXEC SQL ROLLBACK RELEASE;

 exit(EXIT_FAILURE);

}

EDB Postgres Advanced Server ECPGPlus Guide

Copyright © 2012 - 2018 EnterpriseDB Corporation. All rights reserved.

40

5.2 Example - Executing a Non -query Statement with a
Specified Number of Placeholders

To execute a non-query command that includes a known number of parameter

placeholders, you must first PREPARE the statement (providing a statement handle), and

then EXECUTE the statement using the statement handle. When the application executes

the statement, it must provide a value for each placeholder found in the statement.

When an application uses the PREPARE/EXECUTE mechanism, each SQL statement is

parsed and planned once, but may execute many times (providing different values each

time).

ECPGPlus will convert each parameter value to the type required by the SQL statement,

if possible; if not possible, ECPGPlus will report an error.

/**************************** ******************************* /

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

#include <sqlca.h>

static void handle_error(void);

int main(int argc, char *argv[])

{

 char *stmtText;

 EXEC SQL WHENEVER SQLERROR DO handle_error();

 EXEC SQL CONNECT :argv[1];

 stmtText = "INSERT INTO dept VALUES(?, ?, ?)";

 EXEC SQL PREPARE stmtHandle FROM :stmtText;

 EXEC SQL EXECUTE stmtHandle USING :argv[2], :argv[3], :argv[4];

 fprintf(stderr, "ok \ n");

 EXEC SQL COMMIT RELEASE;

 exit(EXIT_SUCCESS);

}

static void handle_error(void)

{

 printf("%s \ n", sqlca.sqlerrm.sqlerrmc);

EDB Postgres Advanced Server ECPGPlus Guide

Copyright © 2012 - 2018 EnterpriseDB Corporation. All rights reserved.

41

 EXEC SQL WHENEVER SQLERROR CONTINUE;

 EXEC SQL ROLLBACK RELEASE;

 exit(EXIT_FAILURE);

}

/**************************** ******************************* /

The code sample begins by including the prototypes and type definitions for the C

stdio , string , stdlib , and sqlca libraries, and providing basic infrastructure for

the program:

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

#include <sqlca.h>

static void handle_error(void);

int main(int argc, char *argv[])

{

 char *stmtText;

The example then sets up an error handler; ECPGPlus calls the handle_error()

function whenever a SQL error occurs:

 EXEC SQL WHENEVER SQLERROR DO handle_error();

Then, the example connects to the database using the credentials specified on the

command line:

 EXEC SQL CONNECT :argv[1];

Next, the program uses a PREPARE statement to parse and plan a statement that includes

three parameter markers - if the PREPARE statement succeeds, it will create a statement

handle that you can use to execute the statement (in this example, the statement handle is

named stmtHandle). You can execute a given statement multiple times using the same

statement handle.

 stmtText = "INSERT INTO dept VALU ES(?, ?, ?)";

 EXEC SQL PREPARE stmtHan dle FROM :stmtText;

After parsing and planning the statement, the application uses the EXECUTE statement to

execute the statement associated with the statement handle, substituting user-provided

values for the parameter markers:

 EXEC SQL EXECUTE stmtHandle USING :argv[2], :argv[3], :argv[4];

EDB Postgres Advanced Server ECPGPlus Guide

Copyright © 2012 - 2018 EnterpriseDB Corporation. All rights reserved.

42

If the EXECUTE command fails for any reason, ECPGPlus will invoke the

handle_error() function (which terminates the application after displaying an error

message to the user). If the EXECUTE command succeeds, the application displays a

message (ok) to the user, commits the changes, disconnects from the server, and

terminates the application.

 fprintf(stderr, "ok \ n");

 EXEC SQL COMMIT RELEASE;

 exit(EXIT_SUCCESS);

}

ECPGPlus calls the handle_error() function whenever it encounters a SQL error.

The handle_error() function prints the content of the error message, resets the error

handler, rolls back any changes, disconnects from the database, and terminates the

application.

stat ic void handle_error(void)

{

 printf("%s \ n", sqlca.sqlerrm.sqlerrmc);

 EXEC SQL WHENEVER SQLERROR CONTINUE;

 EXEC SQL ROLLBACK RELEASE;

 exit(EXIT_FAILURE);

}

EDB Postgres Advanced Server ECPGPlus Guide

Copyright © 2012 - 2018 EnterpriseDB Corporation. All rights reserved.

43

5.3 Example - Executing a Query W ith a Known Number of
Placeholders

This example demonstrates how to execute a query with a known number of input

parameters, and with a known number of columns in the result set. This method uses the

PREPARE statement to parse and plan a query, before opening a cursor and iterating

through the result set.

/**************************** ******************************* /

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

#include <stdbool.h>

#include <sqlc a.h>

static void handle_error(void);

int main(int argc, char *argv[])

{

 VARCHAR empno[10];

 VARCHAR ename[20];

 EXEC SQL WHENEVER SQLERROR DO handle_error();

 EXEC SQL CONNECT :argv[1];

 EXEC SQL PREPARE queryHandle

 FROM "SELECT empno, en ame FROM emp WHERE deptno = ?";

 EXEC SQL DECLARE empCursor CURSOR FOR queryHandle;

 EXEC SQL OPEN empCursor USING :argv[2];

 EXEC SQL WHENEVER NOT FOUND DO break;

 while(true)

 {

 EXEC SQL FETCH empCursor INTO :empno, :ename;

 printf("% - 10s %s \ n", empno.arr, ename.arr);

 }

 EXEC SQL CLOSE empCursor;

 EXEC SQL COMMIT RELEASE;

 exit(EXIT_SUCCESS);

}

EDB Postgres Advanced Server ECPGPlus Guide

Copyright © 2012 - 2018 EnterpriseDB Corporation. All rights reserved.

44

static void handle_error(void)

{

 printf("%s \ n", sqlca.sqlerrm.sqlerrmc);

 EXEC SQL WHENEVER SQLERROR CONTINUE;

 EXEC SQL ROLLBACK RELEASE;

 exit(EXIT_FAILURE);

}

/**************************** ******************************* /

The code sample begins by including the prototypes and type definitions for the C

stdio , string , stdlib , stdbool, and sqlca libraries, and providing basic

infrastructure for the program:

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

#include <stdbool.h>

#include <sqlca.h>

static void handle_error(void);

int main(int argc, char *argv[])

{

 VARCHAR empno[10];

 VARCHAR ename[20];

The example then sets up an error handler; ECPGPlus calls the handle_error()

function whenever a SQL error occurs:

 EXEC SQL WHENEVER SQLERROR DO handle_error();

Then, the example connects to the database using the credentials specified on the

command line:

 EXEC SQL CONNECT :argv[1];

Next, the program uses a PREPARE statement to parse and plan a query that includes a

single parameter marker - if the PREPARE statement succeeds, it will create a statement

handle that you can use to execute the statement (in this example, the statement handle is

named stmtHandle). You can execute a given statement multiple times using the same

statement handle.

 EXEC SQL PREPARE stmt Handle

 FROM "SELECT empno, ename FROM emp WHERE deptno = ?";

EDB Postgres Advanced Server ECPGPlus Guide

Copyright © 2012 - 2018 EnterpriseDB Corporation. All rights reserved.

45

The program then declares and opens the cursor, empCursor , substituting a user-

provided value for the parameter marker in the prepared SELECT statement. Notice that

the OPEN statement includes a USING clause: the USING clause must provide a value for

each placeholder found in the query:

 EXEC SQL DECLARE empCursor CURSOR FOR stmt Handle;

 EXEC SQL OPEN empCursor USING :argv[2];

 EXEC SQL WHENEVER NOT FOUND DO break;

 while(true)

 {

The program iterates through the cursor, and prints the employee number and name of

each employee in the selected department:

 EXEC SQL FETCH empCursor INTO :empno, :ename;

 printf("% - 10s %s \ n", empno.arr, ename.arr);

 }

The program then closes the cursor, commits any changes, disconnects from the server,

and terminates the application.

 EXEC SQL CLOSE empCursor;

 EXEC SQL COMMIT RELEASE;

 exit(EXIT_SUCCESS);

}

The application calls the handle_error() function whenever it encounters a SQL

error. The handle_error() function prints the content of the error message, resets the

error handler, rolls back any changes, disconnects from the database, and terminates the

application.

static void handle_error(void)

{

 printf("%s \ n", sqlca.sqlerrm.sqlerrmc);

 EXEC SQL WHENEVER SQLERROR CONTINUE;

 EXEC SQL ROLLBACK RELEASE;

 exit(EXIT_FAILURE);

}

EDB Postgres Advanced Server ECPGPlus Guide

Copyright © 2012 - 2018 EnterpriseDB Corporation. All rights reserved.

46

5.4 Example - Executing a Query With an Unknown Number of
Variables

The next example demonstrates executing a query with an unknown number of input

parameters and/or columns in the result set. This type of query may occur when you

prompt the user for the text of the query, or when a query is assembled from a form on

which the user chooses from a number of conditions (i.e., a filter).

/**************************** ******************************* /

#include <stdio.h>

#include <stdlib.h>

#include <sqlda.h>

#include <sqlcpr.h>

SQLDA *params;

SQLDA *results;

static void allocateDescriptors(int count,

 int var NameLength ,

 int ind NameLenth);

static void bind Params(void);

static void displayResultSet (void);

int main(int argc, char *argv[])

{

 EXEC SQL BEGIN DECLARE SECTION;

 char *username = argv[1];

 char *password = argv[2];

 char *stmtText = argv[3];

 EXEC SQL END DECLARE SECTION;

 EXEC SQL WHENEVER SQLERROR sqlprint;

 EXEC SQL CONNECT TO test

 USER :username

 IDENTIFIED BY :password;

 params = sqlald(20 , 64, 64);

 results = sqlald(20, 64, 64);

 EXEC SQL PREPARE stmt FROM :stmtText;

 EXEC SQL DECLARE dynCursor CURSOR FOR stmt;

 bindParams();

 EXEC SQL OPEN dynCursor USING DESCRIPTOR params;

 displayResultSet (20);

}

EDB Postgres Advanced Server ECPGPlus Guide

Copyright © 2012 - 2018 EnterpriseDB Corporation. All rights reserved.

47

static void bindParams(void)

{

 EXEC SQL DESCRIBE BIND VARIABLES FOR stmt INTO params;

 if (params - >F < 0)

 fprintf(stderr, "Too many parameters required \ n");

 else

 {

 int i;

 params - >N = params - >F;

 for (i = 0; i < params - >F; i++)

 {

 char *paramName = params - >S[i];

 int nameLen = params - >C[i];

 char paramValue[255];

 printf("Enter value for parameter %.*s: ",

 nameLen, paramName);

 fgets(paramValue, sizeof(paramValue), stdin);

 params - >T[i] = 1; /* Data type = Character (1) */

 par ams- >L[i] = strlen(paramValue) - 1;

 params - >V[i] = strdup(pa ramValue) ;

 }

 }

}

static void displayResultSet (void)

{

 EXEC SQL DESCRIBE SELECT LIST FOR stmt INTO results;

 if (results - >F < 0)

 fprintf(stderr, "Too many columns returned by query \ n");

 else if (results - >F == 0)

 return;

 else

 {

 int col;

 results - >N = results - >F;

 for (col = 0; col < results - >F; col++)

 {

 int null_permitted, length;

 sqlnul(&results - >T[col],

 &results - >T[col],

 &null_permitted);

EDB Postgres Advanced Server ECPGPlus Guide

Copyright © 2012 - 2018 EnterpriseDB Corporation. All rights reserved.

48

 switch (results - >T[col])

 {

 case 2: /* NUMERIC */

 {

 int precision, scale;

 sqlprc(&results - >L[col], &precision, &scale);

 if (precision == 0)

 precision = 38;

 length = precision + 3;

 break;

 }

 case 12: /* DATE */

 {

 length = 30;

 break;

 }

 default: /* Others */

 {

 length = results - >L[col] + 1;

 break;

 }

 }

 results - >V[col] = realloc(results - >V[col], length);

 results - >L[col] = length;

 results - >T[col] = 1;

 }

 EXEC SQL WHENEVER NOT FOUND DO break;

 while (1)

 {

 const char *delimiter = "" ;

 EXEC SQL FETCH dynCursor USING DESCRIPTOR results;

 for (col = 0; col < results - >F; col++)

 {

 if (*results - >I[col] == - 1)

 printf("%s%s", delimiter, "<null>");

 else

 printf("%s%s", delimiter, results - >V[col]);

 delimiter = ", ";

 }

EDB Postgres Advanced Server ECPGPlus Guide

Copyright © 2012 - 2018 EnterpriseDB Corporation. All rights reserved.

49

 printf(" \ n");

 }

 }

}

/**************************** ******************************* /

The code sample begins by including the prototypes and type definitions for the C stdio

and stdlib libraries. In addition, the program includes the sqlda.h and sql cpr.h

header files. sqlda.h defines the SQLDA structure used throughout this example.

sqlcpr.h defines a small set of functions used to interrogate the metadata found in an

SQLDA structure.

#include <stdio.h>

#include <stdlib.h>

#include <sqlda.h>

#inclu de <sqlcpr.h>

Next, the program declares pointers to two SQLDA structures. The first SQLDA

structure (params) will be used to describe the metadata for any parameter markers

found in the dynamic query text. The second SQLDA structure (results) will contain

both the metadata and the result set obtained by executing the dynamic query.

SQLDA *params;

SQLDA *results;

The program then declares two helper functions (defined near the end of the code

sample):

static void bindParams(void);

static void displayResul tSet (void);

Next, the program declares three host variables; the first two (username and password)

are used to connect to the database server; the third host variable (stmtTxt) is a NULL-

terminated C string containing the text of the query to execute. Notice that the values for

these three host variables are derived from the command-line arguments. When the

program begins execution, it sets up an error handler and then connects to the database

server:

int main(int argc, char *argv[])

{

 EXEC SQL BEGIN DE CLARE SECTION;

 char *username = argv[1];

 char *password = argv[2];

 char *stmtText = argv[3];

 EXEC SQL END DECLARE SECTION;

 EXEC SQL WHENEVER SQLERROR sqlprint;

EDB Postgres Advanced Server ECPGPlus Guide

Copyright © 2012 - 2018 EnterpriseDB Corporation. All rights reserved.

50

 EXEC SQL CONNECT TO test

 USER :username

 IDENTIFIED BY :password;

Next, the program calls the sqlald() function to allocate the memory required for each

descriptor. Each descriptor contains (among other things):

¶ a pointer to an array of column names

¶ a pointer to an array of indicator names

¶ a pointer to an array of data types

¶ a pointer to an array of lengths

¶ a pointer to an array of data values.

When you allocate an SQLDA descriptor, you specify the maximum number of columns

you expect to find in the result set (for SELECT-list descriptors) or the maximum number

of parameters you expect to find the dynamic query text (for bind-variable descriptors) -

in this case, we specify that we expect no more than 20 columns and 20 parameters. You

must also specify a maximum length for each column (or parameter) name and each

indicator variable name - in this case, we expect names to be no more than 64 bytes long.

See Section 7.4 for a complete description of the SQLDA structure.

 params = sqlald(20 , 64, 64);

 results = sqlald (20, 64, 64);

After allocating the SELECT-list and bind descriptors, the program prepares the dynamic

statement and declares a cursor over the result set.

 EXEC SQL PREPARE stmt FROM :stmtText;

 EXEC SQL DECLARE dynCursor CURSOR FOR stmt;

Next, the program calls the bindParams() function. The bindParams() function

examines the bind descriptor (params) and prompt the user for a value to substitute in

place of each parameter marker found in the dynamic query.

 bindParams();

Finally, the program opens the cursor (using the parameter values supplied by the user, if

any) and calls the displayResultSet() function to print the result set produced by the

query.

 EXEC SQL OPEN dynCursor USING DESCRIPTOR params;

 displayResultSet();

}

EDB Postgres Advanced Server ECPGPlus Guide

Copyright © 2012 - 2018 EnterpriseDB Corporation. All rights reserved.

51

The bindParams() function determines whether the dynamic query contains any

parameter markers, and, if so, prompts the user for a value for each parameter and then

binds that value to the corresponding marker. The DESCRIBE BIND VARIABLE

statement populates the params SQLDA structure with information describing each

parameter marker.

static void bindParams(void)

{

 EXEC SQL DESCRIBE BIND VARIABLES FOR stmt INTO params;

If the statement contains no parameter markers, params - >F will contain 0. If the

statement contains more parameters than will fit into the descriptor, params - >F will

contain a negative number (in this case, the absolute value of params - >F indicates the

number of parameter markers found in the statement). If params - >F contains a positive

number, that number indicates how many parameter markers were found in the statement.

 if (params - >F < 0)

 fprintf(stderr, "Too many parameters required \ n");

 else

 {

 int i;

 params - >N = params - >F;

Next, the program executes a loop that prompts the user for a value, iterating once for

each parameter marker found in the statement.

 for (i = 0; i < params - >F; i++)

 {

 char *paramName = params - >S[i];

 int nameLen = params - >C[i];

 char paramValue[255];

 printf("Enter value for parameter %.*s: ",

 nameLen, paramName);

 fgets(paramValue, sizeof(paramValue), stdin);

After prompting the user for a value for a given parameter, the program binds that value

to the parameter by setting params - >T[i] to indicate the data type of the value (see

Section 7.3 for a list of type codes), params - >L[i] to the length of the value (we

subtract one to trim off the trailing new-line character added by fgets()), and params -

>V[i] to point to a copy of the NULL-terminated string provided by the user.

 params - >T[i] = 1; /* Data type = Character (1) */

 par ams- >L[i] = strlen(paramValue) + 1;

 params - >V[i] = strdup(paramValue) ;

EDB Postgres Advanced Server ECPGPlus Guide

Copyright © 2012 - 2018 EnterpriseDB Corporation. All rights reserved.

52

 }

 }

}

The displayResultSet() function loops through each row in the result set and prints

the value found in each column. displayResultSet() starts by executing a

DESCRIBE SELECT LIST statement - this statement populates an SQLDA descriptor

(results) with a description of each column in the result set.

static void displayResultSet (void)

{

 EXEC SQL DESCRIBE SELECT LIST FOR stmt INTO results;

If the dynamic statement returns no columns (that is, the dynamic statement is not a

SELECT statement), results - >F will contain 0. If the statement returns more columns

than will fit into the descriptor, results - >F will contain a negative number (in this

case, the absolute value of results - >F indicates the number of columns returned by the

statement). If results - >F contains a positive number, that number indicates how many

columns where returned by the query.

 if (results - >F < 0)

 fprintf(stderr, "Too many columns returned by query \ n");

 else if (results - >F == 0)

 return;

 else

 {

 int col;

 results - >N = results - >F;

Next, the program enters a loop, iterating once for each column in the result set:

 for (col = 0; col < results - >F; col++)

 {

 int null_permitted, length;

To decode the type code found in results - >T, the program invokes the sqlnul()

function (see the description of the T member of the SQLDA structure in Section 7.4).

This call to sqlnul() modifies results - >T[col] to contain only the type code (the

nullability flag is copied to null_permitted). This step is necessary because the

DESCRIBE SELECT LIST statement encodes the type of each column and the nullability

of each column into the T array.

 sqlnul(&results - >T[col],

 &results - >T[col],

 &null_permitted);

EDB Postgres Advanced Server ECPGPlus Guide

Copyright © 2012 - 2018 EnterpriseDB Corporation. All rights reserved.

53

After decoding the actual data type of the column, the program modifies the results

descriptor to tell ECPGPlus to return each value in the form of a NULL-terminated

string. Before modifying the descriptor, the program must compute the amount of space

required to hold each value. To make this computation, the program examines the

maximum length of each column (results - >V[col]) and the data type of each column

(results - >T[col]).

For numeric values (where results - >T[col] = 2), the program calls the sqlprc()

function to extract the precision and scale from the column length. To compute the

number of bytes required to hold a numeric value in string form, displayResultSet()

starts with the precision (that is, the maximum number of digits) and adds three bytes for

a sign character, a decimal point, and a NULL terminator.

 switch (results - >T[col])

 {

 case 2: /* NUMERIC */

 {

 int precision, scale;

 sqlprc(&results - >L[col], &precision, &scale);

 if (precision == 0)

 precision = 38;

 length = precision + 3;

 break;

 }

For date values, the program uses a somewhat arbitrary, hard-coded length of 30. In a

real-world application, you may want to more carefully compute the amount of space

required.

 case 12: /* DATE */

 {

 length = 30;

 break;

 }

For a value of any type other than date or numeric, displayResultSet() starts with

the maximum column width reported by DESCRIBE SELECT LIST and adds one extra

byte for the NULL terminator. Again, in a real-world application you may want to

include more careful calculations for other data types.

 default: /* Others */

 {

 length = results - >L[col] + 1;

 break;

 }

 }

EDB Postgres Advanced Server ECPGPlus Guide

Copyright © 2012 - 2018 EnterpriseDB Corporation. All rights reserved.

54

After computing the amount of space required to hold a given column, the program

allocates enough memory to hold the value, sets results - >L[col] to indicate the

number of bytes found at results - >V[col] , and set the type code for the column

(results - >T[col]) to 1 to instruct the upcoming FETCH statement to return the value

in the form of a NULL-terminated string.

 results - >V[col] = malloc(length);

 results - >L[col] = length;

 results - >T[col] = 1;

 }

At this point, the results descriptor is configured such that a FETCH statement can copy

each value into an appropriately sized buffer in the form of a NULL-terminated string.

Next, the program defines a new error handler to break out of the upcoming loop when

the cursor is exhausted.

 EXEC SQL WHENEVER NOT FOUND DO break;

 while (1)

 {

 const char *delimiter = "";

The program executes a FETCH statement to fetch the next row in the cursor into the

results descriptor. If the FETCH statement fails (because the cursor is exhausted),

control transfers to the end of the loop because of the EXEC SQL WHENEVER directive

found before the top of the loop.

 EXEC SQL FETCH dynCursor USING DES CRIPTOR results;

The FETCH statement will populate the following members of the results descriptor:

¶ *results - >I[col] will indicate whether the column contains a NULL value (-

1) or a non-NULL value (0). If the value non-NULL but too large to fit into the

space provided, the value is truncated and *results - >I[col] will contain a

positive value.

¶ results - >V[col] will contain the value fetched for the given column (unless

*results - >I[col] indicates that the column value is NULL).

¶ results - >L[col] will contain the length of the value fetched for the given

column

Finally, displayResultSet() iterates through each column in the result set, examines

the corresponding NULL indicator, and prints the value. The result set is not aligned -

instead, each value is separated from the previous value by a comma.

EDB Postgres Advanced Server ECPGPlus Guide

Copyright © 2012 - 2018 EnterpriseDB Corporation. All rights reserved.

55

 for (col = 0; col < results - >F; col++)

 {

 if (*results - >I[col] == - 1)

 printf("%s%s", delimiter, "<null>");

 else

 printf("%s%s", delimiter, results - >V[col]);

 delimiter = ", ";

 }

 printf(" \ n");

 }

 }

}

/**************************** ******************************* /

EDB Postgres Advanced Server ECPGPlus Guide

Copyright © 2012 - 2018 EnterpriseDB Corporation. All rights reserved.

56

6 Error Handling

ECPGPlus provides two methods to detect and handle errors in embedded SQL code:

¶ A client application can examine the sqlca data structure for error messages, and

supply customized error handling for your client application.

¶ A client application can include EXEC SQL WHENEVER directives to instruct the

ECPGPlus compiler to add error-handling code.

6.1 Error Handling with sqlca

sql ca (SQL communications area) is a global variable used by ecpglib to

communicate information from the server to the client application. After executing a

SQL statement (for example, an INSERT or SELECT statement) you can inspect the

contents of sqlca to determine if the statement has completed successfully or if the

statement has failed.

sqlca has the following structure:

struct

{

 char sqlcaid[8];

 long sqlabc;

 long sqlcode;

 struct

 {

 int sqlerrml;

 char sqlerrmc[SQLERRMC_LEN];

 } sqlerrm;

 char sqlerrp[8];

 long sqlerrd[6];

 char sqlwarn[8];

 char sqlstate[5];

} sqlca;

Use the following directive to implement sqlca functionality:

 EXEC SQL INCLUDE sqlca ;

If you include the ecpg directive, you do not need to #include the sqlca.h file in the

client application's header declaration.

EDB Postgres Advanced Server ECPGPlus Guide

Copyright © 2012 - 2018 EnterpriseDB Corporation. All rights reserved.

57

The Advanced Server sqlca structure contains the following members:

sqlcaid

sqlcaid contains the string: "SQLCA" .

sqlabc

sqlabc contains the size of the sqlca structure.

sql code

The sqlcode member has been deprecated with SQL 92; Advanced Server

supports sqlcode for backward compatibility, but you should use the sqlstate

member when writing new code.

sqlcode is an integer value; a positive sqlcode value indicates that the client

application has encountered a harmless processing condition, while a negative

value indicates a warning or error.

If a statement processes without error, sql code will contain a value of 0. If the

client application encounters an error (or warning) during a statement's execution,

sqlcode will contain the last code returned.

The SQL standard defines only a positive value of 100 , which indicates that he

most recent SQL statement processed returned/affected no rows. Since the SQL

standard does not define other sqlcode values, please be aware that the values

assigned to each condition may vary from database to database.

sqlerrm is a structure embedded within sqlca , composed of two members:

sqlerrml

sqlerrml contains the length of the error message currently stored in

sqlerrmc .

sqlerrmc

sqlerrmc contains the null-terminated message text associated with the

code stored in sqlstate . If a message exceeds 149 characters in length,

ecpglib will truncate the error message.

EDB Postgres Advanced Server ECPGPlus Guide

Copyright © 2012 - 2018 EnterpriseDB Corporation. All rights reserved.

58

sqlerrp

sqlerrp contains the string "NOT SET".

sqlerrd is an array that contains six elements:

sqlerrd[1] contains the OID of the processed row (if applicable).

sqlerrd[2] contains the number of processed or returned rows.

sqlerrd[0] , sqlerrd[3] , sqlerrd[4] and sqlerrd[5] are unused.

sqlwarn is an array that contains 8 characters:

sqlwarn[0] contains a value of 'W' if any other element within sqlwarn is set

to ' W' .

sqlwarn[1] contains a value of 'W' if a data value was truncated when it was

stored in a host variable.

sqlwarn[2] contains a value of 'W' if the client application encounters a non-

fatal warning.

sqlwarn[3] , sqlwarn[4] , sqlwarn[5] , sqlwarn[6] , and sqlwa rn[7] are

unused.

sqlstate

sqlstat e is a 5 character array that contains a SQL-compliant status code after

the execution of a statement from the client application. If a statement processes

without error, sqlstate will contain a value of 00000 . Please note that

sqlstate is not a null-terminated string.

sqlstate codes are assigned in a hierarchical scheme:

¶ The first two characters of sqlstate indicate the general class of the

condition.

¶ The last three characters of sqlstate indicate a specific status within the

class.

EDB Postgres Advanced Server ECPGPlus Guide

Copyright © 2012 - 2018 EnterpriseDB Corporation. All rights reserved.

59

If the client application encounters multiple errors (or warnings) during an SQL

statement's execution sqlstate will contain the last code returned.

The following table lists the sqlstate and sqlcode values, as well as the symbolic

name and error description for the related condition:

sqlstate sqlcode
(Deprecated)

Symbolic Name Description

YE001 - 12 ECPG_OUT_OF_MEMORY Virtual memory is
exhausted.

YE002 - 200 ECPG_UNSUPPORTED The preprocessor has
generated an unrecognized
item. Could indicate
incompatibility between
the preprocessor and the
library.

07001, or
07002

- 201 ECPG_TOO_MANY_ARGUMENTS The program specifies
more variables than the
command expects.

07001, or
07002

- 202 ECPG_TOO_FEW_ARGUMENTS The program specified
fewer variables than the
command expects.

21000 - 203 ECPG_TOO_MANY_MATCHES The SQL command has
returned multiple rows, but
the statement was
prepared to receive a single
row.

42804 - 204 ECPG_INT_FORMAT The host variable (defined
in the C code) is of type INT,
and the selected data is of a
type that cannot be
converted into an INT.
ecpglib uses the
strtol() function to
convert string values into
numeric form.

42804 - 205 ECPG_UINT_FORMAT The host variable (defined
in the C code) is an
unsigned INT, and the
selected data is of a type
that cannot be converted
into an unsigned INT.
ecpglib uses the
strtoul() function to
convert string values into
numeric form.

42804 - 206 ECPG_FLOAT_FORMAT The host variable (defined
in the C code) is of type
FLOAT, and the selected
data is of a type that cannot
be converted into an
FLOAT. ecpglib uses the

EDB Postgres Advanced Server ECPGPlus Guide

Copyright © 2012 - 2018 EnterpriseDB Corporation. All rights reserved.

60

strtod() function to
convert string values into
numeric form.

42804 - 211 ECPG_CONVERT_BOOL The host variable (defined
in the C code) is of type
BOOL, and the selected data
cannot be stored in a BOOL.

YE002 - 2- 1 ECPG_EMPTY The statement sent to the
server was empty.

22002 - 213 ECPG_MISSING_INDICATOR A NULL indicator variable
has not been supplied for
the NULL value returned by
the server (the client
application has received an
unexpected NULL value).

42804 - 214 ECPG_NO_ARRAY The server has returned an
array, and the
corresponding host
variable is not capable of
storing an array.

42804 - 215 ECPG_DATA_NOT_ARRAY The server has returned a
value that is not an array
into a host variable that
expects an array value.

08003 - 220 ECPG_NO_CONN The client application has
attempted to use a non-
existent connection.

YE002 - 221 ECPG_NOT_CONN The client application has
attempted to use an
allocated, but closed
connection.

26000 - 230 ECPG_INVALID_STMT The statement has not been
prepared.

33000 - 240 ECPG_UNKNOWN_DESCRIPTOR The specified descriptor is
not found.

07009 - 241 ECPG_INVALID_DESCRIPTOR_INDEX The descriptor index is out-
of-range.

YE002 - 242 ECPG_UNKNOWN_DESCRIPTOR_ITEM The client application has
requested an invalid
descriptor item (internal
error).

07006 - 243 ECPG_VAR_NOT_NUMERIC A dynamic statement has
returned a numeric value
for a non-numeric host
variable.

07006 - 244 ECPG_VAR_NOT_CHAR A dynamic SQL statement
has returned a CHAR value,
and the host variable is not
a CHAR.

 - 400 ECPG_PGSQL The server has returned an
error message; the
resulting message contains
the error text.

08007 - 401 ECPG_TRANS The server cannot start,

EDB Postgres Advanced Server ECPGPlus Guide

Copyright © 2012 - 2018 EnterpriseDB Corporation. All rights reserved.

61

commit or rollback the
specified transaction.

08001 - 402 ECPG_CONNECT The client application's
attempt to connect to the
database has failed.

02000 100 ECPG_NOT_FOUND The last command
retrieved or processed no
rows, or you have reached
the end of a cursor.

EDB Postgres Advanced Server ECPGPlus Guide

Copyright © 2012 - 2018 EnterpriseDB Corporation. All rights reserved.

62

6.2 EXEC SQL WHENEVER

Use the EXEC SQL WHENEVER directive to implement simple error handling for client

applications compiled with ECPGPlus. The syntax of the directive is:

EXEC SQL WHENEVER condition action ;

This directive instructs the ECPG compiler to insert error-handling code into your

program.

The code instructs the client application that it should perform a specified action if the

client application detects a given condition. The co ndition may be one of the

following:

SQLERROR

A SQLERROR condition exists when sqlca.sqlcode is less than zero.

SQLWARNING

A SQLWARNING condition exists when sqlca.sqlwarn[0] contains a
' W'.

NOT FOUND

A NOT FOUND condition exists when sqlca .sqlcode is

ECPG_NOT_FOUND (when a query returns no data).

You can specify that the client application perform one of the following action s if it

encounters one of the previous conditions:

CONTINUE

Specify CONTINUE to instruct the client application to continue

processing, ignoring the current condition . CONTINUE is the default

action.

DO CONTINUE

An action of DO CONTINUE will generate a CONTINUE statement in

the emitted C code that if it encounters the condition, skips the rest

of the code in the loop and continues with the next iteration. You

can only use it within a loop.

EDB Postgres Advanced Server ECPGPlus Guide

Copyright © 2012 - 2018 EnterpriseDB Corporation. All rights reserved.

63

GOTO label

or
GO TO label

Use a C goto statement to jump to the specified label .

SQLPRINT

Print an error message to stderr (standard error), using the sqlprint()

function. The sqlprint() function prints sql error , followed by the

contents of sqlca .sqlerrm .sqlerrmc .

STOP

Call exit(1) to signal an error, and terminate the program.

DO BREAK

Execute the C break statement. Use this action in loops, or switch

statements.

CALL name(args)

or
DO name(args)

Invoke the C function specified by the name parameter , using the

parameters specified in the args parameter.

Example:

The following code fragment prints a message if the client application encounters a

warning, and aborts the application if it encounters an error:

EXEC SQL WHENEVER SQLWARNING SQLPRINT;

EXEC SQL WHENEVER SQLERROR STOP;

Please Note: The ECPGPlus compiler processes your program from top to bottom, even

though the client application may not execute from top to bottom. The compiler directive

is applied to each line in order, and remains in effect until the compiler encounters

another directive.

If the control of the flow within your program is not top-to-bottom, you should consider

adding error-handling directives to any parts of the program that may be inadvertently

missed during compilation.

EDB Postgres Advanced Server ECPGPlus Guide

Copyright © 2012 - 2018 EnterpriseDB Corporation. All rights reserved.

64

7 Reference

The sections that follow describe ecpgPlus language elements:

¶ C-Preprocessor Directives

¶ Supported C Data Types

¶ Type Codes

¶ The SQLDA Structure

¶ ECPGPlus Statements

7.1 C-preprocessor Directives

The ECPGPlus C-preprocessor enforces two behaviors that are dependent on the mode in

which you invoke ECPGPlus:

¶ PROC mode

¶ non-PROC mode

Compiling in PROC mode

In PROC mode, ECPGPlus allows you to:

¶ Declare host variables outside of an EXEC SQL BEGIN/END DECLARE
SECTION.

¶ Use any C variable as a host variable as long as it is of a data type compatible

with ECPG.

When you invoke ECPGPlus in PROC mode (by including the - C PROC keywords), the

ECPG compiler honors the following C-preprocessor directives:

#include

#if expression

#ifdef symbolName

#ifndef symbolName

#else

#elif expression

#endif

#define symbolName expansion

#define symbolName ([macro arguments]) expansion

#undef symbolName

#defined(symbolName)

EDB Postgres Advanced Server ECPGPlus Guide

Copyright © 2012 - 2018 EnterpriseDB Corporation. All rights reserved.

65

Pre-processor directives are used to effect or direct the code that is received by the

compiler. For example, using the following code sample:

#if HAVE_LONG_LONG == 1

#define BALANCE_TYPE long long

#else

#define BALANCE_TYPE double

#endif

...

BALANCE_TYPE customerBalance;

If you invoke ECPGPlus with the following command-line arguments:

ecpg ïC PROC ïDHAVE_LONG_LONG=1

ECPGPlus will copy the entire fragment (without change) to the output file, but will only

send the following tokens to the ECPG parser:

long long customerBalance;

On the other hand, if you invoke ECPGPlus with the following command-line arguments:

ecpg ïC PROC ïDHAVE_LONG_LONG=0

The ECPG parser will receive the following tokens:

double customerBalance;

If your code uses preprocessor directives to filter the code that is sent to the compiler, the

complete code is retained in the original code, while the ECPG parser sees only the

processed token stream.

You can also use compatible syntax when executing the following preprocessor

directives with an EXEC directive:

EXEC ORACLE DEFINE

EXEC ORACLE UNDEF

EXEC ORACLE INCLUDE

EXEC ORACLE IFDEF

EXEC ORACLE IFNDEF

EXEC ORACLE ELIF

EXEC ORACLE ELSE

EXEC ORACLE ENDIF

EXEC ORACLE OPTION

For example, if your code includes the following:

EXEC ORACLE IFDEF HAVE_LONG_LONG;

#define BALANCE_TYPE long long

EDB Postgres Advanced Server ECPGPlus Guide

Copyright © 2012 - 2018 EnterpriseDB Corporation. All rights reserved.

66

EXEC ORACLE ENDIF;

BALANCE_TYPE customerBalance;

If you invoke ECPGPlus with the following command-line arguments:

ecpg ïC PROC DEFINE=HAVE_LONG_LONG=1

ECPGPlus will send the following tokens to the output file, and the ECPG parser:

long long customerBalance;

Please Note: the EXEC ORACLE pre-processor directives only work if you specify - C

PROC on the ECPG command line.

Using the SELECT_ERROR Precompiler Option

When using ECPGPlus in compatible mode, you can use the SELECT_ERROR

precompiler option to instruct your program how to handle result sets that contain more

rows than the host variable can accommodate. The syntax is:

SELECT_ERROR={YES|NO}

The default value is YES; a SELECT statement will return an error message if the result

set exceeds the capacity of the host variable. Specify NO to instruct the program to

suppress error messages when a SELECT statement returns more rows than a host variable

can accommodate.

Use SELECT_ERROR with the EXEC ORACLE OPTION directive.

Compiling in non-PROC mode

If you do not include the - C PROC command-line option:

¶ C preprocessor directives are copied to the output file without change.

¶ You must declare the type and name of each C variable that you intend to use as a

host variable within an EXEC SQL BEGIN/END DECLARE section.

When invoked in non-PROC mode, ECPG implements the behavior described in the

PostgreSQL Core documentation.

EDB Postgres Advanced Server ECPGPlus Guide

Copyright © 2012 - 2018 EnterpriseDB Corporation. All rights reserved.

67

7.2 Supported C Data Types

An ECPGPlus application must deal with two sets of data types: SQL data types (such as

SMALLINT, DOUBLE PRECISION and CHARACTER VARYING) and C data types (like

short , double and varchar[n]). When an application fetches data from the server,

ECPGPlus will map each SQL data type to the type of the C variable into which the data

is returned.

In general, ECPGPlus can convert most SQL server types into similar C types, but not all

combinations are valid. For example, ECPGPlus will try to convert a SQL character

value into a C integer value, but the conversion may fail (at execution time) if the SQL

character value contains non-numeric characters. The reverse is also true; when an

application sends a value to the server, ECPGPlus will try to convert the C data type into

the required SQL type. Again, the conversion may fail (at execution time) if the C value

cannot be converted into the required SQL type.

ECPGPlus can convert any SQL type into C character values (char[n] or

varchar[n]). Although it is safe to convert any SQL type to/from char[n] or

varchar[n] , it is often convenient to use more natural C types such as int , double , or

float .

The supported C data types are:

¶ short

¶ int

¶ unsigned int

¶ long long int

¶ float

¶ double

¶ char[n+1]

¶ varchar[n+1]

¶ bool

¶ and any equivalent created by a typedef

In addition to the numeric and character types supported by C, the pgtypeslib run-time

library offers custom data types (and functions to operate on those types) for dealing with

date/time and exact numeric values:

¶ timestamp

¶ interval

¶ date

¶ decimal

¶ numeric

To use a data type supplied by pgtypeslib , you must #include the proper header file.

EDB Postgres Advanced Server ECPGPlus Guide

Copyright © 2012 - 2018 EnterpriseDB Corporation. All rights reserved.

68

7.3 Type Codes

The following table contains the type codes for external data types. An external data type

is used to indicate the type of a C host variable. When an application binds a value to a

parameter or binds a buffer to a SELECT-list item, the type code in the corresponding

SQLDA descriptor (descriptor - >T[column]) should be set to one of the following

values:

Type Code Host Variable Type (C Data Type)
1, 2, 8, 11, 12, 15, 23, 24, 91,

94, 95, 96, 97

char[]

3 int

4, 7, 21 float

5, 6 null - terminated string

(char[length+1])

9 varchar

22 double

68 unsigned int

The following table contains the type codes for internal data types. An internal type code

is used to indicate the type of a value as it resides in the database. The DESCRIBE

SELECT LIST statement populates the data type array (descriptor - >T[column])

using the following values.

Internal Type Code Server Type
1 VARCHAR2

2 NUMBER

8 LONG

11 ROWID

12 DATE

23 RAW

24 LONG RAW

96 CHAR

100 BINARY FLOAT

101 BINARY DOUBLE

104 UROWID

187 TIMESTAMP

188 TIMESTAMP W/TIMEZONE

189 INTERVAL YEAR TO MONTH

190 INTERVAL DAY TO SECOND

232 TIMESTAMP LOCAL_TZ

EDB Postgres Advanced Server ECPGPlus Guide

Copyright © 2012 - 2018 EnterpriseDB Corporation. All rights reserved.

69

7.4 The SQLDA Structure

Oracle Dynamic SQL method 4 uses the SQLDA data structure to hold the data and

metadata for a dynamic SQL statement. A SQLDA structure can describe a set of input

parameters corresponding to the parameter markers found in the text of a dynamic

statement or the result set of a dynamic statement. The layout of the SQLDA structure is:

struct SQLDA

{

 int N; /* Number of entri es */

 char **V; /* Variables */

 int *L; /* Variable lengths */

 short *T; /* Variable types */

 short **I; /* Indicators */

 int F; /* Count of variables discovered by DESCRIBE */

 char **S; /* Variable names */

 short *M; /* Variable name maximum lengths */

 short *C; /* Variable name actual lengths */

 char **X; /* Indicator names */

 short *Y; /* Indicator name maximum lengths */

 short *Z; /* Indicator name actual lengths */

};

Parameters

N - maximum number of entries

The N structure member contains the maximum number of entries that the SQLDA may

describe. This member is populated by the sqlald() function when you allocate the

SQLDA structure. Before using a descriptor in an OPEN or FETCH statement, you must

set N to the actual number of values described.

V - data values

The V structure member is a pointer to an array of data values.

For a SELECT-list descriptor, V points to an array of values returned by a FETCH

statement (each member in the array corresponds to a column in the result set).

For a bind descriptor, V points to an array of parameter values (you must populate

the values in this array before opening a cursor that uses the descriptor).

Your application must allocate the space required to hold each value. See the

displayResultSet() function for an example of how to allocate space for SELECT-

list values (Section 5.4, Executing a Query with an Unknown Number of Variables).

EDB Postgres Advanced Server ECPGPlus Guide

Copyright © 2012 - 2018 EnterpriseDB Corporation. All rights reserved.

70

L - length of each data value

The L structure member is a pointer to an array of lengths. Each member of this array

must indicate the amount of memory available in the corresponding member of the V

array. For example, if V[5] points to a buffer large enough to hold a 20-byte NULL-

terminated string, L[5] should contain the value 21 (20 bytes for the characters in the

string plus 1 byte for the NULL-terminator). Your application must set each member of

the L array.

T - data types

The T structure member points to an array of data types, one for each column (or

parameter) described by the descriptor.

For a bind descriptor, you must set each member of the T array to tell ECPGPlus

the data type of each parameter.

For a SELECT-list descriptor, the DESCRIBE SELECT LIST statement sets each

member of the T array to reflect the type of data found in the corresponding

column.

You may change any member of the T array before executing a FETCH statement to force

ECPGPlus to convert the corresponding value to a specific data type. For example, if the

DESCRIBE SELECT LIST statement indicates that a given column is of type DATE, you

may change the corresponding T member to request that the next FETCH statement return

that value in the form of a NULL-terminated string. Each member of the T array is a

numeric type code (see Section 7.3 for a list of type codes). The type codes returned by a

DESCRIBE SELECT LIST statement differ from those expected by a FETCH statement.

After executing a DESCRIBE SELECT LIST statement, each member of T encodes a

data type and a flag indicating whether the corresponding column is nullable. You can

use the sqlnul() function to extract the type code and nullable flag from a member of

the T array. The signature of the sqlnul() function is as follows:

 void sqlnul(unsigned short *valType,

 unsigned short *typeCode,

 int *isNull)

For example, to find the type code and nullable flag for the third column of a descriptor

named results, you would invoke sqlnul() as follows:

 sqlnul(&results - >T[2], &typeCode, &isNull);

I - indicator variables

The I structure member points to an array of indicator variables. This array is allocated

for you when your application calls the sqlald() function to allocate the descriptor.

EDB Postgres Advanced Server ECPGPlus Guide

Copyright © 2012 - 2018 EnterpriseDB Corporation. All rights reserved.

71

For a SELECT-list descriptor, each member of the I array indicates whether the

corresponding column contains a NULL (non-zero) or non-NULL (zero) value.

For a bind parameter, your application must set each member of the I array to

indicate whether the corresponding parameter value is NULL.

F - number of entries

The F structure member indicates how many values are described by the descriptor (the N

structure member indicates the maximum number of values which may be described by

the descriptor; F indicates the actual number of values). The value of the F member is set

by ECPGPlus when you execute a DESCRIBE statement. F may be positive, negative, or

zero.

For a SELECT-list descriptor, F will contain a positive value if the number of

columns in the result set is equal to or less than the maximum number of values

permitted by the descriptor (as determined by the N structure member); 0 if the

statement is not a SELECT statement, or a negative value if the query returns more

columns than allowed by the N structure member.

For a bind descriptor, F will contain a positive number if the number of

parameters found in the statement is less than or equal to the maximum number of

values permitted by the descriptor (as determined by the N structure member); 0 if

the statement contains no parameters markers, or a negative value if the statement

contains more parameter markers than allowed by the N structure member.

If F contains a positive number (after executing a DESCRIBE statement), that number

reflects the count of columns in the result set (for a SELECT-list descriptor) or the number

of parameter markers found in the statement (for a bind descriptor). If F contains a

negative value, you may compute the absolute value of F to discover how many values

(or parameter markers) are required. For example, if F contains - 24 after describing a

SELECT list, you know that the query returns 24 columns.

S - column/parameter names

The S structure member points to an array of NULL-terminated strings.

For a SELECT-list descriptor, the DESCRIBE SELECT LIST statement sets each

member of this array to the name of the corresponding column in the result set.

For a bind descriptor, the DESCRIBE BIND VARIABLES statement sets each

member of this array to the name of the corresponding bind variable.

EDB Postgres Advanced Server ECPGPlus Guide

Copyright © 2012 - 2018 EnterpriseDB Corporation. All rights reserved.

72

In this release, the name of each bind variable is determined by the left-to-right order of

the parameter marker within the query - for example, the name of the first parameter is

always ?0 , the name of the second parameter is always ?1 , and so on.

M - maximum column/parameter name length

The M structure member points to an array of lengths. Each member in this array

specifies the maximum length of the corresponding member of the S array (that is, M[0]

specifies the maximum length of the column/parameter name found at S[0]). This array

is populated by the sqlald() function.

C - actual column/parameter name length

The C structure member points to an array of lengths. Each member in this array

specifies the actual length of the corresponding member of the S array (that is, C[0]

specifies the actual length of the column/parameter name found at S[0]).

This array is populated by the DESCRIBE statement.

X - indicator variable names

The X structure member points to an array of NULL-terminated strings - each string

represents the name of a NULL indicator for the corresponding value.

This array is not used by ECPGPlus, but is provided for compatibility with Pro*C

applications.

Y - maximum indicator name length

The Y structure member points to an array of lengths. Each member in this array

specifies the maximum length of the corresponding member of the X array (that is, Y[0]

specifies the maximum length of the indicator name found at X[0]).

This array is not used by ECPGPlus, but is provided for compatibility with Pro*C

applications.

Z - actual indicator name length

The Z structure member points to an array of lengths. Each member in this array

specifies the actual length of the corresponding member of the X array (that is, Z[0]

specifies the actual length of the indicator name found at X[0]).

This array is not used by ECPGPlus, but is provided for compatibility with Pro*C

applications.

EDB Postgres Advanced Server ECPGPlus Guide

Copyright © 2012 - 2018 EnterpriseDB Corporation. All rights reserved.

73

7.5 ECPGPlus Statements

An embedded SQL statement allows your client application to interact with the server,

while an embedded directive is an instruction to the ECPGPlus compiler.

You can embed any Advanced Server SQL statement in a C program. Each statement

should begin with the keywords EXEC SQL, and must be terminated with a semi-colon

(;). Within the C program, a SQL statement takes the form:

EXEC SQL sql_command_body ;

Where sql_command_body represents a standard SQL statement. You can use a host

variable anywhere that the SQL statement expects a value expression. For more

information about substituting host variables for value expressions, please see Section

3.1.2, Declaring Host Variables.

ECPGPlus extends the PostgreSQL server-side syntax for some statements; for those

statements, syntax differences are outlined in the following reference sections. For a

complete reference to the supported syntax of other SQL commands, please refer to the

PostgreSQL Core Documentation available at:

https://www.postgresql.org/docs/11/static/sql-commands.html

https://www.postgresql.org/docs/11/static/sql-commands.html

EDB Postgres Advanced Server ECPGPlus Guide

Copyright © 2012 - 2018 EnterpriseDB Corporation. All rights reserved.

74

7.5.1 ALLOCATE DESCRIPTOR

Use the ALLOCATE DESCRIPTOR statement to allocate an SQL descriptor area:

EXEC SQL [FOR array_size] ALLOCATE DESCRIPTOR descriptor_name

 [WITH MAX variable_count];

Where:

array_size is a variable that specifies the number of array elements to allocate for the

descriptor. array_size may be an INTEGER value or a host variable.

descriptor_name is the host variable that contains the name of the descriptor, or the

name of the descriptor. This value may take the form of an identifier, a quoted string

literal, or of a host variable.

var iable _count specifies the maximum number of host variables in the descriptor.

The default value of variable_count is 100 .

The following code fragment allocates a descriptor named emp_query that may be

processed as an array (emp_array):

EXEC SQL FOR :emp_array ALLOCATE DESCRIPTOR emp_query;

EDB Postgres Advanced Server ECPGPlus Guide

Copyright © 2012 - 2018 EnterpriseDB Corporation. All rights reserved.

75

7.5.2 CALL

Use the CALL statement to invoke a procedure or function on the server. The CALL

statement works only on Advanced Server. The CALL statement comes in two forms; the

first form is used to call a function:

EXEC SQL CALL program _name '('[actual_arguments] ')'

 INTO [[: ret _variable][: ret _indicator]] ;

The second form is used to call a procedure:

EXEC SQL CALL program _name '('[actual_arguments] ')' ;

Where:

program _name is the name of the stored procedure or function that the CALL statement

invokes. The program name may be schema-qualified or package-qualified (or both); if

you do not specify the schema or package in which the program resides, ECPGPlus will

use the value of search_path to locate the program.

actual_arguments specifies a comma-separated list of arguments required by the

program. Note that each actual_argument corresponds to a formal argument expected

by the program. Each formal argument may be an IN parameter, an OUT parameter, or an

INOUT parameter.

: ret_ variable specifies a host variable that will receive the value returned if the

program is a function.

:ret_indicator specifies a host variable that will receive the indicator value returned,

if the program is a function.

For example, the following statement invokes the get_job_desc function with the

value contained in the :ename host variable, and captures the value returned by that

function in the :job host variable:

EXEC SQL CALL get_job_desc(:ename)

 INTO :job ;

EDB Postgres Advanced Server ECPGPlus Guide

Copyright © 2012 - 2018 EnterpriseDB Corporation. All rights reserved.

76

7.5.3 CLOSE

Use the CLOSE statement to close a cursor, and free any resources currently in use by the

cursor. A client application cannot fetch rows from a closed cursor. The syntax of the

CLOSE statement is:

EXEC SQL CLOSE [cursor _name] ;

Where:

cursor _name is the name of the cursor closed by the statement. The cursor name may

take the form of an identifier or of a host variable.

The OPEN statement initializes a cursor. Once initialized, a cursor result set will remain

unchanged unless the cursor is re-opened. You do not need to CLOSE a cursor before re-

opening it.

To manually close a cursor named emp_cursor , use the command:

EXEC SQL CLOSE emp_cursor;

A cursor is automatically closed when an application terminates.

EDB Postgres Advanced Server ECPGPlus Guide

Copyright © 2012 - 2018 EnterpriseDB Corporation. All rights reserved.

77

7.5.4 COMMIT

Use the COMMIT statement to complete the current transaction, making all changes

permanent and visible to other users. The syntax is:

EXEC SQL [AT data base _name] COMMIT [WORK]

 [COMMENT 'text'] [COMMENT 'text' RELEASE];

Where:

data base _name is the name of the database (or host variable that contains the name of

the database) in which the work resides. This value may take the form of an unquoted

string literal, or of a host variable.

For compatibility, ECPGPlus accepts the COMMENT clause without error but does not

store any text included with the COMMENT clause.

Include the RELEASE clause to close the current connection after performing the commit.

For example, the following command commits all work performed on the dept database

and closes the current connection:

EXEC SQL AT dept COMMIT RELEASE;

By default, statements are committed only when a client application performs a COMMIT

statement. Include the - t option when invoking ECPGPlus to specify that a client

application should invoke AUTOCOMMIT functionality. You can also control

AUTOCOMMIT functionality in a client application with the following statements:

EXEC SQL SET AUTOCOMMIT TO ON

and

EXEC SQL SET AUTOCOMMIT TO OFF

EDB Postgres Advanced Server ECPGPlus Guide

Copyright © 2012 - 2018 EnterpriseDB Corporation. All rights reserved.

78

7.5.5 CONNECT

Use the CONNECT statement to establish a connection to a database. The CONNECT

statement is available in two forms - one form is compatible with Oracle databases, the

other is not.

The first form is compatible with Oracle databases:

EXEC SQL CONNECT

 {{ : user _name IDENTIFIED BY : password } | : connection_id }

 [AT data base _name]

 [USING : data base_ string]

 [ALTER AUTHORIZATION :new_password] ;

Where:

user _name is a host variable that contains the role that the client application will use to

connect to the server.

password is a host variable that contains the password associated with that role.

connection _id is a host variable that contains a slash-delimited user name and

password used to connect to the database.

Include the AT clause to specify the database to which the connection is established.

data base _name is the name of the database to which the client is connecting; specify

the value in the form of a variable, or as a string literal.

Include the USING clause to specify a host variable that contains a null-terminated string

identifying the database to which the connection will be established.

The ALTER AUTHORIZATION clause is supported for syntax compatibility only;

ECPGPlus parses the ALTER AUTHORIZATION clause, and reports a warning.

Using the first form of the CONNECT statement, a client application might establish a

connection with a host variable named user that contains the identity of the connecting

role, and a host variable named password that contains the associated password using

the following command:

EXEC SQL CONNECT :user IDENTIFIED BY :password;

A client application could also use the first form of the CONNECT statement to establish a

connection using a single host variable named :connection_id . In the following

EDB Postgres Advanced Server ECPGPlus Guide

Copyright © 2012 - 2018 EnterpriseDB Corporation. All rights reserved.

79

example, connection_id contains the slash-delimited role name and associated

password for the user:

EXEC SQL CONNECT :connection_id;

The syntax of the second form of the CONNECT statement is:

EXEC SQL CONNECT TO database_name

[AS connection_name] [credentials];

Where credentials is one of the following:

USER user_name password

USER user _name IDENTIFIED BY password

USER user _name USING password

In the second form:

database _name is the name or identity of the database to which the client is

connecting. Specify database _name as a variable, or as a string literal, in one of the

following forms:

database _name[@hostname][: port]

tcp:postgresq l:// hostname [: port][/ database _name][options]

unix:postgresql:// hostname [: port][/ database _name][options]

Where:

hostname is the name or IP address of the server on which the database resides.

port is the port on which the server listens.

You can also specify a value of DEFAULT to establish a connection with the

default database, using the default role name. If you specify DEFAULT as the

target database, do not include a connection_name or credentials .

connection_name is the name of the connection to the database. connection_name

should take the form of an identifier (that is, not a string literal or a variable). You can

open multiple connections, by providing a unique connection_name for each

connection.

If you do not specify a name for a connection, ecpglib assigns a name of

DEFAULT to the connection. You can refer to the connection by name (DEFAULT)

in any EXEC SQL statement.

EDB Postgres Advanced Server ECPGPlus Guide

Copyright © 2012 - 2018 EnterpriseDB Corporation. All rights reserved.

80

CURRENT is the most recently opened or the connection mentioned in the most-

recent SET CONNECTION TO statement. If you do not refer to a connection by

name in an EXEC SQL statement, ECPG assumes the name of the connection to be

CURRENT.

user _name is the role used to establish the connection with the Advanced Server

database. The privileges of the specified role will be applied to all commands performed

through the connection.

password is the password associated with the specified user_name .

The following code fragment uses the second form of the CONNECT statement to establish

a connection to a database named edb , using the role alice and the password associated

with that role, 1safepwd :

 EXEC SQL CONNECT TO edb AS acctg_conn

 USER 'alice' IDENTIFIED BY '1safepwd';

The name of the connection is acctg_conn ; you can use the connection name when

changing the connection name using the SET CONNECTION statement.

EDB Postgres Advanced Server ECPGPlus Guide

Copyright © 2012 - 2018 EnterpriseDB Corporation. All rights reserved.

81

7.5.6 DEALLOCATE DESCRIPTOR

Use the DEALLOCATE DESCRIPTOR statement to free memory in use by an allocated

descriptor. The syntax of the statement is:

EXEC SQL DEALLOCATE DESCRIPTOR descriptor _name

Where:

descriptor _name is the name of the descriptor. This value may take the form of a

quoted string literal, or of a host variable.

The following example deallocates a descriptor named emp_query :

EXEC SQL DEALLOCATE DESCRIPTOR emp_query;

EDB Postgres Advanced Server ECPGPlus Guide

Copyright © 2012 - 2018 EnterpriseDB Corporation. All rights reserved.

82

7.5.7 DECLARE CURSOR

Use the DECLARE CURSOR statement to define a cursor. The syntax of the statement is:

EXEC SQL [AT database _name] DECLARE cursor _name CURSOR FOR

(select _statement | statement _name);

Where:

database_name is the name of the database on which the cursor operates. This value

may take the form of an identifier or of a host variable. If you do not specify a database

name, the default value of database_name is the default database.

cursor_name is the name of the cursor.

select_statement is the text of the SELECT statement that defines the cursor result

set; the SELECT statement cannot contain an INTO clause.

statement_name is the name of a SQL statement or block that defines the cursor result

set.

The following example declares a cursor named employees :

 EXEC SQL DECLARE employees CURSOR FOR

 SELECT

 empno, ename, sal, comm

 FROM

 emp;

The cursor generates a result set that contains the employee number, employee name,

salary and commission for each employee record that is stored in the emp table.

EDB Postgres Advanced Server ECPGPlus Guide

Copyright © 2012 - 2018 EnterpriseDB Corporation. All rights reserved.

83

7.5.8 DECLARE DATABASE

Use the DECLARE DATABASE statement to declare a database identifier for use in

subsequent SQL statements (for example, in a CONNECT statement). The syntax is:

EXEC SQL DECLARE database _name DATABASE;

Where:

database_name specifies the name of the database.

The following example demonstrates declaring an identifier for the ac ctg database:

EXEC SQL DECLARE acctg DATABASE;

After invoking the command declaring acctg as a database identifier, the acctg

database can be referenced by name when establishing a connection or in AT clauses.

This statement has no effect and is provided for Pro*C compatibility only.

EDB Postgres Advanced Server ECPGPlus Guide

Copyright © 2012 - 2018 EnterpriseDB Corporation. All rights reserved.

84

7.5.9 DECLARE STATEMENT

Use the DECLARE STATEMENT directive to declare an identifier for an SQL statement.

Advanced Server supports two versions of the DECLARE STATEMENT directive:

EXEC SQL [database _name] DECLARE statement _name STATEMENT;

and

EXEC SQL DECLARE STATEMENT statement _name;

Where:

statement_name specifies the identifier associated with the statement.

database_name specifies the name of the database. This value may take the form of an

identifier or of a host variable that contains the identifier.

A typical usage sequence that includes the DECLARE STATEMENT directive might be:

EXEC SQL DECLARE give_raise STATEMENT; // give_r aise

is now a statement handle (not prepared)

EXEC SQL PREPARE give_r aise FROM :stmtText; // give_r aise

is now associated with a statement

EXEC SQL EXECUTE give_r aise;

This statement has no effect and is provided for Pro*C compatibility only.

EDB Postgres Advanced Server ECPGPlus Guide

Copyright © 2012 - 2018 EnterpriseDB Corporation. All rights reserved.

85

7.5.10 DELETE

Use the DELETE statement to delete one or more rows from a table. The syntax for the

ECPGPlus DELETE statement is the same as the syntax for the SQL statement, but you

can use parameter markers and host variables any place that an expression is allowed.

The syntax is:

[FOR exec _count] DELETE FROM [ONLY] table [[AS] alias]

 [USING using _list]

 [WHERE condition | WHERE CURRENT OF cursor _name]

 [{ RETURNING|RETURN} * | output _expression [[AS] output _name]
[, ...] INTO host_variable_list]

Where:

Include the FOR exec_count clause to specify the number of times the statement will

execute; this clause is valid only if the VALUES clause references an array or a pointer to

an array.

table is the name (optionally schema-qualified) of an existing table. Include the ONLY

clause to limit processing to the specified table; if you do not include the ONLY clause,

any tables inheriting from the named table are also processed.

alias is a substitute name for the target table.

using_list is a list of table expressions, allowing columns from other tables to appear

in the WHERE condition.

Include the WHERE clause to specify which rows should be deleted. If you do not include

a WHERE clause in the statement, DELETE will delete all rows from the table, leaving the

table definition intact.

condition is an expression, host variable or parameter marker that returns a value of

type BOOLEAN. Those rows for which condition returns true will be deleted.

cursor_name is the name of the cursor to use in the WHERE CURRENT OF clause; the

row to be deleted will be the one most recently fetched from this cursor. The cursor must

be a non-grouping query on the DELETE statements target table. You cannot specify

WHERE CURRENT OF in a DELETE statement that includes a Boolean condition.

The RETURN/RETURNING clause specifies an output _expression or

host _variable _list that is returned by the DELETE command after each row is

deleted:

EDB Postgres Advanced Server ECPGPlus Guide

Copyright © 2012 - 2018 EnterpriseDB Corporation. All rights reserved.

86

output_expression is an expression to be computed and returned by the

DELETE command after each row is deleted. output_name is the name of the

returned column; include * to return all columns.

host_variable_list is a comma-separated list of host variables and optional

indicator variables. Each host variable receives a corresponding value from the

RETURNING clause.

For example, the following statement deletes all rows from the emp table where the sal

column contains a value greater than the value specified in the host variable, :max_sal :

DELETE FROM emp WHERE sal > :max_sal;

For more information about using the DELETE statement, please see the PostgreSQL Core

documentation available at:

https://www.postgresql.org/docs/11/static/sql-delete.html

https://www.postgresql.org/docs/11/static/sql-delete.html

EDB Postgres Advanced Server ECPGPlus Guide

Copyright © 2012 - 2018 EnterpriseDB Corporation. All rights reserved.

87

7.5.11 DESCRIBE

Use the DESCRIBE statement to find the number of input values required by a prepared

statement or the number of output values returned by a prepared statement. The

DESCRIBE statement is used to analyze a SQL statement whose shape is unknown at the

time you write your application.

The DESCRIBE statement populates an SQLDA descriptor; to populate a SQL descriptor,

use the ALLOCATE DESCRIPTOR and DESCRIBEéDESCRIPTOR statements.

EXEC SQL DESCRIBE BIND VARIABLES FOR statement _name INTO

descriptor;

or

EXEC SQL DESCRIBE SELECT LIST FOR statement_name INTO

descriptor;

Where:

statement_name is the identifier associated with a prepared SQL statement or PL/SQL

block.

descriptor is the name of C variable of type SQLDA*. You must allocate the space for

the descriptor by calling sqlal d() (and initialize the descriptor) before executing the

DESCRIBE statement.

When you execute the first form of the DESCRIBE statement, ECPG populates the given

descriptor with a description of each input variable required by the statement. For

example, given two descriptors:

SQLDA * query_values_in;

SQLDA * query_values_out;

You might prepare a query that returns information from the emp table:

EXEC SQL PREPARE get_emp FROM

 "SELECT ename, empno, sal FROM emp WHERE empno = ?";

The command requires one input variable (for the parameter marker (?)).

EXEC SQL DESCRIBE BIND VARIABLES

 FOR get_emp INTO query_values_in;

EDB Postgres Advanced Server ECPGPlus Guide

Copyright © 2012 - 2018 EnterpriseDB Corporation. All rights reserved.

88

After describing the bind variables for this statement, you can examine the descriptor to

find the number of variables required and the type of each variable.

When you execute the second form, ECPG populates the given descriptor with a

description of each value returned by the statement. For example, the following

statement returns three values:

EXEC SQL DESCRIBE SELECT LIST

 FOR get_emp INTO query_values_out;

After describing the select list for this statement, you can examine the descriptor to find

the number of returned values and the name and type of each value.

Before executing the statement, you must bind a variable for each input value and a

variable for each output value. The variables that you bind for the input values specify

the actual values used by the statement. The variables that you bind for the output values

tell ECPGPlus where to put the values when you execute the statement.

This is alternate Pro*C compatible syntax for the DESCRIBE DESCRIPTOR statement.

EDB Postgres Advanced Server ECPGPlus Guide

Copyright © 2012 - 2018 EnterpriseDB Corporation. All rights reserved.

89

7.5.12 DESCRIBE DESCRIPTOR

Use the DESCRIBE DESCRIPTOR statement to retrieve information about a SQL

statement, and store that information in a SQL descriptor. Before using DESCRIBE

DESCRIPTOR, you must allocate the descriptor with the ALLOCATE DESCRIPTOR

statement. The syntax is:

EXEC SQL DESCRIBE [INPUT | OUTPUT] statement _identifier

 USING [SQL] DESCRIPTOR descriptor _name;

Where:

statement_name is the name of a prepared SQL statement.

descriptor_name is the name of the descriptor. descriptor_name can be a quoted

string value or a host variable that contains the name of the descriptor.

If you include the INPUT clause, ECPGPlus populates the given descriptor with a

description of each input variable required by the statement.

For example, given two descriptors:

EXEC SQL ALLOCATE DESCRIPTOR query_values_ in;

EXEC SQL ALLOCATE DESCRIPTOR query_values_out;

You might prepare a query that returns information from the emp table:

EXEC SQL PREPARE get_emp FROM

 "SELECT ename, empno, sal FROM emp WHERE empno = ?";

The command requires one input variable (for the parameter marker (?)).

EXEC SQL DESCRIBE INPUT get_emp USING

' query_values_in ' ;

After describing the bind variables for this statement, you can examine the

descriptor to find the number of variables required and the type of each variable.

If you do not specify the INPUT clause, DESCRIBE DESCRIPTOR populates the

specified descriptor with the values returned by the statement.

If you include the OUTPUT clause, ECPGPlus populates the given descriptor with a

description of each value returned by the statement.

EDB Postgres Advanced Server ECPGPlus Guide

Copyright © 2012 - 2018 EnterpriseDB Corporation. All rights reserved.

90

For example, the following statement returns three values:

EXEC SQL DESCRIBE OUTPUT FOR get_emp USING

' query_values_out ' ;

After describing the select list for this statement, you can examine the descriptor

to find the number of returned values and the name and type of each value.

EDB Postgres Advanced Server ECPGPlus Guide

Copyright © 2012 - 2018 EnterpriseDB Corporation. All rights reserved.

91

7.5.13 DISCONNECT

Use the DISCONNECT statement to close the connection to the server. The syntax is:

EXEC SQL DISCONNECT [connection _name] [CURRENT][DEFAULT][ALL];

Where:

connection_name is the connection name specified in the CONNECT statement used to

establish the connection. If you do not specify a connection name, the current connection

is closed.

Include the CURRENT keyword to specify that ECPGPlus should close the most-recently

used connection.

Include the DEFAULT keyword to specify that ECPGPlus should close the connection

named DEFAULT. If you do not specify a name when opening a connection, ECPGPlus

assigns the name, DEFAULT, to the connection.

Include the ALL keyword to instruct ECPGPlus to close all active connections.

The following example creates a connection (named hr_connection) that connects to

the hr database, and then disconnects from the connection:

/* client.pgc*/

int main()

{

 EXEC SQL CONNECT TO hr AS connection_name;

 EXEC SQL DISCONNECT connection_n ame;

 return(0);

}

EDB Postgres Advanced Server ECPGPlus Guide

Copyright © 2012 - 2018 EnterpriseDB Corporation. All rights reserved.

92

7.5.14 EXECUTE

Use the EXECUTE statement to execute a statement previously prepared using an EXEC

SQL PREPARE statement. The syntax is:

EXEC SQL [FOR array _size] EXECUTE statement _name

 [USING {DESCRIPTOR SQLDA_descriptor

 | : host_variable [[INDICATOR] : indicator_variable] }];

Where:

array _size is an integer value or a host variable that contains an integer value that

specifies the number of rows to be processed. If you omit the FOR clause, the statement

is executed once for each member of the array.

statement_name specifies the name assigned to the statement when the statement was

created (using the EXEC SQL PREPARE statement).

Include the USING clause to supply values for parameters within the prepared statement:

Include the DESCRIPTOR SQLDA_descriptor clause to provide an SQLDA

descriptor value for a parameter.

Use a host_variable (and an optional indicator_variable) to provide a

user-specified value for a parameter.

The following example creates a prepared statement that inserts a record into the emp

table:

EXEC SQL PREPARE add_emp (numeric, text, text, numeric) AS

 INSERT INTO emp VALUES($1, $2, $3, $4);

Each time you invoke the prepared statement, provide fresh parameter values for the

statement:

EXEC SQL EXECUTE add_emp USING 8000, 'DAWSON', 'CLERK',

7788;

EXEC SQL EXECUTE add_emp USING 8001, 'EDWARDS', 'ANALYST',

7698;

EDB Postgres Advanced Server ECPGPlus Guide

Copyright © 2012 - 2018 EnterpriseDB Corporation. All rights reserved.

93

7.5.15 EXECUTE DESCRIPTOR

Use the EXECUTE statement to execute a statement previously prepared by an EXEC SQL

PREPARE statement, using an SQL descriptor. The syntax is:

EXEC SQL [FOR array_size] EXECUTE statement_identifier

 [USING [SQL] DESCRIPTOR descriptor_name]

 [INTO [SQL] DESCRIPTOR descriptor _name];

Where:

array _size is an integer value or a host variable that contains an integer value that

specifies the number of rows to be processed. If you omit the FOR clause, the statement

is executed once for each member of the array.

statement_identifier specifies the identifier assigned to the statement with the

EXEC SQL PREPARE statement.

Include the USING clause to specify values for any input parameters required by the

prepared statement.

Include the INTO clause to specify a descriptor into which the EXECUTE statement will

write the results returned by the prepared statement.

descriptor_name specifies the name of a descriptor (as a single-quoted string literal),

or a host variable that contains the name of a descriptor.

The following example executes the prepared statement, give_raise , using the values

contained in the descriptor stmtText :

EXEC SQL PREPARE give_r aise FROM :stmtText;

EXEC SQL EXECUTE give_raise USING DESCRIPTOR :stmtText;

EDB Postgres Advanced Server ECPGPlus Guide

Copyright © 2012 - 2018 EnterpriseDB Corporation. All rights reserved.

94

7.5.16 EXECUTE...END EXEC

Use the EXECUTEéEND- EXEC statement to embed an anonymous block into a client

application. The syntax is:

EXEC SQL [AT database_name] EXECUTE anonymous_block END- EXEC;

Where:

database_name is the database identifier or a host variable that contains the database

identifier. If you omit the AT clause, the statement will be executed on the current default

database.

anonymous_block is an inline sequence of PL/pgSQL or SPL statements and

declarations. You may include host variables and optional indicator variables within the

block; each such variable is treated as an IN/OUT value.

The following example executes an anonymous block:

EXEC SQL EXECUTEΟ

 BEGIN

 IF (current_user = :admin_user_name) THEN

 DBMS_OUTPUT.PUT_LINE('You are an administrator');

 END IF; Ο

END- EXEC;

Please Note: the EXECUTE…END EXEC statement is supported only by Advanced Server.

EDB Postgres Advanced Server ECPGPlus Guide

Copyright © 2012 - 2018 EnterpriseDB Corporation. All rights reserved.

95

7.5.17 EXECUTE IMMEDIATE

Use the EXECUTE IMMEDIATE statement to execute a string that contains a SQL

command. The syntax is:

EXEC SQL [AT database _name] EXECUTE IMMEDIATE command_text ;

Where:

database_name is the database identifier or a host variable that contains the database

identifier. If you omit the AT clause, the statement will be executed on the current default

database.

command_text is the command executed by the EXECUTE IMMEDIATE statement.

This dynamic SQL statement is useful when you don't know the text of an SQL statement

(ie., when writing a client application). For example, a client application may prompt a

(trusted) user for a statement to execute. After the user provides the text of the statement

as a string value, the statement is then executed with an EXECUTE IMMEDIATE command.

The statement text may not contain references to host variables. If the statement may

contain parameter markers or returns one or more values, you must use the PREPARE and

DESCRIBE statements.

The following example executes the command contained in the :command_text host

variable:

EXEC SQL EXECUTE IMMEDIATE :command_text;

EDB Postgres Advanced Server ECPGPlus Guide

Copyright © 2012 - 2018 EnterpriseDB Corporation. All rights reserved.

96

7.5.18 FETCH

Use the FETCH statement to return rows from a cursor into an SQLDA descriptor or a

target list of host variables. Before using a FETCH statement to retrieve information from

a cursor, you must prepare the cursor using DECLARE and OPEN statements. The

statement syntax is:

EXEC SQL [FOR array_size] FETCH cursor

 { U SING DESCRIPTOR SQLDA_descriptor }|{ INTO target_list };

Where:

array _size is an integer value or a host variable that contains an integer value

specifying the number of rows to fetch. If you omit the FOR clause, the statement is

executed once for each member of the array.

cursor is the name of the cursor from which rows are being fetched, or a host variable

that contains the name of the cursor.

If you include a USING clause, the FETCH statement will populate the specified SQLDA

descriptor with the values returned by the server.

If you include an INTO clause, the FETCH statement will populate the host variables (and

optional indicator variables) specified in the target_list .

The following code fragment declares a cursor named employees that retrieves the

employee number, name and salary from the emp table:

 EXEC SQL DECLARE employees CURSOR FOR

 SELECT empno, ename, esal FROM emp ;

 EXEC SQL OPEN emp_cursor;

 EXEC SQL FETCH emp_cursor INTO :emp_no , : emp_name, :emp_sal;

EDB Postgres Advanced Server ECPGPlus Guide

Copyright © 2012 - 2018 EnterpriseDB Corporation. All rights reserved.

97

7.5.19 FETCH DESCRIPTOR

Use the FETCH DESCRIPTOR statement to retrieve rows from a cursor into an SQL

descriptor. The syntax is:

EXEC SQL [FOR array _size] FETCH cursor

 INTO [SQL] DESCRIPTOR descriptor _name;

Where:

array _size is an integer value or a host variable that contains an integer value

specifying the number of rows to fetch. If you omit the FOR clause, the statement is

executed once for each member of the array.

cursor is the name of the cursor from which rows are fetched, or a host variable that

contains the name of the cursor. The client must DECLARE and OPEN the cursor before

calling the FETCH DESCRIPTOR statement.

Include the INTO clause to specify an SQL descriptor into which the EXECUTE statement

will write the results returned by the prepared statement. descriptor_name specifies

the name of a descriptor (as a single-quoted string literal), or a host variable that contains

the name of a descriptor. Prior to use, the descriptor must be allocated using an

ALLOCATE DESCRIPTOR statement.

The following example allocates a descriptor named row_desc that will hold the

description and the values of a specific row in the result set. It then declares and opens a

cursor for a prepared statement (my_cursor), before looping through the rows in result

set, using a FETCH to retrieve the next row from the cursor into the descriptor:

 EXEC SQL ALLOCATE DESCRIPTOR ' row_desc ' ;

 EXEC SQL DECLARE my_cursor CURSOR FOR query;

 EXEC SQL OPEN my_cursor;

 for(row = 0; ; row++)

 {

 EXEC SQL BEGIN DECLARE SECTION;

 int col;

 EXEC SQL END DECLARE SECTION;

 EXEC SQL FETCH my_cursor INTO SQL DESCRIPTOR ' row_desc ' ;

EDB Postgres Advanced Server ECPGPlus Guide

Copyright © 2012 - 2018 EnterpriseDB Corporation. All rights reserved.

98

7.5.20 GET DESCRIPTOR

Use the GET DESCRIPTOR statement to retrieve information from a descriptor. The GET

DESCRIPTOR statement comes in two forms. The first form returns the number of values

(or columns) in the descriptor.

EXEC SQL GET DESCRIPTOR descriptor _name

 : host _var iable = COUNT;

The second form returns information about a specific value (specified by the VALUE

column _number clause).

EXEC SQL [FOR array _size] GE T DESCRIPTOR descriptor _name

 VALUE column _number {: host _var iable = descriptor_i tem { , é}} ;

Where:

array _size is an integer value or a host variable that contains an integer value that

specifies the number of rows to be processed. If you specify an array_size , the

host_variable must be an array of that size; for example, if array_size is 10 ,

:host_variable must be a 10-member array of host_variables . If you omit the

FOR clause, the statement is executed once for each member of the array.

descriptor_name specifies the name of a descriptor (as a single-quoted string literal),

or a host variable that contains the name of a descriptor.

Include the VALUE clause to specify the information retrieved from the descriptor.

column_number identifies the position of the variable within the descriptor.

host_variable specifies the name of the host variable that will receive the

value of the item.

descriptor_item specifies the type of the retrieved descriptor item.

ECPGPlus implements the following descriptor_item types:

¶ TYPE

¶ LENGTH

¶ OCTET_LENGTH

¶ RETURNED_LENGTH

¶ RETURNED_OCTET_LENGTH

¶ PRECISION

¶ SCALE

EDB Postgres Advanced Server ECPGPlus Guide

Copyright © 2012 - 2018 EnterpriseDB Corporation. All rights reserved.

99

¶ NULLABLE

¶ INDICATOR

¶ DATA

¶ NAME

The following code fragment demonstrates using a GET DESCRIPTOR statement to obtain

the number of columns entered in a user-provided string:

 EXEC SQL ALLOCATE DESCRIPTOR parse_desc;

 EXEC SQL PREPARE query FROM :stmt;

 EXEC SQL DESCRIBE query INTO SQL DESCRIPTOR parse_desc;

 EXEC SQL GET DESCRIPTOR parse_desc :col_count = COUNT ;

The example allocates an SQL descriptor (named parse_desc), before using a

PREPARE statement to syntax check the string provided by the user (:stmt). A

DESCRIBE statement moves the user-provided string into the descriptor, parse_desc .

The call to EXEC SQL GET DESCRIPTOR interrogates the descriptor to discover the

number of columns (:col_count) in the result set.

EDB Postgres Advanced Server ECPGPlus Guide

Copyright © 2012 - 2018 EnterpriseDB Corporation. All rights reserved.

100

7.5.21 INSERT

Use the INSERT statement to add one or more rows to a table. The syntax for the

ECPGPlus INSERT statement is the same as the syntax for the SQL statement, but you

can use parameter markers and host variables any place that a value is allowed. The

syntax is:

[FOR exec _count] INSERT INTO table [(column [, ...])]

 {DEFAULT VALUES |
 VALUES ({ expression | DEFAULT} [, ...]) [, ...] | query }

 [RETURNING * | output _expression [[AS] output _name] [, ...]]

Where:

Include the FOR exec_count clause to specify the number of times the statement will

execute; this clause is valid only if the VALUES clause references an array or a pointer to

an array.

table specifies the (optionally schema-qualified) name of an existing table.

column is the name of a column in the table. The column name may be qualified with a

subfield name or array subscript. Specify the DEFAULT VALUES clause to use default

values for all columns.

expression is the expression, value, host variable or parameter marker that will be

assigned to the corresponding column. Specify DEFAULT to fill the corresponding

column with its default value.

query specifies a SELECT statement that supplies the row(s) to be inserted.

output_expression is an expression that will be computed and returned by the

INSERT command after each row is inserted. The expression can refer to any column

within the table. Specify * to return all columns of the inserted row(s).

output_name specifies a name to use for a returned column.

The following example adds a row to the employees table:

INSERT INTO emp (empno, ename, job, hiredate)

 VALUES ('8400 ', :ename , 'CLERK' , '2011 - 10- 31');

Note that the INSERT statement uses a host variable (:ename) to specify the value of the

ename column.

EDB Postgres Advanced Server ECPGPlus Guide

Copyright © 2012 - 2018 EnterpriseDB Corporation. All rights reserved.

101

For more information about using the INSERT statement, please see the PostgreSQL Core

documentation available at:

https://www.postgresql.org/docs/11/static/sql-insert.html

https://www.postgresql.org/docs/11/static/sql-insert.html

EDB Postgres Advanced Server ECPGPlus Guide

Copyright © 2012 - 2018 EnterpriseDB Corporation. All rights reserved.

102

7.5.22 OPEN

Use the OPEN statement to open a cursor. The syntax is:

EXEC SQL [FOR array _size] OPEN cursor [USING parameters] ;

Where parameters is one of the following:

 DESCRIPTOR SQLDA_descriptor

or
 host _variable [[INDICATOR] indicator _variable , é]

Where:

arr ay _size is an integer value or a host variable that contains an integer value

specifying the number of rows to fetch. If you omit the FOR clause, the statement is

executed once for each member of the array.

cursor is the name of the cursor being opened.

parameters is either DESCRIPTOR SQLDA_descriptor or a comma-separated list of

host variables (and optional indicator variables) that initialize the cursor. If specifying an

SQLDA_descriptor , the descriptor must be initialized with a DESCRIBE statement.

The OPEN statement initializes a cursor using the values provided in parameters . Once

initialized, the cursor result set will remain unchanged unless the cursor is closed and re-

opened. A cursor is automatically closed when an application terminates.

The following example declares a cursor named employees , that queries the emp table,

returning the employee number, name, salary and commission of an employee whose

name matches a user-supplied value (stored in the host variable, :emp_name).

 EXEC SQL DECLARE employees CURSOR FOR

 SELECT

 empno, ename, sal, comm

 FROM

 emp

 WHERE ename = :emp_name;

 EXEC SQL OPEN employees;

...

After declaring the cursor, the example uses an OPEN statement to make the contents of

the cursor available to a client application.

EDB Postgres Advanced Server ECPGPlus Guide

Copyright © 2012 - 2018 EnterpriseDB Corporation. All rights reserved.

103

7.5.23 OPEN DESCRIPTOR

Use the OPEN DESCRIPTOR statement to open a cursor with a SQL descriptor. The

syntax is:

EXEC SQL [FOR array _size] OPEN cursor

 [USING [SQL] DESCRIPTOR descriptor _name]

 [INTO [SQL] DESCRIPTOR descriptor _name];

Where:

array _size is an integer value or a host variable that contains an integer value

specifying the number of rows to fetch. If you omit the FOR clause, the statement is

executed once for each member of the array.

cursor is the name of the cursor being opened.

descriptor_name specifies the name of an SQL descriptor (in the form of a single-

quoted string literal) or a host variable that contains the name of an SQL descriptor that

contains the query that initializes the cursor.

For example, the following statement opens a cursor (named emp_cursor), using the

host variable, :employees :

 EXEC SQL OPEN emp_cursor USING DESCRIPTOR :employees ;

EDB Postgres Advanced Server ECPGPlus Guide

Copyright © 2012 - 2018 EnterpriseDB Corporation. All rights reserved.

104

7.5.24 PREPARE

Prepared statements are useful when a client application must perform a task multiple

times; the statement is parsed, written and planned only once, rather than each time the

statement is executed, saving repetitive processing time.

Use the PREPARE statement to prepare an SQL statement or PL/pgSQL block for

execution. The statement is available in two forms; the first form is:

EXEC SQL [AT database _name] PREPARE statement _name

 FROM sql _statement ;

The second form is:

EXEC SQL [AT database _name] PREPARE statement _name

 AS sql _statement ;

Where:

database_name is the database identifier or a host variable that contains the database

identifier against which the statement will execute. If you omit the AT clause, the

statement will execute against the current default database.

statement_name is the identifier associated with a prepared SQL statement or PL/SQL

block.

sql _statement may take the form of a SELECT statement, a single-quoted string literal

or host variable that contains the text of an SQL statement.

To include variables within a prepared statement, substitute placeholders ($1 , $2 , $3 ,

etc.) for statement values that might change when you PREPARE the statement. When

you EXECUTE the statement, provide a value for each parameter. The values must be

provided in the order in which they will replace placeholders.

The following example creates a prepared statement (named add_emp) that inserts a

record into the emp table:

EXEC SQL PREPARE add_emp (int, text, text , numeric) AS

 INSERT INTO emp VALUES($1, $2, $3, $4);

Each time you invoke the statement, provide fresh parameter values for the statement:

EXEC SQL EXECUTE add_emp(8003 , ' Davis', 'CLERK ', 2000 .00);

EXEC SQL EXECUTE add_emp(8004, 'Myer ', ' CLERK', 2 000.00);

EDB Postgres Advanced Server ECPGPlus Guide

Copyright © 2012 - 2018 EnterpriseDB Corporation. All rights reserved.

105

Please note: A client application must issue a PREPARE statement within each session in

which a statement will be executed; prepared statements persist only for the duration of

the current session.

EDB Postgres Advanced Server ECPGPlus Guide

Copyright © 2012 - 2018 EnterpriseDB Corporation. All rights reserved.

106

7.5.25 ROLLBACK

Use the ROLLBACK statement to abort the current transaction, and discard any updates

made by the transaction. The syntax is:

EXEC SQL [AT database _name] ROLLBACK [WORK]

 [{ TO [SAVEPOINT] savepoint } | RELEASE]

Where:

database_name is the database identifier or a host variable that contains the database

identifier against which the statement will execute. If you omit the AT clause, the

statement will execute against the current default database.

Include the TO clause to abort any commands that were executed after the specified

savepoint ; use the SAVEPOINT statement to define the savepoint . If you omit the

TO clause, the ROLLBACK statement will abort the transaction, discarding all updates.

Include the RELEASE clause to cause the application to execute an EXEC SQL COMMIT

RELEASE and close the connection.

Use the following statement to rollback a complete transaction:

EXEC SQL ROLLBACK;

Invoking this statement will abort the transaction, undoing all changes, erasing any

savepoints, and releasing all transaction locks. If you include a savepoint

(my_savepoint in the following example):

EXEC SQL ROLLBACK TO SAVEPOINT my_savepoint;

Only the portion of the transaction that occurred after the my_savepoint is rolled back;

my_savepoint is retained, but any savepoints created after my_savepoint will be

erased.

Rolling back to a specified savepoint releases all locks acquired after the savepoint.

EDB Postgres Advanced Server ECPGPlus Guide

Copyright © 2012 - 2018 EnterpriseDB Corporation. All rights reserved.

107

7.5.26 SAVEPOINT

Use the SAVEPOINT statement to define a savepoint; a savepoint is a marker within a

transaction. You can use a ROLLBACK statement to abort the current transaction,

returning the state of the server to its condition prior to the specified savepoint. The

syntax of a SAVEPOINT statement is:

EXEC SQL [AT database _name] SAVEPOINT save point _name

Where:

database_name is the database identifier or a host variable that contains the database

identifier against which the savepoint resides. If you omit the AT clause, the statement

will execute against the current default database.

savepoint _name is the name of the savepoint. If you re-use a savepoint_name , the

original savepoint is discarded.

Savepoints can only be established within a transaction block. A transaction block may

contain multiple savepoints.

To create a savepoint named my_savepoint , include the statement:

EXEC SQL SAVEPOINT my_savepoint ;

EDB Postgres Advanced Server ECPGPlus Guide

Copyright © 2012 - 2018 EnterpriseDB Corporation. All rights reserved.

108

7.5.27 SELECT

ECPGPlus extends support of the SQL SELECT statement by providing the INTO

host_variables clause. The clause allows you to select specified information from an

Advanced Server database into a host variable. The syntax for the SELECT statement is:

EXEC SQL [AT database_name]

SELECT

 [hint]

 [ALL | DISTINCT [ON(expression , ...)]]

 select_list INTO host _variables

 [FROM from_item [, from_item]...]

 [WHERE condition]

 [hierarchical _query _clause]

 [GROUP BY expression [, ...]]

 [HAVING condition]

 [{ UNION [ALL] | INTERSECT | MINUS } (subquery)]

 [ORDER BY expression [order_by_options]]

 [LIMIT { count | ALL }]

 [OFFSET start [ROW | ROWS]]

 [FETCH { FIRST | NEXT } [count] { ROW | ROWS } ONLY]

 [FOR { UPDATE | SHARE } [OF table_name [, ...]][NOWAIT][...]]

Where:

data base _name is the name of the database (or host variable that contains the name of

the database) in which the table resides. This value may take the form of an unquoted

string literal, or of a host variable.

host_variables is a list of host variables that will be populated by the SELECT

statement. If the SELECT statement returns more than a single row, host_variables

must be an array.

ECPGPlus provides support for the additional clauses of the SQL SELECT statement as

documented in the PostgreSQL Core documentation available at:

https://www.postgresql.org/docs/11/static/sql-select.html

To use the INTO host_variables clause, include the names of defined host variables

when specifying the SELECT statement. For example, the following SELECT statement

populates the :emp_name and :emp_sal host variables with a list of employee names

and salaries:

EXEC SQL SELECT ename, sal

 INTO :emp_name, :emp_sal

https://www.postgresql.org/docs/11/static/sql-select.html

EDB Postgres Advanced Server ECPGPlus Guide

Copyright © 2012 - 2018 EnterpriseDB Corporation. All rights reserved.

109

 FROM emp

 WHERE empno = 7988 ;

The enhanced SELECT statement also allows you to include parameter markers (question

marks) in any clause where a value would be permitted. For example, the following

query contains a parameter marker in the WHERE clause:

SELECT * FROM emp WHERE dept_no = ?;

This SELECT statement allows you to provide a value at run-time for the dept_no

parameter marker.

EDB Postgres Advanced Server ECPGPlus Guide

Copyright © 2012 - 2018 EnterpriseDB Corporation. All rights reserved.

110

7.5.28 SET CONNECTION

There are (at least) three reasons you may need more than one connection in a given

client application:

¶ You may want different privileges for different statements;

¶ You may need to interact with multiple databases within the same client.

¶ Multiple threads of execution (within a client application) cannot share a

connection concurrently.

The syntax for the SET CONNECTION statement is:

EXEC SQL SET CONNECTION connection _name;

Where:

connection_name is the name of the connection to the database.

To use the SET CONNECTION statement, you should open the connection to the database

using the second form of the CONNECT statement; include the AS clause to specify a

connection_name .

By default, the current thread uses the current connection; use the SET CONNECTION

statement to specify a default connection for the current thread to use. The default

connection is only used when you execute an EXEC SQL statement that does not explicitly

specify a connection name. For example, the following statement will use the default

connection because it does not include an AT connection _name clause. :

EXEC SQL DELETE FROM emp;

This statement will not use the default connection because it specifies a connection name

using the AT connection_name clause:

 EXEC SQL AT acctg _conn DELETE FROM emp;

For example, a client application that creates and maintains multiple connections (such

as):

 EXEC SQL CONNECT TO edb AS acctg_conn

 USER 'alice' IDENTIFIED BY 'acctpwd';

EDB Postgres Advanced Server ECPGPlus Guide

Copyright © 2012 - 2018 EnterpriseDB Corporation. All rights reserved.

111

and

 EXEC SQL CONNECT TO edb AS hr_conn

 USER 'bob' IDENTIFIED BY 'hrpwd';

Can change between the connections with the SET CONNECTION statement:

SET CONNECTION acctg_conn;

or

SET CONNECTION hr_conn;

The server will use the privileges associated with the connection when determining the

privileges available to the connecting client. When using the acctg_conn connection,

the client will have the privileges associated with the role, alice ; when connected using

hr_conn , the client will have the privileges associated with bob .

EDB Postgres Advanced Server ECPGPlus Guide

Copyright © 2012 - 2018 EnterpriseDB Corporation. All rights reserved.

112

7.5.29 SET DESCRIPTOR

Use the SET DESCRIPTOR statement to assign a value to a descriptor area using

information provided by the client application in the form of a host variable or an integer

value. The statement comes in two forms; the first form is:

EXEC SQL [FOR array _size] SET DESCRIPTOR descri ptor _name

 VALUE column_number descriptor _item = host _variable ;

The second form is:

EXEC SQL [FOR array _size] SET DESCRIPTOR descriptor _name

 COUNT = integer;

Where:

array _size is an integer value or a host variable that contains an integer value

specifying the number of rows to fetch. If you omit the FOR clause, the statement is

executed once for each member of the array.

descriptor_name specifies the name of a descriptor (as a single-quoted string literal),

or a host variable that contains the name of a descriptor.

Include the VALUE clause to describe the information stored in the descriptor.

column_number identifies the position of the variable within the descriptor.

descriptor_item specifies the type of the descriptor item.

host_variable specifies the name of the host variable that contains the value

of the item.

ECPGPlus implements the following descriptor_item types:

¶ TYPE

¶ LENGTH

¶ [REF] INDICATOR

¶ [REF] DATA

¶ [REF] RETURNED LENGTH

For example, a client application might prompt a user for a dynamically created query:

query_text = promptUser("Enter a query");

EDB Postgres Advanced Server ECPGPlus Guide

Copyright © 2012 - 2018 EnterpriseDB Corporation. All rights reserved.

113

To execute a dynamically created query, you must first prepare the query (parsing and

validating the syntax of the query), and then describe the input parameters found in the

query using the EXEC SQL DESCRIBE INPUT statement.

EXEC SQL ALLOCATE DESCRIPTOR query_params ;

EXEC SQL PREPARE emp_query FROM :query_text;

EXEC SQL DESCRIBE INPUT emp_query

 USING SQL DESCRIPTOR 'query_params';

After describing the query, the query_params descriptor contains information about

each parameter required by the query.

For this example, we'll assume that the user has entered:

SELECT ename FROM emp WHERE sal > ? AND job = ?; ,

In this case, the descriptor describes two parameters, one for sal > ? and one for job

= ? .

To discover the number of parameter markers (question marks) in the query (and

therefore, the number of values you must provide before executing the query), use:

EXEC SQL GET DESCRIPTOR é :host_variable = COUNT;

Then, you can use EXEC SQL GET DESCRIPTOR to retrieve the name of each parameter.

You can also use EXEC SQL GET DESCRIPTOR to retrieve the type of each parameter

(along with the number of parameters) from the descriptor, or you can supply each value

in the form of a character string and ECPG will convert that string into the required data

type.

The data type of the first parameter is numeric ; the type of the second parameter is

varchar . The name of the first parameter is sal ; the name of the second parameter is

job .

Next, loop through each parameter, prompting the user for a value, and store those values

in host variables. You can use GET DESCRIPTOR é COUNT to find the number of

parameters in the query.

EXEC SQL GET DESCRIPTOR 'query_params'

 :param_count = COUNT;

for(param_number = 1 ;

 param_number <= param_count;

 param_number++)

{

EDB Postgres Advanced Server ECPGPlus Guide

Copyright © 2012 - 2018 EnterpriseDB Corporation. All rights reserved.

114

Use GET DESCRIPTOR to copy the name of the parameter into the param_name host

variable:

 EXEC SQL GET DESCRIPTOR 'query_params'

 VALUE :param_number :param_name = NAME;

 reply = promp tUser(param_name);

 if (reply == NULL)

 reply_ind = 1; /* NULL */

else

 reply_ind = 0; /* NOT NULL */

To associate a value with each parameter, you use the EXEC SQL SET DESCRIPTOR

statement. For example:

 EXEC SQL SET DESCRIPTOR 'query_params'

 VALUE :param_number DATA = :reply;

 EXEC SQL SET DESCRIPTOR 'query_params'

 VALUE :param_number INDICATOR = :reply_ind;

}

Now, you can use the EXEC SQL EXECUTE DESCRIPTOR statement to execute the

prepared statement on the server.

EDB Postgres Advanced Server ECPGPlus Guide

Copyright © 2012 - 2018 EnterpriseDB Corporation. All rights reserved.

115

7.5.30 UPDATE

Use an UPDATE statement to modify the data stored in a table. The syntax is:

EXEC SQL [AT database_name][FOR exec _count]

 UPDATE [ONLY] table [[AS] alias]

 SET { column = { expression | DEFAULT } |

 (column [, ...]) = ({ expression |DEFAULT } [, ...]) } [, ...]

 [FROM from_list]

 [WHERE condition | WHERE CURRENT OF cursor_name]

 [RE TURNING * | output_expression [[AS] output_name] [, ...]]

Where:

data base _name is the name of the database (or host variable that contains the name of

the database) in which the table resides. This value may take the form of an unquoted

string literal, or of a host variable.

Include the FOR exec_count clause to specify the number of times the statement will

execute; this clause is valid only if the SET or WHERE clause contains an array.

ECPGPlus provides support for the additional clauses of the SQL UPDATE statement as

documented in the PostgreSQL Core documentation available at:

https://www.postgresql.org/docs/11/static/sql-update.html

A host variable can be used in any clause that specifies a value. To use a host variable,

simply substitute a defined variable for any value associated with any of the documented

UPDATE clauses.

The following UPDATE statement changes the job description of an employee (identified

by the :ename host variable) to the value contained in the :new_job host variable, and

increases the employees salary, by multiplying the current salary by the value in the

: increase host variable:

EXEC SQL UPDATE emp

 SET job = :new_job, sal = sal * :increase

 WHERE ename = :ename ;

The enhanced UPDATE statement also allows you to include parameter markers (question

marks) in any clause where an input value would be permitted. For example, we can

write the same update statement with a parameter marker in the WHERE clause:

https://www.postgresql.org/docs/11/static/sql-update.html

EDB Postgres Advanced Server ECPGPlus Guide

Copyright © 2012 - 2018 EnterpriseDB Corporation. All rights reserved.

116

EXEC SQL UPDATE emp

 SET job = ?, sal = sal * ?

 WHERE ename = :ename ;

This UPDATE statement could allow you to prompt the user for a new value for the job

column and provide the amount by which the sal column is incremented for the

employee specified by :ename .

EDB Postgres Advanced Server ECPGPlus Guide

Copyright © 2012 - 2018 EnterpriseDB Corporation. All rights reserved.

117

7.5.31 WHENEVER

Use the WHENEVER statement to specify the action taken by a client application when it

encounters an SQL error or warning. The syntax is:

EXEC SQL WHENEVER condition action ;

The following table describes the different conditions that might trigger an action :

Condition Description
NOT FOUND The server returns a NOT FOUND condition when it encounters a

SELECT that returns no rows, or when a FETCH reaches the end of a
result set.

SQLERROR The server returns an SQLERROR condition when it encounters a
serious error returned by an SQL statement.

SQLWARNING The server returns an SQLWARNING condition when it encounters a
non-fatal warning returned by an SQL statement.

The following table describes the actions that result from a client encountering a

condition :

Action Description
CALL function [([args])] Instructs the client application to call the named function .
CONTINUE Instructs the client application to proceed to the next statement.
DO BREAK Instructs the client application to a C break statement. A break

statement may appear in a loop or a switch statement. If
executed, the break statement terminate the loop or the switch
statement..

DO CONTINUE Instructs the client application to emit a C continue statement. A
continue statement may only exist within a loop, and if executed,
will cause the flow of control to return to the top of the loop.

DO function ([args]) Instructs the client application to call the named function .

GOTO label or
GO TO label

Instructs the client application to proceed to the statement that
contains the label .

SQLPRINT Instructs the client application to print a message to standard
error.

STOP Instructs the client application to stop execution.

The following code fragment prints a message if the client application encounters a

warning, and aborts the application if it encounters an error:

EXEC SQL WHENEVER SQLWARNING SQLPRINT;

EXEC SQL WHENEVER SQLERROR STOP;

Include the following code to specify that a client should continue processing after

warning a user of a problem:

EDB Postgres Advanced Server ECPGPlus Guide

Copyright © 2012 - 2018 EnterpriseDB Corporation. All rights reserved.

118

EXEC SQL WHENEVER SQLWARNING SQLPRINT;

Include the following code to call a function if a query returns no rows, or when a cursor

reaches the end of a result set:

EXEC SQL WHENEVER NOT FOUND CALL error_handler(__LINE__);

	1 Introduction
	1.1 Typographical Conventions Used in this Guide

	2 ECPGPlus - Overview
	2.1 Installation and Configuration
	2.2 Constructing a Makefile
	2.3 ECPGPlus Command Line Options

	3 Using Embedded SQL
	3.1 Example - A Simple Query
	3.1.1 Using Indicator Variables
	3.1.2 Declaring Host Variables

	3.2 Example - Using a Cursor to Process a Result Set

	4 Using Descriptors
	4.1 Example - Using a Descriptor to Return Data

	5 Building and Executing Dynamic SQL Statements
	5.1 Example - Executing a Non-query Statement Without Parameters
	5.2 Example - Executing a Non-query Statement with a Specified Number of Placeholders
	5.3 Example - Executing a Query With a Known Number of Placeholders
	5.4 Example - Executing a Query With an Unknown Number of Variables

	6 Error Handling
	6.1 Error Handling with sqlca
	6.2 EXEC SQL WHENEVER

	7 Reference
	7.1 C-preprocessor Directives
	7.2 Supported C Data Types
	7.3 Type Codes
	7.4 The SQLDA Structure
	7.5 ECPGPlus Statements
	7.5.1 ALLOCATE DESCRIPTOR
	7.5.2 CALL
	7.5.3 CLOSE
	7.5.4 COMMIT
	7.5.5 CONNECT
	7.5.6 DEALLOCATE DESCRIPTOR
	7.5.7 DECLARE CURSOR
	7.5.8 DECLARE DATABASE
	7.5.9 DECLARE STATEMENT
	7.5.10 DELETE
	7.5.11 DESCRIBE
	7.5.12 DESCRIBE DESCRIPTOR
	7.5.13 DISCONNECT
	7.5.14 EXECUTE
	7.5.15 EXECUTE DESCRIPTOR
	7.5.16 EXECUTE...END EXEC
	7.5.17 EXECUTE IMMEDIATE
	7.5.18 FETCH
	7.5.19 FETCH DESCRIPTOR
	7.5.20 GET DESCRIPTOR
	7.5.21 INSERT
	7.5.22 OPEN
	7.5.23 OPEN DESCRIPTOR
	7.5.24 PREPARE
	7.5.25 ROLLBACK
	7.5.26 SAVEPOINT
	7.5.27 SELECT
	7.5.28 SET CONNECTION
	7.5.29 SET DESCRIPTOR
	7.5.30 UPDATE
	7.5.31 WHENEVER

