Postgres Enterprise Manager

Release 7.13

PEM pgBouncer Configuration Guide

Feb 25, 2020
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 The PEM Server - PEM Agent Connection Management Mechanism</td>
<td>2</td>
</tr>
<tr>
<td>2 Preparing the PEM Database Server</td>
<td>4</td>
</tr>
<tr>
<td>3 Configuring PgBouncer</td>
<td>6</td>
</tr>
<tr>
<td>4 Configuring the PEM Agent</td>
<td>9</td>
</tr>
<tr>
<td>4.1 Configuring a New PEM Agent (installed using an RPM)</td>
<td>9</td>
</tr>
<tr>
<td>4.2 Configuring an Existing PEM Agent (installed using an RPM)</td>
<td>10</td>
</tr>
<tr>
<td>5 Conclusion</td>
<td>11</td>
</tr>
<tr>
<td>Index</td>
<td>12</td>
</tr>
</tbody>
</table>
This document provides detailed information about using pgBouncer as a connection pooler for limiting the number of connections from the PEM Agent towards the Postgres Enterprise Manager™ (PEM) server on non-Windows machine:

- **Preparing the PEM Database Server** provides information about preparing the PEM database server to be used with pgBouncer.
- **Configuring pgBouncer** provides detailed information about configuring pgBouncer to make it work with the PEM database server.
- **Configuring the PEM Agent** provides detailed information about configuring a PEM agent to connect to pgBouncer.

This document uses the term *Postgres* to mean either the PostgreSQL or the Advanced Server database.
Each PEM agent connects to the PEM database server using the SSL certificates for each individual user. For example, an agent with ID#1 connects to the PEM database server using the `agent1` user.

Prior to PEM version 7.5, the following limitations did not allow use of the connection pooler between the PEM server and PEM agent:

- The PEM agent uses an SSL Certificate to connect the PEM database server.
- It uses an individual user identifier when connecting to the PEM database server.

EnterpriseDB has modified the PEM agent to allow the agent to use a common database user (instead of the dedicated agent users) to connect the PEM database server.
We recommend using PgBouncer versions equal to or later than version 1.9.0 as the connection pooler. Since versions 1.9.0 or later support cert authentication; PEM Agents can connect to pgBouncer using SSL certificates.
Preparing the PEM Database Server

You must configure the PEM database server to make it work with PgBouncer; the following example demonstrates the steps required to configure the PEM database server.

1. Create a dedicated user named `pgbouncer` on the PEM database server. For example:

   ```sql
   pem=# CREATE USER pgbouncer PASSWORD 'ANY_PASSWORD' LOGIN;
   CREATE ROLE
   ```

2. Create a user named `pem_admin1` (a non-super user) with `pem_admin` and `pem_agent_pool` role membership on the PEM database server. For example:

   ```sql
   pem=# CREATE USER pem_admin1 PASSWORD 'ANY_PASSWORD' LOGIN
   CREATE ROLE;
   CREATE ROLE
   pem=# GRANT pem_admin, pem_agent_pool TO pem_admin1;
   GRANT ROLE
   ```

3. Grant `CONNECT` privilege to the `pgbouncer` user on the `pem` database. For example:

   ```sql
   pem=# GRANT CONNECT ON DATABASE pem TO pgbouncer;
   GRANT USAGE ON
   SCHEMA pem TO pgbouncer;
   GRANT
   ```

4. Grant `USAGE` privilege to the `pgbouncer` user for the `pem` schema on the `pem` database. For example:

   ```sql
   pem=# GRANT USAGE ON SCHEMA pem TO pgbouncer;
   GRANT
   ```

5. Grant `EXECUTE` privilege to the `pgbouncer` user on the `pem.get_agent_pool_auth(text)` function in the `pem` database. For example:

   ```sql
   pem=# GRANT EXECUTE ON FUNCTION pem.get_agent_pool_auth(text) TO
   pgbouncer;
   GRANT
   ```
6. Use the `pem.create_proxy_agent_user(varchar)` function to create a user named `pem_agent_user1` on the PEM database server. For example:

   ```sql
   pem=# SELECT pem.create_proxy_agent_user('pem_agent_user1');
   create_proxy_agent_user
   -------------------------
   (1 row)
   ```

 The function will create a user with the same name with a random password, and grant `pem_agent` and `pem_agent_pool` roles to the user. This allows pgBouncer to use a proxy user on behalf of the agent.

7. Add the following entries to the start of the `pg_hba.conf` file of the PEM database server; this will allow pgBouncer user to connect to the pem database using the md5 authentication method. For example:

   ```conf
   # Allow the PEM agent proxy user (used by pgbouncer) to connect the to PEM server using md5
   local pem pgbouncer,pem_admin1 md5
   ```
CHAPTER 3

Configuring PgBouncer

You must configure PgBouncer to work with the PEM database server. In our example, we will run PgBouncer as the enterprisedb system user. The following steps outline the process of configuring pgBouncer (version >= 1.9).

1. Open a terminal window and navigate into the pgBouncer directory.
2. Change the owner of the etc directory for pgBouncer (where pgbouncer.ini resides) to enterprisedb, and change the directory permissions to 0700. For example:

 $ chown enterprisedb:enterprisedb /etc/edb/pgbouncer1.9
 $ chmod 0700 /etc/edb/pgbouncer1.9

3. Change the contents of the pgbouncer.ini or edb-pgbouncer.ini file as follows:

 [databases]
 ;; Change the pool_size according to maximum connections allowed
 ;; to the PEM database server as required.
 ;; 'auth_user' will be used for authenticate the db user (proxy
 ;; agent user in our case)
 pem = port=5444 host=/tmp dbname=pem auth_user=pgbouncer
 pool_size=80 pool_mode=transaction
 * = port=5444 host=/tmp dbname=pem auth_user=pgbouncer
 pool_size=10

 [pgbouncer]
 logfile = /var/log/edb/pgbouncer1.9/edb-pgbouncer-1.9.log
 pidfile = /var/run/edb/pgbouncer1.9/edb-pgbouncer-1.9.pid
 listen_addr = *
 ;; Agent needs to use this port to connect the pem database now
 listen_port = 6432
 ;; Require to support for the SSL Certificate authentications
 ;; for PEM Agents
 client_tls_sslmode = require
 ;; These are the root.crt, server.key, server.crt files present
 ;; in the present under the data directory of the PEM database
Postgres Enterprise Manager, Release 7.13

```sql
; server, used by the PEM Agents for connections.
client_tls_ca_file = /var/lib/edb/as11/data/root.crt
client_tls_key_file = /var/lib/edb/as11/data/server.key
client_tls_cert_file = /var/lib/edb/as11/data/server.crt
; Use hba file for client connections
auth_type = hba
; Authentication file, Reference:
; https://pgbouncer.github.io/config.html#auth_file
auth_file = /etc/edb/pgbouncer1.9/userlist.txt
; HBA file
auth_hba_file = /etc/edb/pgbouncer1.9/hba_file

; Use pem.get_agent_pool_auth(TEXT) function to authenticate
; the db user (used as a proxy agent user).
auth_query = SELECT * FROM pem.get_agent_pool_auth($1)

; DB User for administration of the pgbouncer
admin_users = pem_admin1
; DB User for collecting the statistics of pgbouncer
stats_users = pem_admin1
server_reset_query = DISCARD ALL
max_client_conn = 500
; Close server connection if it's not been used in this time.
; Allows to clean unnecessary connections from pool after peak.
server_idle_timeout = 60
```

4. Use the following command to create and update the `/etc/edb/pgbouncer1.9/userlist.txt` authentication file for PgBouncer.

```
pem=# COPY (SELECT 'pgbouncer'::TEXT, 'pgbouncer_password'
UNION ALL
SELECT 'pem_admin1'::TEXT, 'pem_admin1_password'
TO '/etc/edb/pgbouncer1.9/userlist.txt'
WITH (FORMAT CSV, DELIMITER ' ', FORCE_QUOTE *);
COPY 2
```

NOTE: A super user cannot invoke the PEM authentication query function `pem.get_proxy_auth(text)`. If the `pem_admin` user is a super user, you must add the password to the authentication file, which is `enterprisedb` in the above example.

5. Create an HBA file (`/etc/edb/pgbouncer1.9/hba_file`) for PgBouncer that contains the following content:

```sql
# Use authentication method md5 for the local connections to
# connect pem database & pgbouncer (virtual) database.
local pgbouncer all md5
# Use authentication method md5 for the remote connections to
# connect to pgbouncer (virtual database) using enterprisedb
# user.
host pgbouncer,pem pem_admin1 0.0.0.0/0 md5

# Use authentication method cert for the TCP/IP connections to
# connect the pem database using pem_agent_user1
hostssl pem pem_agent_user1 0.0.0.0/0 cert
```
6. Change the owner of the HBA file (/etc/edb/pgbouncer1.9/hba_file) to enterprisedb, and change the directory permissions to 0600. For example:

$ chown enterprisedb:enterprisedb /etc/edb/pgbouncer1.9/hba_file
$ chmod 0600 /etc/edb/pgbouncer1.9/hba_file

7. Enable the PgBouncer service, and start the service. For example:

$ systemctl enable edb-pgbouncer-1.9

Created symlink from /etc/systemd/system/multi-user.target.wants/edb-pgbouncer-1.9.service to /usr/lib/systemd/system/edb-pgbouncer-1.9.service.

$ systemctl start edb-pgbouncer-1.9
Configuring the PEM Agent

You can use an RPM package to install a PEM Agent; for detailed installation information, please see the PEM Installation Guide, available from the EnterpriseDB website at:
https://www.enterprisedb.com/resources/product-documentation

Please note that PEM Agent which is responsible for sending SNMP notifications should not be configured with pgBouncer. For Example - If default PEM Agent installed along with PEM Server is used for SNMP notifications, then it should not be configured with pgBouncer.

4.1 Configuring a New PEM Agent (installed using an RPM)

After using an RPM package to install the PEM agent, you will need to configure it to work it against a particular PEM database server. Use the following command:

```
$ PGSSLMODE=require PEM_SERVER_PASSWORD=pem_admin1_password
/usr/edb/pem/agent/bin/pemworker --register-agent --pem-server pem_agent_user1 --display-name "Agent Name"
```

Postgres Enterprise Manager Agent registered successfully!

In above command, the command line argument `--pem-agent-user` instructs the agent to create an SSL certificate and key pair for the `pem_agent_user1` database user in `/root/.pem` directory.

For example:

```
/root/.pem/pem_agent_user1.crt
/root/.pem/pem_agent_user1.key
```

They will be used by the PEM agent to connect to the PEM database server as `pem_agent_user1`. It will also create an agent configuration file named `/usr/edb/pem/agent/etc/agent.cfg`

You will find a line mentioning the agent-user to be used in the `agent.cfg` configuration file.
For example:

```bash
$ cat /usr/edb/pem/agent/etc/agent.cfg
[PEM/agent]
pem_host=172.16.254.22
pem_port=6432
agent_id=12
agent_user=pem_agent_user1
agent_ssl_key=/root/.pem/pem_agent_user1.key
agent_ssl_crt=/root/.pem/pem_agent_user1.crt
log_level=warning
log_location=/var/log/pem/worker.log
agent_log_location=/var/log/pem/agent.log
long_wait=30
short_wait=10
alert_threads=0
enable_smtp=false
enable_snmp=false
allow_server_restart=false
allow_package_management=false
allow_streaming_replication=false
max_connections=0
connect_timeout=-1
connection_lifetime=0
allow_batch_probes=false
heartbeat_connection=false
```

4.2 Configuring an Existing PEM Agent (installed using an RPM)

If you are using an existing PEM agent, you can copy the SSL certificate and key files to the target machine, and reuse the files. You will need to modify the files, adding a new parameter and replacing some parameters in the existing `agent.cfg` file:

Add a line for `agent_user` to be used for the agent. For example:

```
agent_user=pem_agent_user1
```

Update the port to specify the pgBouncer port. For example:

```
pem_port=6432
```

Update the certificate and key path locations. For example:

```
agent_ssl_key=/root/.pem/pem_agent_user1.key
agent_ssl_crt=/root/.pem/pem_agent_user1.crt
```

Please note: as an alternative, you can run the agent self registration, but that will create a new agent id. If you do run the agent self-registration, you must replace the new agent id with existing id, and disable the entry for the new agent id in the `pem.agent` table. For example:

```
pem=# UPDATE pem.agent SET active = false WHERE id = '<new_agent_id>';
UPDATE 1
```

NOTE: Keep a backup of the existing SSL certificate, key file, and agent configuration file.
Conclusion

EDB designs, establishes coding best practices, reviews, and verifies input validation for the logon UI for EDB Postgres Enterprise Manager where present. EDB follows the same approach for additional input components, however the nature of the product may require that it accepts freeform SQL, WMI or other strings to be entered and submitted by trusted users for which limited validation is possible. In such cases it is not possible to prevent users from entering incorrect or otherwise dangerous inputs.

EDB reserves the right to add features to products that accept freeform SQL, WMI or other potentially dangerous inputs from authenticated, trusted users in the future, but will ensure all such features are designed and tested to ensure they provide the minimum possible risk, and where possible, require superuser or equivalent privileges.

EDB does not warrant that we can or will anticipate all potential threats and therefore our process cannot fully guarantee that all potential vulnerabilities have been addressed or considered.
Index

C
Conclusion, 11
Configuring PgBouncer, 6
Configuring the PEM Agent, 9

P
Preparing the PEM Database Server, 4

T
The PEM Server - PEM Agent Connection Management
Mechanism, 2